summaryrefslogtreecommitdiff
path: root/cover.tex
blob: 586fa3867ace95a139a5eafb3eae14495acf751b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

\documentclass[12pt,reqno,a4paper,twoside]{article}
% \ProvidesPackage{makra}
\usepackage{amsmath,amsthm,amstext,amscd,amssymb,euscript}
%,showkeys}
%,times}
\usepackage{epsf}
\usepackage{color}
\usepackage{verbatim}
\usepackage{graphicx}
\usepackage{esint}
\usepackage{tikz}
\usepackage{setspace}
\usepackage{mathrsfs}

\usepackage{todonotes}

%\usepackage{natbib}



\usepackage{bm}
\usepackage[normalem]{ulem}


\textwidth 6in
\topmargin -0.50in
\oddsidemargin 0in
\evensidemargin 0in
\textheight 9.00in
%\pagestyle{plain}
%%%%%%%%%%%%%%%%%% Macros  %%%%%%%%%%%
\def\mybox #1{\fbox{\parbox{5.8in}{#1}}}
\newcommand{\m}[1]{{\marginpar{\scriptsize #1}}}

\def\mep{\mathbf{mep}_{n}^{\delta}}
\def\r{{\mathbf r}}
\def\O{{\mathcal{O}}}

\def\I{{\mathcal{I}}}
\def\fee{\mathcal{F}}

\def\F{{\EuScript{F}}}

\renewcommand{\phi}{\varphi}
\newcommand{\compose}{\circ}
\renewcommand{\subset}{\subseteq}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\interval}{[\underline\alpha,\overline \alpha]}
\def\liminfn{\liminf_{n\to\infty}}
\def\limsupn{\limsup_{n\to\infty}}
\def\limn{\lim_{n\to\infty}}
\def\disagree{\not\longleftrightarrow}
\newcommand{\Zd}{\mathbb Z^d}
\newcommand{\kk}{\mathbf k}
\renewcommand{\Pr}{\mathbb P}
\newcommand{\dist}{\text{dist}}
\newcommand{\Cal}{\mathcal}
\def\1{ {\mathit{1} \!\!\>\!\! I} }
\newcommand\s{{\mathbf s}}

\newcommand{\red}[1]{{\color{red} #1}}
\newcommand{\blue}[1]{{\color{blue} #1}}

\newcommand{\eps}{\varepsilon}
\newcommand{\C}{{\mathcal C}}
\newcommand{\Y}{{\mathcal Y}}
\newcommand{\NN}{{\mathcal N}}
\newcommand{\grad}{\nabla}
\newcommand{\WW}{\mathbb W}
\newcommand{\D}{{\mathcal D}} 
\newcommand{\HH}{{\mathcal H}} 
\newcommand{\bol}[1]{{\boldsymbol{#1}}} 


% \smallmatrix{
%   0&             \cr
%   N&\ddots      \cr
%   &\ddots&\ddots \cr
%   & & 1 & 0    \cr
% }
\newcommand{\ddp}[2]{\frac{\partial {#1}}{\partial {#2}}}

\renewcommand{\brace}[1]{{ \bol{#1}}}

\newcommand{\ket}[1]{|{#1}\rangle}

\newcommand{\eq}{{\textnormal{eq}}}   

\renewcommand{\em}{\it}

%%%%%%% FRANK'S MACROS

\parskip=3pt plus 1pt minus 1pt

\newcommand{\halmos}{\rule{1ex}{1.4ex}}

\makeatletter
\@addtoreset{equation}{section}
\makeatother

\renewcommand{\theequation}{\thesection.\arabic{equation}}

\newtheorem{ittheorem}{Theorem}
\newtheorem{itlemma}{Lemma}
\newtheorem{itproposition}{Proposition}
\newtheorem{itdefinition}{Definition}
\newtheorem{itremark}{Remark}

%\renewcommand{\theittheorem}{\thesection.\arabic{equation}}
%\renewcommand{\theitlemma}{\thesection.\arabic{equation}}
%\renewcommand{\theitproposition}{\thesection.\arabic{equation}}
%\renewcommand{\theitdefinition}{\thesection.\arabic{equation}}
%\renewcommand{\theitremark}{\thesection.\arabic{equation}}

\newenvironment{theorem}{\addtocounter{equation}{1}
\begin{ittheorem}}{\end{ittheorem}}

\newenvironment{lemma}{\addtocounter{equation}{1}
\begin{itlemma}}{\end{itlemma}}

\newenvironment{proposition}{\addtocounter{equation}{1}
\begin{itproposition}}{\end{itproposition}}

\newenvironment{definition}{\addtocounter{equation}{1}
\begin{itdefinition}}{\end{itdefinition}}

\newenvironment{remark}{\addtocounter{equation}{1}
\begin{itremark}}{\end{itremark}}

%\newenvironment{proof}{\noindent {\em Proof}.\,\,\,}
%{\hspace*{\fill}$\halmos$\medskip}

\newcommand{\beq}{\begin{eqnarray}}
\newcommand{\eeq}{\end{eqnarray}}

\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}

\newcommand{\bl}{\begin{lemma}}
\newcommand{\el}{\end{lemma}}

\newcommand{\br}{\begin{remark}}
\newcommand{\er}{\end{remark}}

\newcommand{\bt}{\begin{theorem}}
\newcommand{\et}{\end{theorem}}

\newcommand{\bd}{\begin{definition}}
\newcommand{\ed}{\end{definition}}

\newcommand{\bp}{\begin{proposition}}
\newcommand{\ep}{\end{proposition}}



\newcommand{\bc}{\begin{corollary}}
\newcommand{\ec}{\end{corollary}}

\newcommand{\bpr}{\begin{proof}}
\newcommand{\epr}{\end{proof}}

\newcommand{\bi}{\begin{itemize}}
\newcommand{\ei}{\end{itemize}}

\newcommand{\ben}{\begin{enumerate}}
\newcommand{\een}{\end{enumerate}}


%%%%%%%%%%%%% SYMBOLS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\Z}{\mathbb Z}
\newcommand{\R}{\mathbb R}
\newcommand{\N}{\mathbb N}
%\newcommand{\C}{\mathbb C}

