summaryrefslogtreecommitdiff
path: root/IsingScalingFunctionExamples.nb
diff options
context:
space:
mode:
Diffstat (limited to 'IsingScalingFunctionExamples.nb')
-rw-r--r--IsingScalingFunctionExamples.nb4526
1 files changed, 2263 insertions, 2263 deletions
diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb
index 507bc20..b5b6bd0 100644
--- a/IsingScalingFunctionExamples.nb
+++ b/IsingScalingFunctionExamples.nb
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
-NotebookDataLength[ 661071, 11594]
-NotebookOptionsPosition[ 653812, 11470]
-NotebookOutlinePosition[ 654214, 11486]
-CellTagsIndexPosition[ 654171, 11483]
+NotebookDataLength[ 627149, 11594]
+NotebookOptionsPosition[ 619743, 11465]
+NotebookOutlinePosition[ 620138, 11481]
+CellTagsIndexPosition[ 620095, 11478]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@@ -25,12 +25,12 @@ Cell[BoxData[
"\"\<~/doc/research/first_order_singularities/paper\>\"", "]"}],
";"}]], "Input",
CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}},
- CellLabel->"In[45]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
+ CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
Cell[BoxData[
RowBox[{"<<", "IsingScalingFunction`"}]], "Input",
CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}},
- CellLabel->"In[54]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+ CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
Cell[CellGroupData[{
@@ -79,8 +79,9 @@ Cell[BoxData[
3.8577516345702353`*^9, 3.8577902377024403`*^9, 3.8577905746804*^9, {
3.857790654638524*^9, 3.857790670814478*^9}, 3.857791166262724*^9,
3.8577912575588627`*^9, 3.857793185554345*^9, 3.857799943653722*^9,
- 3.858849755117009*^9},
- CellLabel->"Out[3]=",ExpressionUUID->"ce3049a2-a872-4051-b925-2b210d981406"]
+ 3.858849755117009*^9, 3.867387189726757*^9, 3.867392573802265*^9,
+ 3.86739918902833*^9, 3.867807029271892*^9, 3.870503634462634*^9},
+ CellLabel->"Out[3]=",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"]
}, Open ]],
Cell[CellGroupData[{
@@ -131,8 +132,10 @@ Cell[BoxData[
3.857750445664744*^9, 3.857751635086946*^9, 3.857790237915689*^9,
3.85779057489809*^9, {3.8577906548620043`*^9, 3.857790670988171*^9},
3.857791166635693*^9, 3.857791258021803*^9, 3.857793188099229*^9,
- 3.857799944441625*^9, 3.858849755394497*^9},
- CellLabel->"Out[4]=",ExpressionUUID->"3221ce5b-1b38-40e6-a72a-522044bce1af"]
+ 3.857799944441625*^9, 3.858849755394497*^9, 3.867387191076661*^9,
+ 3.8673925739943132`*^9, 3.867399189446398*^9, 3.86780702978512*^9,
+ 3.870503634937377*^9},
+ CellLabel->"Out[4]=",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"]
}, Open ]],
Cell[CellGroupData[{
@@ -460,7 +463,7 @@ nj1neYGKmdePntL/P94/96Ojkd2zNx5jBvN43sTd+3czAm0XNUP+hvM0fT2d
X3dQkRFP5brp/+NF719xRld+VTE9N///OpWlyBpxOrpqK5yfx/ProP3tFENU
tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg=
"]]},
- Annotation[#, "Charting`Private`Tag$3968#1"]& ]}, {}},
+ Annotation[#, "Charting`Private`Tag$8760#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
@@ -501,8 +504,9 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg=
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.857793273501688*^9, 3.857799947911737*^9,
- 3.8588497580654993`*^9},
- CellLabel->"Out[5]=",ExpressionUUID->"4d2138f6-c507-4fe3-b575-f7a229cf7535"]
+ 3.8588497580654993`*^9, 3.867387198157053*^9, 3.867392576035952*^9,
+ 3.867399192057679*^9, 3.867807033354333*^9, 3.8705036374745817`*^9},
+ CellLabel->"Out[5]=",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"]
}, Open ]],
Cell[CellGroupData[{
@@ -617,7 +621,7 @@ oShnP/7caBJb78CHQiX74jFpL2yO/2LQ68iHj/FeXnTbLtw78s052pmPofFT
tuprd8DTRuh65RY+Prf0XNHYuxlPjKRfbnfl42tE/BaZMQfIz57d93sbH+qW
P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM=
"]]},
- Annotation[#, "Charting`Private`Tag$4180#1"]& ]}, {}},
+ Annotation[#, "Charting`Private`Tag$8964#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
@@ -658,25 +662,1672 @@ P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM=
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.85779130533657*^9, 3.8577913091623983`*^9},
- 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9},
- CellLabel->"Out[6]=",ExpressionUUID->"ba11d116-bc7c-4392-9461-520d5c8b9511"]
+ 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9,
+ 3.867387198268334*^9, 3.86739257677225*^9, 3.867399192185546*^9,
+ 3.867807033499033*^9, 3.8705036390135803`*^9},
+ CellLabel->"Out[6]=",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData["s"], "Input",
+ CellChangeTimes->{{3.867807054536924*^9, 3.867807065392228*^9},
+ 3.8679107297497873`*^9},
+ CellLabel->"In[7]:=",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"],
+
+Cell[BoxData["s"], "Output",
+ CellChangeTimes->{3.87050364038545*^9},
+ CellLabel->"Out[7]=",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DufDuh", "[",
+ RowBox[{
+ "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
+ RowBox[{"{", "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], ")"}], "[", "2", "]"}],
+ "[",
+ RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input",
+ CellChangeTimes->{{3.8674005827236223`*^9, 3.867400611996139*^9}},
+ CellLabel->"In[23]:=",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}], "]"}]}],
+ RowBox[{"8", " ", "\[Pi]"}]], "+",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{"R", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}], "]"}],
+ RowBox[{"7", "/", "4"}]]],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"15", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{"4", " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"31", "/", "8"}]]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"15", "/", "8"}]]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"15", "/", "8"}]]}]]}], ")"}], "3"]],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[Theta]",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ", "\[ImaginaryI]"}],
+ RowBox[{"6", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]}]]}], "+",
+ FractionBox[
+ RowBox[{"5", " ", "\[ImaginaryI]"}],
+ RowBox[{"6", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}],
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}],
+ ")"}]}], "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}],
+ "\[Pi]"]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-",
+ FractionBox[
+ RowBox[{"4", " ", "\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
+
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"465", " ",
+ SuperscriptBox["\[Theta]", "3"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{"16", " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"47", "/", "8"}]]}]]}], "+",
+ FractionBox[
+ RowBox[{"15", " ",
+ SuperscriptBox["\[Theta]", "3"], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"31", "/", "8"}]]}]], "+",
+ FractionBox[
+ RowBox[{"45", " ", "\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{"4", " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"31", "/", "8"}]]}]], "-",
+ FractionBox[
+ RowBox[{"15", " ",
+ SuperscriptBox["\[Theta]", "3"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"31", "/", "8"}]]}]], "+",
+ FractionBox[
+ RowBox[{"6", " ", "\[Theta]", " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"15", "/", "8"}]]}]]}], ")"}]}]}], "+",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"15", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{"4", " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"31", "/", "8"}]]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"15", "/", "8"}]]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"g", "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"RealAbs", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"15", "/", "8"}]]}]]}], ")"}], "2"]],
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ RowBox[{"\[Pi]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}]], "-",
+ FractionBox["1",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["5",
+ RowBox[{"36", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]}]], "+",
+ FractionBox["5",
+ RowBox[{"36", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}],
+ "2"]}]]}], "-",
+ FractionBox["1",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}],
+ RowBox[{
+ SuperscriptBox["B", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}],
+ "3"]}]]}], ")"}]}], "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "2"]}]]}],
+ "-",
+ FractionBox["1",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ RowBox[{
+ SuperscriptBox["B", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "3"]}]]}],
+ ")"}]}], "\[Pi]"]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-",
+ FractionBox[
+ RowBox[{"8", " ", "\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"5", " ", "\[ImaginaryI]"}],
+ RowBox[{"6", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]}]]}], "+",
+ FractionBox[
+ RowBox[{"5", " ", "\[ImaginaryI]"}],
+ RowBox[{"6", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}],
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}],
+ ")"}]}], "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}],
+ "\[Pi]"]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]], "+",
+ FractionBox[
+ RowBox[{"24", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "4"]], "-",
