summaryrefslogtreecommitdiff
path: root/zif.tex
diff options
context:
space:
mode:
Diffstat (limited to 'zif.tex')
-rw-r--r--zif.tex536
1 files changed, 486 insertions, 50 deletions
diff --git a/zif.tex b/zif.tex
index 323c6c0..396e908 100644
--- a/zif.tex
+++ b/zif.tex
@@ -49,7 +49,7 @@
\vspace{-8pc}
\begin{minipage}[c]{10pc}
\centering
- \includegraphics[height=6pc]{figs/ift-unesp.png}
+ \includegraphics[height=6pc]{figs/logo-ictp-saifr.jpg}
\vspace{2em}
@@ -57,7 +57,7 @@
\end{minipage}
\hfill\begin{minipage}[c]{10pc}
\centering
- \includegraphics[height=6pc]{figs/logo-ictp-saifr.jpg}
+ \includegraphics[height=6pc]{figs/ift-unesp.png}
\vspace{2em}
@@ -67,13 +67,94 @@
\end{frame}
\begin{frame}
+ \frametitle{Understanding the flat parts of random landscapes}
+ \begin{columns}
+ \begin{column}{0.33\textwidth}
+ \textbf{Nearly flat parts}
+
+ \vspace{-0.75em}
+
+ \rule{\columnwidth}{1pt}
+
+ \medskip
+
+ Conditioning stationary point complexity on marginal optima
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/msg_marg_spectra.pdf}
+
+ \end{column}
+ \begin{column}{0.66\textwidth}
+ \textbf{Really flat parts}
+
+ \vspace{-0.75em}
+
+ \rule{\columnwidth}{1pt}
+
+ \bigskip
+
+ \begin{minipage}{0.49\columnwidth}
+ \raggedright
+ Topology of solution manifolds via the average Euler characteristic
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/function_2.png}
+ \end{minipage}
+ \hfill
+ \begin{minipage}{0.49\columnwidth}
+ \raggedright
+ Geometry of solution sets via the statistics of wedged and inscribed spheres
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/max_size_zoom.pdf}
+ \end{minipage}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Marginal complexity}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Statistics of local optima imagined to govern behavior in rugged optimisation
+
+ \bigskip
+
+ High-dimensional landscapes differ from cartoons in important ways
+
+ \bigskip
+
+ Generic rugged landscapes covered mostly by basins attached to marginal optima
+
+ \bigskip
+
+ Understanding marginal optima is more important for typical dynamics than understanding typical optima
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/complex_landscapes.png}\centering\\\tiny C Cammarota
+ \onslide<2>\includegraphics[width=\textwidth]{figs/fake_landscape.png}\\\tiny S Martiniani, YouTube
+ \onslide<3>\includegraphics[width=\textwidth]{figs/real_landscape.png}\smallskip\\\tiny\fullcite{Suryadevara_2024_The}
+ \onslide<4>\includegraphics[width=\textwidth]{figs/eigenvalue_convergence.pdf}\smallskip\\\tiny\fullcite{Kent-Dobias_2024_Algorithm-independent}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
\frametitle{How to count: Kac--Rice}
- Number of stationary points with $\nabla H(\pmb x)=0$ given by integral
+ Number of stationary points with $\nabla H(\boldsymbol x)=0$ given by integral
over Kac--Rice measure
\begin{align*}
\#_\text{points}
- &=\int_\Omega d\pmb x\,\delta\big(\nabla H(\pmb x)\big)\,\big|\det\operatorname{Hess}H(\pmb x)\big|
+ &=\int_\Omega d\boldsymbol x\,\delta\big(\nabla H(\boldsymbol x)\big)\,\big|\det\operatorname{Hess}H(\boldsymbol x)\big|
