summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2017-08-22 22:28:01 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2017-08-22 22:28:01 -0400
commitc1fd415bd5dcee285c95e36e4def5fa412a87bb1 (patch)
tree114209663e7d1bfd55a52d25dd683b392d17c874
parente1f268865e9148f8d4fdeddeef8d591a7ce86f99 (diff)
downloadpaper-c1fd415bd5dcee285c95e36e4def5fa412a87bb1.tar.gz
paper-c1fd415bd5dcee285c95e36e4def5fa412a87bb1.tar.bz2
paper-c1fd415bd5dcee285c95e36e4def5fa412a87bb1.zip
new citations, some small fixes
-rw-r--r--essential-ising.bib73
-rw-r--r--essential-ising.tex19
2 files changed, 84 insertions, 8 deletions
diff --git a/essential-ising.bib b/essential-ising.bib
index f490dd9..1de2478 100644
--- a/essential-ising.bib
+++ b/essential-ising.bib
@@ -28,6 +28,13 @@
publisher={APS}
}
+@article{assis.2017.analyticity,
+ title={Analyticity of the Ising susceptibility: An interpretation},
+ author={Assis, M and Jacobsen, JL and Jensen, I and Maillard, JM and McCoy, BM},
+ journal={arXiv preprint arXiv:1705.02541},
+ year={2017}
+}
+
@article{barouch.1973.susceptibility,
title={Zero-field susceptibility of the two-dimensional Ising model near ${T}_c$},
author={Barouch, Eytan and McCoy, Barry M and Wu, Tai Tsun},
@@ -108,6 +115,17 @@
publisher={IOP Publishing}
}
+@article{chan.2011.ising,
+ title={The Ising susceptibility scaling function},
+ author={Chan, Y and Guttmann, Anthony J and Nickel, BG and Perk, JHH},
+ journal={Journal of Statistical Physics},
+ volume={145},
+ number={3},
+ pages={549--590},
+ year={2011},
+ publisher={Springer}
+}
+
@article{chen.2013.universal,
title={Universal scaling function for the two-dimensional Ising model in an external field: A pragmatic approach},
author={Chen, Yan-Jiun and Paquette, Natalie M and Machta, Benjamin B and Sethna, James P},
@@ -115,6 +133,17 @@
year={2013}
}
+@article{dahm.1989.dynamics,
+ title={Dynamics of dislocation-mediated melting in a two-dimensional lattice in the presence of an oscillatory applied strain},
+ author={Dahm, AJ and Stan, MA and Petschek, RG},
+ journal={Physical Review B},
+ volume={40},
+ number={13},
+ pages={9006},
+ year={1989},
+ publisher={APS}
+}
+
@article{dimitrovic.1991.finite,
title={Finite-size effects, goldstone bosons and critical exponents in the d= 3 Heisenberg model},
author={Dimitrovi{\'c}, I and Hasenfratz, P and Nager, J and Niedermayer, Ferenc},
@@ -221,6 +250,17 @@
publisher={APS}
}
+@article{guttmann.1996.solvability,
+ title={Solvability of some statistical mechanical systems},
+ author={Guttmann, AJ and Enting, IG},
+ journal={Physical review letters},
+ volume={76},
+ number={3},
+ pages={344},
+ year={1996},
+ publisher={APS}
+}
+
@article{harris.1984.metastability,
title={Metastability in the (1+ 1) D Ising model: a primitive droplet model calculation},
author={Harris, CK},
@@ -363,6 +403,28 @@
publisher={AIP}
}
+@article{nickel.1999.singularity,
+ title={On the singularity structure of the 2D Ising model susceptibility},
+ author={Nickel, Bernie},
+ journal={Journal of Physics A: Mathematical and General},
+ volume={32},
+ number={21},
+ pages={3889},
+ year={1999},
+ publisher={IOP Publishing}
+}
+
+@article{nickel.2000.addendum,
+ title={Addendum toOn the singularity structure of the 2D Ising model susceptibility'},
+ author={Nickel, Bernie},
+ journal={Journal of Physics A: Mathematical and General},
+ volume={33},
+ number={8},
+ pages={1693},
+ year={2000},
+ publisher={IOP Publishing}
+}
+
@article{onsager.1944.crystal,
title={Crystal statistics. I. A two-dimensional model with an order-disorder transition},
author={Onsager, Lars},
@@ -374,6 +436,17 @@
publisher={APS}
}
+@article{orrick.2001.susceptibility,
+ title={The susceptibility of the square lattice Ising model: new developments},
+ author={Orrick, WP and Nickel, B and Guttmann, AJ and Perk, JHH},
+ journal={Journal of Statistical Physics},
+ volume={102},
+ number={3},
+ pages={795--841},
+ year={2001},
+ publisher={Springer}
+}
+
@article{parisi.1977.asymptotic,
title={Asymptotic estimates in perturbation theory},
author={Parisi, Giorgio},
diff --git a/essential-ising.tex b/essential-ising.tex
index ba8e452..d641a57 100644
--- a/essential-ising.tex
+++ b/essential-ising.tex
@@ -119,8 +119,10 @@ methods of critical droplet theory for the decay of an Ising system in a
metastable state, i.e., an equilibrium Ising state for $T<T_\c$, $H>0$
subjected to a small negative external field $H<0$. The existence of an
essential singularity has also been suggested by transfer matrix
-\cite{mccraw.1978.metastability,enting.1980.investigation} and \textsc{rg}
-methods \cite{klein.1976.essential}. It has long been known that the decay
+\cite{mccraw.1978.metastability,enting.1980.investigation,mangazeev.2008.variational,mangazeev.2010.scaling} and \textsc{rg}
+methods \cite{klein.1976.essential}, and a different kind of essential
+singularity is known to exist in the zero-temperature susceptibility
+\cite{orrick.2001.susceptibility,chan.2011.ising,guttmann.1996.solvability,nickel.1999.singularity,nickel.2000.addendum,assis.2017.analyticity}. It has long been known that the decay
rate $\Gamma$ of metastable states in statistical mechanics is often related
to the metastable free energy $F$ by $\Gamma\propto\im F$
\cite{langer.1969.metastable,penrose.1987.rigorous,gaveau.1989.analytic,privman.1982.analytic}.
