diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-23 11:11:01 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-23 11:11:01 +0200 |
commit | da1ed12ac1ebd0c538400734fc0c6b88f4769265 (patch) | |
tree | ef997973384f1d5e461fb39e0fd9de3aabf54f7b | |
parent | be6862afc033cf060d8d8d0f6fd6954e69a937e7 (diff) | |
download | paper-da1ed12ac1ebd0c538400734fc0c6b88f4769265.tar.gz paper-da1ed12ac1ebd0c538400734fc0c6b88f4769265.tar.bz2 paper-da1ed12ac1ebd0c538400734fc0c6b88f4769265.zip |
More writing.
-rw-r--r-- | data/ghigh_series_ours_2.dat | 15 | ||||
-rw-r--r-- | data/ghigh_series_ours_9.dat | 15 | ||||
-rw-r--r-- | data/phi_series_ours_2.dat | 15 | ||||
-rw-r--r-- | data/phi_series_ours_9.dat | 15 | ||||
-rw-r--r-- | ising_scaling.tex | 57 |
5 files changed, 89 insertions, 28 deletions
diff --git a/data/ghigh_series_ours_2.dat b/data/ghigh_series_ours_2.dat new file mode 100644 index 0000000..c371df7 --- /dev/null +++ b/data/ghigh_series_ours_2.dat @@ -0,0 +1,15 @@ +0 0 +1 0 +2 -1.845228078232855 +3 0 +4 9.13299780319435 +5 0 +6 -120.49236894043679 +7 0 +8 2170.0705084060182 +9 0 +10 -45590.04978070584 +11 0 +12 1.0498238403780453e6 +13 0 +14 -2.569287836366928e7
\ No newline at end of file diff --git a/data/ghigh_series_ours_9.dat b/data/ghigh_series_ours_9.dat new file mode 100644 index 0000000..f021bfb --- /dev/null +++ b/data/ghigh_series_ours_9.dat @@ -0,0 +1,15 @@ +0 0 +1 0 +2 -1.845228078233437 +3 0 +4 8.333711750016088 +5 0 +6 -95.16895435995913 +7 0 +8 1458.0146401083766 +9 0 +10 -25896.798094642745 +11 0 +12 502972.6708710323 +13 0 +14 -1.037144470816526e7
\ No newline at end of file diff --git a/data/phi_series_ours_2.dat b/data/phi_series_ours_2.dat new file mode 100644 index 0000000..aa915f5 --- /dev/null +++ b/data/phi_series_ours_2.dat @@ -0,0 +1,15 @@ +0 -1.1948724284794678 +1 -0.32330658411019586 +2 0.11346429812999838 +3 0.01686309365914635 +4 -0.001863074413146943 +5 0.0003315262819236183 +6 0.00036080803794583794 +7 -0.0004509482793079114 +8 0.0001582843938685694 +9 0.000058289459329385525 +10 -0.00007259627084372857 +11 0.000016663825922859607 +12 8.056136910592027e-6 +13 -4.675420447040588e-6 +14 1.1812169011381494e-6
\ No newline at end of file diff --git a/data/phi_series_ours_9.dat b/data/phi_series_ours_9.dat new file mode 100644 index 0000000..b8ead4c --- /dev/null +++ b/data/phi_series_ours_9.dat @@ -0,0 +1,15 @@ +0 -1.1977308964821485 +1 -0.31881789297902025 +2 0.11089601302626526 +3 0.01642300862533117 +4 -0.0002696467837568495 +5 -0.000504047944460891 +6 0.00020288418772922178 +7 -0.000046527087437412423 +8 6.758456177269158e-6 +9 -1.3591739593199971e-6 +10 -3.971266342374754e-7 +11 2.552648054600211e-6 +12 -3.307244351589582e-6 +13 2.196995226701064e-6 +14 -3.409156647107724e-7
\ No newline at end of file diff --git a/ising_scaling.tex b/ising_scaling.tex index 21cc0fe..c7e7adb 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -259,7 +259,7 @@ $\xi_\mathrm{YL}$ \cite{Cardy_1985_Conformal, Fonseca_2003_Ising}. This creates a branch cut stemming from the critical point along the imaginary-$\xi$ axis with a growing imaginary part \begin{equation} - \operatorname{Im}\mathcal F_+(i\xi\pm0)=\pm A_\mathrm{YL}\frac12\Theta(\xi^2-\xi_\mathrm{YL}^2)[(\xi/\xi_\mathrm{YL})^2-1]^{1+\sigma}[1+O[(\xi-\xi_\mathrm{YL})^2]] + \operatorname{Im}\mathcal F_+(i\xi\pm0)=\pm\tilde A_\mathrm{YL}\frac12\Theta(\xi^2-\xi_\mathrm{YL}^2)[(\xi/\xi_\mathrm{YL})^2-1]^{1+\sigma}[1+O[(\xi-\xi_\mathrm{YL})^2]] \end{equation} This results in analytic structure for $\mathcal F_+$ shown in Fig.