summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--bezout.tex17
1 files changed, 11 insertions, 6 deletions
diff --git a/bezout.tex b/bezout.tex
index 4abb8e2..53cc5e9 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -28,13 +28,18 @@
\maketitle
-\begin{equation} \label{eq:hamiltonian}
- H = \frac1{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}
+\begin{equation} \label{eq:bare.hamiltonian}
+ H_0 = \frac1{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p},
\end{equation}
-where the $z$ are constrained by $z\cdot z=N$ and $J$ is a symmetric
-tensor whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$
-and $\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter
-$|\kappa|<1$.
+where the $z$ are constrained by $z\cdot z=N$ and $J$ is a symmetric tensor
+whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$ and
+$\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter
+$|\kappa|<1$. The constraint is enforced using the method of Lagrange
+multipliers: introducing the $\epsilon\in\mathbb C$, this gives
+\begin{equation} \label{eq:constrained.hamiltonian}
+ H = H_0+\frac p2\epsilon\left(N-\sum_i^Nz_i^2\right).
+\end{equation}
+At any critical point $\epsilon=H/N$, the average energy.
\bibliographystyle{apsrev4-2}
\bibliography{bezout}