summaryrefslogtreecommitdiff
path: root/bezout.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-09 15:14:26 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-09 15:14:26 +0100
commit6ea986fc46fd860a8ac36999ab7e6ff2dd11466e (patch)
tree008302923eada7d03ef355e8dfa32897a7c68ec4 /bezout.tex
parent8fa2fb52418bdb91af7ea9c456e0111877845115 (diff)
downloadPRR_3_023064-6ea986fc46fd860a8ac36999ab7e6ff2dd11466e.tar.gz
PRR_3_023064-6ea986fc46fd860a8ac36999ab7e6ff2dd11466e.tar.bz2
PRR_3_023064-6ea986fc46fd860a8ac36999ab7e6ff2dd11466e.zip
Added discussion of solution.
Diffstat (limited to 'bezout.tex')
-rw-r--r--bezout.tex75
1 files changed, 50 insertions, 25 deletions
diff --git a/bezout.tex b/bezout.tex
index b0ead4e..8286208 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -183,7 +183,7 @@ where
$\partial\partial H$, is dependant on $a$ alone. This function has a maximum in
$\hat a$, $b$, $\hat c$, and $d$ at which its value is (for simplicity, with
$\kappa\in\mathbb R$)
- \begin{equation}
+ \begin{equation} \label{eq:free.energy.a}
\begin{aligned}
f(a)&=1+\frac12\log\left(\frac4{p^2}\frac{a^2-1}{a^{2(p-1)}-\kappa^2}\right)+\int d\lambda\,\rho(\lambda)\log|\lambda|^2 \\
&\hspace{80pt}-\frac{a^p(1+p(a^2-1))-a^2\kappa}{a^{2p}+a^p(a^2-1)(p-1)-a^2\kappa^2}(\mathop{\mathrm{Re}}\epsilon)^2
@@ -275,22 +275,62 @@ geometry problem, and yields
\end{equation}
for $\delta=\kappa a^{-(p-2)}$.
-% This is kind of a boring definition...
+With knowledge of this distribution, the integral in \eqref{eq:free.energy.a}
+may be preformed for arbitrary $a$. For all values of $\kappa$ and $\epsilon$,
+the resulting expression is always maximized for $a=\infty$, that is, for
+unbounded complex spins. Taking this saddle gives
+\begin{equation} \label{eq:bezout}
+ \overline{\mathcal N}(\kappa,\epsilon)
+ =e^{N\log(p-1)}
+ =(p-1)^N.
+\end{equation}
+This is precisely the Bézout bound, the maximum number of solutions that $N$
+equations of degree $p-1$ may have \cite{Bezout_1779_Theorie}. More insight is gained by looking at the count as a function of $a$, defined by
\begin{equation} \label{eq:count.def.marginal}
\overline{\mathcal N}(\kappa,\epsilon)
=\int da\,\overline{\mathcal N}(\kappa,\epsilon,a)
\end{equation}
-
-\begin{equation} \label{eq:count.zero.energy}
- \overline{\mathcal N}(\kappa,0,a)
- =\left[(p-1)a^{p-1}\sqrt{\frac{1-a^{-2}}{a^{2(p-1)}-|\kappa|^2}}\right]^N
+and likewise the $a$-dependant complexity
+$\Sigma(\kappa,\epsilon,a)=N\log\overline{\mathcal N}(\kappa,\epsilon,a)$. In
+the large-$N$ limit, the $a$-dependant expression may be considered the
+cumulative number of critical points up to the value $a$.
+
+The integral in \eqref{eq:free.energy.a} can only be performed explicitly for
+certain ellipse geometries. One of these is at $\epsilon=0$ any values of
+$\kappa$ and $a$, which yields the $a$-dependent complexity
+\begin{equation} \label{eq:complexity.zero.energy}
+ \Sigma(\kappa,0,a)
+ =\log(p-1)-\frac12\log\left(\frac{1-|\kappa|^2a^{-2(p-1)}}{1-a^{-2}}\right).
\end{equation}
-
+Notice that the limit of this expression as $a\to\infty$ corresponds with
+\eqref{eq:bezout}, as expected. The complexity at zero energy can be seen
+plotted as a function of $a$ for several values of $\kappa$ in
+Fig.~\ref{fig:complexity}. For any $|\kappa|<1$, the complexity goes to
+negative infinity as $a\to1$, i.e., as the spins are restricted to the reals.
+However, when the result is analytically continued to $\kappa=1$ (which
+corresponds to real $J$) something novel occurs: the complexity has a finite
+value at $a=1$. Interpreting this $a$-dependence as a cumulative count, this
+implies a $\delta$-function density of critical points along the line $y=0$.
+The number of critical points contained within is
\begin{equation}
- \overline{\mathcal N}(\kappa,\epsilon)
- =\lim_{a\to\infty}\overline{\mathcal N}(\kappa,\epsilon,a)
- =(p-1)^N
+ \lim_{a\to1}\lim_{\kappa\to1}\overline{\mathcal N}(\kappa,0,a)
+ =(p-1)^{N/2},
\end{equation}
+the square root of \eqref{eq:bezout} and precisely the number of critical
+points of the real pure spherical $p$-spin model. In fact, the full
+$\epsilon$-dependence of the real pure spherical $p$-spin is recovered by this
+limit as $\epsilon$ is varied.
+
+
+\begin{figure}[htpb]
+ \centering
+ \includegraphics{fig/complexity.pdf}
+ \caption{
+ The complexity of the pure 3-spin model at $\epsilon=0$ as a function of
+ $a$ at several values of $\kappa$. The dashed line shows
+ $\frac12\log(p-1)$, while the dotted shows $\log(p-1)$.
+ } \label{fig:complexity}
+\end{figure}
For $|\kappa|<1$,
\begin{equation}
@@ -298,11 +338,6 @@ For $|\kappa|<1$,
=0
\end{equation}
-\begin{equation}
- \lim_{a\to1}\overline{\mathcal N}(1,0,a)
- =(p-1)^{N/2}
-\end{equation}
-
{\color{teal} {\bf somewhere else}
@@ -318,16 +353,6 @@ is the logarithm of the number of configurations of a given $(a,H_0)$.
This problem may be solved exactly with replicas, {\em but it may also be simulated} \cite{Bray_1980_Metastable}.
Consider for example the ground-state energy for given $a$, that is, the energy in the limit $\beta_R \rightarrow \infty$ taken adjusting $\beta_I$ so that $\Im H_0=0$ . For $a=1$ this coincides with the ground-state of the real problem.
-\begin{figure}[htpb]
- \centering
- \includegraphics{fig/complexity.pdf}
- \caption{
- The complexity of the pure 3-spin model at $\epsilon=0$ as a function of
- $a$ at several values of $\kappa$. The dashed line shows
- $\frac12\log(p-1)$, while the dotted shows $\log(p-1)$.
- } \label{fig:complexity}
-\end{figure}
-
{\color{teal} {\bf somewhere} In Figure \ref{fig:desert} we show that for $\kappa<1$ there is always a gap of $a$ close to one for which there are no solutions: this is natural, given that the $y$ contribution to the volume shrinks to zero as that of an $N$-dimensional sphere $\sim(a-1)^N$.
For the case $K=1$ -- i.e. the analytic continuation of the usual real computation -- the situation
is more interesting. In the range of values of $\Re H_0$ where there are exactly real solutions this gap closes, and this is only possible if the density of solutions diverges at $a=1$.