diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-05-27 16:37:05 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-05-27 16:37:05 +0200 |
commit | e10a0bf22228557aab3b7c797ae40083498faaa9 (patch) | |
tree | 70da9330f77b80e612b5e35f8fae5a439e5b5216 /ising_scaling.tex | |
parent | f56753ad2fb2cae337df3247a0b381b31991c52d (diff) | |
download | paper-e10a0bf22228557aab3b7c797ae40083498faaa9.tar.gz paper-e10a0bf22228557aab3b7c797ae40083498faaa9.tar.bz2 paper-e10a0bf22228557aab3b7c797ae40083498faaa9.zip |
Move some more figures into the root directory for APS.
Diffstat (limited to 'ising_scaling.tex')
-rw-r--r-- | ising_scaling.tex | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex index a1c8205..c454e43 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -245,7 +245,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant \begin{figure} - \includegraphics{figs/F_lower_singularities} + \includegraphics{F_lower_singularities} \caption{ Analytic structure of the low-temperature scaling function $\mathcal F_-$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle @@ -292,7 +292,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant $\xi_{\mathrm{YL}}$. \begin{figure} - \includegraphics{figs/F_higher_singularities} + \includegraphics{F_higher_singularities} \caption{ Analytic structure of the high-temperature scaling function $\mathcal F_+$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares @@ -421,7 +421,7 @@ $\theta$. Therefore, The location $\theta_0$ is not fixed by any principle. \begin{figure} - \includegraphics{figs/F_theta_singularities} + \includegraphics{F_theta_singularities} \caption{ Analytic structure of the global scaling function $\mathcal F$ in the complex $\theta$ plane. The circles depict essential singularities of the @@ -478,7 +478,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes its real part up to an analytic even function $G(\theta)$, real for real $\theta$. \begin{figure} - \includegraphics{figs/contour_path} + \includegraphics{contour_path} \caption{ Integration contour over the global scaling function $\mathcal F$ in the complex $\theta$ plane used to produce the dispersion relation. The |