\documentclass[fleqn,aspectratio=169]{beamer} \renewcommand\vec[1]{\mathbf{#1}} \setbeamerfont{title}{family=\bf} \setbeamerfont{frametitle}{family=\bf} \setbeamerfont{normal text}{family=\rm} \setbeamertemplate{navigation symbols}{} \usepackage{textcomp,rotating} \title{Cluster-flip colloidal \& atomistic algorithms with background potentials} \author{Jaron Kent-Dobias \and James P Sethna} \institute{\includegraphics[width=7em]{figs/bold_cornell_seal_cmyk_red.pdf}} \date{} \begin{document} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Introduction} \begin{columns} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\columnwidth]{../statphys_27/figs/ising_hl_00_1} \onslide<2>\includegraphics[width=\columnwidth]{../statphys_27/figs/ising_hl_00_2} \onslide<3>\includegraphics[width=\columnwidth]{../statphys_27/figs/ising_hl_00_3} \end{overprint} \end{column} \begin{column}{0.5\textwidth} Cluster Monte Carlo famously speeds up simulation of lattice models. \hfill{\scriptsize Wang \& Swendsen, Physica A \textbf{167} (1990) 565}\\ \hfill{\scriptsize Wolff, PRL \textbf{62} 4 (1989) 361} \vspace{1em} Recent extension for lattice models extends this to arbitrary potentials. \hfill{\scriptsize Kent-Dobias \& Sethna, PRE \textbf{98} 063306} \vspace{1em} That method also happens to work for spatial degrees of freedom! \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Hard spheres without potential} \begin{columns} \begin{column}{0.5\textwidth} \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify particles with intersections.} \item \alert<6>{Transform each intersecting particle.} \item \alert<7-12>{Repeat 5--6 until exhausted.} \end{enumerate} \vspace{1em} \hfill{\scriptsize Dress \& Krauth \textit{J Phys A: Math Gen} \textbf{28} (1995) 597} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_free_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_free_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_free_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/hard_free_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/hard_free_5.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/hard_free_6.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/hard_free_7.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/hard_free_8.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/hard_free_9.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/hard_free_10.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/hard_free_11.pdf} \onslide<12>\includegraphics[width=\textwidth]{figs/hard_free_12.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/hard_free_13.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Soft spheres without potential} \begin{columns} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/soft_free_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/soft_free_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/soft_free_3.pdf} \onslide<4,6>\includegraphics[width=\textwidth]{figs/soft_free_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/soft_free_4-2.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/soft_free_5.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/soft_free_6.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/soft_free_7.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/soft_free_8.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/soft_free_9.pdf} \onslide<12,14>\includegraphics[width=\textwidth]{figs/soft_free_10.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/soft_free_10-2.pdf} \onslide<15>\includegraphics[width=\textwidth]{figs/soft_free_11.pdf} \end{overprint} \end{column} \begin{column}{0.5\textwidth} Pair potential $V$ gives `Ising' Hamiltonian: \[ H=\sum_{ij}V_{ij}(\vec r_i, \vec r_j) \] \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify particles with $\Delta V_{ij}>0$.} \item \alert<6>{Transform each particle with probability $1-e^{-\Delta V_{ij}/T}$.} \item \alert<7-10>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Spheres in hard potential} \begin{columns} \begin{column}{0.5\textwidth} Hard potential? Treat it like a particle! \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify `particles' with intersections.} \item \alert<6>{Transform each intersecting particle.} \item \alert<7-15>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_box_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_box_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_box_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/hard_box_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/hard_box_5.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/hard_box_6.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/hard_box_7.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/hard_box_8.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/hard_box_9.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/hard_box_10.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/hard_box_11.pdf} \onslide<12>\includegraphics[width=\textwidth]{figs/hard_box_12.