summaryrefslogtreecommitdiff
path: root/aps_mm_2020.tex
blob: 5ecc09926b7930a66af8566c120202017eaa961a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

\documentclass[fleqn,aspectratio=169]{beamer}

\renewcommand\vec[1]{\mathbf{#1}}

\setbeamerfont{title}{family=\bf}
\setbeamerfont{frametitle}{family=\bf}
\setbeamerfont{normal text}{family=\rm}
\setbeamertemplate{navigation symbols}{}

\usepackage{textcomp,rotating}

\title{Cluster-flip colloidal \& atomistic algorithms with background potentials}
\author{Jaron Kent-Dobias \and James P Sethna}
\institute{\includegraphics[width=7em]{figs/bold_cornell_seal_black.pdf}}
\date{}

\begin{document}

\begin{frame}
  \maketitle
\end{frame}

\begin{frame}
  \frametitle{Introduction}
\end{frame}

\begin{frame}
  \frametitle{Hard sphere cluster flips}
  
  \begin{columns}
    \begin{column}{0.5\textwidth}
      \begin{enumerate}
        \item \alert<2>{Pick a symmetry transformation.}
        \item \alert<3>{Pick a seed.}
        \item \alert<4>{Transform the seed.}
        \item \alert<5>{Identify particles with intersections.}
        \item \alert<6>{Transform each intersecting particle.}
        \item \alert<7-12>{Repeat 5--6 until exhausted.}
      \end{enumerate}
    \end{column}
    \begin{column}{0.5\textwidth}
      \begin{overprint}
        \onslide<1>\includegraphics[width=\textwidth]{figs/hard_free_1.pdf}
        \onslide<2>\includegraphics[width=\textwidth]{figs/hard_free_2.pdf}
        \onslide<3>\includegraphics[width=\textwidth]{figs/hard_free_3.pdf}
        \onslide<4>\includegraphics[width=\textwidth]{figs/hard_free_4.pdf}
        \onslide<5>\includegraphics[width=\textwidth]{figs/hard_free_5.pdf}
        \onslide<6>\includegraphics[width=\textwidth]{figs/hard_free_6.pdf}
        \onslide<7>\includegraphics[width=\textwidth]{figs/hard_free_7.pdf}
        \onslide<8>\includegraphics[width=\textwidth]{figs/hard_free_8.pdf}
        \onslide<9>\includegraphics[width=\textwidth]{figs/hard_free_9.pdf}
        \onslide<10>\includegraphics[width=\textwidth]{figs/hard_free_10.pdf}
        \onslide<11>\includegraphics[width=\textwidth]{figs/hard_free_11.pdf}
        \onslide<12>\includegraphics[width=\textwidth]{figs/hard_free_12.pdf}
        \onslide<13>\includegraphics[width=\textwidth]{figs/hard_free_13.pdf}
      \end{overprint}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Softening up}
  \begin{columns}
    \begin{column}{0.5\textwidth}
      \begin{overprint}
        \onslide<1>\includegraphics[width=\textwidth]{figs/soft_free_1.pdf}
        \onslide<2>\includegraphics[width=\textwidth]{figs/soft_free_2.pdf}
        \onslide<3>\includegraphics[width=\textwidth]{figs/soft_free_3.pdf}
        \onslide<4>\includegraphics[width=\textwidth]{figs/soft_free_4.pdf}
        \onslide<5>\includegraphics[width=\textwidth]{figs/soft_free_5.pdf}
        \onslide<6>\includegraphics[width=\textwidth]{figs/soft_free_6.pdf}
        \onslide<7>\includegraphics[width=\textwidth]{figs/soft_free_7.pdf}
        \onslide<8>\includegraphics[width=\textwidth]{figs/soft_free_8.pdf}
        \onslide<9>\includegraphics[width=\textwidth]{figs/soft_free_9.pdf}
        \onslide<10>\includegraphics[width=\textwidth]{figs/soft_free_10.pdf}
        \onslide<11>\includegraphics[width=\textwidth]{figs/soft_free_11.pdf}
      \end{overprint}
    \end{column}
    \begin{column}{0.5\textwidth}
      Interacting particles with pair potential $V$ have `Ising' Hamiltonian
      \[
        H=\sum_{ij}V_{ij}(\vec r_i, \vec r_j)
      \]

      \begin{enumerate}
        \item \alert<2>{Pick a symmetry transformation.}
        \item \alert<3>{Pick a seed.}
        \item \alert<4>{Transform the seed.}
        \item \alert<5>{Identify particles with $\Delta V_{ij}>0$.}
        \item \alert<6>{Transform each particle with probability $1-e^{-\Delta V_{ij}/T}$.}
        \item \alert<7-10>{Repeat 5--6 until exhausted.}
      \end{enumerate}
    \end{column}
  \end{columns}

