diff options
| author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2017-06-09 12:07:04 -0400 | 
|---|---|---|
| committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2017-06-09 12:07:04 -0400 | 
| commit | 5f49227b29b368aeffb5f055ae0ec146ac5ee013 (patch) | |
| tree | 03fa21a46b952d20bc101d27d26d25ed13d0e2d0 | |
| parent | e539f537677e645a6804063a7bd3eac2d2e57113 (diff) | |
| download | paper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.tar.gz paper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.tar.bz2 paper-5f49227b29b368aeffb5f055ae0ec146ac5ee013.zip | |
added logic to format too-long equations differently if preprint is set
| -rw-r--r-- | essential-ising.tex | 20 | 
1 files changed, 20 insertions, 0 deletions
| diff --git a/essential-ising.tex b/essential-ising.tex index 4bab30f..b1c17e6 100644 --- a/essential-ising.tex +++ b/essential-ising.tex @@ -29,6 +29,11 @@    \frac{\partial\tmp#2}{\partial#3\tmp}  } +\makeatletter +\newif\ifreprint +\@ifclasswith{revtex4-1}{reprint}{\reprinttrue}{\reprintfalse} +\makeatother +  \begin{document}  \title{Essential Singularities in the Ising Universal Scaling Functions} @@ -163,6 +168,7 @@ energy in $H$ in good agreement with transfer matrix expansions  \cite{lowe.1980.instantons}. Here, we compute the integral to come to explicit  functional forms.  In \textsc{3d} and \textsc{4d} this can be computed  explicitly given our scaling ansatz, yielding +\ifreprint  \begin{align}    \mathcal F^{\text{\textsc{3d}}}(X)&=    \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2} @@ -177,6 +183,20 @@ explicitly given our scaling ansatz, yielding    -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big]    \notag  \end{align} +\else +\begin{align} +  \mathcal F^{\text{\textsc{3d}}}(X)&= +  \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2} +  \bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2}) +  -4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg] +\\ +  \mathcal F^{\text{\textsc{4d}}}(X)&= +  \frac{A}{9\pi X^2}e^{1/(BX)^3} +  \Big[3\Gamma(0,(BX)^{-3}) +  -3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3}) +  -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big] +\end{align} +\fi  for \textsc{4d}.  At the level of truncation we are working at, the Kramers--Kronig relation  does not converge in \textsc{2d}. However, the higher moments can still be | 
