diff options
| -rw-r--r-- | essential-ising.tex | 79 | 
1 files changed, 52 insertions, 27 deletions
| diff --git a/essential-ising.tex b/essential-ising.tex index b1c17e6..312becf 100644 --- a/essential-ising.tex +++ b/essential-ising.tex @@ -3,12 +3,12 @@  %  Created by Jaron Kent-Dobias on Thu Apr 20 12:50:56 EDT 2017.  %  Copyright (c) 2017 Jaron Kent-Dobias. All rights reserved.  % -\documentclass[aps,prl,reprint]{revtex4-1} +\documentclass[aps,prl,preprint]{revtex4-1}  \usepackage[utf8]{inputenc}  \usepackage{amsmath,amssymb,latexsym,mathtools,xifthen} -\mathtoolsset{showonlyrefs=true} +%\mathtoolsset{showonlyrefs=true}  \def\[{\begin{equation}}  \def\]{\end{equation}} @@ -124,12 +124,26 @@ F_\c\sim\Sigma^d(M|H|)^{-(d-1)}$. Assuming the singular scaling forms  $\Sigma=|g_t|^\mu\mathcal S(g_h|g_t|^{-\Delta})$ and $M=|g_t|^\beta\mathcal  M(g_h|g_t|^{-\Delta})$ and using known hyperscaling relations  \cite{widom.1981.interface}, this implies a scaling form -\begin{align} -  \Delta F_c& +\def\eqcritformone{    \sim\mathcal S^d(g_h|g_t|^{-\Delta})(-g_h|g_t|^{-\Delta}\mathcal -    M(g_h|g_t|^{-\Delta}))^{-(d-1)}\notag\\ -  &\sim\mathcal G^{-(d-1)}(g_h|g_t|^{-\Delta}). -\end{align} +    M(g_h|g_t|^{-\Delta}))^{-(d-1)} +} +\def\eqcritformtwo{ +  \sim\mathcal G^{-(d-1)}(g_h|g_t|^{-\Delta}). +} +\ifreprint +\[ +  \begin{aligned} +    \Delta F_c&\eqcritformone +    \\ +    &\eqcritformtwo +  \end{aligned} +\] +\else +\[ +  \Delta F_c\eqcritformone\eqcritformtwo +\] +\fi  Since both surface tension and magnetization are finite and nonzero for $H=0$  at $T<T_c$, $\mathcal G(X)=\O(X)$ for small $X$.  The decay rate of the  metastable state will be roughly given by the Boltzmann factor for the @@ -168,33 +182,43 @@ energy in $H$ in good agreement with transfer matrix expansions  \cite{lowe.1980.instantons}. Here, we compute the integral to come to explicit  functional forms.  In \textsc{3d} and \textsc{4d} this can be computed  explicitly given our scaling ansatz, yielding -\ifreprint -\begin{align} -  \mathcal F^{\text{\textsc{3d}}}(X)&= -  \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2} -  \bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2})\\ -  &\hspace{10em}-4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg] -  \notag -\\ -  \mathcal F^{\text{\textsc{4d}}}(X)&= -  \frac{A}{9\pi X^2}e^{1/(BX)^3} -  \Big[3\Gamma(0,(BX)^{-3})\\ -  &\hspace{2em}-3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3}) -  -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big] -  \notag -\end{align} -\else -\begin{align} +\def\eqthreedeeone{    \mathcal F^{\text{\textsc{3d}}}(X)&=    \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2}    \bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2}) +} +\def\eqthreedeetwo{    -4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg] -\\ +} +\def\eqfourdeeone{    \mathcal F^{\text{\textsc{4d}}}(X)&=    \frac{A}{9\pi X^2}e^{1/(BX)^3}    \Big[3\Gamma(0,(BX)^{-3}) +} +\def\eqfourdeetwo{    -3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3})    -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big] +} +\ifreprint +\begin{align} +  &\begin{aligned} +    \eqthreedeeone\\ +    &\hspace{6em} +    \eqthreedeetwo +  \end{aligned} +  \\ +  &\begin{aligned} +    \eqfourdeeone +    \\ +    &\hspace{2em} +    \eqfourdeetwo +  \end{aligned} +\end{align} +\else +\begin{align} +  \eqthreedeeone\eqthreedeetwo +  \\ +  \eqfourdeeone\eqfourdeetwo  \end{align}  \fi  for \textsc{4d}. @@ -275,8 +299,9 @@ better express the equation of state of the Ising model in the whole of its  parameter space.  \begin{acknowledgments} -  The authors would like to thank Tom Lubensky for a reason that Jim should -  really flesh out. +  The authors would like to thank Tom Lubensky, Andrea Liu, and Randy Kamien +  for helpful conversations. This work was partially supported by NSF grant +  DMR-1312160.  \end{acknowledgments}  \bibliography{essential-ising} | 
