\documentclass[fleqn,aspectratio=169]{beamer} \setbeamerfont{frametitle}{family=\bf} \setbeamerfont{normal text}{family=\rm} \setbeamertemplate{navigation symbols}{} \usepackage{textcomp,rotating} \title{Rejection-free cluster Monte Carlo in arbitrary external fields} \subtitle{Phys Rev E \textbf{98}, 063306 (2018)} \author{Jaron Kent-Dobias \and James P Sethna} \institute{Cornell University} \date{} \begin{document} \def\tr{\mathop{\mathrm{Tr}}\nolimits} \begin{frame} \maketitle \end{frame} \begin{frame} \frametitle{Monte Carlo is too slow} \begin{columns} \begin{column}{0.5\textwidth} Critical timescales diverge like $L^z$. \vspace{2em} For 2D Ising local algorithms have $z\simeq2$--4. \vspace{2em} Cluster methods have $z\simeq0.3$! \vspace{2em} \end{column} \begin{column}{0.5\textwidth} \begin{overprint} \onslide<1>\includegraphics[width=\columnwidth]{figs/ising_hl_0_0} \onslide<2,4>\includegraphics[width=\columnwidth]{figs/ising_hl_0_1} \onslide<5>\includegraphics[width=\columnwidth]{figs/ising_hl_0_2} \onslide<3,6>\includegraphics[width=\columnwidth]{figs/ising_hl_0_3} \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Monte Carlo is too slow} Monte Carlo useful for lattice models, but near critical points suffers from \emph{critical slowing down}, power-law divergence of timescales. \vspace{1em} Often alleviated with cluster algorithms, but many applications lack a clean solution. \vspace{1em} We introduce a generic, natural, efficient way to extend models with existing cluster algorithms to operate in arbitrary external fields. \vspace{1em} \begin{enumerate} \item Introduction: The Ising Model \begin{enumerate} \item The Fortuin--Kasteleyn representation \& related algorithm \item The ghost spin Hamiltonian \& extension to a field \end{enumerate} \item Our work: Other lattice models \begin{enumerate} \item Fortuin--Kasteleyn representations \& algorithms via Ising embeddings \item The ghost transformation Hamiltonian \& clusters in arbitrary fields \end{enumerate} \end{enumerate} \end{frame} \begin{frame} \frametitle{Introduction: The Ising Model} \framesubtitle{The Fortuin--Kasteleyn representation} The Ising model $ \mathcal H=-\sum_{\langle ij\rangle}J_{ij}s_is_j $ for $s_i=\pm1$ can be written \[ Z=\tr_se^{-\beta\mathcal H}\propto\tr_f\tr_s\prod_{\langle ij\rangle}\big[\delta_{f_{ij},0}(1-p_{ij})+\delta_{f_{ij},1}\delta_{s_i,s_j}p_{ij}\big] \] for $f_{ij}\in\{0,1\}$ on the bonds and $p_{ij}=1-e^{-2\beta J_{ij}}$. \vspace{1em} This gives conditional probabilities \begin{align*} P(f_{ij}=1\mid s_i,s_j)=\begin{cases}p_{ij} & s_i=s_j \\ 0 & s_i\neq s_j\end{cases} && P(s_i=s_j\mid f)=\begin{cases}1 & \text{$i$, $j$ in same cluster} \\ \frac12 & \text{otherwise}\end{cases} \end{align*} \end{frame} \begin{frame} \frametitle{Introduction: The Ising Model} \framesubtitle{From representation to algorithm} \begin{columns} \begin{column}{0.55\textwidth} \begin{overprint} \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_1} \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_2} \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_3} \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_4} \end{overprint} \end{column} \begin{column}{0.45\textwidth} The joint probabilities imply algorithm based on switching back an forth: \begin{enumerate} \item\alert<2>{Take a spin configuration.} \item\alert<3>{Conditionally sample a configuration of bonds.} \item\alert<4>{Gather sites connected by bonds into clusters.} \item\alert<5>{Conditionally sample a configuration of spins.} \end{enumerate} \vspace{1em} \tiny\raggedleft {Swendsen \& Wang, Phys Rev Lett \textbf{58} (1987) 56.} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Introduction: The Ising Model} \framesubtitle{The ghost spin representation} \begin{columns} \begin{column}{0.4\textwidth} A field means clusters flip with probability that depends on size. \vspace{1em} But, Fortuin--Kasteleyn doesn't care about lattice topology! Adding a ghost spin coupled to every site with $\tilde J_{0i}=H_i$ gives \[ \begin{aligned} \tilde{\mathcal H}&=-\sum_{\langle ij\rangle}J_{ij}s_is_j-s_0\sum_iH_is_i \\ &=-\sum_{\langle ij\rangle}\tilde J_{ij}s_is_j \end{aligned} \] \end{column} \begin{column}{0.6\textwidth} \includegraphics[width=\textwidth]{figs/ghost_site} \vspace{1em} \tiny\raggedleft {Coniglio, de Liberto, Monroy, \& Peruggi. J Phys A: Math Gen \textbf{22} (1989) L837.} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Introduction: The Ising Model} \framesubtitle{The ghost spin algorithm} \begin{columns} \begin{column}{0.55\textwidth} \begin{overprint} \onslide<1>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_1} \onslide<2>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_2} \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_3} \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_4} \end{overprint} \end{column} \begin{column}{0.45\textwidth} Same algorithm can be run on new Hamiltonian without modification. \vspace{1em} If the cluster containing $s_0$ is flipped, flip it too! \vspace{1em} Properties of the original spins must be taken after ``unflipping'' the external field, or $s_0\times s$. \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{Fortuin--Kasteleyn