~\ref{fig:higher.singularities}. @@ -340,7 +340,7 @@ The location of the Yang--Lee edge singularities can be calculated directly from the coordinate transformation \eqref{eq:schofield}. Since $g(\theta)$ is an odd real polynomial for real $\theta$, it is imaginary for imaginary $\theta$. Therefore, -\begin{equation} +\begin{equation} \label{eq:yang-lee.theta} i\xi_{\mathrm{YL}}=\frac{g(i\theta_{\mathrm{YL}})}{(1+\theta_{\mathrm{YL}}^2)^{-\Delta}} \end{equation} The location $\theta_0$ is not fixed by any principle. @@ -522,7 +522,23 @@ and \right)\right\} \end{aligned} \end{equation} -fixing $B$ and $C_0$. +fixing $B$ and $C_0$. Similarly, \eqref{eq:yang-lee.theta} puts a constraint on the value of $\theta_\mathrm{YL}$, while the known amplitude of the Yang--Lee branch cut fixes the value of $C_\mathrm{YL}$ by +\begin{equation} + \begin{aligned} + u_f + &\simeq A_\mathrm{YL}|u_h(\theta)|^{D\nu/\Delta}(\eta_{\mathrm YL}-\eta(\theta))^{1+\sigma} \\ + &=A_\mathrm{YL}R^{D\nu}|g(i\theta_\mathrm{YL})|^{D\nu/\Delta}[-\eta'(i\theta_\mathrm{YL})]^{1+\sigma}(\theta-i\theta_\mathrm{YL})^{1+\sigma}\left(1+O[(\theta-i\theta_\mathrm{YL})^2]\right)\\ + &\simeq R^{D\nu}\mathcal F_\mathrm{YL}(\theta) + =C_\mathrm{YL}R^{D\nu}(2i\theta_{YL})^{1+\sigma}(\theta-i\theta_\mathrm{YL})^{1+\sigma}\left(1+O[(\theta-i\theta_\mathrm{YL})^2]\right) +\end{aligned} +\end{equation} +\begin{equation} + C_\mathrm{YL}=A_\mathrm{YL}|g(i\theta_\mathrm{YL})|^{D\nu/\Delta}\left[\frac{-\eta'(i\theta_\mathrm{YL})}{2i\theta_\mathrm{YL}}\right]^{1+\sigma} +\end{equation} +where $A_\mathrm{YL}=-1.37(2)$ and $\xi_\mathrm{YL}=0.18930(5)$ +\cite{Fonseca_2003_Ising}. Because these parameters are not known exactly, +these constraints are added to the weighted sum of squares rather than +substituted in. This leaves as unknown variables the positions $\theta_0$ and $\theta_{\mathrm{YL}}$ of the abrupt transition and Yang--Lee edge singularity, @@ -702,29 +718,6 @@ accuracy of the fit results can be checked against the known values here. \end{figure} \begin{figure} - \begin{gnuplot}[terminal=epslatex] - dat = 'data/yl_comparison.dat' - - set xlabel '$n$' - set ylabel '$|\Delta\xi_\mathrm{YL}|$' - set xrange [1.5:9.5] - set yrange [0.000005:0.05] - - set format y '$10^{%T}$' - set style data yerrorlines - set logscale y - unset key - - plot dat using 1:2:3 - \end{gnuplot} - \caption{ - The error in the location of the Yang--Lee edge singularity as a function - of the polynomial order $n$ at which the scaling function was fit. Error - bars denote the uncertainty in the known location of the singularity. - } -\end{figure} - -\begin{figure} \begin{gnuplot}[terminal=epslatex, terminaloptions={size 8.65cm,5.35cm}] dat9 = 'data/h_series_ours_9.dat' dat11 = 'data/h_series_ours_11.dat' @@ -810,6 +803,8 @@ accuracy of the fit results can be checked against the known values here. \begin{gnuplot}[terminal=epslatex] dat1 = 'data/ghigh_numeric.dat' dat2 = 'data/ghigh_caselle.dat' + dat3 = 'data/ghigh_series_ours_2.dat' + dat4 = 'data/ghigh_series_ours_9.dat' set key top left Left reverse set logscale y @@ -821,6 +816,8 @@ accuracy of the fit results can be checked against the known values here. plot \ dat1 using 1:(abs($2)):3 title 'Numeric' with yerrorbars, \ dat2 using 1:(abs($2)) title 'Caselle', \ + dat3 using 1:(abs($2)) title 'Caselle', \ + dat4 using 1:(abs($2)) title 'Caselle' \end{gnuplot} \caption{ } @@ -829,7 +826,9 @@ accuracy of the fit results can be checked against the known values here. \begin{figure} \begin{gnuplot}[terminal=epslatex] dat1 = 'data/phi_numeric.dat' - set key top left Left reverse + dat2 = 'data/phi_series_ours_2.dat' + dat3 = 'data/phi_series_ours_9.dat' + set key top right set logscale y set xlabel '$n$' set ylabel '$|\mathcal F_0^{(n)}|$' @@ -837,7 +836,9 @@ accuracy of the fit results can be checked against the known values here. set xrange [-0.5:10.5] plot \ - dat1 using 1:(abs($2)) title 'Numeric' with yerrorbars + dat1 using 1:(abs($2)):3 title 'Numeric' with yerrorbars, \ + dat2 using 1:(abs($2)) title 'Numeric', \ + dat3 using 1:(abs($2)) title 'Numeric' \end{gnuplot} \caption{ } |