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/hard_box_13.pdf} \onslide<14>\includegraphics[width=\textwidth]{figs/hard_box_14.pdf} \onslide<15>\includegraphics[width=\textwidth]{figs/hard_box_50.pdf} \onslide<16>\includegraphics[width=\textwidth]{figs/hard_box_51.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Spheres in soft potential} \begin{columns} \begin{column}{0.5\textwidth} Soft potential? Treat it like a particle with effective pair potential $\tilde V$! \vspace{0.5em} \raisebox{-0.65em}{\includegraphics[width=0.1\textwidth]{figs/ex.pdf}} --- center of attractive potential \vspace{0.5em} \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify `particles' with $\Delta\tilde V_{ij}>0$.} \item \alert<6>{Transform each `particle' with probability $1-e^{-\Delta\tilde V_{ij}/T}$.} \item \alert<7-15>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_field_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_field_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_field_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/hard_field_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/hard_field_5.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/hard_field_6.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/hard_field_7.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/hard_field_8.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/hard_field_9.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/hard_field_10.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/hard_field_11.pdf} \onslide<12,14>\includegraphics[width=\textwidth]{figs/hard_field_12.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/hard_field_13.pdf} \onslide<15>\includegraphics[width=\textwidth]{figs/hard_field_14.pdf} \onslide<16>\includegraphics[width=\textwidth]{figs/hard_field_15.pdf} \onslide<17>\includegraphics[width=\textwidth]{figs/hard_field_16.pdf} \onslide<18,20>\includegraphics[width=\textwidth]{figs/hard_field_17.pdf} \onslide<19>\includegraphics[width=\textwidth]{figs/hard_field_18.pdf} \onslide<21>\includegraphics[width=\textwidth]{figs/hard_field_86.pdf} \onslide<22>\includegraphics[width=\textwidth]{figs/hard_field_87.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Caveats \& improvements} \begin{columns} \begin{column}{0.5\textwidth} \alert<1-3>{Symmetries of period boundaries more restrictive than free space.} \vspace{1em} \alert<4-5>{Flips ergodic for non-spherical particles confined to finite volume with potential.} \vspace{1em} \alert<6-12>{Careful choice of flips likely important at high density.} \vspace{1em} Addition of confining field allows these at cost of boundaries. \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_torus_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_torus_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_torus_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/dimers_torus.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/dimers_field.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/same_swap_1.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/same_swap_2.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/same_swap_3.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/same_swap_4.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/same_swap_5.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/same_swap_6.pdf} \onslide<12>\includegraphics[width=\textwidth]{figs/same_swap_7.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{A better swap?} \begin{columns} \begin{column}{0.5\textwidth} Swap famously speeds up formation of ultrastable computer glasses. \vspace{1em} \alert<2-4>{Chooses pair and attempts to exchange them with Metropolis rules.} \vspace{1em} \alert<5-10>{Cluster flip seeds can be constructed similarly, but fail differently.} \vspace{1em} Whether these can be tuned to improve efficiency is not known. \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1,4>\includegraphics[width=\textwidth]{figs/diff_swap_1.pdf} \onslide<2,5>\includegraphics[width=\textwidth]{figs/diff_swap_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/diff_swap_22.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/diff_swap_3.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/diff_swap_4.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/diff_swap_5.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/diff_swap_6.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/diff_swap_7.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Demo time} \end{frame} \begin{frame} \frametitle{The dirty deets} System with symmetry group $G$ and objects with state $s_i$ (including position, radius, orientation, spin, \dots) \[ H=\sum_{ij}V(s_i, s_j)+\sum_iU(s_i) \] For $s_0\in G$ and new potential $\tilde V$ defined by $\tilde V_{0i}=U(s_0^{-1}\cdot s_i)$, \begin{align*} \tilde H&=\sum_{ij}V_{ij}(s_i, s_j)+\sum_iU_i(s_0^{-1}\cdot s_i) \\ &=\sum_{ij}\tilde V_{ij}(s_i, s_j) \end{align*} has the form of a system without a potential. \end{frame} \end{document}