+ FractionBox[
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
+ ")"}]}]]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
+ "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}]}],
+ ")"}]}]], "Output",
+ CellChangeTimes->{
+ 3.867399663278276*^9, {3.8674005829418097`*^9, 3.867400612249578*^9}},
+ CellLabel->"Out[23]=",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"\[Chi]0", "=",
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DufDuh", "[",
+ RowBox[{
+ "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
+
+ RowBox[{"{", "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"g", "[", "0", "]"}], ",",
+ RowBox[{"g", "[", "1", "]"}]}], "}"}]}], "]"}], ")"}], "[", "2",
+ "]"}], "[",
+ RowBox[{"R", ",", "\[Theta]"}], "]"}], ",",
+ RowBox[{"\[Theta]", "->", "\[Theta]0"}], ",",
+ RowBox[{"Direction", "->", "\"\<FromBelow\>\""}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]0", ">", "1"}], ",",
+ RowBox[{"R", ">", "0"}], ",",
+ RowBox[{"B", ">", "0"}], ",",
+ RowBox[{"\[Theta]0", ">", "0"}], ",",
+ RowBox[{"\[Theta]YL", ">", "0"}], ",",
+ RowBox[{
+ RowBox[{"g", "[", "0", "]"}], ">", "0"}], ",",
+ RowBox[{
+ RowBox[{"g", "[", "1", "]"}], ">", "0"}]}], "}"}]}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.867399306978856*^9, 3.867399362899951*^9}, {
+ 3.867399492127166*^9, 3.867399492566269*^9}, {3.8673995729447317`*^9,
+ 3.867399586808991*^9}, {3.867399697155163*^9, 3.867399722330738*^9}, {
+ 3.867400597443878*^9, 3.867400646940031*^9}, {3.867400765926566*^9,
+ 3.86740078743888*^9}, {3.86740167647156*^9, 3.8674016895355988`*^9}},
+ CellLabel->"In[30]:=",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"8", " ",
+ SuperscriptBox["R",
+ RowBox[{"7", "/", "4"}]], " ",
+ SuperscriptBox[
+ RowBox[{"g", "[", "0", "]"}], "2"]}]],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "\[Pi]"]}], "+",
+ FractionBox[
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Theta]0", "2"]}],
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{"48", " ",
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
+ " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"\[Pi]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-",
+ FractionBox[
+ RowBox[{"8", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
+ " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"\[Pi]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-",
+ FractionBox[
+ RowBox[{"16", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["C0", "\[Pi]"], "-",
+ RowBox[{
+ FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]], "-",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
+ FractionBox[
+ RowBox[{"C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
+ RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
+ ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+",
+ RowBox[{
+ FractionBox["5", "36"], " ", "CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]], "+",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "B", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"8", " ",
+ SuperscriptBox["B", "2"], " ", "\[Pi]", " ",
+ SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}],
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}]], "-",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"(",
+ RowBox[{"2", "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[Theta]0", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"],
+ "+",
+ FractionBox[
+ RowBox[{"8", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}], "\[Pi]"], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["C0", "\[Pi]"], "-",
+ RowBox[{
+ FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]], "-",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
+ FractionBox[
+ RowBox[{"C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
+ RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
+ ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ", "\[Theta]0", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ",
+ RowBox[{"Log", "[",
+ RowBox[{"R", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}],
+ RowBox[{"4", " ", "\[Pi]"}]]}]], "Output",
+ CellChangeTimes->{{3.8673993112840843`*^9, 3.8673993768209543`*^9},
+ 3.867399506274879*^9, 3.867399581147868*^9, 3.867399616196063*^9,
+ 3.86739971032502*^9, 3.86740056902387*^9, 3.867400605222789*^9,
+ 3.867400763951229*^9, 3.867401303236107*^9},
+ CellLabel->"Out[25]=",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"8", " ",
+ SuperscriptBox["R",
+ RowBox[{"7", "/", "4"}]], " ",
+ SuperscriptBox[
+ RowBox[{"g", "[", "0", "]"}], "2"]}]],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "\[Pi]"]}], "+",
+ FractionBox[
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Theta]0", "2"]}],
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{"48", " ",
+ SuperscriptBox["\[Theta]0", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
+ " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"\[Pi]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-",
+ FractionBox[
+ RowBox[{"8", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
+ " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"\[Pi]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-",
+ FractionBox[
+ RowBox[{"16", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["C0", "\[Pi]"], "-",
+ RowBox[{
+ FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]], "-",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
+ FractionBox[
+ RowBox[{"C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
+ RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
+ ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+",
+ RowBox[{
+ FractionBox["5", "36"], " ", "CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]], "+",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "B", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-",
+
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}],
+ RowBox[{"8", " ",
+ SuperscriptBox["B", "2"], " ", "\[Pi]", " ",
+ SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}],
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}]], "-",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{"(",
+ RowBox[{"2", "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[Theta]0", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"],
+ "+",
+ FractionBox[
+ RowBox[{"8", " ", "\[Theta]0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ", "\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
+ RowBox[{"2", " ", "C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
+ ")"}]}], "\[Pi]"], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["C0", "\[Pi]"], "-",
+ RowBox[{
+ FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
+
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]], "-",
+ FractionBox["1",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
+ FractionBox[
+ RowBox[{"C0", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
+ RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
+ ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ", "\[Theta]0", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ",
+ RowBox[{"Log", "[",
+ RowBox[{"R", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}],
+ RowBox[{"4", " ", "\[Pi]"}]]}], "/.",
+ RowBox[{"B", "->",
+ RowBox[{"ruleB", "[",
+ RowBox[{"\[Theta]0", ",",
+ RowBox[{"{",
+ RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.",
+ RowBox[{"C0", "->",
+ RowBox[{"ruleAL", "[",
+ RowBox[{"\[Theta]0", ",",
+ RowBox[{"{",
+ RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.",
+ "data2"}]], "Input",
+ CellChangeTimes->{{3.867401430819233*^9, 3.8674014482667217`*^9}, {
+ 3.867401479324093*^9, 3.867401519892399*^9}},
+ CellLabel->"In[29]:=",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox[
+ RowBox[{"1.443675578109905`", "\[VeryThinSpace]", "+",
+ RowBox[{"0.`", " ", "\[ImaginaryI]"}]}],
+ SuperscriptBox["R",
+ RowBox[{"7", "/", "4"}]]], "+",
+ RowBox[{"0.008090042376531648`", " ",
+ SuperscriptBox["R", "2"], " ",
+ RowBox[{"Log", "[",
+ RowBox[{"0.3188455280999998`", " ", "R"}], "]"}]}]}]], "Output",
+ CellChangeTimes->{
+ 3.867401448565897*^9, {3.8674014930013247`*^9, 3.867401520373138*^9}},
+ CellLabel->"Out[29]=",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[",
+ RowBox[{"R", ",", "\[Theta]"}], "]"}], ",",
+ RowBox[{"\[Theta]", "->", "\[Theta]"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.867399396604781*^9,
+ 3.8673993968872347`*^9}},ExpressionUUID->"626c9442-a5ca-460d-9253-\
+fd9b4c2f2227"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
RowBox[{"ComplexPlot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
- RowBox[{"ScriptF", "@@",
- RowBox[{"Most", "@", "prep2"}]}], ")"}], "[", "\[Theta]", "]"}], ",",
+ RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "\[Theta]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.857755068199889*^9, 3.857755069519574*^9}, {
- 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9,
- 3.857791646178491*^9}},
- CellLabel->"In[7]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
+ 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9,
+ 3.857791646178491*^9}, {3.867399210226221*^9, 3.867399214577518*^9},
