\documentclass[fleqn,aspectratio=169]{beamer} \renewcommand\vec[1]{\mathbf{#1}} \setbeamerfont{title}{family=\bf} \setbeamerfont{frametitle}{family=\bf} \setbeamerfont{normal text}{family=\rm} \setbeamertemplate{navigation symbols}{} \usepackage{textcomp,rotating} \title{Cluster-flip colloidal \& atomistic algorithms with background potentials} \author{Jaron Kent-Dobias \and James P Sethna} \institute{\includegraphics[width=7em]{figs/bold_cornell_seal_black.pdf}} \date{} \begin{document} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Introduction} \end{frame} \begin{frame} \frametitle{Hard sphere cluster flips} \begin{columns} \begin{column}{0.5\textwidth} \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify particles with intersections.} \item \alert<6>{Transform each intersecting particle.} \item \alert<7-12>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_free_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_free_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_free_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/hard_free_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/hard_free_5.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/hard_free_6.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/hard_free_7.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/hard_free_8.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/hard_free_9.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/hard_free_10.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/hard_free_11.pdf} \onslide<12>\includegraphics[width=\textwidth]{figs/hard_free_12.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/hard_free_13.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Softening up} \begin{columns} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/soft_free_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/soft_free_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/soft_free_3.pdf} \onslide<4,6>\includegraphics[width=\textwidth]{figs/soft_free_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/soft_free_4-2.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/soft_free_5.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/soft_free_6.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/soft_free_7.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/soft_free_8.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/soft_free_9.pdf} \onslide<12,14>\includegraphics[width=\textwidth]{figs/soft_free_10.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/soft_free_10-2.pdf} \onslide<15>\includegraphics[width=\textwidth]{figs/soft_free_11.pdf} \end{overprint} \end{column} \begin{column}{0.5\textwidth} Interacting particles with pair potential $V$ have `Ising' Hamiltonian \[ H=\sum_{ij}V_{ij}(\vec r_i, \vec r_j) \] \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify particles with $\Delta V_{ij}>0$.} \item \alert<6>{Transform each particle with probability $1-e^{-\Delta V_{ij}/T}$.} \item \alert<7-10>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Hard sphere cluster flips with hard potential} \begin{columns} \begin{column}{0.5\textwidth} Hard potential? Treat it like a particle! \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify `particles' with intersections.} \item \alert<6>{Transform each intersecting particle.} \item \alert<7-15>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_box_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_box_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_box_3.pdf} \onslide<4>\includegraphics[width=\textwidth]{figs/hard_box_4.pdf} \onslide<5>\includegraphics[width=\textwidth]{figs/hard_box_5.pdf} \onslide<6>\includegraphics[width=\textwidth]{figs/hard_box_6.pdf} \onslide<7>\includegraphics[width=\textwidth]{figs/hard_box_7.pdf} \onslide<8>\includegraphics[width=\textwidth]{figs/hard_box_8.pdf} \onslide<9>\includegraphics[width=\textwidth]{figs/hard_box_9.pdf} \onslide<10>\includegraphics[width=\textwidth]{figs/hard_box_10.pdf} \onslide<11>\includegraphics[width=\textwidth]{figs/hard_box_11.pdf} \onslide<12>\includegraphics[width=\textwidth]{figs/hard_box_12.pdf} \onslide<13>\includegraphics[width=\textwidth]{figs/hard_box_13.pdf} \onslide<14>\includegraphics[width=\textwidth]{figs/hard_box_14.pdf} \onslide<15>\includegraphics[width=\textwidth]{figs/hard_box_50.pdf} \onslide<16>\includegraphics[width=\textwidth]{figs/hard_box_51.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Cluster flips with soft potential} \begin{columns} \begin{column}{0.5\textwidth} Soft potential? Treat it like a (big, soft, asymmetric) particle with effective pair potential $\tilde V$! \begin{enumerate} \item \alert<2>{Pick a symmetry transformation.} \item \alert<3>{Pick a seed.} \item \alert<4>{Transform the seed.} \item \alert<5>{Identify `particles' with $\Delta\tilde V_{ij}>0$.} \item \alert<6>{Transform each `particle' with probability $1-e^{-\Delta\tilde V_{ij}/T}$.} \item \alert<7-15>{Repeat 5--6 until exhausted.} \end{enumerate} \end{column} \begin{column}{0.5\textwidth} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Caveats \& improvements} \begin{columns} \begin{column}{0.5\textwidth} Symmetries of the torus versus all space Choice of reflection plane important We can do better with free space! \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\textwidth]{figs/hard_torus_1.pdf} \onslide<2>\includegraphics[width=\textwidth]{figs/hard_torus_2.pdf} \onslide<3>\includegraphics[width=\textwidth]{figs/hard_torus_3.pdf} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{A better swap?} \end{frame} \begin{frame} \frametitle{Demo time} \end{frame} \begin{frame} \frametitle{The dirty deets} System with symmetry group $G$ and objects with state $s_i$ (including position, radius, orientation, spin, \dots) \[ H=\sum_{ij}V(s_i, s_j)+\sum_iU(s_i) \] For $s_0\in G$ and new potential $\tilde V$ defined by $\tilde V_{0i}=U(s_0^{-1}\cdot s_i)$, \begin{align*} \tilde H&=\sum_{ij}V_{ij}(s_i, s_j)+\sum_iU_i(s_0^{-1}\cdot s_i) \\ &=\sum_{ij}\tilde V_{ij}(s_i, s_j) \end{align*} has the form of a system without a potential. \end{frame} \end{document}