summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2017-10-02 15:52:32 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2017-10-02 15:52:32 -0400
commitb96fb40f105e8d23338d274ff12f293c604a6bf5 (patch)
tree906354fadce1d30af1576b024298aff6972a17b2
parent8fae05cab9c8b7699f33dfd1e19a98866d21fd66 (diff)
downloadpaper-b96fb40f105e8d23338d274ff12f293c604a6bf5.tar.gz
paper-b96fb40f105e8d23338d274ff12f293c604a6bf5.tar.bz2
paper-b96fb40f105e8d23338d274ff12f293c604a6bf5.zip
final edits before arxiv reupload
-rw-r--r--essential-ising.tex20
-rw-r--r--figs/fig-series.gplot12
2 files changed, 19 insertions, 13 deletions
diff --git a/essential-ising.tex b/essential-ising.tex
index dd2c083..f789eb4 100644
--- a/essential-ising.tex
+++ b/essential-ising.tex
@@ -350,7 +350,7 @@ In forthcoming work,
we develop a method to incorporate the essential singularity in the scaling
functions into a form that also incorporates known properties of the scaling
functions in the rest of the configuration space using a Schofield-like
-parameterization \cite{kent-dobias.2018.parametric}. Briefly, we define
+parameterization \cite{schofield.1969.parametric,caselle.2001.critical,kent-dobias.2018.parametric}. Briefly, we define
parameters $R$ and $\theta$ by
\begin{align}
t=R(1-\theta^2)
@@ -381,7 +381,7 @@ arbitrary analytic additive function $Y$,
&&
Y(\theta)=\sum_{n=0}^\infty Y_n\theta^{2n}
\end{align}
-so that $\tilde\fX(\theta)=\fX(\theta)+Y(\theta)$. By manipulating thees
+so that $\tilde\fX(\theta)=\fX(\theta)+Y(\theta)$. By manipulating these
coefficients, we can attempt to give the resulting scaling form a series
expansion consistent with known values. One such prediction---made by fixing
the first four terms in the low-temperature, critical isotherm, and
@@ -390,6 +390,9 @@ of $\tilde\fX$---is shown as a dashed yellow line in
Fig.~\ref{fig:scaling_fits}.
As shown in Fig.~\ref{fig:series}, the low-order free energy coefficients of this prediction match known values
exactly up to $n=5$, and improve the agreement with higher-order coefficients.
+Unlike scaling forms which treat $\fX$ as analytic at the coexistence line,
+the series coefficients of the scaling form developed here increase without
+bound at high order.
\begin{figure}
@@ -403,10 +406,11 @@ exactly up to $n=5$, and improve the agreement with higher-order coefficients.
and $H=0.1\times(1,2^{-1/4},\ldots,2^{-50/4})$. The solid blue lines
show our analytic results \eqref{eq:sus_scaling} and
\eqref{eq:mag_scaling}, the dashed yellow lines show
- a scaling function modified to match known series expansions
- in several known limits, and the
+ a scaling function modified to match known series expansions of the
+ susceptibility
+ to third order, and the
dotted green lines show the
- polynomial resulting from truncating the series after the eight terms
+ polynomial resulting from truncating the known series expansion after the eight terms
reported by \cite{mangazeev.2008.variational,mangazeev.2010.scaling}.
}
\label{fig:scaling_fits}
@@ -418,10 +422,12 @@ exactly up to $n=5$, and improve the agreement with higher-order coefficients.
The series coefficients defined by $\tilde\fF(X)=\sum_nf_nX^n$. The blue
pluses correspond to the scaling form \eqref{eq:2d_free_scaling}, the
yellow saltires correspond to a scaling function modified to match known
- series expansions in several known limits, and the green
+ series expansions of the susceptibility to third order---and therefore
+ the free energy to fifth order---and the green
stars
correspond to the first eight coefficients from
- \cite{mangazeev.2008.variational,mangazeev.2010.scaling}.
+ \cite{mangazeev.2008.variational,mangazeev.2010.scaling}. The modified
+ scaling function and the known coefficients match exactly up to $n=5$.
}
\label{fig:series}
\end{figure}
diff --git a/figs/fig-series.gplot b/figs/fig-series.gplot
index 729ff73..49aa4cc 100644
--- a/figs/fig-series.gplot
+++ b/figs/fig-series.gplot
@@ -1,5 +1,5 @@
-set terminal pslatex rotate size 3.417,2.111
+set terminal pslatex rotate size 3.6,2.111
cc1 = "#5e81b5"
cc2 = "#e19c24"
@@ -10,18 +10,18 @@ set logscale y
data = "figs/fig-series-data.dat"
-set xrange [0.5:8.5]
+set xrange [0.5:15.5]
set yrange [0.000005:5]
set key off
set xlabel '$n$'
-set ylabel offset 1 '$|f_n|$'
+set ylabel offset 2 '$|f_n|$'
set ytics format ''
set ytics add ('$\footnotesize10^{-5}$' 10**(-5),'$\footnotesize10^{-4}$' 10**(-4), '$\footnotesize10^{-3}$' 10**(-3),'$\footnotesize10^{-2}$' 10**(-2), '$\footnotesize10^{-1}$' 10**(-1),'$\footnotesize10^{0}$' 10**(0))
plot \
- data using 1:2 with points lc rgb cc1, \
- data using 1:3 with points lc rgb cc2, \
- data using 1:4 with points lc rgb cc3
+ data using 1:3 with points lc rgb cc1, \
+ data using 1:2 with points lc rgb cc2, \
+ data using 1:5 with points lc rgb cc3