From b7c5584be071b04618c648c5e0f1dceaa3eac223 Mon Sep 17 00:00:00 2001 From: Jaron Kent-Dobias Date: Tue, 2 Oct 2018 22:14:48 -0400 Subject: removed the appendix --- monte-carlo.tex | 69 --------------------------------------------------------- 1 file changed, 69 deletions(-) (limited to 'monte-carlo.tex') diff --git a/monte-carlo.tex b/monte-carlo.tex index db606a1..23065d1 100644 --- a/monte-carlo.tex +++ b/monte-carlo.tex @@ -675,75 +675,6 @@ perturbations on spin models can be tested numerically bruce_coupled_1975, manuel_carmona_$n$-component_2000}. -\appendix - -\section{$\mathrm O(n)$ model at high field} - - -\[ - \H=-\sum_r\sum_{i=1}^D\sum_{j=1}^ns_r^js_{r+e_i}^j - -\sum_r\sum_{j=1}^nH^js_r^j -\] -under the constraint -\[ - 1=\sum_{j=1}^ns_r^js_r^j -\] -Let $s=m+t$ for $|m|=1$ (usually $m=H/|H|$). Suppose without loss of -generality that $m=e_1$. -\[ - 1=|s|^2=1+2m\cdot t+|t|^2 -\] -whence $m\cdot t=-\frac12|t|^2$. Then -\begin{align} - s_1\cdot s_2 - &=1+m\cdot(t_1+t_2)+t_1\cdot t_2\\ - &=1-\frac12(|t_1|^2+|t_2|^2)+t_1\cdot t_2 -\end{align} -and -\[ - H\cdot s=|H|(1+m\cdot t)=|H|(1-\frac12|t|^2) -\] -For small perturbations, there are only $n-1$ degrees of freedom. We must have -(for $t$ in the same hemisphere as $m$) -\[ - t_\parallel=\sqrt{1-|t_\perp|^2}-1 -\] -\[ - t_1\cdot t_2=t_{1\perp}\cdot t_{2\perp}+O(t^4) -\] -Since there are $2D$ nearest neighbor bonds involving each spin, -\[ - \H - \simeq\H_0 - -\sum_{\langle ij\rangle}t_{i\perp}\cdot t_{j\perp} - +(D+|H|/2)\sum_i|t_{i\perp}|^2 -\] -Taking a discrete Fourier transform on the lattice, we find -\[ - \H - \simeq\H_0 - -\sum_k|\tilde t_{k\perp}|^2(D+|H|/2-\sum_{i=1}^D\cos(2\pi k_i/L)) -\] -It follows from equipartition (and the fact that $t_{k\perp}$ is an $n$-1 -component complex number) that -\[ - \avg{|\tilde t_{k\perp}|^2}=\frac - {n-1}2T\bigg(D+\frac{|H|}2-\sum_{i=1}^D\cos(2\pi k_i/L)\bigg)^{-1} -\] -whence -\begin{align} - \avg{\theta^2} - &=\avg{\cos^{-1}s_i\cdot s_j} - \simeq2(1-\avg{s_i\cdot s_j})\\ - &=2(\avg{|t|^2}-\avg{t_i\cdot t_j}) - \simeq2(\avg{|t_\perp|^2}-\avg{t_{i\perp}\cdot t_{j\perp}})\\ - &=2\sum_k(1-\cos(2\pi k_1/L))\avg{|\tilde t_{k\perp}|^2}\\ - &=\frac{(n-1)T}{L^D}\sum_k\frac{1-\cos(2\pi - k_1/L)}{D+|H|/2-\sum_{i=1}^D\cos(2\pi k_i/L)}\\ -\end{align} - -\section{Calculating autocorrelation time} - \begin{acknowledgments} This work was supported by NSF grant NSF DMR-1719490. \end{acknowledgments} -- cgit v1.2.3-54-g00ecf