\end{align*}
Note absolute value of the determinant: want to account for curvature but not add $-1$
@@ -82,8 +163,8 @@
Can specify properties of points by inserting $\delta$-functions:
\begin{align*}
\#_\text{points}\alert<2>{(E)}
- &=\int_\Omega d\pmb x\,\delta\big(\nabla H(\pmb x)\big)\,\big|\det\operatorname{Hess}H(\pmb x)\big|
- \alert<2>{\,\delta\big(H(\pmb x)-NE\big)}
+ &=\int_\Omega d\boldsymbol x\,\delta\big(\nabla H(\boldsymbol x)\big)\,\big|\det\operatorname{Hess}H(\boldsymbol x)\big|
+ \alert<2>{\,\delta\big(H(\boldsymbol x)-NE\big)}
\end{align*}
\emph{How do we condition on marginal minima?}
@@ -95,14 +176,14 @@
\begin{column}{0.5\textwidth}
In spherical spin glasses, all points have the same Hessian spectral density: semicircle with radius $\mu_\text m$, but different shifts
\[
- \mu=\frac1N\operatorname{Tr}\operatorname{Hess} H(\pmb x)
+ \mu=\frac1N\operatorname{Tr}\operatorname{Hess} H(\boldsymbol x)
\]
\bigskip
Condition on marginal minima by inserting
\[
- \delta\big(\operatorname{Tr}\operatorname{Hess}H(\pmb x)-N\mu_\text{m}\big)
+ \delta\big(\operatorname{Tr}\operatorname{Hess}H(\boldsymbol x)-N\mu_\text{m}\big)
\]
\end{column}
@@ -228,8 +309,8 @@
\alert<2>{Example: multi-spherical model
\[
- H(\{\boldsymbol s_1,\boldsymbol s_2\})
- =H_p^{(1)}(\boldsymbol s_1)+H_p^{(2)}(\boldsymbol s_2)+\epsilon\boldsymbol s_1\cdot\boldsymbol s_2
+ H(\{\boldsymbol x_1,\boldsymbol x_2\})
+ =H_p^{(1)}(\boldsymbol x_1)+H_p^{(2)}(\boldsymbol x_2)+\epsilon\boldsymbol x_1\cdot\boldsymbol x_2
\]}
\hspace{-0.25em}In most models we don't understand the Hessian at all
\end{column}
@@ -252,11 +333,11 @@
{
\small
\begin{align*}
- \hspace{-1em}&\delta(\lambda_\text{min}(A)) \\
+ \hspace{0em}&\delta(\lambda_\text{min}(A)) \\
&=\lim_{\beta\to\infty}\int
- \frac{d\pmb s\,\delta(N-\|\pmb s\|^2)e^{-\beta\pmb s^TA\pmb s}}
- {\int d\pmb s'\,\delta(N-\|\pmb s'\|^2)e^{-\beta\pmb s'^TA\pmb s'}}
- \delta\left(\frac{\pmb s^TA\pmb s}N\right)
+ \frac{d\boldsymbol s\,\delta(N-\|\boldsymbol s\|^2)e^{-\beta\boldsymbol s^TA\boldsymbol s}}
+ {\int d\boldsymbol s'\,\delta(N-\|\boldsymbol s'\|^2)e^{-\beta\boldsymbol s'^TA\boldsymbol s'}}
+ \delta\left(\frac{\boldsymbol s^TA\boldsymbol s}N\right)
\end{align*}
}
@@ -291,11 +372,11 @@
{
\small
\begin{align*}
- \hspace{-3em}&\delta(\lambda_\text{min}(A)) \\
- \hspace{-3em}&=\lim_{\beta\to\infty}\int
- \frac{d\pmb s\,\delta(N-\|\pmb s\|^2)e^{-\beta\pmb s^TA\pmb s}}
- {\int d\pmb s'\,\delta(N-\|\pmb s'\|^2)e^{-\beta\pmb s'^TA\pmb s'}}
- \delta\left(\frac{\pmb s^TA\pmb s}N\right)
+ \hspace{0em}&\delta(\lambda_\text{min}(A)) \\
+ \hspace{0em}&=\lim_{\beta\to\infty}\int
+ \frac{d\boldsymbol s\,\delta(N-\|\boldsymbol s\|^2)e^{-\beta\boldsymbol s^TA\boldsymbol s}}
+ {\int d\boldsymbol s'\,\delta(N-\|\boldsymbol s'\|^2)e^{-\beta\boldsymbol s'^TA\boldsymbol s'}}
+ \delta\left(\frac{\boldsymbol s^TA\boldsymbol s}N\right)
\end{align*}
}
@@ -325,7 +406,7 @@
\small
\begin{align*}
- \hspace{-0.5em}G_0(\mu)=\frac 1N\log\Big\langle\delta\big(\lambda_\text{min}(A-\lambda\mu)\big)\Big\rangle_{A\in\text{GOE}(N)}
+ \hspace{-0.5em}G_0(\mu)=\frac 1N\log\Big\langle\delta\big(\lambda_\text{min}(A-\mu I)\big)\Big\rangle_{A\in\text{GOE}(N)}