+ 3.8673993211077833`*^9},
+ CellLabel->"In[10]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
@@ -732,1282 +2383,11 @@ sK9tH9S+mX0WfXl9XH0/fSJ9BetQ6xbzXPMiv6O+d72ncnX9DytUJ10=
GraphicsBox[
TagBox[
RasterBox[CompressedData["
-1:eJwsu2dwG2e2Nnhr98/+3L9b337f3blh7ty59vh6PI7jMB7nbMuWlSUrZypQ
-OVCBokiKYhApBjHnTII5gQSJnHMOjdxAo3NEB2irFpzaqgMUQiPU+7znOc9z
-TvfvjlzYceJ/+6d/+qfS/6N4t+Pw9Y8vXz588+f/s/hkZ0np6ZMlx499VXLl
-+Mnjl9858r8XX2z4/2/bj0GeT+fz6TyXyrPJ7WASeTqep2J5MpYnohwGcGiE
-Q8IcHOSgAJf1c6CPS3u5pJeLe9mYlwW8bNjLhrxswMP4PIzHwzg9jN3NWNy0
-0U3rXLTaRSs89LqPlgfo1RC9EqGXotRinJpPUXMgNZOlZDlqGqEmcWqCJMcp
-YpzGxxl0nEXGudx4PjvOZ8aF9LiYHJfi44XY+Etg/P8Njb8MTLz0ThZcUwX7
-tGSRSUaZqJsRVTPC5iy/PsuvzOUXF/ILS9z8Cje3xs1usDObrEzJTquZKS0z
-aWDGTfSYhR6zU2NOctxDjvuJiSAxEcEno9hUAp1OobIMIoPgGSQ3i0ELeHaZ
-yKySoJxKbzDpTTal5JJqLqHNx3V8zCBEjSJglgBLAbAXAGcBcBcATwHwFYBA
-AQgWgHABiBSA6Esg9hJIvASSL4HUSyD9EgBfRrMvY1AhnivE4UICkRKYlMS3
-I0VIKVJMU2KaFkHmH8GKGW470nk+lc8XI5nningl8kyco2McFePIKEcAHB7h
-0DCHhDg4wEF+LutjQQ+bcrNJNxt3s1E3C7jZsJsJuhm/i/G6GLeLcbhom5M2
-O2mDk9Y6aJWD2nBSq25qxUstBajFEDUfoeai1EyckqWoKZCazJLjMDmGkqME
-OUwSwxQ2TKMjDDzCQiP57AgPjgipYTExLMWHC9Hhl5Hhl8GRl77Rl+6xgmO8
-YJ2QTBOSflLUTAlbU8LGNL86nV+U5edmudl5TrbITa+wU2vs5Do7scmMK5kx
-NT2qo0cM9JCJGrKSww5y2E2MePGRAD4axsai6HgcGU8hEyA8CeWmYEiGZefw
-zAIBLpPpVSolp5MbTGKTjSu5mDof1fCATogYxLBRCpulsLUQthfCzkLYXQh7
-C2F/IRwshEOFcKQQBgrh2Mtw/GU48TKcehlOv4yAL4FMIQoVorlCDJbiiBRH
-tyFL4GKSEJOkmKLEFC2mGDHNCGlWSHMCmBdS23jxyXw+wXEJjo1zTIyjoxwF
-cCTAEREOD7NoiEWCLOxnIR+b9bKgm0252ISTjTuZqJOJOJmQkwk4GJ+D9jho
-l4N22GmrnTbZKb2d0tgopY3asFHLDmrRRS14yTk/ORskZRFyOkpOJsjxFDkG
-kiMQOYyQgxgxQBD9JDZAIQMMPMBCA1xmIJ8e4JMDQmJAjA1IwMDL0MDLwMBL
-7+BL11DBPlywjEiGUVE7JirHBMU4vzbOL03k5yY42RQ3NcNNzrETi+z4MjO2
-xoyuMyOb9LCSHtRQAzqq30j2m8l+GzHgxAc8+KAfGwqhQwAyHIdHkvAomBuD
-oHE4O4lmZDg4R6QWyeQylVil43ImtsFGNzlAmY+o+LBGCOnEoF4KmqSgRQra
-pKCjEHQVgp5C0FcIBgrBYCEULoQihVC0EIoVQomXoeTLUKoQBguRTAHISkBO
-isJSDJFiqBjHxDguJggxQYpJSkjSQpIRUuw/giuCJSS5YvAJLh/nuDjHxjgm
-ytEAR0VYMsISYRYPsWiQRfws7GMhL5vxMKCLSTmZhJ2J2RnAzkTsTMhGB2y0
-z0a7bbTTRtmtlMVKGa2UzkKpLeSWhVw3k8tWct5OzrpImYec9pOTQXI8QoxF
-iZEEMZwiBjNEf47oQ4keHO8msB4K6aFzPUy2h830cOkePtkjxHvEaI8U6SkE
-e176e156egvO/oJ1QDINSrpBUT0kbg4L8mF+ZSQ/P5qXjXIT49z4FDs2w47O
-MSOLzNAyM7hGD6zT/ZtUn4rq0ZDderLbRHRb8R4H1uvGen1oXxDpj8ADsdxg
-EhoCoWEoOwKD42h6CkvN4Mk5MrFAxZbp6CoDyNnIBhfe5ENbQlAlBjSiXyf5
-DZLfLPmtkt8u+Z0Fv7sQ8BYC/kIgUAiECoFIIQAUArFCIF4IJArBVCGULoQy
-UjgrRXISAIsAIkZRMYqJMVyIEUKcFOKUkKCFBCMkWCHJ8kWYksXM4oQEx8e5
-fIzjihFlWYBlIiwdZskQSwRZPMBgfgbxMbCXgTxMxsWATiZlZxI2JmZhAAsd
-ttBBC+230F4L5TZTDjNlM1NmM2UwkVoTqTKRmyZSbiSWjMSMhZi2EZNOYsJD
-jPmIkSAxHCEGo0R/guhL4z1ZvAvGOzG8HUfbSaSDynXQ2Q4G7OBSHflEBx/r
-EIAOKdxRCHS89HW8dHcW7N0FS49k6JW0faKyX9joF1YH+MXB/OwgNznEjY6w
-I+Ps8BQzKGMG5uj+Rbpvme5Zo7o3qK4tskNFtmuJdgPeYcY67FinC+3yIl0B
-uDuc64lCvYlsXzrTnwUH4fQIkhrHElN4fIaIzVHRBTqyxIRX2ZA8H1znAwrB
-vyX6VJJPK/n0ks8k+SySzyb5HJLPJfk8BZ+v4AsUfMGCL1zwRQq+aMEXK/gT
-BX+qEEhLwYwUyophSAzDYgQRAVQAMCGKC1FCiJFCjOJjNB9n+Di7HUWYklw+
-yRbh42MsH2XzAMsBLBthmTBLhxgqyBABBvczmI9BvAzsYSAXnXHSoINO2eiE
-hY6ZacBIh410wEj5jJTHSLmMlN1IWo2kyUDqDaTGQCj1hEJPrOmJRR0xYyAm
-zPiYDR914sNufNCH9wfxvgjeE8O7kngHiLdDWBuCtWBoCwG3kFArlWll0q1s
-spWLt/LRViHSKoZaC/7Wl97Wl862gq29YOqQdJ2Sukvc7BbkPfxyDz/Xm5/u
-48b62KFBdnCE6R9n+ibpXhndPUd3LVKdK1S7nHyxQbRuES1qvEWPtZrQViva
-5kReeOB2f649DHVEs52JTHca7Mmm++DkEJIYxeLjeHSKAGaoyBwdWmCCS2xg
-Je9f473rgkcherZEj1ry6CSPQXKbJbdVctslj1PyuCWPt+DxFzyBgidU8EQK
-HqDgiRW8CcmXlPxpKQCKgawYhMQQLIQRIYwKEUyI4DxA8ADJRyk+SvNRpggN
-H9smwGLNyhfpsYhgES+AzUdYLsywYYYJMXSQoQIM6WdwH415acRDwy4actJZ
-Bw3a6JSVTpipmJGK6KmQngroKZ+ecutJp46060iLjjTqCJ2WUGuJLS2xrsVX
-NPiCBpdp8FE9PmzCh6z4gAPrc2M9PqwriHVEsPYY1pbCWjLY8xzWhKKNGNxI
-QI1kpolONzHJJi7elAea+HCTGGiSfE0v3U0vHc8LlpaCsVXStonKF+JGu7DS
-wS905me6uIkubrib7e9legeZnhG6a5zunKI6ZqgX82TbItmyQjTLiSYF3qjE
-GrVokxFtsiDPHXCzO9fih1pD2TYg8yIBtqfTHdlkdy7Rj8SG0OgoHpkgwlNU
-SEYH5hj/AutbyntWePea4FoXXZuiUyU6NZJTLzmNktMiOW2S0yE5XZLTIzl9
-BWeg4AwWnOGCCyi4Y5InLnmTojct+kDRnxUCkBDICUGED6F8COPDOB8m+AiZ
-j1D5CJ0HmGIe5aPsNvsVa1biH3gVQSy+HmbyIYYLMmyAoQM05adJH014acxN
-oy4adlKQg8raKNBKpcxUwkjFDFRER4U0lF9DejWkW0M6NIRNTZjVhEFNaNW4
-So1vqnC5Cl9W4fNKbFqJjaqxAR3WZ8J6rFiXA+t0Y+0+rC2EtgDo8zjamEYb
-smg9gtaicB0O1RGZOipVTyfq2Vg9F6nnQ/VCoF7y1hdc9S/tDQVzY0HfJKmf
-i5stgrxFWGrl59ryUy+40XZ2oJ3p7mK6eumOAbp9hGobp1qnyOYZ8vk80bhE
-NKzi9etY3RZWp0Hr9UiDGW6w5565oEZftimUeQ6kmxOplnSyLRvvzMV6YKAf
-jQzhoVEiOE76p2ifjPHMce6FvGuJd6wI9jXRviHat0S7WrTrRLtBspsku1Wy
-2yW7U7K7JbtXsvsL9mDBHio4IpIzKrniojspelKCFxS8WcEH8f4c70f4AJoP
-Yvkgng8R+RC1HWG6CAoX2eY9LrqtBtliRSuSZDHvilAW3w3SXIBm/TTjo2kv
-TXoowk1hLgp1UrCDytmorJUEzWTKRCYMZExHRjRkSEX6t0ivknApCYeSsCoJ
-0xau38I1W7hyC1dsYWub2NImNreJTSnQEQXaq0K7dWinEW0v0pADbXGjz/1o
-YwhtiCJ1CeQpiNTkkGoErsay1Tj4hEw9oRNPmGgNF6nJB2sEf43oqSk4a17a
-nhZMdQVdvaRsEDcahZUmYeE5L2vOjzdzQy1sbyvT0U6/6KLbeqmWQap5hGwa
-J59NEQ2zRN0C/nQZe7KGPVGgT1RIjQ6uMeWe2qBaV7bOC9YH0w1A6lk82ZiO
-N2djLyCgEw73oqF+LDBE+EdJ7zjtnmJcMs4xm7cv8NYl0boqWtdF66ZoVYlW
-jWjVi1ajZLVIVptkdUhWl2TxSBafZAlI1pBki0j2qOiIi86k4EoJbpD3ZHgP
-xHtzeR+S96F5P5b341yA5AJUEYhi7nChbcYrigo2yhalO1MUIcW6VqTKyD8A
-DVKcn2Z9NOOlaA9FuSnCReEOErWTiI3MWcmsmQRNZMpAJnRETENEVERoi/Ar
-CM8G4dog7ArcsoEbN3DdBqbewLY2sI0NbHUdXVxHZ9fRyXV0WI70biAdSuSF
-Fmk1Is8tSKMDafAgdX7kaRh5EkOqU3BlFq6Ac4/QbAUGVhCpx1T8MR19zIYf
-5wOVvK9SdFdKjsqX1sqCsVrS1EhbT0V5nbBUz8815KeecaONbH8T09lEt7bQ
-Le3U8y6qsY98NkjWjxK1E8TTafzJHFa1iD1eQR+vI4+VcKU2V2mEqqyZaif4
-xJuuCaaeRpK18Xh9OtaYAVqgcDsc7EIDvZhvgPAMke5R2jnO2Kc4myxvmRXM
-C4J5WTSvieYN0bwlmtSiSSeaDKLJJJmskskumZySyS2ZvJLJL5mDoiUs2qKC
-PSbYE7wjxTtB3pXJu6G8O5f3IJwX5bwY5yU4H8n5qCIKbDF3ggxTrFBFUQGw
-RZ9FF3VjUYoUq1uRMENkPvCPIz0U66ZoF0k5SdJB4nYSs5GIhciZiayJAA1E
-SkcktERMTUSUeGgT96/jnjXcuYbb1nDLGmZcw3RrmGoN3VxD19fQlVV0YRWR
-rSITq8jQCtKzCrduwM1KuEkLPzPC9Va41gHXeODqAPw4AlfE4fI0/ADK3YOz
-91HwAZ58QMYfUsBDJvSQ8z/kvQ8FV7lkL39pKS/oKyR1paSoElefCAs1vOxp
-fryWG6pje+qZFw308ya6sZVqaCfru8naPqJmiKgexasmsccyrHwefbCMPJTD
-Dzdz5Wqo3JB9ZAErHOnHnlRlIFEViVfHYzVpoD4TboKCrbC/HfF2YZ5ewjVA
-OoZo2yhrGefMU3mjTDDOCYYlwbAqGNZFw6ZoUIkGjWjQiwajqLdIepukd0h6
-l6T3SAa/aAyK5rBgAQRrjLcleFsqbwfzjgznhDhnjnMhnBtl3TjrJlgPuQ1B
-MWuKRFesTUU5EWaLDosCWKoo9YvqsShIijWuSJuBf4BbPN5JMg6StpOkjSCs
-BGYhEDMBGwnIgGd0eEqLJ9R4TIlHNvHQBuaXY54VzLmE2ZYx8zJmWEa1y6hq
-GVUsI2tLyPISMr+ETC/B40vw4CLcvQi3rsCN67l6Za5Wm6sx5qqtuUpnrsKb
-Kw/m7kdzZcnc3Uzudi57G0nfwZJ3iNhdMnKXDpWx/rK8p0xwlom2ewXTvYLu
-gaQsl9YficuPhblKfqoqP1rN9T9hO2uYlqd0Qz1V30TVtpI1HUR1D1HZj1cM
-Y+Xj2IMp9N4scncRvruaK1NA91TZe3rwvjn9wJ566EmUB+KPIrGKOFCVDj/N
-BBsg//OctxVxt2POLsLeS1kHaPMQaxzlDOO8bkrQzQq6BUG3LGjXBO2GqN0S
-tWpRqxO1BlFrFjVWUWOXNE5J6xF1PlEfFIxh3gTw5ljekshbUpwV5GwZzg6x
-dph1IKwDZZw44ySY4uIX86VIcb5tFVEU6lSIIcPbjpgsujMA39aQRVlSrHRF
-8vTiXBHi4qfsBG0jKCtBmHHchKNGHNbjkA7PaLC0GksosdgmFtnAQnLMv4p5
-llDnAmqdR03zqH4e1cwjynlkYx5ZnYeX5uHZeXhqHh6dyw3M5brmci3zubrl
-3NP1XLUyV+SjCiNUboMeuKB7PuhOGLoVg26koWtQ9hqcvo4mbuCxG2TkJhW8
-yfhucu5bvOOWaL1VMN4uaO9IW2Wi/L649FCYKecnKvJDj7neSvZFFd1UTdU+
-pWoayOrnRGUbUdGJl/diDwaxeyPo3Qnktgy+OZ+7uQLdWs/eUmZu69J3TKm7
-9kSZO34vEL0fAR7GwxWpYDXor816n+XczxFHK2ZrJyxdlKmXNgywuqG8ZpTX
-TAhqmaCeF9RLgnpVUK8Lqk1RpRJVWlGlF1UmUWkRlTZR5RTVbkHjE7QBXh/O
-G4C8McYZE5wpxZpB1pJhrRBjhRkbwtgwxobTxWUvZkqR3Ir1yLst+cgAQxS9
-Vegf7YuioS56tDAmFJVkANuud0UKdWNsEejiZy04ZcZJI44bMFSPwVoM0mAZ
-FZZWoslNNLaBAnI0tIr6l1HPAuqcQ6wyxCRD9DJELYO3ZuD1GXh1Bl6cyc3I
-cpOy3IgM6pdBnTKoRQbVzkFVy9DjdahcCT3QQvdM0F07dNudvRHIXgOyV5LZ
-y5nsJSh9GU6UotErRPgKFbjKeK9yrqu8/ZpouSYZrhU0N6TNW+LqHWGhTJi+
-x4894AYesl3lTOsjuqGCqq4mK2vJimdEeTP+4AV+rwu724feHkJujiHXpuCr
-s9DVpew1eebaVvq6NnXDlLxpi99yx24HgDuRcFki+DDlrwQ9NVlXXc7RiNia
-MUsbYeqg9F2MtpdVD+SVw7xynFdO8VuzwtaCsLUibMmFTYWwqRQ21eKmTlQY
-RYVZVNjETYegdAsqH68O5DWhvBbgdDFWn2ANKdYIMqYsY4JoM0ybEdqCFRec
-thJUkdaKlchFEUW956WLFhgvGuEgi4VYDEDFCLrt1ILotp4sShQPyrnQ7dws
-wm3GaCNG6jFCh2FaFFGjORWa3ULBTSS5gcTlCLCKhJYR/yLimUOcM4h1CjaN
-w7oJWD0Bb07m5JO5lcncwiQkm4QmJqHhSahvMtsxmW2ezNZOZR/NZR8uZ++v
-Z+8qs7d12Zvm7HVH9oo3ezmUuRjLlKQz57Lp87lECRK9gIUvkoGLtPcS67yU
-t10SzJcl/eWC+oq0cU1cuSHM3eKn7uRH7nJ9ZWz7Peb5A7r2Ifm4gnz0hHhY
-h99vxMtasDsd6M0e5PoAcmUEvjyRuzSTvbSYubwGXt5MlWqSV4zxq7bYNTdw
-PRC+EQneSvjvpbyPQFdV1lGTs9Yj5kbM2Ezo2ihNB6Pq4jZ785uDvGKUV0zy
-ihl+Y17YWBI2VoX1DWF9U1hXCXKtKDeIcpO4bhU2HLzCzW9588oApwpxaoDV
-xBhtgtGlGB1I67O0AaIMMGVAKSNGmXDSQhDFGlSUDU4KL4pzz7b/xfwMGmDQ
-IIsCiBiBt/11EOb9MO9FtoWKC9mmUyvCmFG6+D1alNSguBpFlQi8hWQVCLiB
-pORwfBUGluHwIhyYhz0zsHMatk7kTKM53UhONZJTjObko9DyKDQ/Ck2PZsdH
-s0Oj2d7RTPto5vlopnY0Uz6ZKZvL3FnJ3NzIXFdlruozpZbMRVemxJ85F8mc
-SYKnwPQpKHEajp5Bw2cJ/znKc45xnues53lTiagrKaguSOuXxeUrwuw1fuJG
-fugm132bbbvDPLtLPSkjyx8S9yuJshr8Tj126zl6ow292oWU9sEXh3Lnx6Dz
-09nzC+D51XSJInlBnbhojF2yAZfd4dJA6ArgvxH33k25HoCOiqy1Omd+ihjq
-MV0joW6mlG2MooNb786v9/PyEV4+zsun+bU5fm1RWF0RVuXCqkJYUQorGmFZ
-L66YhFUrL3fk1135DS+nCLBbIWYLYJQxWpWg1SlKA1KaLKXNkVqYLC5yMS+K
-VFasPkXBYCOxoiwvOin3drMC8TGIn0ECLBzJieGcGMxtW2xfbtsIuHPbcqVY
-AYukaoJpPUxpEFKF4FsIugnDChhahzNrcGo1l1jORRdz4flcYCbnnc45JyDb
-GGQahnT9kGoAUgxAa4PZpcHs3GB2ejAzNpQZHMr0DGVeDIFNQ+DTIfDRMHhr
-CrwxD15bAUsV4CU1eMEInrOBZzzgqSB4IgYeS6ePZhLHctHjSOgE7j9Jek7R
-jlOc9TRvPC1qzxSUZyV5ibh4UZBd5seu5AeucZ3X2eYbdN0tqvI2ee8ecbcc
-v12F3azFrj1Dr7Qgl9rhCz25cwPQ6dHs6anM6fn06ZXUmY3EWXXsnCF63hop
-cYcuBAIXAe/VuPtW0lEGWh9mzY9zhmpEW4urG8itJnqjhZW35de68qt9+ZUh
-fmWMX57il2f4pQV+aVlYWhMWN4TFLWFBLSzohEUjv2zJr9i5NRcr97LrAWYj
-RCsAejNGbSWorRSpBEllllTlCBVCFDNCh2IGDCtKBTOBWAnEThY9L+yiYDed
