summaryrefslogtreecommitdiff
path: root/essential-ising.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2017-05-30 11:09:52 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2017-05-30 11:09:52 -0400
commit1cae91cde5efde713b16df17d6487291d96e5b30 (patch)
tree35cffe02741f683ae30eac2cd75790bfdae41e7f /essential-ising.tex
parent22690a6bebdac36fbd46b065f09e0dc8e11073c6 (diff)
downloadpaper-1cae91cde5efde713b16df17d6487291d96e5b30.tar.gz
paper-1cae91cde5efde713b16df17d6487291d96e5b30.tar.bz2
paper-1cae91cde5efde713b16df17d6487291d96e5b30.zip
added citation to fisher scaling variables paper
Diffstat (limited to 'essential-ising.tex')
-rw-r--r--essential-ising.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/essential-ising.tex b/essential-ising.tex
index aeff5d0..cbb9866 100644
--- a/essential-ising.tex
+++ b/essential-ising.tex
@@ -68,7 +68,7 @@ $F(t,h)=|g_t|^{2-\alpha}\mathcal F(g_h|g_t|^{-\Delta})$ \footnote{Technically we
for the purposes of this paper.}, where
$\Delta=\beta\delta$ and $g_t$, $g_h$ are analytic functions of $t$, $h$ that
transform exactly linearly under {\sc rg}
-\cite{cardy.1996.scaling}. When studying the properties of the
+\cite{cardy.1996.scaling,aharony.1983.fields}. When studying the properties of the
Ising critical point, it is nearly always assumed that $\mathcal F(X)$, the
universal scaling function, is an analytic function of $X$. However, it has
long been known that there exists an essential singularity in $\mathcal F$ at