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We generalize the ‘ghost spin’ representation of spin systems to restore full symmetry group
invariance in an arbitrary external field via the introduction of a ‘ghost transformation.’ This offers
a natural way to extend celebrated spin-cluster Monte Carlo algorithms to systems in arbitrary fields
by running the ordinary cluster-building process on the new representation. For several canonical
systems, we show that this extension preserves the scaling of dynamics celebrated in the absence of
a field.

Spin systems are important in the study of statistical
physics and phase transitions. Rarely exactly solvable,
they are typically studied by approximation and numeric
methods. Monte Carlo techniques are a common way
of doing this, approximating thermodynamic quantities
by sampling the distribution of systems states. These
Monte Carlo algorithms are better the faster they ar-
rive at a statistically independent sample. This typically
becomes a problem near critical points, where critical
slowing down [1] results in power-law divergences of dy-
namic timescales. Celebrated cluster algorithms largely
addressed this for many spin systems in the absence of
symmetry-breaking fields by using nonlocal updates [2]
whose eponymous clusters undergo a percolation tran-
sition at the critical point of the system [3] and result
in relatively small dynamic exponents [4–7], including
the Ising, O(n) [8], and Potts [9, 10] models. These al-
gorithms rely on the natural symmetry of the systems
in question under global rotations of spins. Some suc-
cess has been made in extending these algorithms to sys-
tems in certain external fields by applying the ‘ghost site’
representation [11] of certain spin systems that returns
global rotation invariance to spin Hamiltonians at the
cost of an extra degree of freedom, but these results only
allow the application of a narrow category of fields [12–
15]. We show that the scaling of correlation time near
the critical point of several models suggests that this ap-
proach is a natural one, e.g., that it extends the cele-
brated scaling of dynamics in these algorithms at zero
field to various non-symmetric perturbations. We also
show, by a redefinition of the spin–spin coupling in a
generic class of spin systems, arbitrary external fields can
be treated using cluster methods. Rather than the in-
troduction of a ‘ghost spin,’ our representation relies on
introducing a ‘ghost transformation.’

Let G = (V,E) be a graph, where the set of vertices
V = {1, . . . , N} enumerates the sites of a lattice and
the set of edges E contains pairs of neighboring sites.
Let R be a group acting on a set X, with the action
of group elements r ∈ R on elements s ∈ X denoted
r · s. X is the set of states accessible by a spin, and R
is the symmetry group of X. The set X must admit a
measure µ that is invariant under the action of R, e.g.,
for any A ⊆ X and r ∈ R, µ(r · A) = µ(A). This trait

is shared by the counting measure on any discrete set,
or by any group acting by isometries on a Riemannian
manifold, such as O(n) on Sn−1 in the O(n) model [16].
Finally, the subset of elements in R of order two must
act transitively on X. This property, while apparently
obscure, is shared by any symmetric space [17] or by any
transitive, finitely generated isometry group. In fact, all
the examples listed here have spins spaces with natural
metrics whose symmetry group is their set of isometries.
We put one spin at each site of the lattice described by
G, so that the state of the entire spin system is described
by elements s ∈ X × · · · ×X = XN .

The Hamiltonian of this system is a function H :
XN → R defined by

H(s) = −
∑

{i,j}∈E

Z(si, sj)−
∑

i∈V

B(si), (1)

where Z : X × X → R couples adjacent spins and B :
X → R is an external field. Z must be symmetric in its
arguments and invariant under the action of any element
of R applied to the entire lattice, that is, for any r ∈ R
and s, t ∈ X, Z(r · s, r · t) = Z(s, t). One may also allow
Z to also be a function of edge—for modelling random-
bond, long-range, or anisotropic interactions—or allow B
to be a function of site—for applying arbitrary boundary
conditions or modelling random fields. The formal results
of this paper hold equally well for these cases, but we will
drop the additional index notation for clarity.

The goal of statistical mechanics is to compute expec-
tation values of observables A : XN → R. Assuming
the ergodic hypothesis holds (for systems with broken-
symmetry states, it does not), the expected value 〈A〉
of an observable A is its average over every state s in
the configuration space XN weighted by the Boltzmann
probability of that state appearing, or

〈A〉 =

∫

XN A(s)e−βH(s) dµ(s)
∫

XN e−βH(s) dµ(s)
, (2)

where for Y1 × · · · × YN = Y ⊆ XN the measure µ(Y ) =
µ(Y1) · · ·µ(YN ) is the simple extension of the measure on
X to a measure on XN . These values are estimated using
Monte Carlo techniques by constructing a finite sequence
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Spins (X) Symmetry (R) Action (g · s) Coupling (Z(s, t)) Common Field (B(s))

