diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-25 14:37:36 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-25 14:37:36 +0200 |
commit | 196a3b808eefe56e97d409626096621b0cf64780 (patch) | |
tree | 31dbd237efe1b273150c8016ba060a4d9b6e9b7d | |
parent | a6b68b216a35268bb0bc6bf853ba38b7f1e3db0e (diff) | |
download | paper-196a3b808eefe56e97d409626096621b0cf64780.tar.gz paper-196a3b808eefe56e97d409626096621b0cf64780.tar.bz2 paper-196a3b808eefe56e97d409626096621b0cf64780.zip |
Started adding captions.
-rw-r--r-- | ising_scaling.tex | 21 |
1 files changed, 18 insertions, 3 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex index 594588b..62495fc 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -585,8 +585,8 @@ the approximate functions and their derivatives can be evaluated by comparison to their known values at the critical isotherm, or $\theta=1$. \begin{table}\label{tab:fits} - \begin{tabular}{c|lll} - $m$ & \multicolumn{1}{c}{$\mathcal F_-^{(m)}$} & $\mathcal F_0^{(m)}$ & $\mathcal F_+^{(m)}$ \\\hline + \begin{tabular}{l|lll} + \multicolumn1{c|}{$m$} & \multicolumn{1}{c}{$\mathcal F_-^{(m)}$} & \multicolumn{1}{c}{$\mathcal F_0^{(m)}$} & \multicolumn1c{$\mathcal F_+^{(m)}$} \\\hline 0 & \hphantom{$-$}0 & $-1.197\,733\,383\,797\ldots$ & \hphantom{$-$}0 \\ 1 & $-1.357\,838\,341\,707\ldots$ & \hphantom{$-$}$0.318\,810\,124\,891\ldots$ & \hphantom{$-$}0 \\ 2 & $-0.048\,953\,289\,720\ldots$ & \hphantom{$-$}$0.110\,886\,196\,683(2)$ & $-1.845\,228\,078\,233\ldots$ \\ @@ -751,6 +751,9 @@ Fig.~\ref{fig:error}. For the values for which we were able to make a fit, the error in the function and its first several derivatives appears to trend towards zero exponentially in the polynomial order $n$. +Even at $n=2$, where only six unknown parameters have been fit, the results are +accurate to within $2\times10^{-3}$. This approximation for the scaling functions also captures the singularities at the high- and low-temperature zero-field points well. + \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/glow_numeric.dat' @@ -771,7 +774,11 @@ towards zero exponentially in the polynomial order $n$. dat4 using 1:(abs($2)) title 'Caselle \textit{et al.}' \end{gnuplot} \caption{ - } + The series coefficients for the scaling function $\mathcal F_-$ as a + function of polynomial order $m$. The numeric values are from Table + \ref{tab:fits}, and those of Caselle \textit{et al.} are from the most + accurate scaling function listed in \cite{Caselle_2001_The}. + } \label{fig:glow.series} \end{figure} \begin{figure} @@ -795,6 +802,10 @@ towards zero exponentially in the polynomial order $n$. dat4 using (1/$1):(abs(ratLast($2))) title 'Caselle \textit{et al.}' \end{gnuplot} \caption{ + Sequential ratios of the series coefficients of the scaling function + $\mathcal F_-$ as a function of inverse polynomial order $m$. The + extrapolated $y$-intercept of this plot gives the radius of convergence of + the series. } \end{figure} @@ -817,6 +828,10 @@ towards zero exponentially in the polynomial order $n$. dat4 using 1:(abs($2)) title 'Caselle \textit{et al.}' \end{gnuplot} \caption{ + The series coefficients for the scaling function $\mathcal F_+$ as a + function of polynomial order $m$. The numeric values are from Table + \ref{tab:fits}, and those of Caselle \textit{et al.} are from the most + accurate scaling function listed in \cite{Caselle_2001_The}. } \end{figure} |