summaryrefslogtreecommitdiff
path: root/bezout.tex
diff options
context:
space:
mode:
Diffstat (limited to 'bezout.tex')
-rw-r--r--bezout.tex32
1 files changed, 31 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 880c490..eb04d2a 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -131,7 +131,7 @@ singular values of $\partial\partial H$, while both are the same as the
distribution of square-rooted eigenvalues of $(\partial\partial
H)^\dagger\partial\partial H$.
-{\color{red} {\bf perhaps not here} This expression is to be averaged over the $J$'s as
+{\color{red} {\bf perhaps not here} This expression \eqref{eq:complex.kac-rice} is to be averaged over the $J$'s as
$N \Sigma=
\overline{\ln \mathcal N_J} = \int dJ \; \ln N_J$, a calculation that involves the replica trick. In most, but not all, of the parameter-space that we shall study here, the {\em annealed approximation} $N \Sigma \sim
\ln \overline{ \mathcal N_J} = \ln \int dJ \; N_J$ is exact.
@@ -167,6 +167,36 @@ where $\theta=\frac12\arg\kappa$ \cite{Nguyen_2014_The}. The eigenvalue
spectrum of $\partial\partial H$ therefore is that of an ellipse whose center
is shifted by $p\epsilon$.
+\begin{figure}
+ \centering
+
+ \raisebox{60pt}{$|\epsilon|=0$}
+ \hfill
+ \raisebox{5pt}{\includegraphics[scale=1.0]{fig/spectra_eigenvalue_0.0.pdf}}
+ \hspace{2pt}
+ \includegraphics{fig/spectra_singular_0.0.pdf}\\
+ \raisebox{60pt}{$|\epsilon|=\frac12|\epsilon_{\mathrm{th}}|$}
+ \hfill
+ \raisebox{5pt}{\includegraphics[scale=1.0]{fig/spectra_eigenvalue_0.5.pdf}}
+ \hspace{2pt}
+ \includegraphics{fig/spectra_singular_0.5.pdf}\\
+ \raisebox{60pt}{$|\epsilon|=|\epsilon_{\mathrm{th}}|$}
+ \hfill
+ \raisebox{5pt}{\includegraphics[scale=1.0]{fig/spectra_eigenvalue_1.0.pdf}}
+ \hspace{2pt}
+ \includegraphics{fig/spectra_singular_1.0.pdf}\\
+ \raisebox{60pt}{$|\epsilon|=\frac32|\epsilon_{\mathrm{th}}|$}
+ \hfill
+ \raisebox{5pt}{\includegraphics[scale=1.0]{fig/spectra_eigenvalue_1.5.pdf}}
+ \hspace{2pt}
+ \includegraphics{fig/spectra_singular_1.5.pdf}
+
+ \caption{
+ Eigenvalue and singular value spectra for the matrix $\partial\partial H$
+ for $a=\frac54$, $\kappa=\frac34e^{i3\pi/4}$, and $\epsilon=i|\epsilon|$ for values values of $|\epsilon|$.
+ } \label{fig:spectra}
+\end{figure}
+
The eigenvalue spectrum of the Hessian of the real part, or equivalently the
eigenvalue spectrum of $(\partial\partial H)^\dagger\partial\partial H$, is the
singular value spectrum of $\partial\partial H$. When $\kappa=0$ and the