Ising {−1, 1} Z/2Z 0 · s 7→ s, 1 · s 7→ −s st Hs

O(n) Sn−1 O(n) M · s 7→ Ms sTt HTs

Potts Z/qZ Dn rm · s = m+ s, sm · s = −m− s δ(s, t)
∑

m Hmδ(m, s)

Clock Z/qZ Dn rm · s = m+ s, sm · s = −m− s cos(2π s−t
q

)
∑

m Hm cos(2π s−m
q

)

Discrete Gaussian Z Dinf rm · s = m+ s, sm · s = −m− s (s− t)2 Hs2

TABLE I. Several examples of spin systems and the symmetry groups that act on them. Common choices for the spin–spin
coupling in these systems and their external fields are also given. Other fields are possible, of course: for instance, some are
interested in modulated fields H cos(2πkθ(s)) for integer k and θ(s) giving the angle of s to some axis applied to O(n) models
[18].

of states {s1, . . . , sM} such that

〈A〉 ≃
1

M

M
∑

i=1

A(si). (3)

Sufficient conditions for this average to converge to 〈A〉
as M → ∞ are that the process that selects si+1 given
the previous states be Markovian (only depends on si),
ergodic (any state can be accessed), and obey detailed
balance (the ratio of probabilities that s

′ follows s and
vice versa is equal to the ratio of weights for s and s

′ in
the ensemble).
While any of several related cluster algorithms can be

described for this system, we will focus on the Wolff algo-
rithm [8]. In the absence of an external field, e.g., B(s)=0,
the Wolff algorithm proceeds in the following way.

1. Pick a random site and a random rotation r ∈ R of
order two, and add the site to a stack.

2. While the stack isn’t empty,

(a) pop site m from the stack.

(b) If site m isn’t marked,

i. mark the site.

ii. For every j such that {m, j} ∈ E, add site
j to the stack with probability

pr(sm, sj) = min{0, 1− eβ(Z(r·sm,sj)−Z(sm,sj))}. (4)

iii. Take sm 7→ r · sm.

When the stack is exhausted, a cluster of connected spins
will have been rotated by the action of r. In order for
this algorithm to be useful, it must satisfy ergodicity and
detailed balance. Ergodicity is satisfied since we have
ensured that the subset of elements in R that are order
two acts transitively on K, e.g., for any s, t ∈ X there
exists r ∈ R such that r · s = t. Since there is a nonzero
probability that only one spin is rotated and that spin
can be rotated into any state, ergodicity follows. The
probability P (s → s

′) that the configuration s is brought
to s

′ by the flipping of a cluster formed by accepting ro-
tations of spins via bonds C ⊆ E and rejecting rotations
via bonds ∂C ⊂ E is related to the probability of the
reverse process P (s′ → s) by

P (s → s
′)

P (s′ → s)
=

∏

{i,j}∈C

pr(si, sj)

pr−1(s′i, s
′
j)

∏

{i,j}∈∂C

1− pr(si, sj)

1− pr−1(s′i, s
′
j)

=
∏

{i,j}∈∂C

eβ(Z(r·si,sj)−Z(si,sj)) =
pr(si, sj)

pr(si, sj)

e−βH(s)

e−βH(s′)
, (5)

whence detailed balance is also satisfied.
This algorithm relies on the fact that the coupling Z

depends only on relative orientation of the spins—global
reorientations do not affect the Hamiltonian. The ex-
ternal field B breaks this symmetry. However, it can
be restored. Define a new graph G̃ = (Ṽ , Ẽ), where
Ṽ = {0, 1, . . . , N} adds the new ‘ghost’ site 0 which is
connected by

Ẽ = E ∪
{

{0, i} | i ∈ V
}

(6)

to all other sites. Instead of assigning the ghost site a
spin whose value comes from X, we assign it values in
the symmetry group s0 ∈ R, so that the configuration

space of the new model is R × XN . We introduce the
Hamiltonian H̃ : R×XN → R defined by

H̃(s0, s) = −
∑

{i,j}∈E

Z(si, sj)−
∑

i∈V

B(s−1
0 · si)

= −
∑

{i,j}∈Ẽ

Z̃(si, sj),
(7)

where the new coupling Z̃ : (R ∪ X) × (R ∪ X) → R is
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defined for s, t ∈ R ∪X by

Z̃(s, t) =











Z(s, t) if s, t ∈ X

B(s−1 · t) if s ∈ R

B(t−1 · s) if t ∈ R.