\newcommand{\Q}{\mathbb Q}
\newcommand{\E}{\mathbb E}
\newcommand{\T}{\mathbf T}
\newcommand{\M}{\mathbf M}
\newcommand{\ret}{\mathbf R}
\newcommand{\veee}{\mathbb V}
\newcommand{\veek}{\ensuremath{\mathcal{V}}}
\newcommand{\gee}{\ensuremath{\mathcal{G}}}
\newcommand{\pee}{\ensuremath{\mathbb{P}}}
\newcommand{\re}{\ensuremath{\mathcal{R}}}
\newcommand{\peee}{\ensuremath{\mathcal{P}}}
\newcommand{\ce}{\ensuremath{\mathcal{C}}}
\newcommand{\cee}{\ensuremath{{\bf \mathcal{C}_1}}}
\newcommand{\uu}{\ensuremath{\mathcal{U}}}
%\newcommand{\s}{\ensuremath{\mathcal{S}}}
\newcommand{\loc}{\ensuremath{\mathcal{L}}}
\newcommand{\iii}{\ensuremath{\mathcal{I}}}
\newcommand{\bee}{\ensuremath{\mathcal{B}}}
\newcommand{\weee}{\ensuremath{\mathbf W}}
\newcommand{\fe}{\ensuremath{\mathcal{F}}}
\newcommand{\mee}{\ensuremath{\mathcal{M}}}
\newcommand{\U}{\ensuremath{\mathcal{U}}}
\newcommand{\na}{\ensuremath{N^{t,x}_\varphi}}
\newcommand{\aaa}{\ensuremath{\mathcal{A}}}
\newcommand{\anepsi}{\ensuremath{{[A_n]^{\epsilon} }}}
\newcommand{\vi}{\ensuremath{\varphi}}
\newcommand{\La}{\ensuremath{\Lambda}}
\newcommand{\la}{\ensuremath{\Lambda}}
\newcommand{\si}{\ensuremath{\sigma}}
\newcommand{\om}{\ensuremath{\omega}}
\newcommand{\epsi}{\ensuremath{\epsilon}}
\newcommand{\gap}{\ensuremath{\Delta}}
\newcommand{\QED}{\hspace*{\fill}$\Box$\medskip}
\newcommand{\prodpee}{\ensuremath{\mathbb{P}\times\mathbb{P}}}
\newcommand{\prodE}{\ensuremath{\mathbb{E}\times\mathbb{E}}}
\newcommand{\tr}{\ensuremath{\mbox{Tr}}}
\newcommand{\caZ}{\ensuremath{\mathcal{Z}}}
\newcommand{\Ga}{\ensuremath{\Gamma}}
\newcommand{\ga}{\ensuremath{\gamma}}
\newcommand{\al}{\ensuremath{\alpha}}
\newcommand{\shit}{\ensuremath{[-\|X \|, \|X \|]}}
\newcommand{\haa}{\ensuremath{A+tB}}
\newcommand{\sas}{\ensuremath{\delta g}}
\newcommand{\lap}{\pee_{V_n|X_1,\ldots,X_{n-1}} (dx)}
\newcommand{\qak}{\mathbb{Q}}
\newcommand{\de}{\delta}
\newcommand{\pot}{\pee^{\scriptscriptstyle{[0,t]}}}
\newcommand{\pott}{\peet^{\scriptscriptstyle{[0,t]}}}

\newcommand{\KK}{\mathbb{S}}


\def\vnim #1{ \begin{equation*}\boxed{\mbox{\Large #1}}\end{equation*} }
%%%%%%%%%%%%%%%%%% Current time %%%
\def\now{
\ifnum\time<60
          12:\ifnum\time<10 0\fi\number\time am
          \else
            \ifnum\time>719\chardef\a=`p\else\chardef\a=`a\fi
          \hour=\time
          \minute=\time
          \divide\hour by 60 %\hour is the result of an integer divide
          \ifnum\hour>12\advance\hour by -12\advance\minute by-720 \fi
          \number\hour:%
          \multiply\hour by 60 %Use is made of the integer divide here.
          \advance\minute by -\hour
          \ifnum\minute<10 0\fi\number\minute\a m\fi}
\newcount\hour
\newcount\minute
%%%%%%%%%%%%%%%%%% Environment %%%%%%%
\numberwithin{equation}{section}         %%%%  nomer uravnenia vkulchaet
                                         %%%%  nomer razdela, ex. (1.2)
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{defn}[thm]{Definition}
\theoremstyle{remark}
\newtheorem{rem}{Remark}[section]
\newtheorem{cor}[thm]{Corollary}
%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADINGS

\def\t{{\bf t}}  %%%%%%%%%% hitting time
\def\r{{\bf r}}  %%%%%%%%%% recurrence time
\def\w{{\bf w}}  %%%%%%%%%% waiting time

\newcommand{\caA}{{\mathcal A}}
\newcommand{\caB}{{\mathcal B}}
\newcommand{\caC}{{\mathcal C}}
\newcommand{\caD}{{\mathcal D}}
\newcommand{\caE}{{\mathcal E}}
\newcommand{\caF}{{\mathcal F}}
\newcommand{\caG}{{\mathcal G}}
\newcommand{\caH}{{\mathcal H}}
\newcommand{\caI}{{\mathcal I}}
\newcommand{\caJ}{{\mathcal J}}
\newcommand{\caK}{{\mathcal K}}
\newcommand{\caL}{{\mathcal L}}
\newcommand{\caM}{{\mathcal M}}
\newcommand{\caN}{{\mathcal N}}
\newcommand{\caO}{{\mathcal O}}
\newcommand{\caP}{{\mathcal P}}
\newcommand{\caQ}{{\mathcal Q}}
\newcommand{\caR}{{\mathcal R}}
\newcommand{\caS}{{\mathcal S}}
\newcommand{\caT}{{\mathcal T}}
\newcommand{\caU}{{\mathcal U}}
\newcommand{\caV}{{\mathcal V}}
\newcommand{\caW}{{\mathcal W}}
\newcommand{\caX}{{\mathcal X}}
\newcommand{\caY}{{\mathcal Y}}
\newcommand{\un}{\underline}
\newcommand{\Lt}{\tilde{L}}
\newcommand{\ct}{\tilde{c}}
\newcommand{\peet}{\tilde{\pee}}
\newcommand{\mut}{\tilde{\mu}}
\newcommand{\pt}{\tilde{p}}
\newcommand{\qaz}{\mathbb{L}}
\newcommand{\bix}{\vec{x}}
\newcommand{\muT}{\mu_{T_L,T_R}}
%%%%%%%%%

% \usepackage{verbatim}
% \usepackage[active,tightpage]{preview}
% \setlength\PreviewBorder{5pt}%
% %%%>
% 
% \usepackage{ifthen}
% \usepackage{amsmath}
\usetikzlibrary{arrows,calc,intersections}


\newcommand{\note}[1]{\todo[inline, color=white]{#1}}
\newcommand{\col}[1]{\color{magenta} {#1}}
\newcommand{\colo}[1]{\color{red} {#1}}




%%%%%%%%%%%%%%%%%%%%%%5

% \newcommand{\quiver}{
% \begin{tikzpicture}
% \foreach \a in {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} {
%     \begin{scope}[shift={(0.7*\a,0)}]
%       \draw (0.3*\a,0) circle (0.3cm);
%       \draw[black,thick] (0.3*\a+0.3,0)--(0.3*\a+0.7,0);
%   \node [below] at (0.3*\a,-0.5) {$\a$};
%     \end{scope}
%   }
%       \draw (16,0) circle (0.3cm);
%        \node [below] at (16,-0.5) {$16$};
%   \foreach \a in {10,9,8,7,6,5,4,3,2,1} {
%     \begin{scope}[shift={(17-\a,0)}]
%     \node at (0,0) {$\a$};
%     \end{scope}
%   }
%   \node at (1,0) {$4$};
%   \node at (2,0) {$8$};
%   \node at (3,0) {$9$};
%   \node at (4,0) {$10$};
%   \node at (5,0) {$10$};
%   \node at (6,0) {$10$};
%   \draw[black,thick] (2,0.3) -- (2,0.7);
%       \draw (1.7,0.7) rectangle (2.3,1.3);
%   \node at (2,1) {$3$};
%   \draw[black,thick] (4,0.3) -- (4,0.7);
%       \draw (3.7,0.7) rectangle (4.3,1.3);
%   \node at (4,1) {$1$};
%   \draw[black,thick] (7,0.3) -- (7,0.7);
%       \draw (6.7,0.7) rectangle (7.3,1.3);
%   \node at (7,1) {$1$};
% \end{tikzpicture}
% }