via embeddings} \begin{columns} \begin{column}{0.4\textwidth} Cluster methods also known for models whose spins live in more complicated spaces $X$ and have \[ \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j) \] If $G$ is the symmetry group of the spins, then a self-inverse element $r\in G$ can embed an Ising model \[ J_{ij}(r,s)=\frac12|Z(s_i, s_j)-Z(s_i, r\cdot s_j)| \] \end{column} \begin{column}{0.6\textwidth} \centering \begin{tabular}{l|cc} & $X$ & $G$ \\ \hline Ising & $\pm1$ & $\mathbb Z/2\mathbb Z$ \\ $n$-vector & $(n-1)$ sphere & $\mathrm O(n)$ \\ Potts & $\{1,\ldots,q\}$ & Symmetric \\ Clock & $\{1,\ldots,q\}$ & Dihedral \\ Roughening & $\mathbb Z$ & Infinite Dihedral \end{tabular} \vspace{1em} \includegraphics[width=0.9\textwidth]{figs/clocks} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{From embedding to algorithm\dots again} \begin{columns} \begin{column}{0.55\textwidth} \begin{overprint} \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_1} \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_2} \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_3} \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_4} \onslide<6>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_5} \onslide<7>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_6} \onslide<8>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_7} \end{overprint} \end{column} \begin{column}{0.45\textwidth} \begin{enumerate} \item\alert<2>{Take a spin configuration.} \item\alert<3>{Draw a self-inverse $r\in G$.} \item\alert<4>{Infer Ising $J_{ij}$.} \item\alert<5>{Sample bonds as before.} \item\alert<6>{Gather sites into clusters.} \item\alert<7>{Sample spins by applying $r$ to clusters.} \end{enumerate} \vspace{1em} \tiny\raggedleft{Wolff, Phys Rev Lett \textbf{62} (1989) 361.} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{The ghost\dots something representation} Can we add an external field with a ghost spin as before? Yes, but only for fields whose interaction is like that of another spin. \vspace{1em} Rules out novel fields like harmonic lattice anisotropies, cubic potentials, around Potts first-order lines, etc. \vspace{1em} Need to track the full array of transformations that have included the ghost\dots \vspace{1em} \dots which is precisely what elements of the symmetry group do! \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{The ghost transformation representation} For a lattice model with spins with symmetry group $G$ and \[ \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_i) \] for any function $B$, we introduce a ghost \emph{transformation} $s_0$ and modified Hamiltonian \[ \tilde{\mathcal H}=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_0^{-1}\cdot s_i) =-\sum_{\langle ij\rangle}\tilde Z(s_i,s_j) \] for $\tilde Z(s_0,s_i)=B(s_0^{-1}\cdot s_i)$. Both Hamiltonians yields the same statistics for $s_i$ if accumulated transformations are undone first with $s_0^{-1}\cdot s_i$. \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{Ghost transformation in action} \begin{columns} \begin{column}{0.55\textwidth} \begin{overprint} \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_1} \onslide<3>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_2} \onslide<4>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_3} \onslide<5>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_4} \onslide<6>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_5} \onslide<7>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_6} \onslide<8>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_7} \end{overprint} \end{column} \begin{column}{0.45\textwidth} Example: 5-spin clock model with a field favoring the two states to the bottom right. \begin{enumerate} \item\alert<2>{Take a spin configuration.} \item\alert<3>{Draw a self-inverse $r\in G$.} \item\alert<4>{Infer Ising $J_{ij}$.} \item\alert<5>{Sample bonds as before.} \item\alert<6>{Gather sites into clusters.} \item\alert<7>{Sample spins by applying $r$ to clusters.} \end{enumerate} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Other lattice models} \framesubtitle{The method is good} Results generalize to arbitrary bond and site dependence. \vspace{0.5em} Models already efficient at zero field are more efficient with a field. \vspace{0.5em} Extension appears natural in the scaling sense. \centering \includegraphics[width=0.85\textwidth]{figs/timescales} \end{frame} \begin{frame} \frametitle{Summary \& Extensions} Introduced a generic method for running cluster Monte Carlo on lattice systems with any external field. s- \vspace{1em} Already used to efficiently show relevance/irrelevance of various harmonic perturbations to the XY model. \vspace{1em} Presently being used to model novel lattice models with coupled spins on sites and bonds which act as effective fields for each other. \vspace{1em} Currently working on using machine learning techniques to maximize efficiency related to the choice of the distribution of self-inverse group elements, i.e., Ising embeddings. \vspace{1em} Phys Rev E \textbf{98}, 063306 (2018) or contact Jaron Kent-Dobias (\texttt{jpk247@cornell.edu}). \end{frame} \end{document}