(8)

The modified coupling is invariant under the action of
group elements: for any r, s0 ∈ R and s ∈ X,

Z̃(rs0, r · s) = B((rs0)
−1 · (r · s))

= B(s−1
0 · s) = Z̃(s0, s)

(9)

The invariance of Z̃ to rotations given other arguments
follows from the invariance properties of Z.
We have produced a system incorporating the field

function B whose Hamiltonian is invariant under global
rotations, but how does it relate to our old system, whose
properties we actually want to measure? If A : XN → R

is an observable of the original system, we construct an
observable Ã : R × XN → R of the new system defined
by

Ã(s0, s) = A(s−1
0 · s) (10)

whose expectation value in the new system equals that
of the original observable in the old system. First, note
that H̃(1, s) = H(s). Since the Hamiltonian is invariant
under global rotations, it follows that for any g ∈ R,
H̃(g, g · s) = H(s). Using the invariance properties of
the measure on X and introducing a measure ρ on R, it
follows that

〈Ã〉 =

∫

R

∫

XN Ã(s0, s)e
−βH̃(s0,s) dµ(s) dρ(s0)

∫

R

∫

XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫

R

∫

XN A(s−1
0 · s)e−βH̃(s0,s) dµ(s) dρ(s0)

∫

R

∫

XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫

R

∫

XN A(s′)e−βH̃(s0,s0·s
′)dµ(s0 · s

′) dρ(s0)
∫

R

∫

XN e−βH̃(s0,s0·s′)dµ(s0 · s′) dρ(s0)

=

∫

R
dρ(s0)

∫

R
dρ(s0)

∫

XN A(s′)e−βH(s′)dµ(s′)
∫

XN e−βH(s′)dµ(s′)
= 〈A〉.

(11)

Using this equivalence, spin systems in a field may be
treated in the following way.

1. Add a site to your lattice adjacent to every other
site.

2. Initialize a ‘spin’ at that site whose value is a rep-
resentation of a member of the symmetry group of
your ordinary spins.

3. Carry out the ordinary Wolff cluster-flip procedure
on this new lattice, substituting Z̃ as defined in (8)
for Z.

Ensemble averages of observables A can then be esti-
mated by sampling the value of Ã on the new system. In
contrast with the simpler ghost spin representation, this
form of the Hamiltonian might be considered the ‘ghost
transformation’ representation.

EXAMPLES

The Ising Model

In the Ising model spins are drawn from the set
{1,−1}. Its symmetry group is C2, the cyclic group on
two elements, which can be conveniently represented by a
multiplicative group with elements {1,−1}, exactly the
same as the spins themselves. The only nontrivial ele-
ment is of order two. Since the symmetry group and the
spins are described by the same elements, performing the
algorithm on the Ising model in a field is fully described
by just using the ‘ghost spin’ representation. This algo-
rithm has been applied by several researchers [13–15, 19].

The O(n) Model

In the O(n) model spins are described by vectors on
the (n − 1)-sphere Sn−1. Its symmetry group is O(n),
n×n orthogonal matrices, which act on the spins by ma-
trix multiplication. The elements of O(n) of order two
are reflections about hyperplanes through the origin and
π rotations about any axis through the origin. Since the
former generate the entire group, reflections alone suf-
fice to provide ergodicity. The ‘ghost spin’ version of the
algorithm has been used to apply a simple vector field
to the O(3) model [20]. The method is quickly general-
ized to spins whose symmetry groups other compact Lie
groups.

The Potts & Clock Models

In both the q-state Potts and clock models spins
are described by elements of Z/qZ, the set of integers
modulo q. Its symmetry group is the dihedral group
Dq = {r0, . . . , rq−1, s0, . . . , sq−1}, the group of symme-
tries of a regular q-gon. The element rn represents a
rotation by 2πn/q, and the element sn represents a re-
flection composed with the rotation rn. The group acts
on spins by permutation: rn · m = n+m (mod q) and
sn ·m = −(n+m) (mod q). This is the natural action of
the group on the vertices of a regular polygon that have
been numbered 0 through q − 1. The elements of Dq of
order 2 are all reflections and rq/2 if q is even, though
the former can generate the latter. While reflections do
not necessarily generate the entire group, their action on
Z/qZ is transitive.



4

Roughening Models

Though not often thought of as a spin model, roughen-
ing of surfaces can be described in this framework. Spins
are described by integers Z and their symmetry group is
the infinite dihedral group D∞ = {ri, si | i ∈ Z}, whose
action on the spin j ∈ Z is given by ri · j = i + j and
si · j = −i− j. The elements of order two are reflections
si, whose action on Z is transitive. The coupling can be
any function of the absolute difference |i − j|. Because
random choice of reflection will almost always result in
energy changes so large that the whole system is flipped,
it is better to select random reflections about integers
close to the average state of the system. A variant of the
algorithm has been applied without a field [21].