-8zA5H5Pzs7kwJIUgMQgJfmjbaHugvAvKOyDOBrEWiDFCtD5HaXKkMkcoYGwj
-h8hzubVcdiWXXoISC1BsDorMQIFpyDuZdY1lbcNZ00BW15tVdWc3urOrPdnF
-3sxsb2aqNzPaBw70gd19YFtfurEvXdOXLu9L3xxJX5lKX55PX1hNn99Mn9Wm
-T5nTJxzpY770kUj6t2T6IJg4BEUPw6EjmP8o4T5KOY6xluN5w3FBc6KwdUJa
-Oy0unBOmS/iRi/m+y1z7FabpKv30GvXoOnHnDn7rAX69Arv6BC2tRy4+h8+3
-wWe7cqf6oGPDmeOT4PHZ1PHlxImN+ElV9JQhctoaOuMOnA34zgPu0rjjetJ6
-BzTfzxrKc9pKVPUE36wlNxrotSZ2uSW/3JFf6skvDuYXR/mFCX5Bxs/P83NL
-/NwqP7suzG4KMyphVsfPG/MLFm7Jzi67mBUvsxqg10KUHKDWY+RGgtxIE4oM
-ocjiihy+BWMqBNWgqA5DDDhsIuCie7KSOft2Twly0ZCbhjxM1stkw1kpmBED
-GdGXEbwZ3p3hnZm8PcNZM6w5wxiztC5LqbPkFkRsQPgahK5C8DKUXYTAhWxy
-LhubyUams8HJjG8s4xrJ2AYzpr6Mrjuj6shsvMistmcWO8DZTnCyExzpSvd3
-pbu60q1d6WfdqZruVHl36lZv6uJIqmQ6dW4hdVqeOqlMHdOnjlhTv7lTB4Op
-/bHU3lRibya6Pxc6gPgP4u5DlP03xnw4rz8sqI9Im0el1ePi/Clh6iw/fD7f
-U8K1XWSeXaarS8kHV4ibN/BrZdiVcvRyFXqhFjn3DD7TkjvZAR3tzR4eAg9P
-pA/PJo8sxY+sR4+qgGOG8HFb8ITbdzLoOQM4L8ZtV5Pmm6Dhblb7AFY9Qjer
-8PUacrWOWXrGLTTnF9rz8935uf783HB+dpyfmeZls7xskZ9e4afk/JRCmFLx
-Mm1+xsjNWdh5O7Pgohf/MaxdDpErALEaI1aT+FoaX8tgaxC2nkMVMFKsNWq0
-qOhyegwy4pCJyFrIrJXM2qmMg8646IybyXiYTAiUAqDkB0UvKHhAwQXyjnTe
-BnIWkDOBrAFktCCtBsmtDLGewVez2FIWWchC85nMbCYly8SnMsBEJjQG+kZA
-9yBo7wfNPaC+E1S9ABXN4GozuNCSnmlNT7SlR9pS/S9SnS9Sre2pZ+3JJ+3J
-8vbkrY7khb7kmdHkKVny+FLy6HrysDp50Jjc70ju9SV3A8lfk4mdYHQXFNoD
-+/Zi7n2kfT9tPsDpD/Dqg5LikLR6WJw7Jkyc5IdO57vOsi3nmfoSuvIiWXYJ
-v3YNL72NXbqPllQgZ5/Ap+tzJ55DR19kD3VnDgykD4ynDswkDi7FDq4Dh1Th
-3wzBwzb/EY/3WNB1CrCXxM2Xk4broPZ2VlUGbz5E1yuIlSpqsYaZq+dmn3Oz
-bfmZrrysLz89lJ8ay09N5Sdn+IkFfnyZH1vjxxT8hDI/qeWmjKzMwszY6VkX
-Necl5wPEQhhfBPDFOLaUxJbS6FIGXYGKlAVvwLlNBFKiWTWa1WIZPZ4xEqCJ
-BC0kaKXSdirtoNNOJu1m0sF0wZ+SfCnRkxLdKcGZ4u0p3prKm1OcMcXqU4w2
-RavS1GaaXE/jKyC2AKKzGXgGzE6D6UkwMQFGx9LhkbR/MO3uTzt60pautL49
-rW5JK5rSqw3phWfpmcbURFNq+HmqrznZ2ZxsaUk2tCSftCYetiZutSYudiRO
-9ieOjSeOzCYOrSQObCb3aZO7Lclf3clfQskd8cSPqeiOTOiXnG8n6tpF2HdT
-pj2sbg+v2itu7JNWDoizvwnjR/mBE/nOU+zz00ztWerROfJ2CV5ail28gZaU
-oWfLkVNV8PHa3JFG6FBbZl8XuKc/tWcsuVcW37sY3bce2acK7TcEDti8hzzu
-30KOE4DlbNx4Mam7AqpuQJt34PV72Eo5sfiYnq1mZbXcdCM31cpNdnKTvfmJ
-wfz4aH5sMj8qy4/M88NL/NAaP7yRH1VyY1pmwkhPWqgpOzntImRefCaAz4ax
-2Sg6F0fnUsgciCxk4KVsbhWC5LnsBpzZQkAVChbtrRZP6YmUkUiZyJSFSlqp
-pI1OOpikk0kGkgVfUvImJU9CdCVER0KwJfii+zYlOEOC1SUYTYJWJihFkpQn
-iZUUtpBCZ9LwVBqaSIPj6eRoKjacigymAv0pT0/K0ZWytCcNrUn18+Tms9Ra
-bWrhaUpWm5yoSw7XJ/saEh3PEi2NiYbGRHVT/GFT/Nbz+KXn8WOd8cOD8YOT
-8f3ziT1riV3KxE5DYoc98aMv8T2Q+DYZ/Q4M/QD5fkJcO3DbL5RpJ6P7Na/8
-VdzYJS3vEWcOCGO/8f1HuPZjbNMJpuYU9fA0cfMsfvEidv4aeuY2cuoBfPxx
-7kgNdPBZdl9LZldH+te+1K+jiV+nY78uArvk4d2qwB6Db6/ds8/rPBiyHgNM
-p+O6kpT6Mrh5DVq/hazcxRbuk7OP6KlKdvIpN/GMG2/hxjq40R5uZCA/PJIf
-msgPTucH5vJ9i3z/an5ggxtSMsNaetRIjVnIcQcx4cYnfdhkEJ2KIFNRZDoB
-T6dgGZiby0CL2cwyBK7m0utwWoGkttCkCktq8IQWT+iJhIGMm6i4mYpb6biN
-jtuZuD9e8MYLnrjkikvOmGiPbXe3zDHeGMvrY5w2xqpjzFaM3oiTa3FiOYHP
-J1BZEplI5UZT2eFkaigZH0gCfclgT8LbmXC2J6ytCWNzQtOY2KxLrNUkFiuT
-sqrEeHVi+Emi92m8ozbeXBuvr4tX18cfNsRuNcQuPYudaI4d6I7tG47vno7/
-uhj/eSP+kyb+gyX+rTv+dSj+ZTz6ZSr0Tdb3Hez6HrP9SJp+YrQ7OOXPwvov
-0vJOcWaPMLqf7zvEvTjMPjtKVx+n7p8grp3Czp9Hz5SiJ28ix8rgw49yB59k
-99VndjWDP7endvQld4zEf56O/rwY+UUe/EXl32n0/Gp37fbZ94fMRwD9ybjm
-XGrrYmb9Sm7lOrJ4G58tI6ceMOOP2bEadrSBG2nmhtu5wW5uoJ/rH873jed7
-pvPds/muxXzPKte3wfQr6QEtOWgkhiz4sAMbcaOjPmQ0iIxF4LFYbiyRG09B
-U+nMTAacz6YXodRKLrkGJ9aRuAKNb2ExFRZT41EtEdWTUQMZNVFRMx210FEr
-E/XHCt5owR0tOKOSAxBtgGgBBBPAG4C8DuA0AKsEmE2AXgeo1SixFMXnY5gs
-hkzEc8MJaCAB9iWSvYlodzzcGfe3x92tcVtz3NQY19bHt57G5dXxpYr4zMP4
-+KP4UEW8tzLWURVrro7VP4lV18QePo3eqo1ero2eqovubY3u6o3tHI3tmI39
-uBL7fiv2jSH2lSP2hT/2WTT2aTL8Oej/CnJ9jdq+JUzf0drvua0fhPUfpeWf
-RNlOYXQP37ufazvINvxGVx6hyo4RV45jZ86iJy8hx67Dh+/kDj6E9lVld9Vl
-fm5K//Ai9UNv4oeR2A/TwI+LoR/XAz+pvDuM7p8djl/8lr0h42+A9nhceSa1
-UZJZvZxbvIrO3iSm7lCj99iRCnb4CTtUzw485/pfcH1dXE8f1z3EdY7lO6by
-L2bzHYtc5yrTraB7VGSvjugz4v1WbMCBDHjgQT88GMoNAtBgLDuUzI6mwIl0
-ahpMzmYS89n4Ui62AkfX4Og6AihQYAuLKPGImohoyYiOjBioiJGOmOmIlYn4
-ge0htStScEQK9rBkDW/3kI1hQR/itaG8OsRthVhFmJGHqZUwuRgh5iLYNICO
-R+HhKNQby3THUp2xeEcs8iIWaI15nkcdjVFzfVRXG1U9ia0/ji2Xx2bvxSbK
-YsP3Y70PYx3l0eaKaP3jaHVl9GFV9FY1cPkJcLoGONAA/NIe/Wkg+sNE9LuF
-6NfrsS81sc8tsU88sY8jsY/i4b+n/Z9m3Z8jti9x01eU9ht261te/p209L0o
-2yGM7OR7dnOt+9i6A3TFIfLOYeLyEezUKfR4CXLkKnzwdm7fA2j348wvT8Ef
-G9PftiW/7Yl/Oxz9djr87WLwu3X/92rPDybnj07bDr9pT1h3MKo6mlCcSq+d
-yy5dhGdLsanrxNgteugeO/iIHXjC9tWzvU1sdxvX1cl19HHtQ1zbGNcymW+Z
-5doWmRdrVLuC7FThXTqsy4R225AeJ9zjyfUGoN5wtiea6Y2DA4n0cCo5lo5P
-gjFZJjqbBeahyFIuvAKH15DQOhpSYMFNPKgkgmoiqCGDWipooIJmOmSlQ75I
-wRMuuEIFR6hgDUqWoGQKioaAoAvwmsB2C2UzwG4EmLUAvRykFoLEbBCfCqFj
-YXgokusFsh1R8EU00RqNNgOhJsD3DHDWA9ZawPAEUFcCikfAyoPo3N3o5M3o
-8K1o751oRxnQfB+ofwBUlwMPHwG3K4DSx8CZysih6shPTcD3XcC3w8BXsugX
-y9HPtqKfGKJ/c0Y/DEbfj0U+SPr/lnH/PWf7FDN9Tmq/YLa+zMu/Fpe+Eae/
-F4Z38N07uZbdbO1e+tF+8tZB/OJv6PETyJFz8KHS3P6b0O572V8qMj/VpL99
-lvqqNfFlT+yr4u9Mh75aDHy97v1G4/rWbP/OZfkpYNgVVh+Ibh5JyE+kl89k
-50rg6cvY2FVy8AbTX8b0PWJ7qtnuOraziW1vZV90cq29XPMg1zTKNU5yTbNM
-8xLVska2KvA2NfZCj7Sb4XZbrsMFdXizHYFMRwTsiKa748m+RHwwGRtJAeNg
-ZCoTlmVDs1BwPhdYggPLiH8V9csx/wbu2yR8W4RPRfq0lN9A+U10wEoHfKGC
-J1hwBQuOQMHq3x6rGXySzidqfNstyi1vXuHlit581ccs+ah5Hznjxyf92FgA
-GQzmekPZjjDYHEk1ReKNkUhDxF8XcT+N2J5ETJURTUVk82FkrSyycDsyfR0Y
-uQL0XQc6bkZabkfq70aqyyIP70duP4iUPoycfRQ5XBH55Wnkm5bIV72Rz8eB
-T+eBv8uBv2mAD6zAX33Au0Dk3UTgfdD9EWT/GDX9ndB+Sm99lpd/Li5+KU5/
-Iwz/wHft4Jp3sk930w/3kjf34yUH0KPHkN/OwPsv5fZch3bezf70CPzuSfqr
-huTnrfHPuqOfD0c+nw5+vuj7YsPzpcb5lcX2tdv0Y0D7a1i5L7r+W3LlODh/
-GpKdQ8Yv4kOlVN8NpqeM6S5nOqvZ9jq2rZFtaWWfd7BNvVzDIFc3ytVPMc/m
-qMYlskmOP99Em9VIsz7XYoZa7NkWd6bFB7YE08WFKu7tzlisJwH0J8NDqdBo
-Ojie8U9l/TLIN5vzzsPeRcSzjHpWMY8cd6/jbgXhVpIeLenRU14T5bXSPl9g
-++wdl79g90lW7/YkVO+RtG5R7RaVbmHTza+782tudtnNLLrpOTc57SEmPNio
-Fx30wT1+qLhtiv+kIZysC0VrQ8GakLc65KgMmR+FdA9Dynsh+Z3w4s2w7Gp4
-7FKk/2KkszTSci3ccCP85Fa4/E74zt3wlXvhc/fDRx6Edz0Kf9kQ/rw98ulg
-5OPpyEfLkQ+2gPeMwDsu4K0w8JdY4J2U569Z+weI6SNc+zG99Xdu7RNh8TNx
-+kth+Fu+60fu+c9szU76wS7y+h783D708BHkwCl474Xcr9eyO+5kvi8Hv65O
-fVaf+KQl9kk38Mlw+JPpwCdL3k8Vrs+09s+tli+8+h8C6p0Rxd7Y2qHk4tHM
-zMncxFl0uITou0x332A67zLt5UxbFdNSyz5vZBtb2YYOtq6HrRnkakbZp1N0
-3RxZv4w3rKMNW/AzTe6ZIfvMknnmAJ950s/8qeISNUVirQDQHgt3xYO9ycBA
-yjeU9o6CnvGMexJyTedcs7BzDnEuoM4lzLGCOdZwh4JwKgmnhnTpKbeJclto
-j89f8PgKLm/B7pGs7u3htd61PWJTOrYHARuO7XblioNbcrDzDmbGQU05yXEn
-PuJCB9xIkZbbvdni5mnwJ58E49XBSGXQ/zjgehSwPgga7gXVd4Mbt4LL14Oz
-paGJC6HBs+Gu8+HWS+FnpaEnV0OProfu3gxdvR06fzd0rCy0517om6rQJ8/D
-H3eHPxwNvz8XeW898o428pY98kYg8udo8C9Jz9sZ+3s50/uY9gNq6yN27WNh
-8e/S9GfC0Fd853dc04/sk5/p+zvJq7vwM3uQg7/B+07mdp2HfrmS/fF25tsH
-6S+qUn+vT/ytJfq37sjfhoN/m/Z/vOT5WOH8u876ic30uVf7fXDrl4h8T3zp
-QGr2SGbyBDxyGus/T3ZdojuuMy/uMq3lTHMV01TLNDSyda3s0w62uoetHGSr
-xujqabJmHq9ZQZ9uwE+VUK02W2sCa23pp87UU2+iuDjF/fwsEm4Ggm0xf0fc
-253w9KZcA2nnEOgYydjHs/ZJyDYN22YQ69z2GNG6jFnXcJsCtykJu4a060mH
-iXJaKKfPW/B4Ci63ZHdJVqdkcmyPsDV2SWkTFdbtccCqlV+25hes3JyVkVnp
-SSs1ZiOGbFi/He12wO1OqNkNNnhST3yJCn+03B966Pfe9zvK/OY7fu0t/+b1
-wOrVwPylwFRJcPhMsOdkqO1sqLEkWHMpWFEaLLsavHY9WHIzePx2cN+d4PcP
-gh/Xhj5sC70/EH5vKvz2cvhNZeQNc+R1T+S1SOi/49430o63IPM7qPY9cut9
-du1DfvEjafpjYehzvvNrrul7tvpH+t7P5JWd+OldyP6D8J7juZ3noJ9KM9/d
-Ar96kP60MvlRXfyDlugH3eEPRgIfyrwfLrs+2rT/zWD52KH/3Kv6Lqj4GVjd
-HZ/fn54+nB07hgycwrvOUe2X6LYbTMtdpqmceVbF1NcyTxuZJ61sZQf7qId9
-NEQ/Hicfy/DKBbRqFa5SQFWqTJUerDKnquzJSne8wherCkSehkL1YX8j4G2O
-utvizo6Eoztp601b+0HLUMY8kjWPQaaJnGkKNk0jxnnUtIyZ1nCzAjcrCYuG
-sOpJq5GyWSi7z13wuCSXU7I7JKtdMtkkvVXSWESleXvctmbaHgosGrdblzNG
-dsq0fWHHiIkcNON9FrTLiryw5ZrtmQZnusaVrPDE7nkjZV7/Xa/rttd602e4
-7lNd9a1f9i1d8MvO+UdPBfqOBduPB5tOBZ+eCz4uCdy7FLheGrhwNXDyeuDA
-zeBPt4N/fxx8vzH0Xlfo7dHQm3PhNzbCr+vDf3KGXwmF/yvm+++U442s+U1E
-9zax9S4j/2t+8QNp+kNh6FO+80uu8Ru26nu67Cey9Gfs5E5k735419Hcz2ez
-P1zOfHMT/Px+6uPK5Pt1sb+2AH/tCf11xP/XGc/7K873lbYPjKYPXdrPfVvf
-huQ7gKVdiZl94MQhaOgo2nOSeHGWbr1MN9+gG8uYhnKmtoqpqWWqGpmKVuZh
-B3u/l3k4TJZP4OWz6KMl+JEcerSZeaRJPzIkyy2Jh47YfU9xD4cfBwJPQr7a
-sLsBcDZF7S0xa1vC0pE0daWMPaChP6MfzOqHId1oTjcO62SIbh7VL6P6Ncyw
-gRuUuFFDmHSk2UiazZTF55Q8Dslpl+w2yWqVTBZJbxY1JlFpFBUGcU0vLuvE
-ed12t3lax03q2DEdM6ynBvREjwHrNKJtJvi5OdtgBWtsqQpH/J4ressTuunx
-3vA4rnlMVzzay17FRe/Kee/cGd/ESd/gUX/nwcDzI4G6E4HKM4H75wM3LwQu
-XQqcuhI4dC3wy/XAF2WBd2uCb7cG3+wPvTEVen0l9Cd1+BVr+I+B8B8A3ysJ
-52sZy59h3Zu48m1a/k5+8T1R9r4w9DHf+RnX+BVb9S199wfi8k/YiZ+RPXvh
-nUegn05nv7uU+fJG+tN7qQ8fJ96tjb7bEnm3J/juqO/dWfe7q473VJa/mg0f
-uNWf+Te+Da38FJ37NTm1NzNyKNd3BOs4Qbaeo59fphtv0PVl9NNHTHU187iO
-KW9i7rcydzuZsn7q3gh+fwq9Pwff3x6+gveVqXvaRJkpftcWve0C7npDD3z+
-RwFPVdBZE7bXRSwNUVNTzNic0Lclde0pbSeo6c6oe7Oqfkg1nFONwyoZop5H
-1EuoZg3TbGDaLVynJvQ6wmAkDWbK6LNLbtv2Kal2s2QxSSajqDeIGr2o1IkK
-rbimEZc1wrxakKmEKVV+XMWNqNlBNd2nIbs1RIcWa9UhTfpcvTFTY04/tiTv
-22I3nZGrrsAVl7vUZb3k1l90K0vc8rOehdOe6ePe4SO+noO+1v3++sP+6uP+
-h6f8t876S0v8Zy76D1/277ri/+aa/91HgTefBd7oCr4+GvzTfOgVReiPxtAf
-PKHfh/1/iLteAa2v5fR/xpR/oeRvcYvviLJ3xeEP+c5PuMYv2Mqv6TvfEZd+
-wI79BO/ak/v5MPTDqew3F8HPr6c/Lku+/zj+dm307ZbwWz2Bt8a8b8+53pbb
-3tGY3rXoPnBvfeaXfxNe/Ckm25ka25sdOAh3HcZbjtPPz9HPSum6m3TNPbrq
-EV1RzTysY+41MbfbmNtd1O0B4s4YemcavruQvbMK3lGkbqsTt/SxmxbguiN8
-wx287fXe87keBuwVQUtV2FQTMdRGdQ0xTWNC9TypbE1tvQA3OzKKrqyiD1IM
-5xTjuU0ZvDmHbC2hW2uocgNTbeFqNaHREhoDqTWTOq9l+5Rvp0myGyWLQTTp
-Rb1O1GhFpVpUqEW5SlhWCvNbgmxTmFAIo5v5oU1uYJPp3aK7tsgXSrxFhTaq
-4Tot9EQPPjak7pvit6zRK/bwRYfvgtNZ4jSfd2rPuhSnXSsn3bPH3GOHPf0H
-vO27fY17fU8O+cqP+u6c9F054zt3znf0gm/PJf/3pf6P7vjfeBJ4vTXw2kDw
-VVnwj2vBP2hDv3eE/i0U+Leo+z9T1lcgw2uo6nVy/Q128U1B9rY4/D7f+THX
