summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-06-04 16:49:13 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-06-04 16:49:13 +0200
commit49b2d884ed027103b019a5b22a2c6d851d1c34fc (patch)
treeaf1203c63e9e84a5802ae9b26ef71c5dbde8cf79
parent4387c1083d535a8957a6d95903481da937c27e7f (diff)
downloadJPA_55_434006-49b2d884ed027103b019a5b22a2c6d851d1c34fc.tar.gz
JPA_55_434006-49b2d884ed027103b019a5b22a2c6d851d1c34fc.tar.bz2
JPA_55_434006-49b2d884ed027103b019a5b22a2c6d851d1c34fc.zip
More work.
-rw-r--r--stokes.tex38
1 files changed, 14 insertions, 24 deletions
diff --git a/stokes.tex b/stokes.tex
index c92f14f..d833866 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -121,28 +121,26 @@ Morse theory provides the universal correspondence between contours and thimbles
Each of these integrals is very well-behaved: convergent asymptotic series
exist for their value about the critical point $\sigma$, for example. One must know the integer weights $n_\sigma$.
-For a holomorphic Hamiltonian $H$, dynamics are defined by gradient descent on $\operatorname{Re}H$, or
+For a holomorphic Hamiltonian $H$, dynamics are defined by gradient descent on $\operatorname{Re}H$. In hermitian geometry, the gradient is given by raising an index of the conjugate differential, or $\operatorname{grad}f=(\partial^*f)^\sharp$. This implies that, in terms of coordinates $u$, gradient descent follows the dynamics
\begin{equation} \label{eq:flow}
- \dot z_i
- =-\operatorname{grad}_i\operatorname{Re}H
- =-h^{\beta\alpha}\frac{\partial z_i}{\partial u^\alpha}\partial^*_{\beta}\operatorname{Re}H,
-\end{equation}
-where $h$ is the Hermitian metric. For holomorphic $H$, $\partial^*H=0$ and we have
-\begin{equation} \label{eq:flow.2}
- \dot z_i
- =-\frac12h^{\beta\alpha}\frac{\partial z_i}{\partial u^\alpha}\partial^*_{\beta}H^*,
+ \dot u^\alpha
+ =-(\partial^*_{\beta}\operatorname{Re}H)h^{\beta\alpha}
+ =-\tfrac12(\partial_\beta H)^*h^{\beta\alpha}
\end{equation}
+where $h$ is the Hermitian metric and we have used the fact that, for holomorphic $H$, $\partial^*H=0$.
Gradient descent on $\operatorname{Re}H$ is equivalent to Hamiltonian dynamics
with the Hamiltonian $\operatorname{Im}H$. This is because $(M, h)$ is Kähler
and therefore admits a symplectic structure, but that the flow conserves
-$\operatorname{Im}H$ can be seen from the Cauchy--Riemann equations and
-\eqref{eq:flow}:
+$\operatorname{Im}H$ can be shown using \eqref{eq:flow} and the holomorphic property of $H$:
\begin{equation}
\begin{aligned}
\frac d{dt}&\operatorname{Im}H
- =\dot z_i\partial_i\operatorname{Im}H+\dot z^*_i\partial_i^*\operatorname{Im}H \\
+ =\dot u^\alpha\partial_\alpha\operatorname{Im}H+(\dot u^\alpha)^*\partial_\alpha^*\operatorname{Im}H \\
+ &=\frac i4\left(
+ (\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H-\partial_\beta H(h^{\beta\alpha})^*\partial_\alpha^*H^*
+ \right) \\
&=\frac i4\left(
- \partial^*_\beta H^*h^{\beta\gamma}J_{i\gamma}J^{-1}_{i\alpha}\partial_\alpha H-\partial_\beta Hh^{\gamma\beta}J_{i\gamma}^*J^{*-1}_{i\alpha}\partial_\alpha^*H^*
+ (\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H-[(\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H]^*
\right) \\
&=\frac i4\left(
\|\partial H\|-\|\partial H\|^*
@@ -158,20 +156,12 @@ distinct energies. What is the topology of the $C=\operatorname{Im}H$ level
set? We shall argue its form by construction. Consider initially the situation
in the absence of any critical point. In this case the level set consists of a
single simply connected surface, locally diffeomorphic to $\mathbb R^{2N}$. Now, `place' a generic
-(nondegenerate) critical point in the function at $z_0$. In the vicinity of the critical
+(nondegenerate) critical point in the function at $u_0$. In the vicinity of the critical
point, the flow is locally
\begin{equation}
\begin{aligned}
- \dot z_i
- &\simeq-\frac12\left[
- \partial_j\left(
- H(z_0)+\frac12\partial_k\partial_\ell H(z_0)\Delta z_k\Delta z_\ell
- \right)
- \right]^* P_{ji} \\
- &=-\frac12\left(
- \partial_j\partial_kH(z_0)\Delta z_k
- \right)^* P_{ji} \\
- &=-\frac12\Delta z_k^*(\partial_k\partial_jH(z_0))^*P_{ji}
+ \dot u^\alpha
+ &\simeq-\frac12\operatorname{Hess}(H)^*
\end{aligned}
\end{equation}
The matrix $(\partial\partial H)^\dagger P$ has a spectrum identical to that of