% \usepackage{pgfplots}


\newcommand{\graph}{
\begin{tikzpicture}[scale=.7]
% \pgfplotsset{%
%     width=.2\textwidth,
%     height=0.5\textwidth
% }
\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5);
\tikzstyle myBG=[line width=3.5pt,opacity=1.0]
% 
\draw[white,myBG]  (3.2,1.5) -- (5.2,3);
\draw[gray, thick] (3.2,1.5) -- (5.2,3);
% 
\draw[gray, thick] (0,0)--(-1.5,0);
\draw[gray, thick] (3,-1.2)--(4,-2);
\draw[gray, thick] (4,3.4)--(4.3,4.6);
\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0);
\draw[gray, thick] (2,0.2)--(4.9,1);
\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3);
\draw[gray, thick] (3.2,1.5)--(4,3.4);
\draw[gray, thick] (3.2,1.5)--(5,2);
\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1);
\draw[gray, thick] (5.7,2.2)--(5,2);
%
% 
%
\filldraw[black!70] (0,0) circle (2pt);
\filldraw[black!70] (1,-1.5) circle (2pt);
\filldraw[black!70] (2,3) circle (2pt);
\filldraw[black!70] (4,3.4) circle (2pt);
\filldraw[black!70] (5,2) circle (2pt);
\filldraw[black!70] (4.9,1) circle (2pt);
\filldraw[black!70] (2,0.2) circle (2pt);
\filldraw[black!70] (3.2,1.5) circle (2pt);
% \filldraw[black!70] (5.7,1.3) circle (2pt);
\filldraw[black!70] (5.7,2.2) circle (2pt);
\filldraw[black!70] (5.2,3) circle (2pt);
\filldraw[black!70] (3,-1.2) circle (2pt);
%
%
\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T_3$};
\filldraw[white] (-1.5,0) circle (1pt);
\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T_2$};
\filldraw[white] (4,-2) circle (1pt);
\filldraw[black!70] (4.3,4.6) circle (2pt)  node[anchor=west] {$\Gamma_1,T_1$};
\filldraw[white] (4.3,4.6) circle (1pt) ;
\end{tikzpicture}
}
% 

\newcommand{\graphh}{
\begin{tikzpicture}[scale=.7]
\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5);
\tikzstyle myBG=[line width=3.5pt,opacity=1.0]
% 
\draw[white,myBG]  (3.2,1.5) -- (5.2,3);
\draw[gray, thick] (3.2,1.5) -- (5.2,3);
% 
\draw[gray, thick] (0,0)--(-1.5,0);
\draw[gray, thick] (3,-1.2)--(4,-2);
\draw[gray, thick] (4,3.4)--(4.3,4.6);
\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0);
\draw[gray, thick] (2,0.2)--(4.9,1);
\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3);
\draw[gray, thick] (3.2,1.5)--(4,3.4);
\draw[gray, thick] (3.2,1.5)--(5,2);
\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1);
\draw[gray, thick] (5.7,2.2)--(5,2);
%
% 
%
\filldraw[black!70] (0,0) circle (2pt);
\filldraw[black!70] (1,-1.5) circle (2pt);
\filldraw[black!70] (2,3) circle (2pt);
\filldraw[black!70] (4,3.4) circle (2pt);
\filldraw[black!70] (5,2) circle (2pt);
\filldraw[black!70] (4.9,1) circle (2pt);
\filldraw[black!70] (2,0.2) circle (2pt);
\filldraw[black!70] (3.2,1.5) circle (2pt);
% \filldraw[black!70] (5.7,1.3) circle (2pt);
\filldraw[black!70] (5.7,2.2) circle (2pt);
\filldraw[black!70] (5.2,3) circle (2pt);
\filldraw[black!70] (3,-1.2) circle (2pt);
%
%
\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T$};
\filldraw[white] (-1.5,0) circle (1pt);
\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T$};
\filldraw[white] (4,-2) circle (1pt);
\filldraw[black!70] (4.3,4.6) circle (2pt)  node[anchor=west] {$\Gamma_1,T$};
\filldraw[white] (4.3,4.6) circle (1pt) ;
\end{tikzpicture}
}

\setstretch{1.24}

\begin{document}

\title{{\bf COVER LETTER \\`Complex complex landscapes'}}
%\footnote{{\bf Key-words}: }
%}}

\author{
Jaron Kent-Dobias
 and 
Jorge Kurchan
}

\maketitle



\vspace{1.cm}


The subject of `Complex Landscapes', which started in the spin-glass literature, is concerned with functions (landscapes) of many variables, having a multiplicity of minimums, which are the objects of interest. Apart from its obvious interest for glassy systems, it has found a myriad applications  in  many domains:  Computer Science, Ecology, Economics, Biology \cite{mezard2009information}.

In the last few years, a renewed interest has developed for landscapes for which the variables are complex. There are a few reasons for this: {\em i)} in Computational Physics, there is the main obstacle of the `sign problem', and a strategy has emerged to attack it deforming the sampling space into complex variables. This is a most natural and promising path, and any progress made will have game-changing impact in solid state physics and lattice-QCD \cite{Cristoforetti_2012_New,Scorzato_2016_The}.
{\em ii)} At a more basic level, following the seminal work of E. Witten \cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity concerning the very definition of quantum mechanics, which requires also that one move into the complex plane. 

In all these cases, just like in the real case, one needs to know the structure of the `landscape', where are the saddle points and how they are connected, typical questions of `complexity'.
However, to the best of our knowledge, there are no studies extending the methods of the theory of
complexity to
complex variables. 
We believe our paper will open a field that may find 
numerous applications and will widen our theoretical view of complexity in general.


\bibliography{bezout}


\end{document}















\section{The Kipnis-Marchioro-Presutti model}

Consider the following process: 
\begin{itemize}
\item
choose a pair of neighbouring sites and completely
exchange energy between them
\item
if the site is one of the borders, exchange completely energy with the bath.
\end{itemize}
each choice with probability $1/(N+1)$. From here onwards, we shall denote
$\tau$ a large time, sufficient for any two-site thermalisation.