-+Blb+SV95xvi4nfY0R/gnbtyPx2CvjuZ+eoC+On11EdlyXcr4m/WAX9pDf2l
-1/+XMc+b8443161vaY1v29QfehSfBVa+icz9GJ/cmR7eA/UcQNsOk89PUM/O
-03VX6JpbdNU9+lEF/eAJc7eeufmcuf6CvtFD3BxCb07AN2eyN5fAG/LU9a34
-NW30ijFy2Ra67Axcc3tueRx3fdb7AVN5UF8R1lZF1E+iytrYZn1i41lyvSkl
-b06vtWZWO7Nrfdm1YWhtPCefhuVzyPoSsrGKbqxjis3tc6S3tITSsH3xiNpr
-ktxGyWmQ7DrJohVNGlGvFjUqUakUFVuCfFNYVgjzG4JsXZiQ8yNyflCe75Nz
-3XKmY51q2yCaFdizTaROmXuiylZo0g90ydvG2FVzpMQWPGv3nLXbzjgMpxyq
-k075cefCEdfUIffQfnfXbk/zz96ne7wVB71lR7zXjntLTvtOnPXtL/H9dNH3
-aanv9Yf+1xoCr3YF/mss+J+Lwd8rg/9mCf5LIPg7wPPvSdt/ZgyvIKrXiPXX
-2aU3BNmb4vC7fOeHXOMnbOXn9O2viAvfYke+h3/5NffDwew3JzJflIB/v5Z6
-vyzxVkXsjbrIG63BP/f5/jzhfmPB/obC/Be9/k2H8kOv/LPg4jeA7MfE2C9g
-/55cx37s+W/Us5NUXQlVc5WuvE0/uk/ff0zfraFvNjBXmpmrHeS1PuzaCHxt
-KnttDry6kryyEb+sil7UR0oswfN2/yWn+4rbfsNjvu0z3A1o7wdVD8NbFZGN
-yqi8OrZWk1ipTS7Xp5Ya04tt4GJXZrE/uzQMLY3nlqdzy3PwyiKyuoqurWPy
-TUyuwte1xIaeUJjITa9ecuskp1aya0SLSjQpRf2WqNkUlQpBsS7I5cLymrCw
-Ksys8pMr/MgyP7DM9yznO5fZFytM6yrVtEY0yLHadaRaAVVsZR6oUnc08Wv6
-6EVT+LQ1cNLmOmGzHLdpj9k3jzhWfnPMHHSO7XP17XK3/exp+Nlbtdt7/4D3
-5mHvpePeU6e8h856fznv/fKi753bvler/f/V6v/PwcB/zAT+fT34r4bg7zzB
-fw57/yVu/z1o/COsfhXfeI1Zep2XvSGOvM13vp9v/Jh9/Cl9+wui5Gvs8Lfw
-jp257w9kvzqe+awk/bdryffuJv5SEX29Lvx6W+D1fu/rk87Xl2x/3jT+2ah9
-y7n5oW/1s9Dc19HJH5NDv2S6d8Ot+4lnh6m601TNBaryGv3oDn3/AX2nkr7x
-lC59Rl9upUq78NIBpHQMuiwDLy8mL63FL2wC57XhM8bgKZvvnN11wWktdRuv
-enQ3fKrbgc2itbkXXnsQWSmPLlXEFioT89XJ2drUbFN6tg2c7crM9mdnh7Nz
-49DcdG5+Dl5YRBZXkKV1dHkTW1ZuXzCyqifWjKTcq5XcasmpEu1K0bIpmhSi
-fkPUrAvKNUGxKshXhJVlYWGJn1nkJxf40QV+cJ7vmc+3z+fb5tnmBbpxkaxf
-wp+ubEvZCnn2/gZ4Zyt5XRW7pI2cNQSPWnxHLI4jVuNhq/o3m/ygfWG/Y3Kv
-Y2iXs/Nn1/PvPTU7POW7Pbf3e0p/85w95jl80rvrjPfb894PL3tfeej74zP/
-H7r9v58I/OtK4Hea4D87gv8z6PvnmOPf0qb/yGn+iG28Si+/lp95XRz9C9/1
-Xr7xI/bxJ/Stz4mSr7DfvoF/+gX6dn/2y+PgJ+fTH15NvnM3/npF9LX68Gsv
-/K8NeF6bcry2bPlvpeF1s+pt1/qHvqXPwrKvY6M/pPt+gdp3o437ybqjVM0Z
-qvIS9eg6df8ufechfaOKLq2lLzTSF1/gF3uRi8PQxUnwwlzy/HLs3AZwWhU6
-oQ8ctXhP2pxn7JYSp+GSW1Pq3brm27gRWCv60DvhhbLI3P3ozIPYdHliqio5
-WZeafJ6afJGe7AIn+zNTw9mpcWh6OiebhWWL8MwKMitH5xTYvBJb0OCLuu1r
-6Ja9KsmtFJ2bol0hWtZFk1zUrwmaFUG5LCiWBPmisLLAL8zzs3P81Cw/NsMP
-yvK9snyHLN8ynW+SsQ0zdO0s+WQer1wsCtrc/dXsHXn6hiJRqoye14SL//+g
-2XPQbDto0R+wbO23ruyzze62j/3q6P3Z2fa9q/4bd8UOd9lu97X97vO/eY4d
-8+w76fnxjOeT897Xb3n/8MT3+zb/vw37/2U+8P9sBf6XJfB/B/z/A3D+Lmn+
-96z2D6jiv6jlV/Mzr4mjfxa63sk3fsA+/pi+9Slx/gvs0NfwDzugb/ZlPz8G
-fnw+9f7V5Ft34689Bv7UEHq13ffqoPtVmf1Pq+Y/qXWvWbfedq99FJj/LDL5
-TXzoB7Drl1zLbqz+AFVzjKo6Rz26TN2/Qd0po288okur6ZI6+nwzUdKJlvTn
-zo+C52TJswux02vAia3QUa3/kMlb3J8nbObTDt05p6rErbjkXSv1LV8NLFwL
-zt4IT98CJm9Hx+/GRh/FR58kRuqTI89TIy/SI13gSH9mdDg7Og6NTUHjs7mJ
-BXhyBZmUo1MKdFqJydT4jI6YNRCzvi3RrRCd66JdLlpWRdOKoF8SNIuCckFQ
-zAnyWX5lhl+U8bPT/NQUPzaZH5rM903kOyfyreNc4zhXP8E+ndx2949nsPI5
-5P5C7s5S5sZqqnQ9XrIJnFKFDut8e42ufSbzXrNmr3ljj2Vxl3Vqp21oh73z
-e2fT167qb90Pdrhv7nZf3O8++Zv74DHPzyc9X5zxvHPZ+x/l3n9v9P1rr/93
-0/5/lgf+pyHwP7yB/yvs/l8Jy79kdL9HNv+TXPkvbvZVcew1ofutfONf2cd/
-o299Qpz7HDv4Ze77n6Cv92U+Owb+7VzqvauJv9yNvfo48kpD8JUO7yvDrldm
-bK/Ija9qNa/ZFe94lj8KznwGjH2T7Psx8+IX5Nlu4ukhquoEVXGeenCFunOL
-unGfKq2gS2ros8/Is23Y2Z7c2aHMmYnUqbn4iWXg6EboN7V/n6G4M+2HLaZj
-Nu1Jx9YZ1/o590qJd+Gif+ZSYKo0NH4lPHoVGLoRHbwXG6iI9/9/TL1lWJtp
-tzb879t7P894x2fqblPDrUBxh+KuxYuWUpziFHd3KFDc3R3iRggJgbiROyFY
-Z368191nv8f3Hsf8mOm0XHfWWqetK0mz95sKDppKGE2VzKZaVlMTq7mN3dzB
-aenmtvbzWof4baOCjxOC9mlhx5yoY/Gwc+Xw04a4mzRzhp86w46foUbPt0bO
-N4bOVgfPlvrP5vvOZntOJ7tPx7pOhz+d9nee9nTAd99t7SdNH09qPx5XtB0X
-tx3ntR1nf4QXMmmd4vddosReQWw/N3qIFTl6EDKxFzC96z1Pdl4m2K2h7dbX
-7TbmbTcnbLYGrBEdlsgGM1S5ETpPD5tqgo17iY2wxwY64zzccXbeOGNfvHoA
-/m4s4cYHwrUq4pUO0qUR0h9L279htn/Zwf+xh7jCWr3On7stHr8r639w3vnX
-Wb3cSbGKLF1DGqMtDtIVuujzTC25Bo7sF14sjSCG0pv9pwl79zMo9wu379Xg
-731E3x/Yuj+9+mBt4TF6UpkwpLnTrbfXasyoteCWWgtz7aEsD0manyQ5RBL/
-RhIdJ4lIlrzOkPrnSvxLDv2r+f5NHL92xqteuvcw1WOS7DJPdFjBO6yjXDbX
-3RFLXqhZH/SEL3bYH98fSOgOInUGb38M2WkJ3W2MpNbH0OqS9mrT6bUf6DUF
-+zWlBzWVjJpaZm0jq7aVXdfBqevm1vfxGoZ4DaP8xglB07SwaU7UtCxqXT9s
-R4i7tqdOieOnuNFT9PApYvBso+9stfdsqftsoet09tPpVMfpWPvp8MfTgTb4
-vSWdLSdtzSdNzcd1TcdVTcelTccFTccfmmXpzbKUVmnyR3FChyi2ix/dy4kc
-YIYO7weO0V5NUdznSPbLeOtVpPXaqvX67MuNEavNHoutVjNkjTGqWA+dpYdJ
-NMW+fYl9bY/1ccE6euDMvXHafrin4fjrqYSrJcTLzcSL/aQ/Zkm/Ikg/bxN+
-paEuMteu8uZvHk7cORq4d9b54Kzh6UmxkixDXRqjJQ7SEbro8UwsuPoObG0v
-pnrQgcIb+uME2r0Myt1i0t063N0O1N2hzXuzK/c3Zp9ixlSI/VqUTj16kzGr
-0oJXaH2Y7QRleEneB0gSwiTv3koi4yUhKRL/LKlvgdi3XOBbx3nVyvTuonsO
-UN3GyE4zRNslnM0a0mFjzXlz0Q0x7YEa88IMemN7X+E7fYltfqRmf3JDwE5t
-CKU6arcyjlrxnlaesVeeQy8r2C8rPSirZJTVMssbWeWt7IoOTkUXp7KPWznI
-qxrhV40LKmeFtYvChjVRM3xTLe4kjx+TRk/wwyeYwRNk38lmz+nap9PljtOF
-9tPZttOp1tPxltOR5pOBRvjtQJ8aTj7WHzfXHdfXHVfXHZfVHRfVyXLrZBn1
-svf1ssRGSXyLOKZN+LaDH9nFCe1lBg3u+41SPSd3nGaJL5ewlitblqtLlmtT
-lhuD5pudpluNxogKfVSeNjpFHxNjhgmzxvg5YF1dsC89sPo+OCV/3LU4/JVc
-wqVa4p9dxN8nSL+uk34mkn7cRf9xsH6Zu3BdNHlLOnj39NP9s4bHJyWKsgxV
-acxzceALobMuz9ico+fA1vJkqgYdyL+h/5VAvZu5c6eEeKcee+cT8s7I+t2F
-pbuI6We4EdXtHi1qm/5+nQm71EKQYw1lukCpPlBikCQmQvLmnSQ0URKQJvH5
-APkUC32quN5NLM/2ffdeqsvIjsMU0XoBZ7mCtFlbs99YcNqackGOuKH63TFd
-HriPnoRmL2K993aNN7kicKcsnFIavVscTy1KoRVm7hXm0AsK9wtKDwoqGQW1
-zIJGZkErq7CDXdjFKezlFg7yCsf4xdOC8gVh1aqwblPUiDpswYrbd0Zl28My
-wuAxru8Y3XOM+HS80XGy0nay2HI623Q61Xg6Xn8yUncyWHvSW3PSVX3cXnXc
-UnXcUHlcU3lcUSkrrpTlVcmyqmSp1bKEGllsneRdgziqWRjZxgvtZAf3MPz7
-6d4ju64TZLtZgvkSxmxlw3x13nxt3Gy9z3SjzWirVh9R/AKVqYlOMMS8MccE
-2WA8HbH2rlgTT6zGK9z9SPzldPzFcsIfbcTfhom/LJF+wpEu7GB/3d+8yF68
-Kpy6IRm6fdp176zxr5NSeVmGijRGQxyoLXTS4RmZcXTt2ZqeTJWgg2dv6A8S
-qXeyyLdLCbcbMbe7EbfH1u4sLdxHTcjhB9XIn7RpzQaMKlNuoaUoyw5Kc4OS
-faG415K3byRhsZLA9xLvDIl3/qFXOd+rju3ReuDWRXMe3LEfJ1rN4cyWUVar
-azbr83abkw6IYSdkrzO60wXb6oprcCXUuJEq3LdLfMlFr3cKIil573ZzE6k5
-qbQPmXvZuXvZhfSs0v2syoOsWkZWIzOrlZXVzs7q4mT2c7NGeblT/MJ5QcmK
-oGJDWI0U1WMPmwjiNsrwEXnwiNR3hO85wnw6QnXINttkay2y5cbj+frj6ZqT
-8aqTkcqTwYqTvvLjrrLjjrLj1tLjxtLj2hJZZYmstFRWUCrLKZWll8mSy+Et
-TXS1JKpWHNEoDG0BDood0HXg07fnMUxxGt+2nsEbLaFMlldNVmZMVoeN17uM
-Npr0typ0EHmaqBRt9DsjdKgl5pUtxtkJY+GGfeGFfRaIu5yAv1hA+KOB8Gsf
-8edZ0o9I0g9k3E97W3+wli8Lpq9Dw7dOuu+cNz88LZWTZSpLY9TFgVpCRx2e
-oSlHx5713JOhFLT/9M3evcTdW9nbt8rxt5rRt3o3b02u3F6dfYgeUyD0qe+0
-v6DXG7DKTPk5luIMR+i9JxQfAEWHSSLeSoITJK9SJZ4fxJ7FAo8qjnsTw6WD
-5thHsR0lWc7gwMsxW1mzXJu33piw3RwCVsoe1e6AaXLE1jriKxyJJc6kAu/t
-3ADyh9CdrChKZiwlPWk3LZWamkVLyd17X0h/X7r/vvIguZaR3MhMamEldrAT
-+zgpI9yMSV72HD9vmV+0LihDCCsxolrCYcP2YQt1QLrTJ93ulhI/SXHtUnSb
-FNEs3Wg8Wq07WqyRzVbKJsuPR0tOhoqP+4qOuwuPOwuO2wqOmwpk9fmy6nxZ
-eYGsqECWV3iUVXiUWnSUUHIUXXoUWS4JrxaH1gmDm3gBbSzfzgPPXprL0I7d
-ONFiBmuwiDBcWjJamTRaHTBcb9ffqNPdKtFCZqmh4nXQkSboACuMuz3Gxhlj
-4IFV8cbejML9mYX/vYrw6yfizxPEHzdIP5AIP1ARvzJXLvJnropHbhx33z5v
-uX9a9lSWqSSNURMHaAodX8D9emHHUvdkKAbtP47au5NEuZmzfbMCd7MVdbN/
-4+b00q2N6b8ww4qkbo3dFp39akNOoZkw8yWU6gwl+kAxQVBkhOR1jMQvSeKR
-LvHIF7qXc93qmM5tew7dFJshksUkznABZby8ZrY6b7k+brUxaL3VZYNss0E3
-2GKrbHGlNoQCB2KOOynLdzsjmJwaTn7/dic5jpKYvJuQRo3LosXm7cUU0WNK
-999VHkTXMqIamW/aWe962XHDnKRJbuocL3OJlwN//lRQjBGW40XV24d1lMMm
-Wh+02w3tfILgD1O3QdhmCNUg2aqTrFdLliukC2XSmeKjicKjkXxZf85xT87x
-pw/HHz/IWrJlDdmymmxZRbas5MNRQc7Rh5yj9Nyj5PyjuIKjqKKjsBJpSIU4
-uEYY0MD1bWF5d+y791AdB8nW4wSTGYze4qbB0oLBypjBao/+eovuRqX2Vr46
-MkUDFa2Pfm2G9rZGOzhgTF0xzz2xfwXj/kzG/16C/7WV8NMw8cIy8XsC6dtd
-1M8Hq39wZy8fjl6X9dw6b717Wv7kOEtRGqMqDngudNDmGZjA/VLzYCgE7T+K
-ot1KptzMJd2owt74iLgxtHZjbuEmYuIxdkB5u+M5rUGXUW7EzTU/TLeFkt2g
-OF8oKgQKjZIExEk8UyTu2YduxTzXapZzM92hc9dmYNt8HG8whzZYWjdemTdb
-HTdfH7Dc/GSFaLFC1VlhKiyxRZb4HFtCpgsxzZv0PmA7KWQ7PpIc+27nXTzl
-7fvdqHRqZDYtIm8vrIgeWrb/uvIgsJHxup0Z3sOKGmbHTHDiZ7nJS9w0+JOn
-/FyMoBAvLCWJKiiiGuphw163mPpJTGkXk1vF8EeqG8SYWjGySrxZIV4rhZaK
-ofkCyXSeZPyDdCjrqC9D9ilN1p4ma02TNabK6tKOqtKOytKOitKPcjOOsjKP
-UrOPEj9IY3KlkfnS14XSoFJxQKXAr47r08z0aN936abaDW5bghc7i9ZZWNNb
-mtVbHtZb7dRdb9DeLH2+laWCjNdCRRii/C3QrrZoKyeMrhtG3gt78R3u91z8
-L3WEn/qIF+aI36OJ3+5gftxf/40zf0k0dvWo78Z52+3TikfH2Qpf+qUhtAf9
-MuZo28L9kg+iP3xLu/F+50Y+8XoN5nrH1vWR1RuLc3eQY0/xvSo7bVp7tXqs
-YmN+pgWU4gAleELvAqCIMCgoWuKTKHFNh1zzBS7lbKf6A/uPVOtesvkI3mAG
-rbuwYbA0b7wybrrWb7bRab7VbI6sMUOXmmHzTXFZL/FpjoRkD2KCLyk2iBQd
-tv0mihwRsxOWQAlJ2Q3OoAZm0/zz9l4V7XlV0r0bD3zbGYE9zJAhVsQE++0s
-J3aJk7jGTYE/Jsz/gBfkbwuLKKIymqiKflhH7zzcaxfttorgryyoFxFqRbgq
-EbpchCgRbRQdruYfLuYezmWLpzKhsTRoMEXSmyztTDxqS5A1JxzVJx5VJx5V
-JB2VJB0VJB99SDnKSJW+T5fGZ0qjs6XhOdLAPGlAsdivXOBTw/VsZLp9pDt2
-71oPkkzHcTqzyBcLyzpLk7rL/TqrbS/WqzU389UQKSqotzqoYBOUlxXazh5t
-7IJR88DcCcX+lob7pQL/UyfhwiTxu03iN9u47/c2f2Ev/CmcuCLtv3728dZp
-1V/H2fLSGBW4X3ZaPH0jjpYtS9Xj4Fkw/X409UYK+Xoh4Vod+lrX5vXx5esr
-0/fQw3LELjVKk/Z+hT4nz0SY9hJKcoFifaA3wVBIJOQbK3F7L3HJFjkXc51q
-GPYtNOuuHfMhgsEkWnt+U28R8MO40Vq/8XqHyWajCaIKZBMjTI4hLt0Sl2yP
-j3clxHgTo/zh26LQiO3gt+SA2B2/RIpPyq5nBtX9A9W5kOZYuefSuO/RfuDd
-w/AbYgZNsEJn2ZFL7Oh1ThyCm4ThpeL5mduCHIqwgCYs2RdVMA5rDj4K6S1C
-WpNwt16wUyMgVQoIZQJsiQBVKNjKE6znCFeyhAvpotlU0eT7w9Ek8WAC1BMn
-6YiRtkQfNUYf1b47qoo5Kos5KoqT5sVLsxOkaUnSpPfS2FRpVIY0NEvqnwPH
-Fp8ygVc1x72BAfjfvotiNUg0Gsc8n9vSXlh4sTT2YqVbe7VJc71MfTNbCRmv
-gQrXR/mZoZxt0BaOaG03zJNX2N/icb8U4n9qJlwYJny3QvyGSPiGiviJufS7
-YPKyZODaafvNs+oHxx+eSWOVxf7qAlvQL0PQL6aK58HTYPq9aOr11O1rRfhr
-DahrPevXphavb0w+xAwokNrVqfUvGCWGvCxTcYodFO8ORftBYaFQwFvIM0Hi
-nC52zuc7VrDsG+jWHRTzfqIh/NiIFwuLessTBqv9husdhpsNhohKA2ShPjpb
-D5tihkuwxcU446M8CeG+xNdBxIBQkm/ktvc7snv8jksSxTF11yZz16KIZl21
-Z9dEd2zfd+098Bxm+Ewy/edYwcussHX2GwTnHYabQOC9J/PTd+GvucjbFxYx
-RWXswypGi2C/kU+v41Or+ZQKHrmMRyrm4Qt4mFweKpu3lclbT+Mvp/AXkgQz
