summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--figs/thimble_stokes_1.pdfbin25662 -> 25662 bytes
-rw-r--r--figs/thimble_stokes_2.pdfbin26978 -> 24421 bytes
-rw-r--r--figs/thimble_stokes_3.pdfbin27074 -> 27074 bytes
-rw-r--r--stokes.tex18
4 files changed, 18 insertions, 0 deletions
diff --git a/figs/thimble_stokes_1.pdf b/figs/thimble_stokes_1.pdf
index afc86e1..a3ba1e5 100644
--- a/figs/thimble_stokes_1.pdf
+++ b/figs/thimble_stokes_1.pdf
Binary files differ
diff --git a/figs/thimble_stokes_2.pdf b/figs/thimble_stokes_2.pdf
index 78104d7..86f3336 100644
--- a/figs/thimble_stokes_2.pdf
+++ b/figs/thimble_stokes_2.pdf
Binary files differ
diff --git a/figs/thimble_stokes_3.pdf b/figs/thimble_stokes_3.pdf
index b06ddcb..0812ec0 100644
--- a/figs/thimble_stokes_3.pdf
+++ b/figs/thimble_stokes_3.pdf
Binary files differ
diff --git a/stokes.tex b/stokes.tex
index e2c145d..ce01b52 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -14,6 +14,8 @@
\begin{document}
+\newcommand\eqref[1]{\eref{#1}}
+
\title{Analytic continuation over complex landscapes}
\author{Jaron Kent-Dobias and Jorge Kurchan}
@@ -440,6 +442,22 @@ eigenvalue problem. If we did not know the eigenvalues were real, we could
still see it from the second implied equation, $(\beta\partial\partial\mathcal
S)^*v^*=\lambda v$, which is the conjugate of the first if $\lambda^*=\lambda$.
+The effect of changing the phase of $\beta$ is revealed by
+\eqref{eq:generalized.eigenproblem}. Writing $\beta=|\beta|e^{i\phi}$ and
+dividing both sides by $|\beta|e^{i\phi/2}$, one finds
+\begin{equation}
+ \partial\partial\mathcal S(e^{i\phi/2}v)
+ =\frac{\lambda}{|\beta|}e^{-i\phi/2}v^*
+ =\frac{\lambda}{|\beta|}(e^{i\phi/2}v)^*
+\end{equation}
+Therefore, one only needs to consider solutions to the eigenproblem for the
+action alone, $\partial\partial\mathcal Sv_0=\lambda_0 v_0^*$, and then rotate the
+resulting vectors by a constant phase corresponding to half the phase of
+$\beta$ or $v(\phi)=v_0e^{-i\phi/2}$. One can see this in the examples of Figs. \ref{fig:1d.stokes} and
+\ref{fig:thimble.orientation}, where increasing the argument of $\beta$ from
+left to right produces a clockwise rotation in the thimbles in the
+complex-$\theta$ plane.
+
Something somewhat hidden in the structure of the real hessian but more clear
in its complex form is that each eigenvalue comes in a pair, since
\begin{equation}