The evolution operator in one step is:
\begin{eqnarray}
U &=& \frac{1}{N+1} \left[ e^{-\tau L_1^*} +  e^{-\tau L_N^*} + \sum_{i=1}^{N-1}   e^{-\tau L^*_{i,i+1}} \right]
\nonumber \\
&=& \frac{1}{N+1} \left[ e^{-2\tau (T_1 K^-_1 + K^o_1 + k) } +  e^{-2\tau(T_L K^-_L + K^o_L +k)  }
 + \sum_{i=1}^{N-1}   e^{ \frac{-\tau}{k}
(K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
+ 2k^2 )} \right] \nonumber \\
~
\end{eqnarray}
and the dynamics after $n$ steps is given by $U^n$.
Because we are considering large $\tau$, the terms in the sums are  in fact projectors
onto the lowest eigenvalues of the exponents. We shall however keep the notation as it is
in order to stress the symmetry of the bulk terms.

Let us now show that - at the level of energies - this dynamics yields the KMP process 
{\em for $k=\frac{1}{2}$, that is $m=2$}.
Consider first a general $m$, and two neighbouring sites of coordinates $x = \{x_\alpha\}_{\alpha=1,\ldots,m}$, 
$y=\{y_\alpha\}_{\alpha=1,\ldots,m}$.
If they are completely thermalised, it means that (cfr (\ref{bb}):
the joint probability density satisfies
\begin{equation}
\left(x_{\alpha}
\frac{\partial}{\partial y_{\beta}} -
y_{\beta}\frac{\partial}{\partial x_{\alpha}}
  \right) p(x,y)=0
\end{equation}
It is easy to see that this may happen if and only if
\begin{equation}
p(x,y)= p[ \sum_\alpha (x_\alpha^2+y_\alpha^2)]
\end{equation}
In particular let us consider the microcanonical measure
\begin{equation}
p(x,y)= \delta[ \sum_\alpha (x_\alpha^2+y_\alpha^2)-\epsilon ]
\end{equation}
Defining new random variables $\epsilon_1$ and $\epsilon_2$ 
as the energies of the neighboring sites
\be
\epsilon_1 = \sum_\alpha x_\alpha^2
\ee
\be
\epsilon_2 = \sum_\alpha y_\alpha^2
\ee
then their joint probability density will be
\begin{equation}
p(\epsilon_1,\epsilon_2) = \frac{S_m^2}{4} \delta(\epsilon_1+\epsilon_2-\epsilon)
\epsilon_1^{\frac{1}{2}-1} \epsilon_2^{\frac{1}{2}-1}
\end{equation}
where $S_m$ denotes the surface of the unit sphere in $m$ dimension
\be
S_m = \frac{m \pi^{m/2}}{\Gamma(\frac{1}{2}+1)}
\ee
{\em This yields a flat distribution for $m=2$, i.e. the KMP model.}




\section{Dual model}


The expectation value of an observable at time $t$, starting from an initial
distribution $|init\rangle$ is:


\begin{equation}
<O> = \langle - | O e^{-Ht} | init \rangle
\end{equation}
where $\langle - |$ is a constant.
Taking the adjoint $ x_i \to x_i$, $\partial_i \to -\partial_i$:
\begin{equation}
<O> = \langle - | O e^{-Ht} | init \rangle= \langle init|  e^{-H^\dag t} O |- \rangle
\end{equation}
where $H^\dag(K^\pm, K^o)=H( K^\pm, -K^o)$ (because of the change of signs of the derivatives)
\begin{eqnarray}
-H^\dag&=& \frac{4}{1} \sum_i \left(
K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
+ \frac{m^2}{8} \right)
\nonumber\\
&+&2 \left(T_1 K^-_1 + K^o_1 + \frac{1}{4}\right)
+2 \left(T_L K^-_L + K^o_L +\frac{1}{4}\right)
\end{eqnarray}
In particular, for the generating function we had chosen
 \begin{equation}
 O |- \rangle = \Pi_i \frac{x_i^{2 \xi_i}}{(2\xi_i -1)!!}|-\rangle=|\xi_1,...,\xi_N\rangle
\end{equation}

Considered as an operator acting on `particle number', as counted by $K^o$, $H^\dag$ does not
conserve the probability.
The trick we used can be expressed as follows: introduce the particle number $\xi_o$ and $\xi_{N+1}$ 
and the operators $A^+_o$ and $A^+_{N+1}$, which create particles in boundary sites with unit rate.
We consider now the {\em enlarged} process generated by
\begin{eqnarray}
-H^{dual}&=& \frac{4}{1} \sum_i \left(
K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
+ \frac{m^2}{8} \right)
\nonumber\\
&+&2 \left(A^+_o K^-_1 + K^o_1 - \frac{1}{4}\right)
+2 \left( A^+_{N+1} K^-_N + K^o_N -\frac{1}{4}\right)
\end{eqnarray}
which conserves ({\it seems}) particle number and probability.
We wish to prove that:

\begin{eqnarray}
<O> &=& \langle init| e^{-H^\dag t} |\xi_1,...,\xi_N \rangle \nonumber \\
&=& \sum_{\xi_o,\xi_{N+1}}
  T_1^{\xi_o} T_{L}^{\xi_{N+1}} \langle \xi_o \xi_{N+1} | \otimes \langle
  init| e^{-H^{dual} t} |\xi_1,...,\xi_N \rangle \otimes
  |\xi_o=0,\xi_{N+1}=0 \rangle \nonumber \\
\label{ggg}
\end{eqnarray}


I think the proof is obvious, because developing the exponential of $H^{dual}$ all the $A^+$ can be
collected because they commute with everything else, and the experctation value
\begin{equation}
\sum_{\xi_o}  T_1^{\xi_o}  \langle \xi_o  |[A^+_o]^r  |\xi_o=0 \rangle = T_1^r
 \end{equation}
just puts back as many $T$'s as necessary.

I do not know exactly how to use (\ref{ggg}) in general, but in the large time limit the evolution
voids the chain of particles


\section{Dual of KMP}

I think that the argument runs through without changes if we use $U$ defined for the KMP model.
We just have to note that each term corresponds to an evolution of two sites (or a site and the bath)
and so in the dual it corresponds to sharing the particles between those two sites, or emptying
the sites at the borders.

{\bf: NOTE by Cristian}

We can check that the duality function chosen in the original paper by KMP
do coincide with the duality function of our process for $m=2$ (and the random
variables are the energies).
Indeed we start from
\be
f(x,\xi) = \prod_i (\sum_{\alpha} x_{i,\alpha}^2)^{\xi}
\ee
When the bath have equal temperature (let's us choose T=1) then the stationary 
measure is 
\be
\pi(x) = \prod_i \frac{1}{(2\pi)^{m/2}} \exp\left(-\sum_{\alpha}\frac{x_{i,\alpha}^2}{2}\right)
\ee
Let us focus on a fixed $i$ (that is in this short computation we write $x$ for $x_i$). 
We have
\begin{eqnarray}
\E(f(x,\xi)) 
&=&
\int dx_1 \cdots \int dx_m (x_1^2+\ldots + x_m^2)^{\xi} \exp-\left(\frac{x_{1}^2}{2}+\ldots+\frac{x_{1}^2}{2}\right) 
\nonumber \\
& = & 
\int dr S_m r^{2\xi} \exp-\left(\frac{r^2}{2}\right)
\nonumber \\
& = &
\frac{\frac{1}{2}\Gamma(\frac{1}{2}+\xi)}{\Gamma(\frac{m}{2}+1)} 2^\xi
\nonumber \\
\end{eqnarray}
Special cases:
\begin{itemize}
\item $m=1$

$$
\E(f(x,\xi)) = (2\xi-1)!!
$$
where one uses that $\Gamma(\frac{1}{2}+\xi)= \frac{\sqrt{\pi}(2\xi-1)!!}{2^{\xi}}$ and $\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{2}$
\item $m=2$

$$
\E(f(x,\xi)) = \xi! 2^\xi
$$
where one uses that $\Gamma(1+\xi)= \xi!$ and $\Gamma(2) = 1$.
Thus, if one defines the energies as 
$$
\epsilon_i = \sum_{\alpha}\frac{x_{i,\alpha}^2}{2}
$$
one recover the choice of KMP for the dual function
$$
O(\epsilon_i,\xi) = \prod_i \frac{\epsilon_i^{\xi_i}}{\xi_i!}
$$
\end{itemize}






