% % research_midsummer.tex - Research Presentation for the Topaz lab. % % Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012. % Copyright (c) 2012 pants productions. All rights reserved. % \documentclass[fleqn,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,latexsym,graphicx,multimedia} \usepackage{concmath} \usepackage[T1]{fontenc} \usecolortheme{beaver} \usefonttheme{serif} \setbeamertemplate{navigation symbols}{} \title{Direct Measurement of Metastable Properties Near Critical Points} \author{ Jaron~Kent-Dobias \and James~Sethna} \institute{Cornell University} \date{9 March 2018} \begin{document} \def\H{\mathcal H} \def\Z{\mathbb Z} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Outline} \begin{itemize} \item Simulating equilibrium spin systems \item Local updates: it's got problems \item Solution: cluster flips! \item Cluster flips\dots in an external field??? \item \dots{}yes! \item Analysis of runtime, efficiency \item Formal redefinition of magnetization \item Use: direct measurement of the metastable state \end{itemize} \vfill \end{frame} \begin{frame} \frametitle{Spin systems: we love them} Described by Hamiltonians \[ \H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iH(s_i) \] for $Z$ invariant under rotations $R$: $Z(R(s),R(t))=Z(s,t)$ \begin{table} \renewcommand{\tabcolsep}{7pt} \begin{tabular}{l||cccc} & $s$ & $R$ & $Z(s_i,s_j)$ & $H(s)$ \\ \hline\hline Ising model & $\{-1,1\}$ & $s\mapsto-s$ & $s_is_j$ & $Hs$ \\ Order-$n$ model & $S^n$ & $\mathop{\mathrm{SO}}(n)$ (rotation) & $s_i\cdot s_j$ & $H\cdot s$ \\ Potts model & $\Z/q\Z$ & addition mod $q$ & $\delta(s_i,s_j)$ & $\sum_iH_i\delta(i,s)$ \\ Clock model & $\Z/q\Z$ & addition mod $q$ & $\cos(2\pi\frac{s_i-s_j}q)$ & $\sum_iH_i\cos(2\pi\frac{s-i}q)$ \end{tabular} \end{table} Relatively simple with extremely rich behavior, phase transitions galore! \end{frame} \begin{frame} \frametitle{Local Monte Carlo: Not Great} Standard approach to modelling arbitrary stat mech system: metropolis. \begin{enumerate} \item Pick random spin. \item Pick random rotation $R$. \item Compute change in energy $\Delta\H$ resulting from taking $s$ to $R(s)$. \item Take $s$ to $R(s)$ with probability $\max\{1,e^{-\beta\Delta\H}\}$. \end{enumerate} Problem: Scales very poorly near phase transitions. Correlation time τ at critical point, $\tau\sim t^{-z/\nu}$ approaching it. $z$ takes large integer values for Ising, order-$n$, Potts model critical points. \end{frame} \begin{frame} \frametitle{Wolff: wow, what a solution} \begin{enumerate} \item Pick random spin, add to cluster. \item Pick random rotation $R$. \item For every neighboring spin, add to cluster with probability $\min\{0,1-e^{-\beta(Z(R(s),t)-Z(R(s),R(t)))}\}$. \item Repeat 3 for every spin added to cluster. \item Transform entire cluster with rotation $R$. \end{enumerate} Relies on symmetry of $Z$ Fast near the critical point: early studies thought $z$ was zero, actually $0.1$--$0.4$. \end{frame} \begin{frame} \frametitle{We want to apply an external field, though} The external field $H$ is not invariant under global rotations! Let's make it that way: $R_s$ is the rotation that takes $s$ to the identity (1, first basis vector, etc) \[ \tilde Z(s_i,s_j)= \begin{cases} Z(s_i,s_j) & \text{if $i,j\neq N$}\\ H(R_{s_0}s_i) & \text{if $j=0$}\\ H(R_{s_0}s_j) & \text{if $i=0$} \end{cases} \] Exact correspondence between expectation values of operators in old and new models: if $A(s)$ is an observable on old model, $\tilde A(s_0,s)=A(R_{s_0}s)$ has the property \[ \langle\tilde A\rangle=\mathop{\mathrm{Tr}}\nolimits_s\mathop{\mathrm{Tr}}\nolimits_{s_0}\tilde A(s_0,s)=\mathop{\mathrm{Tr}}\nolimits_sA(s)=\langle A\rangle \] \end{frame} \begin{frame} \centering \includegraphics[height=0.8\textheight]{figs/wolff-scoop_title} \end{frame} \begin{frame} \centering \includegraphics[height=0.8\textheight]{figs/wolff-scoop_explanation} \end{frame} \begin{frame} \frametitle{But does it actually work well? (yes)} \movie[height=.4\textwidth,width=0.4\textwidth]{}{figs/test.avi} \end{frame} \begin{frame} \frametitle{Measuring direction-dependant quantities} \end{frame} \begin{frame} \frametitle{Metastable state!} \end{frame} \begin{frame} \end{frame} \end{document}