summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-10-25 14:37:36 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-10-25 14:37:36 +0200
commit196a3b808eefe56e97d409626096621b0cf64780 (patch)
tree31dbd237efe1b273150c8016ba060a4d9b6e9b7d
parenta6b68b216a35268bb0bc6bf853ba38b7f1e3db0e (diff)
downloadpaper-196a3b808eefe56e97d409626096621b0cf64780.tar.gz
paper-196a3b808eefe56e97d409626096621b0cf64780.tar.bz2
paper-196a3b808eefe56e97d409626096621b0cf64780.zip
Started adding captions.
-rw-r--r--ising_scaling.tex21
1 files changed, 18 insertions, 3 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex
index 594588b..62495fc 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -585,8 +585,8 @@ the approximate functions and their derivatives can be evaluated by comparison
to their known values at the critical isotherm, or $\theta=1$.
\begin{table}\label{tab:fits}
- \begin{tabular}{c|lll}
- $m$ & \multicolumn{1}{c}{$\mathcal F_-^{(m)}$} & $\mathcal F_0^{(m)}$ & $\mathcal F_+^{(m)}$ \\\hline
+ \begin{tabular}{l|lll}
+ \multicolumn1{c|}{$m$} & \multicolumn{1}{c}{$\mathcal F_-^{(m)}$} & \multicolumn{1}{c}{$\mathcal F_0^{(m)}$} & \multicolumn1c{$\mathcal F_+^{(m)}$} \\\hline
0 & \hphantom{$-$}0 & $-1.197\,733\,383\,797\ldots$ & \hphantom{$-$}0 \\
1 & $-1.357\,838\,341\,707\ldots$ & \hphantom{$-$}$0.318\,810\,124\,891\ldots$ & \hphantom{$-$}0 \\
2 & $-0.048\,953\,289\,720\ldots$ & \hphantom{$-$}$0.110\,886\,196\,683(2)$ & $-1.845\,228\,078\,233\ldots$ \\
@@ -751,6 +751,9 @@ Fig.~\ref{fig:error}. For the values for which we were able to make a fit, the
error in the function and its first several derivatives appears to trend
towards zero exponentially in the polynomial order $n$.
+Even at $n=2$, where only six unknown parameters have been fit, the results are
+accurate to within $2\times10^{-3}$. This approximation for the scaling functions also captures the singularities at the high- and low-temperature zero-field points well.
+
\begin{figure}
\begin{gnuplot}[terminal=epslatex]
dat1 = 'data/glow_numeric.dat'
@@ -771,7 +774,11 @@ towards zero exponentially in the polynomial order $n$.
dat4 using 1:(abs($2)) title 'Caselle \textit{et al.}'
\end{gnuplot}
\caption{
- }
+ The series coefficients for the scaling function $\mathcal F_-$ as a
+ function of polynomial order $m$. The numeric values are from Table
+ \ref{tab:fits}, and those of Caselle \textit{et al.} are from the most
+ accurate scaling function listed in \cite{Caselle_2001_The}.
+ } \label{fig:glow.series}
\end{figure}
\begin{figure}
@@ -795,6 +802,10 @@ towards zero exponentially in the polynomial order $n$.
dat4 using (1/$1):(abs(ratLast($2))) title 'Caselle \textit{et al.}'
\end{gnuplot}
\caption{
+ Sequential ratios of the series coefficients of the scaling function
+ $\mathcal F_-$ as a function of inverse polynomial order $m$. The
+ extrapolated $y$-intercept of this plot gives the radius of convergence of
+ the series.
}
\end{figure}
@@ -817,6 +828,10 @@ towards zero exponentially in the polynomial order $n$.
dat4 using 1:(abs($2)) title 'Caselle \textit{et al.}'
\end{gnuplot}
\caption{
+ The series coefficients for the scaling function $\mathcal F_+$ as a
+ function of polynomial order $m$. The numeric values are from Table
+ \ref{tab:fits}, and those of Caselle \textit{et al.} are from the most
+ accurate scaling function listed in \cite{Caselle_2001_The}.
}
\end{figure}