\end{align*}
\end{column}
\end{columns}
@@ -337,11 +418,11 @@
\begin{column}{0.5\textwidth}
Example: model of nonlinear least squares:
\[
- H(\pmb s)=\frac12\sum_{i=1}^{M}V_i(\pmb s)^2
+ H(\boldsymbol x)=\frac12\sum_{i=1}^{M}V_i(\boldsymbol x)^2
\]
- for spherical $\pmb s\in\mathbb R^N$ and $M=\alpha N$ inhomogeneous random functions $V_i$
+ for spherical $\boldsymbol x\in\mathbb R^N$ and $M=\alpha N$ inhomogeneous random functions $V_i$
\[
- V_i(\boldsymbol s)=H_2^{(i)}(\boldsymbol s)+H_3^{(i)}(\boldsymbol s)
+ V_i(\boldsymbol x)=H_2^{(i)}(\boldsymbol x)+H_3^{(i)}(\boldsymbol x)
\]
\bigskip
@@ -367,6 +448,72 @@
\end{frame}
\begin{frame}
+ \frametitle{Really flat parts: zero-cost sets}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Diverse optimization problems exactly fit data or satisfy constraints, reach zero cost
+
+ \bigskip
+
+ Stationary point technology useless for describing zero-cost sets
+
+ \bigskip
+
+ Mostly understood by pointwise sampling or interpolation between pairs of
+ sampled points
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/neural_landscape_1.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/neural_landscape_2.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/draxler_2018.png}\smallskip\\\tiny\fullcite{Draxler_2018_Essentially}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Zero cost manifolds vs.\ zero cost non-manifolds}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ \textbf{Manifolds}
+
+ \medskip
+
+ Defined by sets of \emph{analytic equalities}
+
+ \medskip
+
+ Network $f_{\boldsymbol x}:\mathbb R^P\to\mathbb R$, $\boldsymbol x\in S^{N-1}\subset\mathbb R^N$, with analytic activations (e.g.\ $\tanh$):
+ \[
+ y^\mu=f_{\boldsymbol x}(\boldsymbol a^\mu)\qquad\mu=1,\ldots,M
+ \]
+
+ \smallskip
+
+ \textbf{(Usual) Non-manifolds}
+
+ \medskip
+
+ Defined by sets of \emph{inequalities}
+
+ \medskip
+
+ Jamming of disks in $d$ dimensions:
+ \[
+ \|\boldsymbol x^i-\boldsymbol x^j\|\geq 2R\qquad i,j=1,\ldots,P
+ \]
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/intersections_3.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
\frametitle{The Euler characteristic \boldmath{$\chi$}}
\begin{columns}
\begin{column}{0.5\textwidth}
@@ -476,6 +623,18 @@
+\cdots \\
&=\sum_{i=0}^D(-1)^i\#_\text{index i}
\end{align*}
+ \[
+ \hspace{-1em}\operatorname{sgn}\big(\det\operatorname{Hess}(\pmb x)\big)
+ =
+ \operatorname{sgn}\left(\prod_{i=1}^D\lambda_i\right)
+ =(-1)^{\text{index}}
+ \]
+ \[
+ \chi(\Omega)
+ =\int_\Omega d\pmb x\,\delta\big(\nabla h(\pmb x)\big)
+ \,\det\operatorname{Hess}h(\pmb x)
+ \]
+ \emph{Kac--Rice without the absolute value!}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
@@ -491,41 +650,62 @@
\end{frame}
\begin{frame}
- \frametitle{The Euler characteristic \boldmath{$\chi$}}
- \framesubtitle{Computing the Euler characteristic}
+ \frametitle{Computing the Euler characteristic}
\begin{columns}
\begin{column}{0.6\textwidth}
+ Pick whatever height function $h:\Omega\to\mathbb R$ you like: $h(\pmb x)=\frac1N\pmb
+ x_0\cdot\pmb x$ for arbitrary $\pmb x_0$.