\section{ Dual of SEP: here goes an outline of how to proceed for the SSEP}


\be
H=-L_{SEP}^*
\ee
\begin{eqnarray}
L^*_{SEP} &=& \frac{1}{j}
  \sum_i  \left(J^+_i J^-_{i+1} + J^-_i J^+_{i+1} + 2 J^o_i J^o_{i+1}
 - 2 j^2  \right)\\
&+&\alpha (J^-_1 - J^o_1-j) + \gamma (J^+_1 + J^o_1-j)
+ \delta (J^-_L - J^o_L-j) + \beta (J^+_L + J^o_L-j)\nonumber
\end{eqnarray}
The factor $1/j$ is analogous to the factor $1/m$ in (\ref{bb}).
The operators $J^+_i, J^-_i, J^o_i$ act on the Hilbert space
 corresponding to  $0 \le r \le n$  particles per site $\otimes_i |r\rangle_i$
as follows:
\begin{eqnarray}
J^+_i |r\rangle_i &=& (2j-r)  |r+1\rangle_i \nonumber \\
 J^-_i |r\rangle_i &=& r  |r-1\rangle_i \nonumber \\
J^o_i |r\rangle_i &=& (r-j)  |r\rangle_i
\end{eqnarray}

The conjugation properies are as follows. There is an operator $Q$,
{\em diagonal in this basis  } (I give the expression below), such that:
\begin{equation}
[J^+_i]^\dag = Q[J^-_i]Q^{-1} \qquad [J^-_i]^\dag = Q[J^+_i]Q^{-1}
\end{equation}
while $[J^z_i]^\dag=J^z_i= Q[J^z_i]Q^{-1}$.



The expectation value of an observable at time $t$, starting from an initial
distribution $|init\rangle$ is:


\begin{equation}
<O> = \langle - | O e^{-Ht} | init \rangle
\end{equation}
where $\langle - |$ is a constant.
As before:
\begin{eqnarray}
<O> &=& \langle - | O e^{-Ht} | init \rangle=
\langle init|  e^{-H^\dag t} O |- \rangle= \nonumber \\
& & \langle init|Q  e^{-{\bar H} t}  Q^{-1}O   |- \rangle=
\langle init|Q \;  e^{-{\bar H} t}  Q^{-1}O Q  Q^{-1} |- \rangle
\end{eqnarray}


{\em  $ {\bar H}$ is the same operator as $H$ but with
$J^+$ substituted by  $J^-$, and vice-versa.}
Our job is now to make the rotation that will eliminate the $J^+$'s in
the border terms of $ {\bar H}$.




The transformation is of the form
\begin{eqnarray}
e^{\mu J^+} J^+ e^{-\mu J^+}&=&J^+ \nonumber \\
e^{\mu J^+} J^o e^{-\mu J^+} &=&J^o - \mu J^+ \nonumber \\
e^{\mu J^+} J^- e^{-\mu J^+} &=& J^- + 2 \mu J^o - \mu^2 J^+
\end{eqnarray}
for suitable $\mu$.
Putting $\mu=-1$, we get that {\bf the bulk term is left invariant,
precisely because of the SU(2) symmetry}. The boundary terms {\bf of $\bar H$}
transform further into:
\begin{eqnarray}
& e^{\mu J^+_1} \left[ \alpha (J^+_1 - J^o_1-j) + \gamma (J^-_1 + J^o_1-j)
\right] e^{-\mu J^+_1}= \nonumber \\ & \gamma(J^-_1 + 2 \mu J^o_1 - \mu^2
J^+_1 +J^o_1 - \mu J^+_1 -j) + \alpha (J^+_1 - J^o_1 + \mu J^+_1 -j)
= \nonumber \\
& \alpha(- J^o_1 -j) + \gamma (J^-_1 -J^o_1 -j)
\label{trans}
\end{eqnarray}
which is of the same form we have in the $SU(1,1)$ model.
The same can be done in the other boundary term.

We thus get:
\begin{eqnarray}
<O> &=& \langle - | O e^{-Ht} | init \rangle=
\langle init|Q \; e^{-{\bar H} t}  Q^{-1}O Q  Q^{-1} |- \rangle \nonumber\\
&= & \langle init|Q   e^{ \sum_i J^+_i}  e^{-{\bar H_{dual}} t}
 e^{ -\sum_i J^+_i}  Q^{-1}O Q  Q^{-1} |- \rangle \nonumber \\
&= & \langle init|Q   e^{ \sum_i J^+_i}  e^{-{\bar H_{dual}} t}
 e^{ -\sum_i J^+_i}  Q^{-1}O Q e^{ \sum_i J^+_i}
  e^{ -\sum_i J^+_i}  |- \rangle \nonumber \\
 &= & \langle init|Q  Q^{-1}  e^{ \sum_i J^+_i}  e^{-{\bar H_{dual}} t}
 e^{ -\sum_i J^+_i}  Q^{-1}O Q e^{ \sum_i J^+_i}  |-_{dual} \rangle
\end{eqnarray}
where we have defined $H_{dual}$  as the transformed Hamiltonian.

We now have to study $ |-_{dual} \rangle \equiv e^{ -\sum_i J^+_i}
 Q^{-1} |- \rangle$
Because we know that  terms like those proportional to $\gamma$ and $\alpha$
anihilate the measure to the left:
\begin{eqnarray}
& & \langle - | (J^-_i - J^o_i-j) =0\nonumber \\
& & \langle - | (J^+_i + J^o_i-j) =0
\end{eqnarray}
this implies that in the new variables and following all the transformations
(cfr (\ref{trans})):
\begin{eqnarray}
& & (J^-_i -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle= 0 \nonumber \\
& & ( -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle =0
\end{eqnarray}
which implies that $( J^o_i +j) |-_{dual} \rangle= J^-_i  |-_{dual} \rangle=0$,
and this means that
\begin{equation}
J^o_i |-_{dual} \rangle =-j |-_{dual}  \rangle
\end{equation}
is the vacuum of particles in this base!

