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Spin systems are important in the study of statistical
physics and phase transitions. Rarely exactly solvable,
they are typically studied by approximation methods and
numeric means. Monte Carlo methods are a common
way of doing this, approximating thermodynamic quan-
tities by sampling the distribution of systems states. For
a particular system, a Monte Carlo algorithm is better
the faster it arrives at a statistically independent sam-
ple. This is typically a problem at critical points, where
critical slowing down [1] results in power-law divergences
of any dynamics. Celebrated cluster algorithms largely
addressed this for many spin systems in the absence of
external fields by using nonlocal updates [2] whose clus-
ters undergo a percolation transition at the critical point
of the system [3] and that in relatively small dynamic ex-
ponents [4–7], including the Ising, n-component [8], and
Potts [9, 10] models. These algorithms rely on the natural
symmetry of the systems in question under global rota-
tions, so the general application of external fields is not
trivial. Some success has been made in extending these
algorithms to systems in certain external fields based on
applying the ghost site representation [11] of certain spin
systems that returns global rotation invariance to spin
Hamiltonians at the cost of an extra degree of freedom,
but these results only allow the application of a narrow
category of fields [12–15]. We show, by a redefinition
of the spin–spin coupling in a generic class of such sys-
tems, systems with arbitrary external fields applied can
be treated using cluster methods. The scaling of correla-
tion time near the critical point of several models suggests
that this approach is a natural one, e.g., that it extends
the celebrated scaling of dynamics in these algorithms at
zero field to various non-symmetric perturbations.

Let G = (V,E) be a graph, where the set of vertices
V = {1, . . . , N} enumerates the sites of a lattice and the
set of edges E contains pairs of neighboring sites. Let
R be a group and X an R-set, with the action of group
elements r ∈ R on elements s ∈ X denoted r · s. X is the
set of states accessible by a spin, and R is the symmetry

group of X. The set X must admit a measure µ that
is invariant under the action of R, e.g., for any A ⊆ X
and r ∈ R, µ(r · A) = µ(A). This trait is shared by the
counting measure on any discrete set, or by any group
acting by isometries on a Riemannian manifold, such as
O(n) on Sn−1 in the n-component model. Finally, the
subset of elements in R of order two must act transitively
on X. This property, while apparently obscure, is shared
by any symmetric space [16] or by any transitive, finitely
generated isometry group. In fact, all the examples listed

here have spins spaces with natural metrics whose sym-
metry group is the set of isometries of the spin spaces.
We put one spin at each site of the lattice described by
G, so that the state of the entire spin system is described
by elements s ∈ X × · · · ×X = XN .

The Hamiltonian of this system is a function H :
XN → R defined by

H(s) = −
∑

{i,j}∈E

Z(si, sj)−
∑

i∈V

B(si), (1)

where Z : X × X → R couples adjacent spins and B :
X → R is an external field. Z must be symmetric in its
arguments and invariant under the action of any element
of R applied to the entire lattice, that is, for any r ∈ R
and s, t ∈ X, Z(r · s, r · t) = Z(s, t). One may also
allow Z to also be a function of the edge—for modelling
random-bond, long-range, or anisotropic interactions—or
allow B to be a function of site—for applying arbitrary
boundary conditions or modelling random fields. All the
formal results of this paper hold equally well for these
cases, but we will drop the additional index notation for
clarity.
The goal of statistical mechanics as applied to these

systems is to compute expectation values of observables
A : XN → R. Assuming the ergodic hypothesis holds
(for systems with broken-symmetry states, it does not),
the expected value 〈A〉 of an observable A is its average
over every state s in the configuration spaceXN weighted
by the probability p(s) of that state appearing, or

〈A〉 =

∫

XN A(s)e−βH(s) dµ(s)
∫

XN e−βH(s) dµ(s)
(2)

where for Y1 × · · · × YN = Y ⊆ XN the measure µ(Y ) =
µ(Y1) · · ·µ(YN ) is the simple extension of the measure on
X to a measure on XN . These values are estimated by
Monte Carlo techniques by constructing a finite sequence
of states {s1, . . . , sM} such that

〈A〉 ≃
1

M

M
∑

i=1

A(si) (3)

Sufficient conditions for this average to converge to 〈A〉
as M → ∞ are that the process that selects si+1 given
the previous states be Markovian (only depends on si),
ergodic (any state can be accessed), and obey detailed
balance (the ratio of probabilities that s

′ follows s and
vice versa is equal to the ratio of weights for s and s

′ in
the ensemble).
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Spins (X) Symmetry (R) Action (g · s) Coupling (Z(s, t)) Common Field (B(s))

Ising {−1, 1} Z/2Z 0 · s 7→ s, 1 · s 7→ −s st Hs

n-component Sn−1 O(n) M · s 7→ Ms sTt HTs

Potts Z/qZ Dn rm · s = m+ s, sm · s = −m− s δ(s, t)
∑

m Hmδ(m, s)

Clock Z/qZ Dn rm · s = m+ s, sm · s = −m− s cos(2π s−t
q

)
∑

m Hm cos(2π s−m
q

)

Discrete Gaussian Z Dinf rm · s = m+ s, sm · s = −m− s (s− t)2 Hs2

TABLE I. Several examples of spin systems and the symmetry groups that act on them. Common choices for the spin–spin
coupling in these systems and their external fields are also given. Other fields are possible, of course: for instance, some are
interested in modulated fields H cos(2πkθ(s)) for integer k and θ(s) giving the angle of s to some axis applied to n-component
models [17].