\[
- \Omega=\left\{
- \pmb a\in\mathbb R^N\mid\|\pmb a\|^2=N, V_0=\hat f(J^i\mid\pmb a)\;\forall\;1\leq i\leq M
- \right\}
+ \chi(\Omega)
+ =\int_\Omega d\pmb x\,\delta\big(\nabla h(\pmb x)\big)\,\det\operatorname{Hess}h(\pmb x)
\]
- Pick whatever height function $h:\Omega\to\mathbb R$ you like: $h(\pmb a)=\frac1N\pmb
- a_0\cdot\pmb a$ for arbitrary $\pmb a_0$
\[
- \#_{\substack{\text{critical}\\\text{points}}}
- =\int_\Omega d\pmb x\,
- \delta\big(\nabla h(\pmb x)\big)\,
- \big|\det\operatorname{Hess}h(\pmb x)\big|
+ \Omega=\{\boldsymbol x\in S^{N-1}\subset\mathbb R^N\mid f_{\boldsymbol x}(\boldsymbol a^\mu)=y^\mu,1\leq\mu\leq M\}
\]
+
+ \bigskip
+
+ Lagrange multipliers replace differential geometry:
\[
- \hspace{-1em}\operatorname{sgn}\big(\det\operatorname{Hess}(\pmb x)\big)
- =
- \operatorname{sgn}\left(\prod_{i=1}^D\lambda_i\right)
- =(-1)^{\text{index}}
+ L(\boldsymbol x,\boldsymbol \omega)=h(\boldsymbol x)+\omega^0(\|\boldsymbol x\|^2-N)+\sum_{\mu=1}^M\omega^\mu(f_{\boldsymbol x}(\boldsymbol a^\mu)-y^\mu)
\]
+ \end{column}
+ \begin{column}{0.4\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/function-1.png}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/function-2.png}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/function-3.png}
+ \end{overprint}
+ \end{column}
+ \end{columns}
\[
\chi(\Omega)
- =\sum_{i=0}^D(-1)^i\#_\text{index i}
- =\int_\Omega d\pmb x\,\delta\big(\nabla h(\pmb x)\big)\,\det\operatorname{Hess}h(\pmb x)
+ =\int_{\mathbb R^{N+M+1}} d\boldsymbol x\,d\boldsymbol \omega\,\delta\big(\begin{bmatrix}\frac{\partial L}{\partial\boldsymbol x}&\frac{\partial L}{\partial\boldsymbol \omega}\end{bmatrix}\big)
+ \,\det\begin{bmatrix}\frac{\partial^2L}{\partial\boldsymbol x^2}&\frac{\partial^2L}{\partial\boldsymbol x\partial\boldsymbol \omega}\\\frac{\partial^2L}{\partial\boldsymbol x\partial\boldsymbol \omega}&\frac{\partial^2L}{\partial\boldsymbol \omega^2}\end{bmatrix}
+ \]
+\end{frame}
+
+\begin{frame}
+ \frametitle{Computing the Euler characteristic}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ $M$ data points, $N$ parameters, $\alpha=M/N$, $\boldsymbol J^\mu\in\mathbb R^{N^p}$, $\overline{J^2}=\frac{p!}{2N^p}$
+ \[
+ V_0=f_{\boldsymbol x}(\boldsymbol J^\mu)
+ =\frac1{p!}\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ ^\mu_{i_1,\ldots,i_p}x_{i_1}\cdots x_{i_p}
+ \]
+ Average Euler characteristic reduced to integral over $m=\frac1N\boldsymbol x\cdot\boldsymbol x_0$,
+ \[
+ \overline{\chi(\Omega)}
+ =\left(\frac N{2\pi}\right)^{\frac12}
+ \int dm\,g(m)e^{N\mathcal S_\chi(m)}
\]
\end{column}
- \begin{column}{0.4\textwidth}
+ \begin{column}{0.5\textwidth}
\begin{overprint}
- \onslide<1>\includegraphics[width=\textwidth]{figs/function_1.png}
- \onslide<2>\includegraphics[width=\textwidth]{figs/function_2.png}
- \onslide<3>\includegraphics[width=\textwidth]{figs/function_3.png}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/action_1.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/action_3.pdf}
\end{overprint}
\end{column}
\end{columns}
@@ -536,10 +716,10 @@
\framesubtitle{Results}
\begin{columns}
\begin{column}{0.5\textwidth}
- $M$ data points, $N$ parameters, $\alpha=M/N$
+ $M$ data points, $N$ parameters, $\alpha=M/N$, $\boldsymbol J^\mu\in\mathbb R^{N^p}$, $\overline{J^2}=\frac{p!}{2N^p}$
\[
- V_0=\hat f(J\mid \pmb a)
- =\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ_{i_1,\ldots,i_p}a_{i_1}\cdots a_{i_p}
+ V_0=f_{\boldsymbol x}(\boldsymbol J^\mu)
+ =\frac1{p!}\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ ^\mu_{i_1,\ldots,i_p}x_{i_1}\cdots x_{i_p}
\]
Simplest case: $p=1$, $\Omega$ is intersection of random hyperplanes with the sphere
