summaryrefslogtreecommitdiff
path: root/ising_scaling.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-27 16:37:05 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-27 16:37:05 +0200
commite10a0bf22228557aab3b7c797ae40083498faaa9 (patch)
tree70da9330f77b80e612b5e35f8fae5a439e5b5216 /ising_scaling.tex
parentf56753ad2fb2cae337df3247a0b381b31991c52d (diff)
downloadpaper-e10a0bf22228557aab3b7c797ae40083498faaa9.tar.gz
paper-e10a0bf22228557aab3b7c797ae40083498faaa9.tar.bz2
paper-e10a0bf22228557aab3b7c797ae40083498faaa9.zip
Move some more figures into the root directory for APS.
Diffstat (limited to 'ising_scaling.tex')
-rw-r--r--ising_scaling.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex
index a1c8205..c454e43 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -245,7 +245,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant
\begin{figure}
- \includegraphics{figs/F_lower_singularities}
+ \includegraphics{F_lower_singularities}
\caption{
Analytic structure of the low-temperature scaling function $\mathcal F_-$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle
@@ -292,7 +292,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant
$\xi_{\mathrm{YL}}$.
\begin{figure}
- \includegraphics{figs/F_higher_singularities}
+ \includegraphics{F_higher_singularities}
\caption{
Analytic structure of the high-temperature scaling function $\mathcal F_+$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares
@@ -421,7 +421,7 @@ $\theta$. Therefore,
The location $\theta_0$ is not fixed by any principle.
\begin{figure}
- \includegraphics{figs/F_theta_singularities}
+ \includegraphics{F_theta_singularities}
\caption{
Analytic structure of the global scaling function $\mathcal F$ in the
complex $\theta$ plane. The circles depict essential singularities of the
@@ -478,7 +478,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes
its real part up to an analytic even function $G(\theta)$, real for real $\theta$.
\begin{figure}
- \includegraphics{figs/contour_path}
+ \includegraphics{contour_path}
\caption{
Integration contour over the global scaling function $\mathcal F$ in the
complex $\theta$ plane used to produce the dispersion relation. The