While any several related cluster algorithms can be
described for this system, we will focus on the Wolff al-
gorithm in particular [8]. We will first describe a general-
ized version of the celebrated Wolff algorithm in the stan-
dard case where B(s) = 0. After reflecting on the tech-
nical requirements of that algorithm, we will introduce a
transformation to our system and Hamiltonian that al-
lows the same algorithm to be applied with nonzero, in
fact arbitrary, external fields.
The Wolff algorithm proceeds in the following way.

1. Pick a random site and a random rotation r ∈ R of
order two, and add the site to a stack.

2. While the stack isn’t empty,

(a) pop site m from the stack.

(b) If site m isn’t marked,

i. mark the site.

ii. For every j such that {m, j} ∈ E, add site
j to the stack with probability

pr(sm, sj) = min{0, 1− eβ(Z(r·sm,sj)−Z(sm,sj))}. (4)

iii. Take sm 7→ r · sm.

When the stack is exhausted, a cluster of connected spins
will have been rotated by the action of r. In order for
this algorithm to be useful, it must satisfy ergodicity and
detailed balance. The probability P (s → s

′) that the
configuration s is brought to s

′ by the flipping of a cluster
formed by accepting rotations of spins via bonds C ⊆ E
and rejecting rotations via bonds ∂C ⊂ E is related to
the probability of the reverse process P (s′ → s) by

P (s → s
′)

P (s′ → s)
=

∏

{i,j}∈C

pr(si, sj)

pr−1(s′i, s
′
j)

∏

{i,j}∈∂C

1− pr(si, sj)

1− pr−1(s′i, s
′
j)

=
∏

{i,j}∈C

pr(si, sj)

pr(r · si, r · sj)

∏

{i,j}∈∂C

1− pr(si, sj)

1− pr−1(r · si, sj)

=
∏

{i,j}∈C

pr(si, sj)

pr(si, sj)

∏

{i,j}∈∂C

eβ(Z(r·si,sj)−Z(si,sj)) =
e−βH(s)

e−βH(s′)

(5)

whence detailed balance is satisfied. Ergodicity is satis-
fied since we have ensured that the subset of elements in
R that are order two acts transitively on K, e.g., for any
s, t ∈ X there exists r ∈ R such that r ·s = t. Since there
is a nonzero probability that only one spin is rotated and
that spin can be rotated into any state, ergodicity follows.

The function of the algorithm described above depends
on the fact that the coupling Z depends only on the rel-
ative orientation of the spins—global reorientations by
acting by some rotation do not affect the Hamiltonian.
The external field B breaks this symmetry. However, this
can be resolved. Define a new graph G̃ = (Ṽ , Ẽ), where
Ṽ = {0, 1, . . . , N} and

Ẽ = E ∪
{

{0, i} | i ∈ V
}

. (6)

We have introduced a new site to the lattice that neigh-
bors every other site. Instead of assigning this site a spin
whose value comes from the setX, we will assign it values
s0 ∈ R, symmetry group elements, so that the new con-
figuration space of the model is R ×XN . We introduce
a Hamiltonian H̃ : R×XN → R defined by

H̃(s0, s) = −
∑

{i,j}∈E

Z(si, sj)−
∑

i∈V

B(s−1
0 · si)

= −
∑

{i,j}∈Ẽ

Z̃(si, sj)
(7)

where the new coupling Z̃ : (R ∪ X) × (R ∪ X) → R is
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defined for s, t ∈ R ∪X by

Z̃(s, t) =











Z(s, t) if s, t ∈ X

B(s−1 · t) if s ∈ R

B(t−1 · s) if t ∈ R

(8)

Note that this modified coupling is invariant under the
action of group elements: for any r, s0 ∈ R and s ∈ X,

Z̃(rs0, r · s) = B((rs0)
−1 · (r · s))

= B((s−1
0 r−1) · (r · s))

= B((s−1
0 r−1r) · s)

= B(s−1
0 · s) = Z̃(s0, s)

(9)

The invariance Z̃ to rotations given other arguments fol-
lows from the invariance properties of Z.
We have produced a system that incorporates the field

function B whose Hamiltonian is invariant to global
rotations, but how does it relate to our previous sys-
tem, whose properties we actually want to measure? If
A : XN → R is an observable of the original system, one
can construct an observable Ã : R×XN → R of the new
system defined by