All in all we are left with:
\begin{eqnarray}
<O> &=&  \langle init|Q \;  e^{ \sum_i J^+_i}
  e^{-{\bar H_{dual}} t} e^{ -\sum_i J^+_i}  Q^{-1}O Q e^{ \sum_i J^+_i}
  |-_{dual} \rangle \nonumber \\
 &=&  \langle init|Q \;  e^{ \sum_i J^+_i}
  e^{-{\bar H_{dual}} t} {\hat O}
  |-_{dual} \rangle
\end{eqnarray}
where $ {\hat O} \equiv e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i
J^+_i}$.  We have to start with the
vacuum $ |-_{dual} \rangle$, then apply $ {\hat O} $, (which creates
particles because it contains many $J^+$'s), and then there is the
dual evolution. The final configuration has to be overlapped with
$\langle f| \equiv  \langle init|Q \;  e^{ \sum_i J^+_i}$.
For large times, there will be no particle left except in the two extra sites
in the borders.

\section{Constructive approach}

Here I would like to say the following: if I have a modle of transport
of which I do not know if it has a Dual one, I can proceed as follows.
I take a small version with no baths and a few sites. I write the
evolution operator and I diagonalise it numerically.  If there is a
non abelian group, the eigenvalues will be in degenerate
multiplets. Hence, if I find multiplets, then very probably there is a
dual model, if I do not, then there cannot be one.  It would be nice
to show it with the KMP model with two or three sites.

Another thing is to consider higher groups. $SU(3)$ has already been studied
for two kinds of particles. We know how to map to a dual in that
case, if it has not been done yet.

\newpage
{\bf THIS PART HAS BEEN WRITTEN BY CRISTIAN} 

The aim of this file is to set notation in the two languages.
Let us focus on duality for the case we already know:
SU(1,1) model with $k=1/4$. To fix ideas let us consider only
the bulk part of the system with periodic boundary conditions.

\section{Probabilistic language}
We have two stochastic Markovian process with continuous time.
\begin{itemize}
\item
\underline{The first process $X(t) \in \R^N$} is given by the Fokker-Planck equation:
\be
\frac{dp(x,t)}{dt}  = L^* p(x,t)
\ee
where $p(x,t)$ represents the probability density
for the process $X(t)$, that is
$$
p(x,t)dx = Prob (X(t)\in (x,x+dx))
$$
and
\begin{eqnarray}
L^*p(x,t)
& = &
\sum_i L^*_{i,i+1} p(x,t) \noindent\\
& = &
\sum_i \left(x_i\frac{\partial}{\partial x_{i+1}} -x_{i+1}\frac{\partial}{\partial x_{i}}\right)^2 p(x,t)
\end{eqnarray}
\item
\underline{The second process $\Xi(t) \in \N^N$} is characterized by the master equation
\be
\frac{dP(\xi,t)}{dt} = {\cal L^*} P(\xi,t)
\ee
where $P(\xi,t)$ represents the
probability mass function for the process $\Xi(t)$, that is
$$
P(\xi,t) = Prob (\Xi(t) = \xi)
$$
and
\begin{eqnarray}
{\cal L}^*P(\xi,t)
& = &
\sum_i {\cal L}^*_{i,i+1}P(\xi,t) \nonumber \\
& = &
\sum_i 2\xi_i \left(1+ 2\xi_{i+1}\right) P(\xi^{i,i+1},t)
+ \left(1+2\xi_i\right)2\xi_{i+1} P(\xi^{i+1,i},t) \nonumber\\
& & - 2\left(2\xi_i + \frac{1}{2}\right)\left(2\xi_{i+1} + \frac{1}{2}\right) P(\xi,t)
+ \frac{1}{2}P(\xi,t)
\end{eqnarray}
and $\xi^{i,j}$ denotes the configuration that is obtained by removing one particle
at $i$ and adding one particle at $j$.
\newpage
\item
\underline{In general, Duality means the following}:
there exists functions $O(x,\xi): \R^N \times \N^N \mapsto \R$ such that
the following equality between expectations for the two processes holds
\begin{center}
\fbox{\parbox{9cm}{
\be
\E_x( O(X(t),\xi)) =\E_\xi(O(x,\Xi(t)))
\ee
}}
\end{center}
The subscripts in the expectations denote the initial conditions of the processes:
$X(0) =x$ on the left and $\Xi(0) = \xi$ on the right.
More explicitly we have:
\be
\int dy O(y,\xi) p(y,t; x,0)  = \sum_{\eta} O(x,\eta) P(\eta,t; \xi,0)
\ee
To prove duality it is sufficient to show that
\be
\label{main}
L O(x,\xi) = {\cal L} O(x,\xi)
\ee
where $L$, that is working on $x$, is the adjoint of  $L^*$ and ${\cal L}$, that is working on $\xi$,
is the adjoint of  ${\cal L}^*$.
Indeed we have:
\begin{eqnarray}
\E_x( O(X(t),\xi))
& = &
\int dy O(y,\xi) p(y,t; x,0) \\
& = &
\sum_{\eta} \int dy O(y,\eta) p(y,t; x,0) \delta_{\eta,\xi} \\
& = &
\sum_{\eta} \int dy O(y,\eta) e^{tL^*} \delta(y-x) \delta_{\eta,\xi} \\
& = &
\sum_{\eta} \int dy e^{tL} O(y,\eta)  \delta(y-x) \delta_{\eta,\xi} \\
& = &
\sum_{\eta} \int dy e^{t{\cal L}} O(y,\eta)  \delta(y-x) \delta_{\eta,\xi}  \\
& = &
\sum_{\eta} \int dy O(y,\eta) e^{t{\cal L}^*} \delta(y-x) \delta_{\eta,\xi}  \\
& = &
\sum_{\eta} \int dy O(y,\eta) P(\eta,t;\xi,0) \delta(y-x) \\
& = &
\sum_{\eta}  O(x,\eta) P(\eta,t;\xi,0)  \\
& = &
\E_\xi(O(x,\Xi(t)))
\end{eqnarray}
\newpage
\item
\underline{For the present case, the proper function to be considered are}
\be
\label{Oss}
O(x,\xi) = \prod_{i} \frac{x_i^{2\xi_i}}{(2\xi_i-1)!!}
\ee
Let us check Eq.(\ref{main}) on this choice. We have
\begin{eqnarray*}
&&
L_{i,i+1} O(x,\xi)
=
\left(\prod_{k\not\in\{i,i+1\}}  \frac{x_k^{2\xi_k}}{(2\xi_k -1)!!}\right)
\times
\\
&&\left(2\xi_{i+1}(2\xi_{i+1}-1) \frac{x_i^{2\xi_i+2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}-2}}{(2\xi_{i+1} -1)!!}
- 2\xi_{i}(2\xi_{i+1}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!}
\right.
\\
&&\left.- 2\xi_{i+1}(2\xi_{i}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!}
+2\xi_{i}(2\xi_{i}-1) \frac{x_i^{2\xi_i-2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}+2}}{(2\xi_{i+1} -1)!!}
\right)
\\
\end{eqnarray*}
which implies
\begin{eqnarray*}
L_{i,i+1} O(x,\xi)
& = &
\Big(2\xi_{i+1}(2\xi_{i}+1) [O(x,\xi^{i+1,i})-O(x,\xi)]
\\
&&
\;+\;2\xi_{i}(2\xi_{i+1}+1) [O(x,\xi^{i,i+1})-O(x,\xi)]\Big)
\\
& = &
{\cal L}_{i,i+1} O(x,\xi)
\end{eqnarray*}