-CYKJOOFIjGgg+rAnStwRCbVESOrDj6ojpBWR0pI30oK30pxoaWYMvM1OTJTG
-JEsjU6WvM6S+2VKfPLFXCeyvXBsYjm00GzCogwS9CfTzuXWthVntpSHtlXat
-tVqNjQKVrVRF5FttZJARysMSZWOHNnDGKHlgrkVif8nC/VSLv9BL+G6e+A2W
-+BUFeeFg5Tfe9EVo8OpJ542zmvvHOU+lcUpwv2w0eXqGHE0bprLnwZPXe3fe
-7V5LJ10txV1tRlztX706O38DMfYI16NEbn2+V6XLyjcSpFlASY5QjBcUGQgF
-R0A+MZBLssQpW+hYzLGvObBp3bXoIRmOYDVnEFrzMC3orQzor3XobzTob5Xr
-IfN10Bk6mCQTbKw1LsoRF+6OD/Yh+PsTfV4TPcJJLlHbDjFkm4Qdi2SKUfau
-UTHVtJpm2bxn3UG369t3Gjlwm2R4zTNfLTMDNlghSHYElvOWyI0l8xKp/BQ6
-P/NAkMMSFnBEJfzDClYDj1HL26/i7pVzqSVcShGHnM8h5nDwWRxMOgeZytlM
-5qwlcpfjuAsxvJlo3kQUfyRSMBAu7A4TdYQctryG6oIlVcHSstfS4lBpfrj0
-Q6Q0I0qa8k6aECt5lwBvcoJTJa8yJV65hx7FArdKtjMQgjbqy26yyRBeewqp
-MbeiuTCptdSrtdLyfK1cbfODIiJeFRmmi3plinKyRps5oJ+7Yh4EYH9Jxv1U
-hr/QQfhukvANgvgVGfPd/tov3Nk/xcNXjj9dP6u7e5L35ChOURygBvrF1TNg
-P7dlKnkePH69dyuGcjWTdLUcc6Vt6+rQytXFmdvI4SeETyqURs39Mj1OtrEo
-xRqKd4XevoJCX0P+UZB7POSUduiYz7OvYNg00iw7yUaDeO1J5PO5Ve3FKZ3l
-Ad3VDt31et3N8heIPC1UmjYmwRgTbYWNsMe9dsX5e+G9fQluQUSnUKJtJMky
-etsklqz3fkc7h6JbumtQSzVuoZl92rPsp1uP7ttPHzgvMNxXGd6bTD80KwjH
-DiVxIincdzRe/D4/mclPYwuyecI8gahIBCBWx2ZWsxnl7P1i9l4Bm5rLomSz
-tjNYxDQW/j0Lk8hCxrM2Y1hr0azlKPZ8BHsmjDMRyh15zRsI4vcECjoChC3+
-h/V+UKWvpNRfWhQozQuWZIdK0sMlyW8k8dGS6FhJeMKXyAlc8YdDt0K+SwXb
-sX7ftu3LxA5jNaYRGnOLzxdHNZc/PV+tU18vUt5MlUO+1UQGGaLcLVAvbdG6
-zmg5d8zv0dif8nAXmvDfDxO+WSN+RcJ9s7fxE3v+d9HoZVnXtbOG2yf5j4/i
-Qb9UBTbPuboGbA1bpqLX/l8htJtxO1eziVeq0Fc6Nq6MLV1dnbyH7pcjfVSj
-1mozCg34aabiJHsoxgOKCICCwiHvd5BTMuSYLbAvYdvW0i0/Ukz6CDpjaLXZ
-dc2FGcAGL1Y6dNYaXmyUaSFyn6NSNdFxhpgoC0yoHTbAGefjgXd7hXcMINi8
-JpqHkwyjSC9itlXTyOp5O8/LKdr1u7ptVINumvHgntk43Wp232bpwGGN4YJg
-eGCYPgSWP5n9epcTvseNOuDGsniJXH4KX5ApEOSKBEWHgnJO7QGr8oBZenBQ
-eEDPPdjLYlDTGJT3jO2kA2L8AT7mABN9AH/YMIKxFsZYDmEsBDNnAlmT/uxR
-P86AL7fnFa/Th9/qLaz3Oqzygkq8JIWvJLl+kqxASdprSXKYJO6N5G20JCxO
-EpAk8UqVuGUfuhbynYAi1NOtP1JMe4m6o2iV2Q31+ZnniwPPl9vUVytVNj4o
-bCUoI8N0kD4mKIeXKGMHtKor5vZr7M9puAvV+O97Cd8sEL7CE/5F3brAWvxN
-OH7xqOfqedPNk8JHR4kK4sD/p18KXvsPQ2nX48lXcvFXalGXu9auTM1f3Rx7
-iO1RIDdr7FXosHMMhSmW4ngn6K0PFBoM+b2B3OIhh7RD+3yubeWBVfOuaRdJ
-bxijOrOpMT+ntTisvfxJe61Ba6NMcytHHfleAx1jgI4wxwTbYH2dsO7uOEdv
-vI0/3iwIvnjViiQpxm8rZJKVCndUqihqjZTnHbvavVTdEZrB5J7xPN18Zd9q
-88AWdeCIY7iSmJ4Uli+NHbjPCWFyIjncaB43gc9NEfIyRbzcQ16RmFfOrdlj
-V+yxSmiMAtrBBxo9g0ZL2aMm7lFi98hv6cQ3dHw4HRNKR72mbwXR1wPoK377
-C68OZn0OJr0Yo57MQQ9Wrzun053b5sZvcBNWux2WukEF7pIcb0mWryQ1QJL0
-WhIbLomKkoTGSPwT4DjjmnXoXMBzrGDaNuxZtu8Y9+G1xlEqsyvq8xMaS90a
-Kw1qa8VKm2lPEVEayEADpJs5ytIWre2EfuyF+TkO+2Mx7vt2/LeThK9QxH/t
-oL5jLP/Cn/xT2nflvOXGSfFfR0nyUJCKwEYD7pe6LUPem34/nHo1cftKPu5y
-A+Jy38rludkbiKHH+E4lSr3mQbEeN91YnGQjjnGDIvygwDDI6x3kkATZZ/Ph
-zx7V7Zm3kw0GcBqTCDVAAgtjmstdWquNwBppbOaoIpPVUdF66DAzdIA1xssR
-6+KGtfXCmfviDQIJWiEExTfEx8mkJx+2n5WQ5Wt3FFsoKl27agPU52NU7Rma
-7tKewTrdBLFvgT2wJh7Y7zCcqUz3fZY3k+3PZr/msiN57HcCdqKQnSpiZ4nZ
-eRCnSMIp51VROGUUdhGFlbfDyN45SN+hv9+hxe/svtuhvKGQw3ZJQbv4ACr8
-KdFX1C1v6ronbcWDtui2N+dKn3LZH3M+GHJi9DkxuxzZHx25TY78GkdhmdNh
-gZMEvkLykqT6ShIDJbEhkjcRkpBoiV+8xB2Y5MxDpwIgDUzrRpp5x7b+AE5t
-ckt1bkF9YVh9qV1ttUplPUd+K0EJEfoC6W2MsnuJMnRAK7mir4Zjf8zG/dCA
-/3aY8PU64V/bmK/pqz/xpn+HBi6ftV0/LX0gey8HBasIQb90DNhqdgw5H/q9
-iN0r70mXi7GXmzcvDy1dXpq8g+p/RmpTpVZpM/P0BSnm4ngHKMoLCgmCfCMh
-1zjIPk1kV8Cxrtq3aKEY9RC0RsE4rarPTz5f6tVcaQYiq76Zo4JIVkW91UWF
-mKL9XmLcHTAOrlhLT5zRK5x2AF4pmPAghvggjfQwf/tRBflxA/lp+45cL0Vx
-ZFd5iqq2QH2+StPe2tPD0A0J+6bkfUvqgQ2d4cBguLIY3hxGAJcRwme8ETBi
-RIzEQ0aqmJkFMfMkzCIpq5xfuc0tJXEKSexcIjOLyEgl7CcR6HEE2lvCbgSR
-EkIkB5JIviSC1zbObQftsoNw3tlwpKw6UJbsd+ftqNN2tAnbvRHb/QGbg24b
-ZrsNu9mWW2fLr7ATFtqJcxyhTDco1QtK9IM3PG/CoNdREjjXAOuVKXIs5NoB
-wmmimnwi6QxjFGc2VOem1Rd71ZcbVdeKFTfSniCi1BEB+kgXc5SFLUrTCf3w
-FeanJOwP5fjvuvFfLxD+TcD/i7ZxgTP3m3jo0kn7tdPye7KUZ9BrZaHtl36p
-2jOe+tLvvNm9kkq8XIa+9HH90tjC5fWx+9hueXKjOr1Uh5NpeJj0UhzjCkX4
-QoGhkGc0ZJ8E2WXzbUqZVvU0kw6SziBGaXpTdW5GA6brVo21SrWNXOWtZGVk
-lA7qtQn6lRXaxR5j44I19cDq+OBU/fGPwgi3E4h3soh3i0n3arYftJL/6tp5
-PEh5OkGRm9tVXKYqb9LU0DRN/N4LMl2fSjem75sf0K2ZdEc23Z1D9+HRAwX0
-UCH9jYgeI6YnQvupkv0s6UHe0UGRjFEuqMDzSnDcAhwnB8vOwDBTMIxE9H4M
-mh6FpoWjqcFoij+G7IMheWAJLjicAx5jS0S9JG1Zba9bbq9YkhctdmYtKJMW
-u2MWtEGLvV6L/U5LRqslq8GKW/WSX2wtyrGFMh2hVPcvS7kAKDIECn4DvYqF
-XJIkjllC+yKOTTU8xoY9hOdjSKXZZdX5UbWlDtWVauX1HLnNBEVEqDbSyxhp
-a4XSt0cruKIvvsFeyMN914r/ZoLwbxThfyiI75gLv4hG/zz+dPWs6q4s7SkU
-Avqlzn1hwFK1P3jit3frLeVyJuFSFfJS1+ql6dlriKFH+Hal3RpNRoEeP8VU
-HG8vjvKEQgKhV5GQSxxklyayLeC8rKKbte7o9+LUxhHKszDwNZba1Ver1dbz
-lLbeKyKjtFHBRihvS7STHcbKGWPogX3ug5Pzw92Iwt9IIdzII96sIN1q3L7T
-Qb7bT74/tvNwhvJoifJkY1cORVXEU1XINHXqntYeTW+fZsygWrKotpxdZ+6u
-B3/3lWA3ULQbekiNElNjIWqihJYqpWUd7eXJ6EXH9HJBOYZfjOblo7gfkJx0
-BPv9FjNhi/Fu8+DNJj10kxa0SfXbpHhvkt22tp23iPYIvDUKa4FGm2IRRvhN
-Q8KaIXHJkDRvuD1tuDNhRBkxovYb73Wb7H80ZTSZsWvMuaWWglwrcabtlz2q
-J/TOD4p4DQVFQt4xkFMS5JAtsCtmvazdM/tI1u3HKk9uKs/Oqi70qy03qayW
-KGykPUZEqSH8v0DM3Ab13Al9zx/zYwr2+2r8twOEr9YI/7ON/vpg+SfBxB9H
-3VfOam8dZz6RhCn9b79UHA4eB9BuvCNf/oC7VLd1qX/p0uLkbXTvM1Kz6l65
-NjvLQJRkJY5xgcJfQQEhkMdbyC4RBpd1KcOigWrUSdQaRivOrKrOT6gvdqmv
-1KmuFyptpsgho754Vy9LtIMd2twZo+sO76UfBOOuxOKvZBKuFhOv1ZKutW3f
-6N2+OUK+Nb1zZ2nn3gblAYryCL/7hEyVo1KV9nY19ikvGDsGLLIZh/ySS7bn
-k10E254isu8hOUhMDoPIUZKdWOlO0hElVbabdbybd0ItOqGVC8sRgqItft4m
-L3udm7bGSV5jx60yo1cYkcsHIcv0wOW9V8tUz+Vd1+Udx+Vt2xXSy1WC+RrO
-ZANjsIXURW5pozc0cata+EUtwpw2aerF9pjOzpDebq8+rdNgv8WIUWfCLjfj
-5ZuL4NW3A5ToDr17BUUEQ4ERkFcM5JAM2X/g25QxLEF9PhE1h1GgPipzY6qL
-nQBiSmu5zzYTFBAhWkgvo/+FmLwr+ve32B8Kcd+247+eJfwLj/+fvfUL3Onf
-JH2XzhtvHH94JAlXFNqpc7UNWcqO+38F0a7GbV8qwFxs3rg0On9pfeQBtlNh
-p07joECXl2IsjrcTR3lArwG4IiDnWBhcNgVsq2q6aStZtw/MzxaYHzV4fppV
-10qUNtKfIaI1kMEGKE8LlJ0t2tQJo+WOkfPGXg/HXUzGX8olXKokXmomXe4i
-XRnavjpFvrZIvrG+cxO1c4dAubdDebC783SPrLi/rcYgabGIumyCEZdgzidY
-CwgOIoLrIcFTTPCFCEESYpiUGHVEipWRko63U0/IWac7eaeUorPdMlHZurBo
-TZC7ws9a5qUtcZMWOXEL7LfzrIg5xuvZg4DZfZ+ZPY8ZmsvMrsMMxWaWbDlH
-MpsnGi3g9RexOstorVWkxsam2ta6MnpFGbuoiptVJ0xqkEY1yQPalG4d2ke9
-/UYDZpURp8hUkGUuTrWFElygdz5QeBAUEAG5x0L2KYd2eVzryn2zlh29XpzK
-xJbS7ByAmOpSs/J/ILYVpYrw10O6mCEBxDSc0Hf9MRfSsN/V4b8ZJvwbQfhv
-CuJb1vwv4sGLZ63XTvL+kkQqCO3V4H4pOe8/eE29nEi8VIq62AHIcPo6sv8J
-sUWFVq7FytIXJVmK3zmL/wMu9y/gss3mAXCZN+wafiI+HwHDs6wyP6K21K66
-Wqm0nv1sK1YV+VoP6WmGsrNBGzthNNwxj3ywf7zF/ZGO/6OY8Ec98Y8O4p8D
-pD8nty8ubF9aJ19Bk68Sd67vkG/vkh7sEZ/sE+QZOBUWToODfcHF6PMxJgK0
-hQhtc4h2FKNdJRgvKcbvCBMsw4Yd46KOcbEn+KRTQuoZMeuMlHu+XXROLjss
-XREVLglzFwSZ8/zUWV7iDDd2Gv6iufAJ+Ouw/McPfMb23cfozqN79qNU69Fd
-i7Ed03Gy4ThJb5LwYgqnOYNVn0OpLCKUljcV1tfktlaeohfksTNK+AkV4rD6
-dt9zSqc2rUXnoEafVWLEyzY9TH0JJThD0d5QaBDk90Uy7NOFNkUsy1qacTtJ
-awgtP72qPDcOIKay/L8Qk0OEaiK8DZG2lih9O5SCC/qPt9jvAcQ68V8tEv6H
-hPk3oETh6B8n7VdOih5I3yoIHeB+MRVd6ffCKJdS8Rerti72LV1aHruL+SRP
-rtPYL9CBwRVnJ37jCQUHQj4RkFMsZJsmBOCyrN4zaSXr9GEVYXKeVl3oUV2u
-V17Ll99MBH5VB+ltirKzRhs5olXdMPf8sb/F4X7Lwf9aSfi1lfhrL/HXcdJv
-86Tf1rd/R2//SSJf3CFdoxJu7+Hu72MfM9ByLJQSB6nGQ2gKEDrCLUPRlql4
-yxLaspVsOUq33I62vGUIv2Nk8Aky/BQVdYqOPcMknWNTz3FZn/G5nwlFfxPL
-xKULhwVzopwZYeaUIGVSkDjOjxnlRY1ww4bZwUMsvwGm9wDDvf/AqW/frm/v
-ZR/Noo9q0kcx6N/RHdjWHiQ9HyaojeCUxzCKkyj5GcSz+c0ny2uP1pcfIhYe
-o6ef4cYUCYMq293qu21ae/U6jDIDbo6xKNVSnADyqTf0OhjyeQM5JMCq8bLs
-wKyJoteDUxnfUpydU5nvV/kCMfn19Mdbb1UQATpIVxOkxUuUliP6wSvMhRTs
-d7X4r0cJ/8IQ/ou28T1v6jdZ1+XTsnvSGHmhoxpHy4gp7753O3LnUjb2YuP6
-xbHZK1sDjwgAXGVa7AwDUeJLcbSLONQX8guF3KIh2ySxzQfeyy/gMvhE0BhG
-KsDgGlZdalNZLQUwf4qI1ES+MkaC/G7kgFZxw9wKxv6aDG+hf64n/PyJ+NMI
-8ac50s/rpJ8x27+QSL/tEC5Rsdfp6NsHyPtMxCP25lPuhgJ/XUWwpiFa0z5c
-1YNWjSSrZtJVq6NVO9mq0/Ga+8ma9+m6/+lG8NlG+Pnm2/Ot2M/IpM+o1L/R
-WX9jcv/BFv2DLxOXzYqLpg5zJ0SZY8KUEWHCkCBmgP+mnxfWyw3q4fh1sb0+
-sdw6mU4dDLuOg5ftdPP2PeN2mkEHVaeDotW5o/FpW7WLpNxDUOjDyQ1in46g
-H48j/prefDC/dn9l+d7m/APU1GPsqDyhX5ncqU5t0tqv0GXnGgpTLOCVwhsf
-KAgIfTRkl3IIz3YNzaidpDmEkp9eUZ4bU4EhVqO4lvdsI/HpVpgG4pU+0sEc
-aWyDUnFGXwvD/JCH+7YD/9US4b/JqK9Z8z9L+i+e1dw6SngmclLlaBoznnnS
-bkSTLhYAMly+OD92B9Mpv1OjcZCry082E8c4iiO8ocBgyBMMTBxkmy6wLmD9
-L7h6sUoTm0qzMyoLPSrLdUprOU+3YtQQILw7W6JM7NEqrpgbofCy5ady/I+t
-hAsDxAszxB/WSBcwpAsk4s8U3B809GU64jpj8zZr/R5n7S/eyhPBsrxoSelw
-UQ1a0JQsvJAu6B/NG8vmzY8XXp4s2J0uOJ8tup8t+Zwv+39efv15Jfzvtbd/
-r8f+s5H0z2baP1vZ/yDy/0EW/4OugCqmxCXj4vzRw+xhUfqAMLlPGNcjeNvF
-D+/kBbdz/do4Xq0ct2a2YxPLtpFp1Qh/eYVxA12/YU+ngabVSNVo3FVt2lFq
-ISu0kZ61E5904h91Yx/2oe8PIe+Nbd6ZXru9uHxrfe4ucvIRdkiO2K2806Kx
-V/WClWcgeG8hjnWGwn0h33DIEVQsi/+y/MC0eQeUS3FiUxGUa74PhthKqcJ6
-5pPNGAXEa02EpyHSxgJmRTkX9C+x2O8qcF8P4/+FJfwXffWCaOSP8+ZrsvdP
-RS6gXyaMJz7Uy/GEi5WbFwdnL2/1PSY2qu4VveCmGH1hQg8oOADyCYecYyDb
-94c2OVwrAHAArk7ic3hgACePqix+VF4pk99IlUOEvUB6mKEs7NDqLuibYdif
-snAXavA/dBG+nyB+t0L8Dk36joS/QMH8SkP+ub95hbl2g7MCv2lcsPBQNPf4
-cFYOmlGUTKtIpzVkU1rHU7onUwanUyanUxZnU9bn0/afp50/z3j8Pevz91zA
-33Mhf89H/r3w7u+lhL+X3/+9kvH3as7f6wV/b5T+vVUpqRqDSkfEhYPinP7D
-zF5RSpcwoVMY0y5408oPbeYFNvJ867medRyXGrZ9Ncu6kmVewTSuYOiXH+iU
-72uV0zUq9lQrqEqVu/LVlGc1O0/qth81Eh+2EO5/xN39hLnTi7w1tHlzYu3G
-/NKNtdk7yLFHuD757TY1WrU2M9dAkGwpjnaDFQR4adsUkXURy7yeqv8JUCxC
-YWZReW5EZbFDeblWabVAbiPl0VaUEiJQG+FuhHxphdKxRz32RP+Qgv22Cf/V
-PIAY8mvu9K9Awo4zH4ncVDnPTQ/+8qdcSgPOcOXi3Og97Eel3TItVrrBYby1
-OMpN/NoPehUGuQImTBTbgFEpYlpU7xkDcAFCHttSmJlXnh9QWWpUWst/uhkL
-MoUR0s4a9cIZfTcU++MHeMfy3QDh23niN0ji1yT8dxTUz3ubvzPWLrGXr3IX
-bvDnbotm7h1OPYQmHkvHnx2NKchGlY9H1E5Gnp+OaJ8N652PGH4eMf08Yvl5
-xPbziNPnUbfPo96fx/w/jwd/ngj/PPn283Ts55mkz7Opn+ezPi/mfl4q+rxS
-9nmtSlI9LCkfhIr7xHnd4uxPh2ntouQ2YVyzMLpREFHHf13DD6ji+VRwPco4
-LqUc+2I2qKlFIdO4gKmfz3iRd/A8b181j66Uv6dQQHtWSH1StPuohPKwnHy/