@@ -557,9 +737,48 @@
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/intersections_1.pdf}
\onslide<2>\includegraphics[width=\textwidth]{figs/intersections_2.pdf}
- \onslide<3>\includegraphics[width=\textwidth]{figs/intersections_3.pdf}
- \onslide<4>\includegraphics[width=\textwidth]{figs/intersections_4.pdf}
- \onslide<5>\includegraphics[width=\textwidth]{figs/phases_1.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/action_phase_1.pdf}
+ \onslide<4>\includegraphics[width=\textwidth]{figs/intersections_3.pdf}
+ \onslide<5>\includegraphics[width=\textwidth]{figs/intersections_4.pdf}
+ \onslide<6>\includegraphics[width=\textwidth]{figs/action_phase_2.pdf}
+ \onslide<7>\includegraphics[width=\textwidth]{figs/phases_1.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ For $p>1$, new phases possible
+
+ \medskip
+
+ \alert<2>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ complex, $\overline{\chi(\Omega)}\ll0$, local maximum exists}}}
+
+ \medskip
+
+ \alert<3>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ complex, $\overline{\chi(\Omega)}\ll0$, no local maximum}}}
+
+ \medskip
+
+ \alert<4>{\textbf{\boldmath{$m^*=0$, $\mathcal S_\chi(m^*)$ real, $\overline{\chi(\Omega)}\gg0$}}}
+
+ \medskip
+
+ \includegraphics[width=0.23\textwidth]{figs/middle.pdf}
+ \includegraphics[width=0.23\textwidth]{figs/complex.pdf}
+ \includegraphics[width=0.23\textwidth]{figs/shattered.pdf}
+ \includegraphics[width=0.23\textwidth]{figs/gone.pdf}
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1-2>\includegraphics[width=\textwidth]{figs/action_phase_3.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/action_phase_4.pdf}
+ \onslide<4>\includegraphics[width=\textwidth]{figs/action_phase_5.pdf}
+ \onslide<5>\includegraphics[width=\textwidth]{figs/phases_2.pdf}
+ \onslide<6>\includegraphics[width=\textwidth]{figs/phases_3.pdf}
+ \onslide<7>\includegraphics[width=\textwidth]{figs/phases_4.pdf}
\end{overprint}
\end{column}
\end{columns}
@@ -598,4 +817,221 @@
\end{columns}
\end{frame}
+\begin{frame}
+ \frametitle{Non manifolds: constraint satisfaction}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Continuous constraint satisfaction problems with $\boldsymbol x\in\Omega\subseteq\mathbb R^N$, with $\Omega$ $D$-dimensional
+ \[
+ h^\mu(\boldsymbol x)\geq0 \qquad 1\leq\mu\leq M
+ \]
+ Spherical perceptron: $M$ patterns $\boldsymbol\xi^\mu\in\mathbb R^N$,
+ \[
+ h^\mu(\boldsymbol x)=\boldsymbol\xi^\mu\cdot\boldsymbol x-\kappa
+ \]
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_points.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Wedged spheres}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Sphere of radius $r$ uniquely defined by
+ $h^\mu(\boldsymbol x)=r$ for $D$ constraints,
+ $h^\mu(\boldsymbol x)\geq r$ for other $M-D$ constraints
+ \[
+ \begin{aligned}
+ \#_r
+ =
+ \int_{\mathbb R^D} d\boldsymbol x
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}}
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \times\bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \times\left|
+ \det\begin{bmatrix}
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
+ &
+ \cdots
+ &
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_D}(\boldsymbol x)
+ \end{bmatrix}
+ \right|
+ \end{aligned}
+ \]
+ With margin, $\#_r(\kappa)=\#_0(r+\kappa)$
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_r.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_0.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Inscribed spheres}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Sphere of maximal radius uniquely defined by
+ $h^\mu(\boldsymbol x)=r$ for $D+1$ constraints,