\end{frame}

\begin{frame}
  \frametitle{Hard sphere cluster flips with hard potential}
  \begin{columns}
    \begin{column}{0.5\textwidth}
      Hard potential? Treat it like a particle!

      \begin{enumerate}
        \item \alert<2>{Pick a symmetry transformation.}
        \item \alert<3>{Pick a seed.}
        \item \alert<4>{Transform the seed.}
        \item \alert<5>{Identify `particles' with intersections.}
        \item \alert<6>{Transform each intersecting particle.}
        \item \alert<7-15>{Repeat 5--6 until exhausted.}
      \end{enumerate}
    \end{column}
    \begin{column}{0.5\textwidth}
      \begin{overprint}
        \onslide<1>\includegraphics[width=\textwidth]{figs/hard_box_1.pdf}
        \onslide<2>\includegraphics[width=\textwidth]{figs/hard_box_2.pdf}
        \onslide<3>\includegraphics[width=\textwidth]{figs/hard_box_3.pdf}
        \onslide<4>\includegraphics[width=\textwidth]{figs/hard_box_4.pdf}
        \onslide<5>\includegraphics[width=\textwidth]{figs/hard_box_5.pdf}
        \onslide<6>\includegraphics[width=\textwidth]{figs/hard_box_6.pdf}
        \onslide<7>\includegraphics[width=\textwidth]{figs/hard_box_7.pdf}
        \onslide<8>\includegraphics[width=\textwidth]{figs/hard_box_8.pdf}
        \onslide<9>\includegraphics[width=\textwidth]{figs/hard_box_9.pdf}
        \onslide<10>\includegraphics[width=\textwidth]{figs/hard_box_10.pdf}
        \onslide<11>\includegraphics[width=\textwidth]{figs/hard_box_11.pdf}
        \onslide<12>\includegraphics[width=\textwidth]{figs/hard_box_12.pdf}
        \onslide<13>\includegraphics[width=\textwidth]{figs/hard_box_13.pdf}
        \onslide<14>\includegraphics[width=\textwidth]{figs/hard_box_14.pdf}
        \onslide<15>\includegraphics[width=\textwidth]{figs/hard_box_50.pdf}
        \onslide<16>\includegraphics[width=\textwidth]{figs/hard_box_51.pdf}
      \end{overprint}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Cluster flips with soft potential}
  \begin{columns}
    \begin{column}{0.5\textwidth}
      Soft potential? Treat it like a (big, soft, asymmetric) particle with effective pair potential $\tilde V$!
      \begin{enumerate}
        \item \alert<2>{Pick a symmetry transformation.}
        \item \alert<3>{Pick a seed.}
        \item \alert<4>{Transform the seed.}
        \item \alert<5>{Identify `particles' with $\Delta\tilde V_{ij}>0$.}
        \item \alert<6>{Transform each `particle' with probability $1-e^{-\Delta\tilde V_{ij}/T}$.}
        \item \alert<7-15>{Repeat 5--6 until exhausted.}
      \end{enumerate}
    \end{column}
    \begin{column}{0.5\textwidth}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Cluster flips with soft potential}
  \begin{columns}
    \begin{column}{0.5\textwidth}
      Soft potential? Treat it like a (big, soft, asymmetric) particle transformed to $r_0$!

    \end{column}
    \begin{column}{0.5\textwidth}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Caveats \& improvements}

  Symmetries of the torus versus all space

  Choice of reflection plane important

  We can do better with free space!
\end{frame}

\begin{frame}
  \frametitle{A better swap?}
\end{frame}

\begin{frame}
  \frametitle{Demo time}
\end{frame}

\begin{frame}
  \frametitle{The dirty deets}

  System with symmetry group $G$ and objects with state $s_i$ (including position, radius, orientation, spin, \dots)
  \[
    H=\sum_{ij}V(s_i, s_j)+\sum_iU(s_i)
  \]
  For $s_0\in G$ and new potential $\tilde V$ defined by $\tilde V_{0i}=U(s_0^{-1}\cdot s_i)$,
  \begin{align*}
    \tilde H&=\sum_{ij}V_{ij}(s_i, s_j)+\sum_iU_i(s_0^{-1}\cdot s_i) \\
     &=\sum_{ij}\tilde V_{ij}(s_i, s_j)
  \end{align*}
  has the form of a system without a potential.
\end{frame}

\end{document}