-cvtuLfF2A/5WK+ZmJ+pG3+b10bVrc4vX1qfuogefEtpVdqu1mNkGogRbmJde
-hUN2CZBNLgcUzRBQ4iBabnpNaXZSeb5XZalFeaVCERiPjeS/tiKVEQHaCDcj
-pJUVStsB9dAP80M27tsu/L+RhP/aX/5R0nfxJP/BoacKR8N8/17I9sX8rT/7
-Zq4iuuTIVc8ZmfqihJfiKFdxiB/kGwq5giEBh2YAJmRbVtDNGikGHUStAbT8
-1Ibi7PQXMqxVWM96tBWpjfAwR5k4oJ8GYH7Mxn3fgv92jPD1OvErIv5rCupH
-+savzOU/OQuX+TPXhJM3xeN3JKP3pMMPZYOPjgeenvbLn/Upnfepfu5V/9yj
-dd6je95tdN5tdt5tdd5te97jeN7jet7rdd7ne94feD4Qej4UeT787nw0/nzs
-/flE+vlU9vlM/vlc8eeF8s+L1dLaAUlFL1TSBRV0inM+ijNaDlMaRYn1opga
-YVSVIKxcEFzK9y/meRfw3PO5zrkc+w8c62y2RRbLJJNlmMHUTWdopTM00g9U
-0vcV0unPMvYeZdIeZlHv5+zezdu5U0i+VUq6WUW4Xo+91oq62r15dWTlyvzc
-NcTwX7h2pd0KbRbwaUD3gY44xkJA8S0r6cZt29r9GIXJTYWZOeW5YeWFTuWl
-BqWVMoW1HNCyR1tvFBGBWgh3Q+RLS5QOaFkA5vsC3DcjeJCdvxKM/35WeVv8
-SpmtZrUHv7WqdvniQv8jQq36fraeEG4WQJY/jCyX/yALNCufbVW+b15HBefq
-duPUh5Fy06tKsxMqC5+Ul6uA25FDhOgjHa1Rmq7oX9Nx37fiv5km/BsDb5u/
-p6//zFr8gzd7SThxVTx6QzJ066j/znHv/dPuh2ddj847n553yJ9/VD5vUztr
-1TxreXHWon/WbHzWbHbWYnXWYnvW4nDa6nLa5nH60ees3f+s8/XZp/Cz7qiz
-3piz/sSzwZSz4Yyz0Zyz8YLzyZLz6Yrz2RppXa+0qktS1gEVtUF5zeKsBnFa
-7WFylSiuXBRdKowsEobmC4Jy+X4f+N6ZPPd0nnMa1z6FY5PMsUximyWyjRJY
-+vFMnXimVjxDPY6hEn+gGL8vl0B/nEh/mLR39z3tdtruzaydG7nb14uJVytx
-VxpRVz5tXB5bvLw6+gDbpkwF1jreFq6h8zvIJvtLv1q3X/Rhlca35KeXQN2U
-5/uVF9u/tKwceA+59dTHm++ebYVoILz1kfbmSAM71BN/zPeluK8XCP99sPzj
-adsVKEiJpWK7eykZgGv0LqZBlZ6lJ4yzEUd6QoFBkGck5BgD2QDNyuK9BB4D
-NAu+QSTrdxK0+jHKY1/OBW4HzMlypfx6mgIi2AhpbY96CnJ6I/6becK/iLh/
-7238yFr4jT918XD0imTguqzn5smn22cdd8/bHpw3Pz5rfHZWr3BWq3xao3Za
-9fy0Svu0Uvek0uCk0vik0vyk0uqkyuakyuGk2vmkxv2kzvuk3u+kMeikKfSk
-JfK0Lfq0Pe60M+m0O/W0N+u0P/dsqPBspPRsrPJssvaovkta3SEtb5UUN0H5
-9dCHGnFGpTil7DCx+DC2QPQ2VxSRLQzJEASmCXzf872S+O4JPOc4nkMM1zaa
-a/WWYx7FMXnDNoxk60ewdCJYWhFMjQimWgRDOfJAIfLgWdT+47f0h+/27sbR
-biTuXkvdufqBdKUEd7keealn+dL8yANsvfo+cGvAVzvFQNY5XMCHRh9J2n1w
-3eSmVxRnZpTmRpXn+5QXOpSXmpRBIlspVlj78AVoUQqIIAA0Y6QFcIxe6B8q
-cV9jCf+feOhPyRt5poIz8WLp7KXNJpW9dP3Ddw7iEF8YVs7RkA0MK751Htuq
-hGFRtWdWvwuaBZjwRS9WYwilMLEpP72oNDuuvNClvFwjv54pj3htjLQEjrQY
-9+0s4V9k1DeMxV8EE39Cg5dl3fBbR85bbp/VPzirfnRa8fS0VP6kWOmkUOW4
-QP04//lxnvZxrs5xrr4s11CWayLLNZflWcnybGT59rJCJ1mRm6zYU1b66rg8
-4Lgy+Lg67Lj2zXH9u+Om+JOW9ydt6Scd2Sddeac9Raf9ZadDVacjdUeNHUe1
-rdLKJmlpvaSwWpJbAWWVwF/bnpx3GP/h8F2G6E2qKDxZ+DpRGBAn8H0n8HrL
-d3/Dd4ngO4bx7EJ41sFcyyCueSDHJIBj6M/R92Pr+rG1/ViafiwNP6aaP1M5
-gKEYyJALPngSsv9XOP1eFO1G7O6VlO3LBdhLTasXp3ufkoAHAPgC7PSymGna
-SAF+Q3MADfr1bHpNfmZBcXbqS8sGlBe6vwANdK1GCZjG1dz/YE1+K0gb4QqA
-5oS+XIP7irb+vSz18cFj340/R5qVackm4ghPsW8I5ATwm3xo/R9MlR2AwYA7
-1Uw2/EjS+4QHzXo+iFYdRchNbgB8gUO/4LpFcbXwr603wOF4o3/ox/+bgviW
-N/W7pO/y6cdrZ/W3TysenBQ9Psl7dpwtL8tQlKWpyFLUjt5rHCVrHiVpSxN1
-pIl60kQDaaKRNMlUmmQuTbaSvreRpthL05yk6a5HmR5H2d5HOX5HeYFHBSFH
-xRGy0reyilhZVaKsNuW4IeO4+cNxW/5JR/FJV/lJb/Vpf72sqfWovumouk5a
-Xi0tLpfkl8B/LUJGDpSSJU5KF8e9P4xOPIyME4W9+/L1jxFC31Ch92uBR6DA
-1Z/v5Mu39+HbevFeevIs3XnmblxTV66xC9fQmaPvzNF14rxwYms7sTWd2Rou
-LDVXloo7U9GTIedz8CSAfj+MdjWOdLFk6eJijq7AKwICAw8KCEgJgEttGKk4
-vvlsal1uehm0TGFmRnF2Uml2TGluWAk0br4HFrXFVuWleqXlSkXgHtdTH25F
-aiLcrVGqdbivzlqv7l5KbFGivnMU+4RBNvEQaJMVcIDAVNRSTRp3jFq3DdqJ
-ep8IOt04cBwYD40hJGiW0v89FEgnDDGA66UmAOfnCK8QzPdAH8WDF88bb5wU
-PTzOfHqULH8UpyiNVpZEqUoi1KBwDSjsORSqBYVoQyE6UIgeFKIvDjEUhxpD
-YaZQuAUUYQVF2kBRdtBbR+idCxTrLon3kiS9gj8JkxYszQiTZkdKc6OPCuKO
-ipOOylJllZmy2hxZQ8Fxc8lxW8VxR81Jd4OspUnWUHdUU31UWS4tLZYW5sN/
-k0VWJpSeCr1PEifEi2Pfid9GHUaGH4aGiIKDRAH+It9XQm8voaeH0M1V4OIs
-cHQU2NsLbG351tZ8q5d8S0u+uQXP1JxnYsYzNuUZmvIMTLj6Jlw9E66uCfeF
-CUfblKNlxnluyVazYSq40q6/SzYVW1TS9b7ASm0ECZAFk9LkBigdgBhQf0CM
-cOOml+SnF+Rn5kExFWZmFWamQRMVZ8cV50aU5gaUAH0BOKyUPtoKr8d91apE
-tY2DLEsPTBoo/4ugHqzWf1oziFIfQoKRUB1BqIxugeNAm0DiU5jYkPv/D10B
-x4GD4DmZ7wdT4YS+clZ7UxotLw5UPvRWFbmriVzURU4aQsfnQkdNoYOW0EFb
-6PBC6KgrdNQTOukLnQ2FLkZCVxOhm5nIw0LkaSXytha9shP5ORwGOB8Gux2G
-eIrDfcRv/MRvA6GYECghHEqOkqS+k2TESz4kS/PSpEVZR2W5R5WFR7WlsoZK
-WUvN8ccG8A/4F/Cf4Bfh/1WWC34b+M3gj8B/MPUd+CHwj4oJAT8W/uHhPuAg
-+LgAZ3A0/ADgMcDDeFiAB4MfDzwkeFTwwOCxwcODlwC/EC34RTk+By8Qfpnu
-auAlgxcOXj4oAigFKAgoCygOKBEoFCgXKBo86pMboIygmKCkoLCgvKDIoNSg
-4KDsoPigBaARoB2gKaA1oEGgTaBZoGWgcaB9oImglaChoK1wc+Ejpr+0ew60
-Hh4A+LjlLyOx+p9D5eFD4ePA8IAjwCCBcQJDBUYLDBgYMzBs8Mhpm4Lxg4dQ
-Dx5IMJbwcIIRBYNqag6GFh5dMMDW1mCY4ZEGg+3iDIYcHnVvLzD28PAHBwEg
-ADgAUMDQSIgHMAFgAZABwAHwASACUAKAArAC4AIQA0CD4dZcAqAHA7AyE4AR
-hmRBHIAnDNKMMPijoQC2ALzxXgDIMJwBqAG0AcABzAHYw0wB8AH8AQl8oQId
-mBYAOQCKCNcAdAFIA1AHIBBAI4BMAKUAYgH0AkgGUA0gHEA7sDbN9wEiAsUE
-NQSlA20CNAXICtQNEBegL1A9QGWA0ACtAXIDFAeIDtAdID1AfYAAAQ0CMgSU
-CIgR0CMgSUCVgDABbYKpABQKEymg0/keQK0wwc6OfWniDCDe/xwKqBiMBDgO
-kDOgaEDUgK4BaQPqBgQOaByQOaB0QOyA3gHJA6oHhA/TvjYsAbAQ6DsDUYCl
-wdQVyAQsFi89gXDA8uHkC6QECAqQFVhcAiKA0AC5AaIDpAcIEJAhIEZAkoAw
-AXkCIgWkCggWkC0gXkDCgJDBctZRDKQNFriGDCB2sOQB4St9C0QQlkIgiEAW
-gThmegChhOUSiCaQTiCgQEaBmAJJhYUVyKsOkFpYcN9rAPGFJThDEcgxEGUg
-zUCgYZn+eA1INhBuIN9AxIGUA0EHsg7EHcBBGQbaFDz2kxugWcAGADPwHwQB
-ewAKCKwCMAzANsBtSj4ERgLYCWAqgLUABgPYDGA2gOUAxgPYD2BCgBUBhgTY
-EmBOQOOAUQF2BZgWeDyAgQE2Bm7cKHzozAKAGEAWGA9ge4D5ARYIGCFgh4Ap
-AtYIGCRgk4BZApYJGCdgn4CJAlYKGCpgq4C5AhYLGC1gt4DpAtYLGDDYhpkE
-AEsGjBmwZ8CkAasGGzb3N8C8AQsHjBywc8DUAWsHDB6wecDsAcsHjB+wf8AE
-AisIDCGwhcAcAosIG0VgF3uKgHWEDSSwkS3vgaWEjSWwl8BkAqtZHgBsJ2w+
-gQUFRhTYUWBKgTUFBhW2qYbAssLGFdhXYGIL1IGhBbYWmFtgcYHRBXYXmF5g
-fYEBBjYYmGFgiYExBvYYmGRglYFhBrYZmGe4jIC+ZseBqQakBAw2aBYw28By
-w52q2gMmHAw8MOTAlgNzDiw6MOrArgPTDqw7MPDAxgMzDyw9MPbA3gOTD6w+
-MPzA9gPzDyIACAIgDgA4g2gAAgLcNRAWAK5By2ZmADGCfgFwgVgBBgNEDBA0
-QNwAoQNEDxBAQAwBYQREEhBMQDwBIQVEFRBYQGwB4QVEGBBkQJwBoQZEGxBw
-QMwBYQdEHhB8QPwBIQhEIRCIQCwC4QhEJBCUQFwCoQlEJxCgQIwCYQpEKhCs
-QLwCIQtELRC4QOwC4QtEMDiIgTg2VAiiGRzQQEwDYQ1EtrZoEN/gEAeiHAh0
-INaBcAciHgh6IO6B0AdHPxAADUAYhCMhCIY1aiAkwlGx8RmIjSA8gggJgiSI
-kyBUgmgJAiaImSBsgsgJgieInyCEgigKAimIpSCcgogKgiqIqwBfoG4gwAJS
-As0CkRYEW4ApEHJB1AWBF8ReEH5BBAZBGMRhEIpBNAYBGcRkEJZBZAbBGcRn
-EKJBlAaBGsRqADQQsUHQBnH7P1gDARzEcBDGYaABXzE7AYfl8S0Q2EFsB+Ed
-RHgQ5AG+QKgH0R4EfBDzQdgHkR8EfxD/iVcrt68X79zI3b2ZRbudtnf3Pf1h
-Ev1x4r5cwoFiPEMFXiMwteCVAks/nm2UwDZL5FgmcWySufYpPOc0nns63zuT
-7/dBEJQrDM0XRhaJoktFceWHyVXitFpxVgOU1wwVtUnKOqRVXdK63vPZGnjR
-MVlyNl4Arz6GM+A1SH8ivBLpjoLXI52vz9r9Tz/6wGuTVpezFocvixQreKnS
-bAwvWFpenLVqnrepwYuXDvnzzqdnXY9Oux8e994/6r8jGbolHr0hnLjKm73E
-WvyDvv7zDup7DPFf04R/t+K/Scd974r+1RqlqY90lEOEyK+nKy9XqSx8AnUD
-6q8+jNTtxhm3bZvXUa3K963zAawEgJ1cvsAK1DDKTZzwUpytJ6xV3+9/RFi+
-uID7s3bvZhRbzUr8Svms8rZg/HegjyP4/ynAfROA+d4B9dASpWOIfAmApogI
-fLT15gvQcpRWyuCWAVGbG4bN5+Smdj8GnAv36wPPMRa+dol2EacYiyu0We1K
-u8N/4eauIVauzG9eHUFd7cZeayVcryfdrCLfKt25U7h7N496P4f2MGvvUSb9
-Wca+ArysY2jAizumbjrLMINlksm2yOJYZ3PsP3Cdc3nu+TzvAr5/sSC4VBBW
-LoyqEsXUiBLrD1MaxRkt4pyPUEEnVNIlqeiV1g58Xqz+vFB+PlcMLxWnsuEF
-49h7eNk4/A5ePA6EwkvIPl94IdnjCi8nu22/LCrN4KVlj+7nHq3Pvernfapn
-fUqn/fLHA09lg4+kww8lo/fE43eEkzf5M9c4C5eZy3/SN36loH4k4uE16Rjh
-6xb8t9m47wMwPzqgn5qjTLQRHo+2IhXWs1SWa1UWehRnp+WnNrQG0IAJzRop
-lhV064IvzUqAl7S+oVCIHxTlCjcrU19U9ZzRJUeeuYoA4Nq+mL9/L4SjYX7o
-qXKS/0DSd3F/+Uck4b+68P/Oxn3rh/kBtMwKpW2EtNJGuCkjAv7aigQtU1zL
-VV6pgBfL871Ks5Ny02uag2jDdpgPbXI5dgnwOjrCG0qwFWcbiKq1mO0qu4NP
-CVN30YvX1teuzW1eH0Xd6MPc7MTfaiXebti+W0u+X0l5WL77qIT6pIj2rHBP
-oYCulL+vCq/HGS/ymPr5TOMClkUh27qIY1/McSnlepTxfCr4AVX81zWCiDph
-dKMwrlmU3HaY1i7O/iTO64aK+yTlg5Lq4c9rVfCifqkIXtrPZ8EL/JkkeJk/
-+RZe7I8Hw0v+UW944T/i9GX5b/l5xPR8xPBsWO90RPtk5PnxiJpsVPloTEE6
-/gyaeHw49VA0c48/d5u7cIO9fJWxdmlv83cK6mcS/jsk8et54jcDhG8b8N99
-wP0Qiv3RGX3XGvXCCGmnhvB/uhmrtJavstQI1F9hZl5lbEunB2fcSgZFe1nE
-tMniA2S5/gdZfjCy4q3FwAOUabE+Ku2O3sOuXJzDXGymXEo7+Muf89xU5KZ6
-nPnopP0Kd/pXMvLrecJ/N+G/SsF+64kG9PvYCqUDHI42wl0JRlmU3EaK0mqB
-MhiVxQ7luRGFmUW1EQTwG+b1VOsilm2KyOMtfOkT7QYlW4pzDQTV2sw2NVqf
-/PbYI9zsHeTSjbW1G/ObNyeQt4Ywd3pxdz8R7n8kPmzZftS486SO8qxmV76a
-qlS5p1pB16jY14Kvohj65UzjCpZ5Bcu6km1fzXGp4XrW8XzreYGN/NBmwZtW
-YUy7MKFTlNJ1mNkrzukXFw5CpSOSqrG/tyrhi7D1AvhSbCUDviBbSoAvy+Yj
-4YuzuYC/Z30+z3h8nnY+n7Y/m7I+nbI4nTI5mTI4ntKVTWlJpzUk0yrQjOLh
-rJxo7rFg4SFv6R5n5TZz7cb+5hUa8k8K5lcS/gKaBF/qTRC/6yJ8X4P/IQt3
-IQz7kwv6ph1a3Qxl8QLpIYcIk99IVV4pg68I50blp1efD6EMOolmDbtWZQc2
-OVzb94fOMfD1YnAA9MYDirMTpxiJi15wG1X3+h4TZy9vbV4cJFyspF6OZzzx
-4WiaiFxUZe+fnjdfE438QV+9gCX81zD+XxW4r2Ox37mgf7FDyVmg9A2RNpoI
-TwXEa/gyFFidlVKVpWaV+T7F2RmQ+HR6sabNOy/LD2yz+I5x8KVquC8U6wy9
-txDnGQiqXrBaNPa6lXeG5IiTj7Bzd5HLt9bXbi9u3plG3htD3x/CPuzDP+om
-PukkPWsnK7TtKLXsqjZRNRppWo17OvCF775xA8O8gWnVyLJtZDs2cdyaOV6t
-XL82XnA7P7xT8LZLGNcjTO4TpQ8cZg+L80fFJeNQxdQ/6Ar4ohmRD186b6b9
-s5EE/1Wea28/r4R/Xn59vux/tuRztuh+uuB8smB3vPBSNm9+NG8sXdCXLLyA
-FjQPF9VES0qCZXneyhPO2l+s9XuMzdt0xHUa+jIF9weJ+DOGdGGNBF+XDxAv
-tBIulON/TMP9FIr92RVzwx6tYokyMUA6qyECn27FKK3lqCzXATJUmp1R+lIu
-k1ayJXBoBSzbdIFDHHxxD3QE8FKMoxi4tVxdfo3GQaf8ztgdzPLFedTFDtLF
-AtqNaMYzT46mschJ9Sjh2VnNLUn/Rdb8z2TU10uE/+7Af5WH+zYM8wNwpMAx
-miON9ZEOGohXT7fCnm0kAu+hslyjsghUDLidFc0hlFE7ybKGZlPAtks59IiG
-37rwxgeKd4JSLMS5hsIKXXaT1n6nOrVfmTwqT5h6jJ1/gFq+t7l2f2XzwTzi
-r2n043Hs0xGc3CBBoY+k3LOt2rWj8Ymi1UnV6aAZdOwZw2+uOHjZzrDrYDp1
-sNw62V6fOH5d3KAeXlgv/02/IGZAmDAkTBkRZY4d5k6Ii6bEZbP/4Mv+wRb9
-jcn9G531GZX6GZl0vhV7vvn2bCP8dCP4dN3/ZM37eM1dtup0tGonXbWSrJpB
-q0aHq3qiNW3BmgZ/XYW7ocDefMpEPDpA3qejb/8fpt7yP8p77dt9uZ/blnV1
-dXV1FUqhLaW0FLckkAAhRoS4CwkSIyEhxN3d3d3dJzbJTMbd3d0txps9V+9n
-fz77LyBc58/n/B4Hh3iRSTlHowHsIATtH3u0f6xSv5yiftlH+UcD+R8FpK8S
-iP8MJ/wYiH/gjXNxxQY+xr6+gUm9gyx5AGsBmlvA1h0fareCdbIuR/1s7xaR
-dcf3y9eFpwONMdZztXXfz/PWlTlpWu2lww+4i9cou9+hEd+uE78dYJ6r5P2U
-Kr4dIbN3UQfZGDNvH7deMU9bL3pfc5F/JVD+nzXKf/aQ/6eI+JfXhC+C8Fe9