+ $h^\mu(\boldsymbol x)\geq r$ for other $M-D-1$ constraints
+ \[
+ \begin{aligned}
+ \#_\text{insc}
+ =
+ \int_0^\infty dr\int_{\mathbb R^D} d\boldsymbol x
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D+1}}
+ \\
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \times\left|
+ \det\begin{bmatrix}
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
+ &
+ \cdots
+ &
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_{D+1}}(\boldsymbol x)
+ \\
+ -1 & \cdots & -1
+ \end{bmatrix}
+ \right|
+ \end{aligned}
+ \]
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Treating the determinant}
+ \begin{columns}
+ \begin{column}{0.9\textwidth}
+ \[
+ |\det M|=\sqrt{\det MM^T}
+ =\int\frac{d\boldsymbol s}{(2\pi)^{D/2}}\,d\bar{\boldsymbol\eta}\,d\boldsymbol\eta\,
+ e^{-\frac12\boldsymbol s^TMM^T\boldsymbol s-\bar{\boldsymbol\eta}^TMM^T\boldsymbol\eta}
+ \]
+ \begin{align*}
+ &\#_r
+ =
+ \int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}}
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ &\hspace{8em}
+ \times
+ \bigg(
+ \prod_{\mu\in\sigma}
+ \delta\big(h^\mu(\boldsymbol x)-r\big)
+ e^{
+ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2
+ -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ }
+ \bigg)
+ \end{align*}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Treating the sum over subsets}
+ \begin{columns}
+ \begin{column}{0.9\textwidth}
+ \begin{align*}
+ &\#_r
+ =
+ \int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta
+ \\
+ &\times
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}}
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \bigg(
+ \prod_{\mu\in\sigma}
+ \delta\big(h^\mu(\boldsymbol x)-r\big)
+ e^{
+ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2
+ -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ }
+ \bigg)
+ \end{align*}
+ \begin{align*}
+ &\#_r
+ =
+ \lim_{\omega\to\infty}\int\frac{d\boldsymbol x\,d\boldsymbol s}{(2\pi)^{D/2}}d\bar{\boldsymbol\eta}\,d\boldsymbol\eta
+ \\
+ &
+ \times\prod_{\mu=1}^M\bigg(\omega\theta\big(h^\mu(\boldsymbol x)-r\big)
+ +
+ \omega^{1-\frac MD}\delta\big(h^\mu(\boldsymbol x)-r\big)
+ e^{
+ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2
+ -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ }
+ \bigg)
+ \end{align*}
+ \end{column}
+ \end{columns}
+\end{frame}
+\begin{frame}
+ \frametitle{Treating the sum over subsets}
+ \begin{columns}
+ \begin{column}{0.9\textwidth}
+ Why does this work? Expand the product:
+ \begin{align*}
+ &\prod_{\mu=1}^M
+ \bigg(
+ \omega\theta\big(h^\mu(\boldsymbol x)-r\big)
+ +
+ \omega^{1-\frac MD}\delta\big(h^\mu(\boldsymbol x)-r\big)
+ e^{
+ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2
+ -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ }
+ \bigg)
+ \\
+ &=\sum_{d=0}^M\omega^{M(1-\frac dD)}
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=d}}
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ &
+ \hspace{8em}\times\bigg(
+ \prod_{\mu\in\sigma}
+ \delta\big(h^\mu(\boldsymbol x)-r\big)
+ e^{
+ -\frac12[\boldsymbol s\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]^2
+ -[\bar{\boldsymbol\eta}\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ [\boldsymbol\eta\cdot\frac\partial{\partial\boldsymbol x}h^\mu(\boldsymbol x)]
+ }
+ \bigg)
+ \end{align*}
+ Our term is $d=D$, giving $\omega^0$. For the undesired terms:
+ \begin{itemize}
+ \item $d>D$: $\omega$ raised to a negative power, limit kills term
+ \item $d<D$: integral over $\boldsymbol s$, $\bar{\boldsymbol\eta}$, $\boldsymbol\eta$ gives determinant of matrix with rank less than dimension
+ \end{itemize}
+ \end{column}
+ \end{columns}
+\end{frame}
+
\end{document}