@@ -264,10 +266,10 @@ At the level of truncation of \eqref{eq:im.scaling} at which we are working
the Kramers--Kronig relation does not converge in \twodee. However, higher
moments can still be extracted, e.g., the susceptibility, by taking
\[
- \chi=\pd MH=-\frac1{T_\c}\pd[2]Fh
- =-\frac2{\pi T_\c}\int_{-\infty}^\infty\frac{\im F(t,h')}{(h'-h)^3}\,\dd h'.
+ \chi=\pd MH=-\frac1{T}\pd[2]Fh
+ =-\frac2{\pi T}\int_{-\infty}^\infty\frac{\im F(t,h')}{(h'-h)^3}\,\dd h'.
\]
-With a scaling form defined by $T_\c\chi=|t|^{-\gamma}\fX(h|t|^{-\beta\delta})$,
+With a scaling form defined by $T\chi=|t|^{-\gamma}\fX(h|t|^{-\beta\delta})$,
this yields
\[
\fX^\twodee(Y/B)=\frac{AB^2}{\pi Y^3}\big[Y(Y-1)-e^{1/Y}\ei(-1/Y)\big]
@@ -325,7 +327,7 @@ temperature have $\fS(0)=4/T_\c$, $\fM(0)=(2^{5/2}\arcsinh1)^\beta$
$B=T_\c^2\fM(0)/\pi\fS(0)^2=(2^{27/16}\pi(\arcsinh1)^{15/8})^{-1}$. If we
assume incorrectly that \eqref{eq:sus_scaling} is the true asymptotic form of
the susceptibility scaling function, then
-$T_\c\chi(t,0)|t|^\gamma=\lim_{X\to0}\fX^\twodee(X)=2AB^2/\pi$ and the constant
+$T\chi(t,0)|t|^\gamma=\lim_{X\to0}\fX^\twodee(X)=2AB^2/\pi$ and the constant
$A$ is fixed to $A=\pi\fX(0)/2B^2=2^{19/8}\pi^3(\arcsinh1)^{15/4}C_0^-$. The
resulting scaling functions $\fX$ and $\fM$ are plotted as solid lines in
Fig.~\ref{fig:scaling_fits}. As can be seen, there is very good agreement
@@ -405,7 +407,7 @@ energy~\cite{caselle.2001.critical}, and should have implications for the scalin
of correlation functions~\cite{chen.2013.universal,wu.1976.spin}. Our methods might be generalized
to predict similar singularities in systems where nucleation and metastability
are proximate to continuous phase transitions, such as 2D superfluid
-transitions~\cite{ambegaokar.1978.dissipation,ambegaokar.1980.dynamics}, the melting of 2D crystals~\cite{XXX}, and
+transitions~\cite{ambegaokar.1978.dissipation,ambegaokar.1980.dynamics}, the melting of 2D crystals~\cite{dahm.1989.dynamics}, and
freezing transitions in glasses, spin glasses, and other disordered systems.
@@ -424,7 +426,8 @@ freezing transitions in glasses, spin glasses, and other disordered systems.
\begin{acknowledgments}
The authors would like to thank Tom Lubensky, Andrea Liu, and Randy Kamien
- for helpful conversations. JPS thanks Jim Langer for past inspiration,
+ for helpful conversations. The authors would also like to think Jacques Perk
+ for pointing us to several insightful studies. JPS thanks Jim Langer for past inspiration,
guidance, and encouragement. This work was supported by NSF grants
DMR-1312160 and DMR-1719490.
\end{acknowledgments}