\item \underline{How to find the proper normalization?}
Suppose that we are in the general following situation:
\begin{itemize}
\item We have a generator $L$ of a Markov process $X(t)$.
\item We know its stationary measure $\pi(x)$:
\be
L^* \pi(x) = 0
\ee
\item We have functions $f(x,\xi)$ for which the following holds:
\be
\label{aaa}
L f(x,\xi) = \sum_{\eta} r(\xi,\eta) f(x,\eta)
\ee
with
\be
\label{bbb}
r(\xi,\eta) \ge 0 \qquad  \mbox{if}\quad \xi \neq \eta
\ee
\be
\label{ccc}
r(\xi,\xi)  \le 0 \qquad  \mbox{if}\quad \xi = \eta
\ee
\end{itemize}
The matrix $r$ resembles the generator of a dual Markov process,
but it is not because it does not satisfy the condition
$\sum_{\eta} r(\xi,\eta) = 0$.
In order to find the generator of the dual process we proceed as
follows:
\begin{enumerate}
\item Define
\be
m(\xi) = \int f(x,\xi) \pi(x) dx
\ee
\item Define
\be
q(\xi,\eta)= m(\xi)^{-1} r(\xi,\eta) m(\eta)
\ee
\item Define
\be
O(x,\xi) = m(\xi)^{-1} f(x,\xi)
\ee
\end{enumerate}
Then the matrix $q$ can be seen as the generator of the dual Markov process $\Xi(t)$, that is
\be
L O(x,\xi) = \sum_{\eta} q(\xi,\eta) O(x,\eta)
\ee
with
\be
q(\xi,\eta) \ge 0 \qquad  \mbox{if}\quad \xi \neq \eta
\ee
\be
q(\xi,\xi)  \le 0 \qquad  \mbox{if}\quad \xi = \eta
\ee
\be
\sum_{\eta} q(\xi,\eta) = 0
\ee
Indeed we have:
\begin{eqnarray}
L O(x,\xi)
&=&
L m(\xi)^{-1} f(x,\xi) \nonumber \\
&=&
m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) f(x,\eta) \nonumber \\
&=&
m(\xi)^{-1} \sum_{\eta} m(\xi)q(\xi,\eta) m(\eta)^{-1} m(\eta) O(x,\eta)\nonumber \\
&=&
\sum_{\eta} q(\xi,\eta) O(x,\eta)
\end{eqnarray}
and
\begin{eqnarray}
\sum_{\eta} q(\xi,\eta)
&=&
\sum_{\eta} m(\xi)^{-1} r(\xi,\eta) m(\eta)  \nonumber \\
&=&
m(\xi)^{-1} \sum_{\eta}  r(\xi,\eta) \int f(x,\eta) \pi(x) dx \nonumber \\
&=&
m(\xi)^{-1} \int L f(x,\xi) \pi(x) dx \nonumber \\
&=&
m(\xi)^{-1} \int f(x,\xi) L^* \pi(x) dx \nonumber \\
&=&
0
\end{eqnarray}



\item \underline{Our case}. Among all the invariant measure
of the $X(t)$ process, namely the normalized function with
spherical symmetry $p(x) = p(\sum_i x_i^2)$, a special role is
played by the Gibbs measure
$$
\pi(x)
= \left(\frac{\beta}{2\pi}\right)^{(N/2)} e^{-\beta\sum_i \frac{x_i^2}{2}}
= \left(\frac{\beta}{2\pi}\right)^{(N/2)} \prod_i e^{-\beta\frac{x_i^2}{2}}
$$
which is selected as soon as the system is placed in contact with
thermal bath working at inverse temperature $\beta$.
Moreover: If $Z$ is a centered Gaussian, namely $Z\sim N(0,\sigma^2)$,
then
$$
\E(Z^{2n}) = \sigma^{2n} (2n-1)!!
$$
If one start from
$$
f(x,\xi) = \prod_i x_i^{2\xi}
$$
which satisfy (\ref{aaa}),(\ref{bbb}),(\ref{ccc}) and apply
the previous procedure, one arrives to (\ref{Oss}).

{\bf Remark:} Note that, in applying the procedure, the
dependence on $\beta$ disappear!!!!
\end{itemize}