DYNAMIC SCALING

No algorithm is worthwhile if it doesn’t run efficiently.
This algorithm, being an extension of the Wolff algorithm
into a new domain, should be considered successful if it
likewise extends the efficiency of the Wolff algorithm into
that domain.
At a critical point, correlation time τ scales with sys-

tem size L = N−D as τ ∼ Lz. Cluster algorithms are
celebrated for their small dynamic exponents z. In the
vicinity of an ordinary critical point, the renormalization
group predicts scaling behavior for the correlation time
as a function of temperature t and field h of the form

τ = h−zν/βδT (ht−βδ, hLβδ/ν). (12)

If a given dynamics for a system at zero field results in
scaling like Lz, one should expect its natural extension
in the presence of a field to scale roughly like h−zν/βδ

and collapse appropriately as a function of hLβδ/ν . We
measured the autocorrelation time for the D = 2 square-
lattice model at a variety of system sizes, temperatures,
and fields B(s) = hs/β using standard methods [22].
The resulting scaling behavior, plotted in Fig. 1, is indeed
consistent with an extension to finite field of the behavior
at zero field.
Since the formation and flipping of clusters is the hall-

mark of Wolff dynamics, another way to ensure that the
dynamics with field scale like those without is to ana-
lyze the distribution of cluster sizes. The success of the
algorithm at zero field is related to the fact that the clus-
ters formed undergo a percolation transition at models’
critical point. According to the scaling theory of per-
colation [23], the distribution of cluster sizes in a full
Swendsen–Wang decomposition of the system scales con-
sistently near the critical point if it has the form

PSW(s) = s−τf(tsσ, th−1/βδ, tL1/ν). (13)

The distribution of cluster sizes in the Wolff algorithm
can be computed from this using the fact that the al-

hLβδ/ν

τ
L

−
z

10510410310210110010−110−210−3

1

0.1

FIG. 1. Collapses of the correlation time τ of the 2D square
lattice Ising model along the critical isotherm at various sys-
tems sizes N = L × L for L = 8, 16, 32, 64, 128, and 256
as a function of the renormalization invariant hLβδ/ν . The
exponent z = 0.30 is taken from recent measurements at zero
field [6].

gorithm selects clusters with probability proportional to
their size, or

〈s1c〉 =
∑

s

sP1c(s) =
∑

s

s
s

N
PSW(s)

= Lγ/νg(ht−βδ, hLβδ/ν).

(14)

For the Ising model, an additional scaling relation can
be written. Since the average cluster size is the average
squared magnetization, it can be related to the scaling
functions of the magnetization and susceptibility per site
by (with ht−βδ dependence dropped)

〈s1c〉 = LD〈M2〉 = β〈χ〉+ LD〈M〉2

= Lγ/ν
[

(hLβδ/ν)−γ/βδβY(hLβδ/ν)

+ (hLβδ/ν)2/δM(hLβδ/ν)
]

.

(15)

We therefore expect that, for the Ising model, 〈s1c〉
should go as (hLβδ)2/δ for large argument. We fur-
ther conjecture that this scaling behavior should hold
for other models whose critical points correspond with
the percolation transition of Wolff clusters. This behav-
ior is supported by our numeric work along the criti-
cal isotherm for various Ising, Potts, and O(n) models,
shown in Fig. 2. Fields for the Potts and O(n) models
take the form B(s) = (h/β)

∑

m cos(2π(s − m)/q) and
B(s) = (h/β)[1, 0, . . . , 0]s respectively. As can be seen,
the average cluster size collapses for each model accord-
ing to the scaling hypothesis, and the large-field behavior
likewise scales as we expect from the näıve Ising conjec-
ture.
We have taken several disparate extensions of cluster

methods to spin models in an external field and general-
ized them to work for any model of a broad class. The
resulting representation involves the introduction of not
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FIG. 2. Collapses of rescaled average Wolff cluster size 〈s〉1cL
−γ/ν as a function of field scaling variable hLβδ/ν for a variety

of models. Critical exponents γ, ν, β, and δ are model-dependant. Colored lines and points depict values as measured by the
extended algorithm. Solid black lines show a plot of g(0, x) ∝ x2/δ for each model.

a ghost spin, but a ghost transformation. We provided
evidence that algorithmic extensions deriving from this
method are the natural way to extend cluster methods
in the presence of a field, in the sense that they appear
to reproduce the scaling of dynamic properties in a field
that would be expected from renormalization group pre-
dictions.

In addition to uniting several extensions of cluster
methods under a single description, our approach allows
the application of fields not possible under prior methods.
Instead of simply applying a spin-like field, this method
allows for the application of arbitrary functions of the
spins. For instance, theoretical predictions for the effect
of symmetry-breaking perturbations on spin models can
be tested numerically [18, 24–26].
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