diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-28 13:05:15 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-10-28 13:05:15 +0200 |
commit | 5465558876b0e38ffd1be0754743de334d69edf1 (patch) | |
tree | 7464afb4f92d69fa09b6da76bdcb2a0b3f43aadd /ising_scaling.tex | |
parent | 99913db8c908f9a2f836155697e8a4b0b8571827 (diff) | |
parent | 6c639ce6b3d27af70e98b0bc7326b03e16fc8a2b (diff) | |
download | paper-5465558876b0e38ffd1be0754743de334d69edf1.tar.gz paper-5465558876b0e38ffd1be0754743de334d69edf1.tar.bz2 paper-5465558876b0e38ffd1be0754743de334d69edf1.zip |
Merge branch 'master' of https://git.overleaf.com/601afd459bf8018881b982a3
Diffstat (limited to 'ising_scaling.tex')
-rw-r--r-- | ising_scaling.tex | 8 |
1 files changed, 5 insertions, 3 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex index fc9e8aa..1adabe4 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -46,8 +46,10 @@ linkcolor=purple the low- and high-temperature zero-field limits fixes the parametric coordinate transformation. For the two-dimensional Ising model, we show that this procedure converges exponentially with the order to which the series are - matched, up to We speculate that with appropriately modified parametric - coordinates, the method might also converge deep in the metastable phase. + matched, up to seven digits of accuracy. + To facilitate use, we provide Python and Mathematica implementations of the code at both lowest order (four digit) and high order (seven digit) accuracy. + We speculate that with appropriately modified parametric + coordinates, the method may converge even deep into the metastable phase. \end{abstract} \maketitle @@ -98,7 +100,7 @@ With six derivatives, it is accurate to about $10^{-7}$. We hope that with some refinement, this idea might be used to establish accurate scaling functions for critical behavior in other universality classes, doing for scaling functions what advances in conformal bootstrap did for critical exponents -\cite{Gliozzi_2014_Critical}. +\cite{Gliozzi_2014_Critical}. Mathematica and Python implementations will be provided in the supplemental material. \section{Universal scaling functions} |