summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2017-06-09 12:07:04 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2017-06-09 12:07:04 -0400
commit5f49227b29b368aeffb5f055ae0ec146ac5ee013 (patch)
tree03fa21a46b952d20bc101d27d26d25ed13d0e2d0
parente539f537677e645a6804063a7bd3eac2d2e57113 (diff)
downloadpaper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.tar.gz
paper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.tar.bz2
paper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.zip
added logic to format too-long equations differently if preprint is set
-rw-r--r--essential-ising.tex20
1 files changed, 20 insertions, 0 deletions
diff --git a/essential-ising.tex b/essential-ising.tex
index 4bab30f..b1c17e6 100644
--- a/essential-ising.tex
+++ b/essential-ising.tex
@@ -29,6 +29,11 @@
\frac{\partial\tmp#2}{\partial#3\tmp}
}
+\makeatletter
+\newif\ifreprint
+\@ifclasswith{revtex4-1}{reprint}{\reprinttrue}{\reprintfalse}
+\makeatother
+
\begin{document}
\title{Essential Singularities in the Ising Universal Scaling Functions}
@@ -163,6 +168,7 @@ energy in $H$ in good agreement with transfer matrix expansions
\cite{lowe.1980.instantons}. Here, we compute the integral to come to explicit
functional forms. In \textsc{3d} and \textsc{4d} this can be computed
explicitly given our scaling ansatz, yielding
+\ifreprint
\begin{align}
\mathcal F^{\text{\textsc{3d}}}(X)&=
\frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2}
@@ -177,6 +183,20 @@ explicitly given our scaling ansatz, yielding
-\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big]
\notag
\end{align}
+\else
+\begin{align}
+ \mathcal F^{\text{\textsc{3d}}}(X)&=
+ \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2}
+ \bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2})
+ -4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg]
+\\
+ \mathcal F^{\text{\textsc{4d}}}(X)&=
+ \frac{A}{9\pi X^2}e^{1/(BX)^3}
+ \Big[3\Gamma(0,(BX)^{-3})
+ -3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3})
+ -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big]
+\end{align}
+\fi
for \textsc{4d}.
At the level of truncation we are working at, the Kramers--Kronig relation
does not converge in \textsc{2d}. However, the higher moments can still be