Ã(s0, s) = A(s−1
0 · s) (10)

whose expectation value in the new system equals that
of the original observable in the old system. First, note
that H̃(1, s) = H(s). Since the Hamiltonian is invari-
ent under global rotations, it follows that for any g ∈ R,
H̃(g, g · s) = H̃(g−1g, g−1g · s) = H̃(1, s) = H(s). Us-
ing the invariance properties of the measure on X and
introducing a measure ρ on R, it follows that

〈Ã〉 =

∫

R

∫

XN Ã(s0, s)e
−βH̃(s0,s) dµ(s) dρ(s0)

∫

R

∫

XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫

R

∫

XN A(s−1
0 · s)e−βH̃(s0,s) dµ(s) dρ(s0)

∫

R

∫

XN e−βH̃(s0,s) dµ(s) dρ(s0)

=

∫

R

∫

XN A(s′)e−βH̃(s0,s0·s
′)dµ(s0 · s

′) dρ(s0)
∫

R

∫

XN e−βH̃(s0,s0·s′)dµ(s0 · s′) dρ(s0)

=

∫

R
dρ(s0)

∫

R
dρ(s0)

∫

XN A(s′)e−βH(s′)dµ(s′)
∫

XN e−βH(s′)dµ(s′)
= 〈A〉

(11)

To summarize, spin systems in a field may be treated in
the following way.

1. Add a site to your lattice adjacent to every other
site.

2. Initialize a “spin” at that site that is a representa-
tion of a member of the symmetry group of your
ordinary spins.

3. Carry out the ordinary Wolff cluster-flip procedure
on this new lattice, substituting Z̃ as defined in (8)
for Z.

Ensemble averages of observables A can then be esti-
mated by sampling the value of Ã on the new system.

EXAMPLES

The Ising Model

In the Ising model, spins are drawn from the set
{1,−1}. The symmetry group of this model is C2, the
cyclic group on two elements, which can be conveniently
represented by the multiplicative group with elements
{1,−1}, exactly the same as the spins themselves. The
only nontrivial element is of order two. Because the sym-
metry group and the spins are described by the same el-
ements, performing the algorithm on the Ising model in
a field is very accurately described by simply adding an
extra spin coupled to all others and running the ordinary
algorithm.

The n-component Model

In the n-component model, spins are described by vec-
tors on the (n− 1)-sphere, so that X = Sn−1. The sym-
metry group of this model is O(n), n × n orthogonal
matrices. The symmetry group acts on the spins by ma-
trix multiplication. The elements of O(n) that are order
two are reflections about some hyperplane through the
origin and π rotations about any axis through the ori-
gin. Since the former generate the entire group, the set
of reflections alone suffices to provide ergodicity. Compu-
tation of the coupling of ordinary spins with the external
field and expectation values requires a matrix inversion,
but since the matrices in question are orthogonal this is
quickly accomplished by a transpose.

The Potts & Clock Models

In both the q-state Potts and clock models, spins are
described by Z/qZ, the set of integers modulo q. The
symmetry group of this model is the dihedral group
Dq = {r0, . . . , rq−1, s0, . . . , sq−1}, the group of symme-
tries of a regular q-gon. The element rn represents a
rotation of the polygon by 2πn/q, and the element sn
represents a reflection composed with a rotation rn. The
group acts on the spins by permutation: rn ·m = n+m
(mod q) and sn · m = −(n+m) (mod q). Intuitively,
this can be thought of as the natural action of the group
on the vertices of a regular polygon that have been num-
bered 0 through q − 1. The elements of Dq that are of
order 2 are all reflections and rq/2 if q is even, though
the former can generate the latter. While the reflec-
tions do not necessarily generate the entire group, for any
n,m ∈ Z/qZ there exists a reflection that takes n → m,
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ensuring ergodicity. The elements of the dihedral group
can be stored simply as an integer and a boolean that
represents whether the element is a pure rotation or a
reflection. The principle difference between the Potts
and clock models is that, in the latter case, the form of
the coupling Z allows a geometric interpretation as be-
ing two-dimensional vectors fixed with even spacing along
the unit circle.

Discrete (or Continuous) Gaussian Model

Though not often thought of as a spin model, simple
roughening of surfaces can be described in this frame-
work. The set of states is the integers Z and its symmetry
group is the infinite dihedral group D∞ = {ri, si | i ∈ Z},
where the action of the symmetry on the spins j ∈ Z is
given by ri · j = i+ j and si · j = −i− j. These are shifts
by i and reflection about the integer i, respectively. The
elements of order two are the reflections si, which suffice
to provide ergodicity as any integer can be taken to any
other in one step of this kind. The coupling is usually
taken to be Z(i, j) = (i− j)2, though it may also be any
function of the absolute difference |i − j|. Because ran-
dom choices of integer will almost always result in energy
changes so big that the whole system is always flipped,
it is better to select random reflections about integers
close to the average state of the system. Continuous
roughening models—where the spin states are described
by real numbers and the symmetry group is E(1), the
Euclidean group for one-dimensional space—are equally
well described.

DYNAMIC SCALING

We measured the autocorrelation time using methods
here [18].
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