\section{Quantum language}


Here we start from a quantum spin chain
$$
H = - 4 \sum_i \left( K^+_iK^-_{i+1} + K^-_iK^+_{i+1} -2 K^0_iK^0_{i+1} + \frac{1}{8}\right)
$$
where the spin $K_i$'s satisfy the SU(1,1) algebra
\begin{eqnarray}
\label{commutatorsSU11}
[K_i^{0},K_i^{\pm}] &=& \pm K_i^{\pm} \nonumber \\
{[}K_{i}^{-},K_{i}^{+}{]} &=& 2K_i^{0}
\end{eqnarray}
We are going to see the Schr\"odinger equation with imaginary time
\begin{equation}
\label{schroedinger}
\frac{d}{dt}|\psi(t) \rangle = -H |\psi(t)\rangle\;.
\end{equation}
as the evolution equation for the probability distribution of
a Markovian stochastic process.
\begin{itemize}
\item
\underline{The Hamiltonian possesses the SU(1,1) invariance}. If we define
\be
K^+ = \sum_{i} K_i^+
\ee
\be
K^- = \sum_{i} K_i^-
\ee
\be
K^0 = \sum_{i} K_i^0
\ee
we find that
\be
[H,K^+] = 0
\ee
\be
[H,K^-] = 0
\ee
\be
[H,K^0] = 0
\ee
\item
\underline{Since $[H,K^+] = 0$} there exist a basis to study the stochastic process associated to
$H$ where \underline{$K^+$ is diagonal}. We might consider the following representation
\begin{eqnarray}
\label{Koper}
K^+_i &=& \frac{1}{2}  x_{i}^2 \nonumber \\
K^-_i &=& \frac{1}{2} \frac{\partial^2}{\partial x_{i}^2} \nonumber \\
K^o_i &=& \frac{1}{4}  \left\{\frac{\partial}{\partial x_{i}} x_{i} +
 x_{i} \frac{\partial}{\partial x_{i}} \right \}
\end{eqnarray}
If we use this representation then
$$
H = -L^*
$$
and the probability density function for the $X(t)$ process is encoded in
the state $|\psi(t)\rangle$, namely
\begin{equation}
|\psi(t) \rangle = \int dx p(x,t) |x\rangle
\end{equation}
where we have introduced the notation $|x\rangle$ to denote a completely
localized state, that is a vector which together with its transposed
$\langle x|$ form a complete basis of a Hilbert space and its dual:
\begin{equation}
\langle x|x' \rangle = \delta(x-x')
\end{equation}
It immediately follows that
\begin{equation}
\langle x|\psi(t) \rangle = p(x,t)
\end{equation}
To compute expectation with respect to the $X(t)$ process
we introduce the flat state
\begin{equation}
\langle - | = \int dx \;\langle x|
\end{equation}
which is such that
\begin{equation}
\langle - | x\rangle = 1
\end{equation}
Then for any observable $A = A(X(t))$ we have that its expectation value
at time $t$ can be written as
\begin{equation}
\langle A(t) \rangle_x = \int dy \,A(y)\, p(y,t;x,0) = \langle -|A|  \psi(t) \rangle_x = \langle -|A e ^{-tH}| x\rangle
\end{equation}
\item
\underline{Since $[H,K^0] = 0$} there exist a basis to study the stochastic process associated to
$H$ where \underline{$K^0$ is diagonal}. We might consider the following representation
\begin{eqnarray}
\label{Koper2}
K^+_i|\xi\rangle &=& \left(\frac{1}{2} + \xi\right)  |\xi+1\rangle\nonumber \\
K^-_i|\xi\rangle &=& \xi  |\xi-1\rangle\nonumber \\
K^o_i|\xi\rangle &=& \left(\xi + \frac{1}{4}\right)  |\xi\rangle
\end{eqnarray}
where $|\xi\rangle$ denotes a vector which together with its transposed
$\langle \xi|$ form a complete basis of a Hilbert space and its dual, that is
\begin{equation}
\langle \xi|\eta \rangle = \delta_{\xi,\eta}
\end{equation}
If we use this representation then
$$
H = -{\cal L}^*
$$
and the probability mass function for the $\Xi(t)$ process is encoded in
the state $|\phi(t)\rangle$, namely
\begin{equation}
|\phi(t) \rangle = \sum_{\xi} P(\xi,t) |\xi\rangle
\end{equation}
It immediately follows that
\begin{equation}
\langle \xi|\phi(t) \rangle = P(\xi,t)
\end{equation}
To compute expectation with respect to the $\Xi(t)$ process
we introduce the flat state
\begin{equation}
\langle -_{dual} | = \sum_{\xi} \;\langle \xi|
\end{equation}
which is such that
\begin{equation}
\langle -_{dual} | \xi\rangle = 1
\end{equation}
Then for any observable $A=A(\Xi(t))$ we have that its expectation value
at time $t$ can be written as
\begin{equation}
\langle A(t) \rangle_\xi = \sum_{\eta}\,A(\eta)\, p(\eta,t;\xi,0) = \langle -_{dual}|A|  \phi(t) \rangle_{\xi} = \langle -_{dual}|A e ^{-tH}| \xi\rangle
\end{equation}
\item
\underline{The claim is the following: Duality, in general, is going from the basis
where}\\
\underline{one generator of the group is diagonal to a basis where another generator of}\\
\underline{ the group is diagonal.}

In our case we change from a basis where $K^+$ is diagonal to the base where $K^0$ is diagonal.

\begin{eqnarray}
\langle - |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!}|\psi(t)\rangle_x
& = &
\int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!} e^{tL^*}|x\rangle \nonumber \\
& = &
\sum_{\eta} \int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!}e^{tL^*}|x\rangle \langle \eta|\xi\rangle\nonumber \\
& = &
\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta| \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} e^{tL^*} | x\rangle \otimes|\xi\rangle\nonumber \\
& = &
\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta\rangle \nonumber \\
& = &
\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{y^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
& = &
\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
& = &
\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
& = &
\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*}  | x\rangle \otimes|\xi \rangle\nonumber \\
& = &
\sum_{\eta} \int dy \; \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*}  |\xi \rangle   \langle y | x\rangle   \nonumber \\
& = &
\sum_{\eta} \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} |\phi(t)\rangle_{\xi}  \nonumber \\
& = &
\langle -_{dual} |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!}|\phi(t)\rangle_{\xi}
\end{eqnarray}


\end{itemize}

\section{General k}

A convenient $(2j+1)$-dimensional representation of the SU(2) algebra is given by
\begin{eqnarray}
J^+_i |n_i\rangle &=& (2j-n_i) |n_i+1\rangle \nonumber \\
J^-_i |n_i\rangle &=& n_i      |n_i-1\rangle \nonumber \\
J^0_i |n_i\rangle &=& (n_i-j)  |n_i\rangle
\end{eqnarray}
where the quantum numbers $n_i\in\{0,1,\ldots,2j\}$.
{\bf Note that in this representation the adjoint of $J^+_i$ is not
$J^-_i$, UNLESS $j=1/2$}.

A matrix representation is:
$$
J^+ = \left(
\begin{array}{cccc}
 0  &        &        &   \\
 2j & \ddots &        &   \\
    & \ddots & \ddots &   \\
    &        &    1   &  0\\
\end{array}\right)
\qquad
J^- = \left(
\begin{array}{cccc}
 0  &  1     &        &     \\
    & \ddots & \ddots &     \\
    &        & \ddots &  2j \\
    &        &        &  0  \\
\end{array}\right)
\qquad
J^0 = \left(
\begin{array}{cccc}
 -j  &        &        &   \\
     & \ddots &        &   \\
     &        & \ddots &   \\
     &        &        &  j\\
\end{array}\right)
$$

In the SU(1,1) case one can use the infinite dimensional representation
\begin{eqnarray}
\label{newrepresentationsu11}
K^+_i |n_i\rangle &=& (2k+n_i) |n_i+1\rangle \nonumber \\
K^-_i |n_i\rangle &=& n_i      |n_i-1\rangle \nonumber \\
K^0_i |n_i\rangle &=& (n_i+k)  |n_i\rangle
\end{eqnarray}
where the quantum numbers $n_i\in\{0,1,2,\ldots\}$.
A matrix representation is:
$$
K^+ = \left(
\begin{array}{cccc}
 0  &        &        &   \\
 2k & \ddots &        &   \\
    & 2k+1   & \ddots &   \\
    &        & \ddots & \ddots\\
\end{array}\right)
\qquad
K^- = \left(
\begin{array}{cccc}
 0  &  1     &        &     \\
    & \ddots &   2    &     \\
    &        & \ddots &  \ddots \\
    &        &        &  \ddots \\
\end{array}\right)
\qquad
K^0 = \left(
\begin{array}{cccc}
 k   &        &        &   \\
     &  k+1   &        &   \\
     &        & k+2    &   \\
     &        &        &  \ddots\\
\end{array}\right)
$$
Let's check that in this representation the operator is stochastic.
I will do it for the bulk:
\begin{eqnarray}
L_{i,i+1}|n_i,n_{i+1}\rangle
&=&
(2k+n_i) n_{i+1}|n_i +1 ,n_{i+1}-1\rangle \nonumber\\
&+&
n_i(2k+n_{i+1})|n_i -1 ,n_{i+1}+1\rangle \nonumber\\
&+&
(-2(n_i+k)(n_{i+1}+k)+2k^2)|n_i,n_{i+1}\rangle
\end{eqnarray}
The sum of the rates is
$$
(2k+n_i) n_{i+1}+
n_i(2k+n_{i+1})
-2(n_i+k)(n_{i+1}+k)+2k^2 =0
$$









% \end{document}