-cfZuWM+n2LAHmNjf0Z+A0w6s+Y8ptgA0/GygHWdJ7oMs71ahf6UyMBdoDUpM
-ANqEcoP1xV66aldNq5O876lo1J43Y8teekBfv0vZvkna/x0P/RUDv4ZAXYdi
-boJxt3cId0Gk++sUm1XaoxW6wxLz2SLLaYHjBjQv8byBRiZh8LwoYkEcvSh5
-uyhNWJYnryjSVpWZa6q8DVURSF2+pane0dbv6Vr2P1NbzyiNZ+SaU1LFKbH4
-hJB/jM86xqUdYT9YsAlmzFsTOtqIDjegg/RoPx3aS4N+oUY7qzBPFZjHMqyN
-BHdPhL8lIP7OI/3CofzEpH1PY3yLp/8bQf8XmPb1Bu3rOSrQ6NVB+Wc1+Z/Z
-pK/fEb8OJ1wJwj/0wbu8wPk/xUbfwyTdRuXdh9c9hPY93J+9v7t9F4R6Ov9/
-J5d1bPuVqIOzgJYz6w7yMeqPldAVOFr32gmmbjPWfyZAzkHR386Tv+1knSvm
-X0kW3w2TOzirA22Mn+4cNV61bmHqtW+E0C9phP86oPzHJPm/G0h//kT8ayj+
-G3/cHS9gVfR7jIm+hUm6icq9B695AO16CEwx6wUQZr+Md7VOsR6ub6MkoFQd
-mg004CXFA814uSH6Ym995Qtts4ui+7lk+Klw0oE7/4i1YkvffEDduUfev008
-vIGH30Kj7iAw96C4BwdE2z3S4x3Kky2aI4jhvMF8scH2XOf4AI2C/JA1QcS6
-MGZd/G5DkrAh/bApSwPJs7YVeTvK4l1VOVhds69pgGhbDk8Zraf0xhNazQm1
-4phSfETOt5CyLKQ0MzHZREgwEt4aCK90+DAtPkiD91XhPZUENznhuYz4REKy
-E5EeCCi3edTrbNpVJuMnKvMinnEBwfhun34ORP92kfbvCeq/+6hAI2UpGWiq
-jCF+E0G4Fkyw88W7uuP8HbFRD7GJN9FZ9xCVD2EdNpDxB+DVuzvQR6s45ymq
-dXL5tIj8KhX+eUAzZ+x7oGs6I0SX76WreK5ps5dYJ9fCder2RSzs3LZ1MaSe
-a+GczxNcTZTcCwHqFWBjSL1zVPvbycj3uiXrkvgVC/NnDOX/rFD+q5f8pxLi
-X94RvgjG/+yLs3PHejhiQx9i3v2OTrNOc+sUewgZerhvvYvtPdhEO86R3IeZ
-Ph0C/1rrhUkbkQW0uX6IB1pec0P1xX76Cg9d4wtVp4tswEk85iiYecpddGCt
-PWaA7Gi7tpSDh6TD+0TEfTzKBo21Q+LtYcSnUPLzA6rLPs0dzPDaY/nusgOB
-dlxe5I4gZkcYuytK3JWk7Ek/gWXZ+/L8A0UJRFkBVdUcqhvhmlbECbv1mNV4
-zKw9YlRY6MVmWr6JlmWkphmoyXpKvI7yRkuJ0lDCVJRAJcVHTvGQUlwk1Gci
-mr2AbsNj3GUzbzBZVymsKzjmZQTzhwPGpS3G98v0C9O074Zo5zuoQItyAfnc
-B9K30cSLEYRbwQR7P/wLT5y/Ey7KDptwE5N+D1n6EN5sAx2y2V+4v7t7H4R+
-Nk98McJ42cUHNo4STUgW0CydGKdPi9Tn/O/kemadXMLJO8zVq0TwOQTy3Jr1
-ZEg/V8+9kC34LV5yPwiol7+t4cNdS9W104FLhvlz8u2veYgvyOT/2KX85zj5
-f/6YYn8Lw/8rAH/7Je65C9bPHvvqDub9/06xh4fAFHuwt353B/Z4BecyRfXq
-5/i2igKqlIEFQBt5XArQUp7xGmgvLw7Ul3vr6zw0be6KXjfpsIto0kkw95y7
-7Mhef8rcekLfc6Ad2FNg9mTkYxLaAY99hiU4oUluSIoHnOYNo/sdMoOAdndO
-FND6zo8D2uBFqVBx+qE0GyYrgMtL4IpKhLIWpWpEq9swR9y2I06jhV1rZleY
-WMVGZr6BmaVnpOkYyVpGvIbxRkWPUjJC5YwAGcNbwnAXMZ0ErCc8th2Hc4/B
-uUVmX8exriFZVyHMK9vMy6uMH+foP4zSL/XQvm+ifl9OuZBF/i6B9F008WoE
-8UEI4Zk/3sMLH+iMe/UYG38Lm3YPVfQQ0WB72Gt7MP0QvGn9PvYreJdJqmc/
-xzq5rLuGdXJF/n+TKzNUn/9SV+GkaXOQDj3kzd2kgX7CQ84doM8tkM71Ms5X
-cS9lCH+PlTwIlD9xUvvZGpLvWcqvn/T8aJr5TrUJLIl0/P/AKf+xSPnvLvKf
-i4h/fUf4ezD+ii/ukQfO4zk21Hqn+B2T9sdOah0/gw//7/hBPVsguo8xvHt4
-/k2SwEpVcD4Q1ohPBYIbGW+BEEdxiL7cT1/zUtfiper2kA+6S8deiGbcBAuu
-vFUXzqYLa9uZCXamQ5xpcGcqypmCcSHjXxCJnniyD44agKGHoBnhaFY0EC3h
-xgMxE+FHlCgDJc5FSwvRslKMvAqrqMMpm/CqNoKF32bmN5p4tUZuhYFbrOfk
-6ThZWk6ahp2kYscp2a/l7EgZO0TC8RNxvARcVx7XkcOzZ3BtyZwHOM5dJPsW
-hHV9h3VtnfnrAgPAIw/QL7fTfqyl/lBEAcI1b0mXYki3IomPQgjO/oSXXvhg
-F1y0Ay7hrrVY6EIbRK0trAuI6uyv3N/dt9nAPLeuPyNM706+X73MOrmsW8br
-VCDskxalzwnQFb3Q1Tsqux+Lxu+xl6+Rd7/HWBdD7LlpyrlO1vly3o+fhNff
-Sh4G/G+99O/vm0tunHT+bJm6oFn7t3jfuiT+BUf5j80/nlZqSX/5SPwiDP9t
-AP6OdYq5Yv0csK/uYpJuoXLvI6qtUwyINYHX7u1CH61jnWcpnsMs3y5BQKMs
-qEIdmm94nQUEo1LfAyGpvBggMFUepK/20zf5aDq9lf0v5SNekkkv0ZynYMmT
-t+7JBXmydz1ZB57MQy8GwouOfknHedMIflRSIJkSSqJFEhkxBNY7AicBiHHx
-04BIlygPLy4iSMsIsmqivJ6kaCap2slmUZtJ2GgU1hoEFXpBsY6fp+Fnqvkf
-VfwkBT9Oxo+R8iPE/CAh34cv8ODwXRn852TeEzz3MYprA+Xc32Pf3WTdWmLd
-mGb+PsL4rZt+tYl2pYL6cy71cjLlp3fkazGkh5HEp6HEFwEE35f4UDf866e4
-xPvYtPvoAhtkjR28AwjBHSw+3Nu5t416ukRwm6C97OP6toitkysgHwjQxSUB
-YbrMMH2+t67cWdvyVDZgy5+xnjR+Ie6fRyDOrePPjVHPt7K/K+Zf/ii68UZq
-rddTa73s9In3zUU3j9uuHI1/r1s+J9uznhK/oJD/c5/yXzPk/2kj/yWf+LfX
-hC+D8b/64R574DytU8wWE3sdk3YXWfIQ3mQLHbA9mHu4t313B/l0heA2RXs5
-yPHvEAY1yIPLNeEFQPAwMc3wMRmIIua9BWKJ5eH66iB9g7+u3V/d66cc8pOP
-+0pnfMWLvsJVP8GmH2/bnwv250AC2LBAFjKIhQkBIpCkcCblFZ32hsaIo7He
-U9kpVO4nIDIpyKeIiiniCqq0hiproMlbaMoOulHSZhA36sW1OnGFVlSsEeWp
-RJlK0Ue56L1MFCsRRYtEYXxRIEfoyxB4UQQvCHxnNM8RxnXY5zza4tissu/P
-se6OM2/1M260M36vo18rof2aSb2aQLkaS773muQQRXIJI3oFEgK9CREv8G+f
-4d4/xH16gCmwRVU/grcB8VLInC0Y9GAXZr+Gc/ljGPt0CvzrZQElmrBsIKD6
-Ph4Iq+YE6os8dLXPVZ0O4tGHnAXrYngZBzkPQZ1fJp63bpVN7O8K+VdSRLdi
-pDb+QL187fQJD8yFt45brp6MXtQvnlds/4sP+5JOAIK0K5T/6QcexP72gfj3
-MPyFQPw9b5yzK87/yf+eV9G5DxDVNrBO2z8m/sO9fRsQ+vkiyWOC7jPADWgX
-B9crQsu1EYVAvPd9OhD1zXoPxH6L3wAR4OpwQ32woTVY2x2kHgxSjgXJp4Ok
-88Hi5WDReohwK1SwF8Y/COcdRnIRUVx0NBA0Jr7lkGM5tHg2I5nN+shiZwCR
-ZH4hEE8WVTIltUxpIxBbVnSyDLI2vaxRJ63VSCvU0mKVNE8hzZBLU6XSRLH0
-nUASzRFHMEUhVGEAUeiDEXgi+G4QntMO99k6x2GR82iabTPMAnQnzYzbVfSb
-BbTrH6m/v6fcjaPYvyE7vSJ5hBP9goihPoRX7vhYR3yyLS79IbbADlX9GNEK
-BLeh04/21232DuxAGCfrBxlnePfy/FskAdb7Tj4Q/Y5LBmLgmeH6fF9dqauu
-yVHe91g4eY+1/Dt59xLm8Pwe5vw86Xw//bs6zoU8/i8fRLejpbZ+8mdOKmu9
-4h+Y8m8fNf12OnzJOP+dEvRvEfQrJu4vOOp/gij/PU7+cxPpr9nEv78i/CMY
-/7sf3sED5+WEDbfDxt3AWDfWEht4k91hvx1kxha8+WD30H4D5zpP9hpn+vXz
-gtrFIfWKsAptVBEQok/KBAL1WR+AcH1xLBC0r4421EcYWsL1XeHa/nD1aLhy
-MkI+FyFbipSsRYlBr0S7McL918LDtwJELBDkxyUCoX7yByDgz/jEZ2UBkX9u
-EY9fBkAARPVcSTNX2s6Td/N0ijatolGjqFErypXyIoU8VyZPF8tSBbL3XGkc
-S/KGJo4iicJwwiCU0O9Q8BLM9wDxXFe5TnOcZxNshwHWo06WTQPzQTnjXg79
-TirtbhLVPp7i9I7sHk32jSAFBRMjfIlvPAgJTvgUO3ymLbbwMbraHtnqAO93
-gE7ZH6zYgfce7qAcVwgvpmkvh9h+HcKAOnlgiTY8B0ArJCUAmAXgScF6P3VW
-tz+VDtnxZu8w1n8lgi+g4N9t4c5Pk7/rYXxXw72YI/g1SXznldTuf+v1SBf3
-0JR356jh2ungD6bZC+qNbyUHX3PQX5Ap1iXxv+cof+oi/7WE9EUi8NjyUyD+
-oTfO1Q0X+BQbcx+bfMc6xZBVtjDrcj366GDRFrzzYBf5bA3/Yo7qM8YK6OMH
-t0vCGpThldpXxQCqIjkbwFZkfwQQFiWJAM6i5i2Atmh+Zeh8pe97pR2JVk/G
-KGdfKxbfyNfeykDvpDtxkv0EMfQ9AMpApYiwHwF0BjkTwGjQ84WsQgCswasQ
-8WsA1Ia4BcBuyHqEWlWbRtWoUtUoVeVyZZFEkSeUZ/HkaWzZB4Y0kSJ5RxDH
-YESRcFEoRBi4K/Dd4L9c4rnPcF1HOU597GdtLIda5qMShm0m/WEa7ckHmnMi
-1SOW4vuaHBRJDg8hxfgTYz0JSc6EtMf47Ee4YntMzRNkKwAbOZxwgCw/3t+x
-2UU8Xce7zVO8xlh+PfyAZmmQ9QxWAEBL4j8AAJPMSH1+gL7kha7BSdnjIBqz
-4SzcooGu4CEXYMjv1vHfTVC/62ReqOT+YD3Mvxff/f/VK/ahKefuUd3vJ/0/
-mae/16ydl4L/xUN+SSMBuJUVyp8GyX+tJX2RTvwygvCvEPwtP/wzT5y3My7i
-j7Prp/uoYltE4yNYLwByOVizsy4C2xjnFaLnLM1vlB3UJwhtl4Y3KCOrtNGl
-ABDmQy4Ah8lJB0AxpR8AaExtgqExztjyztjxxtD3Vj/8TjsRq56NUy3GK1cT
-FZtJ8p1kGThFCk2TwtMBKA02BwDUkAsBWA29DADXcGokvHoAZSNqA7A20l6p
-RtOq0jQq1LVSVaVYWSJQFnAVOSx5Bk2WSpIm4SXxKPFbmCh6XxSxLbRewgMW
-+D5TPK9hrnsPx7WF7VTNelbIdMhiOKbT3VJpXklUv3hq8BtK+CtydBjpXQAp
-8SUxxZWQ7kDItceVPMHUPkO1ARgf2MRT6KLDwRaA9wFhXZbIXpMMX2BrEAXV
-KYJLtBE5ABQoKREABOWE6Yt89JWumlZH2cBjwdQD1sp1ys5P2MMLB+gLy4Tv
-RmkX2lgXrIfDTOHvieJ7UdJHfnJHa70e62JtTNl3j2qvn/Raj4gXdSvfyXf/
-LYB/xSD8BUP9bxDlTxOUv7SSvyggfRlL/CqMcDUQ/8gH7/4CF/wM9/ohNvku
-JscGVWXdZO0Ph+0hc4/3QXZ7hw5bWLdlsvcMI2CUE9InDO+QRjapXtVoX5cD
-2KWUAgDBlJtlKMoAoExVqQCgqSkJgDV1Jhh7EwzDifqJ99qZZM3iB/Vqqmoz
-TbmTrtjPVECz5fA8OaoAAEARSgEYFLUaAEOxGmWcZgAVJeiUi3oUkn6FUtsu
-0zRL1PVCVTVfWc5RFjEUeVR5FlH2CStNQUreQ8WxYPFrkOjVqjB8XhA8wfcf
-4vl0cb2aOC8q2S4FLJdcpmcmwzeNHviBFppIjXxHjYmhvIsgJwSRPviQ0tyI
-WU8J+U/xZY7YuufoNgCQBZ9wPFx8CgHZg6GPdzDOq8CI9R1hB3QLg5pkwZXq
-0AJDTCYA3UqNAwBc+UH6Ek99nYuq85lk5BFv9h5j/RoJfAkDu7CLubBAujBE
-u9DC/r6UdzlDeD1RfD9K9thX4egM1OudrTH7nqX6xkn3L0eTl/RLFxTb3woP
-v2ZhvyBS/xtM/dMc5S895C8qSF+mEr+KJHwfQrjnj3fywvm64CIdsPF3sZ8e
-oIvtkPX28B6Hw3HramC/v/toD+G4ifdYovhOM4NGuWH9oshO2atmVUyt7k0l
-ADdLLQZAZ3l5APSsPBMAoNV/AmBo7anGrhRj3wfTcIphIlU/m6ZbTNeuZmo2
-s9U7uar9fBW0SIkoUaLLAcwaoQZArtGaAPwaq13B6QKAbIIBpWhYJdV2ijWt
-AnUjT1XLVlUylKUURSFBnouRZSCkH6GS5D1JAkj8bkUUMyeMGheEDfKDOnn+
-jVyfcrZnMds3nxWUwwzNYESk0qOTaG/iqbFvqIlRlA8h5DQ/UqY7KdeRWPQc
-X+mEbXDGdADoOcSEE2zBEbr5ZP/g0R7GeYPgsUD1mWAF9POD2iUhdcqQUl1U
-riH2EwC1S38LAO6K/PUVL3TNzoq+J6JxW87iHRroV8LBRSTi+y3c97Pk7/vp
-3zdyLhbzr6QLbySIH0TJ7P0Uz51VfvZAvbLuW6punnRdPR7/wbD4vQp0Xgz5
-FwfzJZXyp0Pqn1YofxmifNFA/jKH9NVr4GHzehDewRfv6Y4LeY57a4f7cA+b
-Y4uqtB6NHGCDTw5nnkDWHfb3H+2hXTYIL5eoAdOskFFeRL/oVZcsplX1pl73
-rhpACKaVATjB/EIALViZC2AGG7ONrZkAeLAnA4AQDqebJjKNs9mGpVz9Wr4O
-VKjdLdbsl2oOK9SIajW6FoAZEpsBsCGtA4AcsvtU3EEAeygcU4u03QJNO1fd
-zFLX01XVZGU5QVGMkecjZNkQafquNHVTkrQsjp8VvR0XRg8IIjt4oQ3coCpO
-SBknoogdlceKyWK+/cSITaEnJNKS3tFSoqlpYZTMAHKOF6nAmVTqQqh2xTW5
-YTrdUAOuiAkX+ILT4Ybjwb4DGOUEwnssU3ymmQHD3OBuUUiTPLRSE14I3Gve
-pwLQyKwYACBZ4q2vdVO3P5cNOgimbVgrt6jbV/DQi4eoixv476cp3/cyLjZw
-LhXxf0kX3kyQPIz8o14uan97XaydMfOBpfL2cedvJ2M/Ghcuqje/k+7/m4f6
-ik76K4r6JxD1L5OUL9rJX5aQvkoifh1JuBxKsAnAu77E+7vhXj3FJTzAfbLB
-FD1G1T1BdD2FjQJoTQgIwGzuYl9skHyWaEEz7PAxftSAOKZb/rZNFduki6sF
-QJ3plQC0s7DUWFZsrCoCYJ7N+QDYsysPgHwO5QLAz8k801yBcanIsF6i3yrX
-71XqDmoAQCiyUYtpBpChpE4AH0rvA1Ci7BENb1zDn9Tytb1cTSdL00pXN5JV
-dQRlFUZRBpcXQWR5u7KsTemnZUnKrPj9uChuQPimgx/dyHtVy3tdyX1Xxokr
-Yifkst5nMpPTGCnJ9I/xtPQ3tKxIam4QpcCbXPKCVOFOrHPHt3hguz3QQ+7I
-yRfwBdfDDScIGICp7uA9Vsk+c4yAMU5wnzC0TRpWpwor1cfkGeLTDSnJAJQ1
-NwoAtJZ76ptclT2OklF73twD5voN8t5lLOzSAfriKuHiBPViN/NSHfdSIf/X
-T6Lb8RKbSJmDn8LJVR3g8Ee9Hloq7xy3Xzsd/ck0f0mzfkEGPidAfM0k/B1P
-/fMe9a/z1C96KV/WkL/KIP3rFfHbcMLtYMIzP/xLT3yYM+6dPS7lATbnEbrC
-AdXyDNHvCJsEALaQ3af7cKddvNcG2X+JHjrDiRwXxAyJ3/bKYztU8S26xAYA
-h5tZY8yrMhZXApjcmjIAmdv6Bz63twTwOI/8gdWdKjHPl5mXK0wbVcbtWgO4
-3gBp0sNb9Kh2AMlL6AHwvNQhANXLGgewvQC8V9vP0nTTNO1kdQtB1YBR1iAU
-FRB5ya68YFOWsyLNnJWkjYs/DIgALHCrILGRn1TLS67kppRyUgvZaTmsTxnM
-jFRG1nt6Tiw9P5pWGEot8aOUe5GrvYiNLwntAIIYM+yFmvJALLrDNlwPwU4Q
-hNMe3mOD7LtID5xkhwzxw7ok4U2KiErgOhObbUhKM6S9B6DHBeH6Uj99jYe2
-zUXe/0w08Yi7eJ+++Ttx/wcM/NIe5tIy8dIY7VIn64ca7o8Fgmtpojt/1OuJ
-v8LJTR1ordcjoF4Vd4/brp+O/Gye/VG7dlG+e14I+4aN+weF9mco9a8rwK+o
-XzaT/1lA/lcC6d9RxN/CCI8CCS988IHu+Ojn+EQ7XLottsgBXfcM2fEcMewE
-mwUw0ZB9xwOU2w7BZ4MStMSImOVETwjeDEti++UJ3er37brkZmNaI4CeLqgD
-MNRV1QCSurnK1P4HpLq/EgBWj1WZp6oAhPVCtWW1zrzZYNppMu23GqHtRkQX
-gLzG9RuIQwAEmzYOALHZM3ruvJ6lHaRre8maLgJATmlCKOsgiuo9RTlIXrwi
-y5+TZo9LMgbEH3tEaR3C9BZBRiM/s5aXWcHNKuFkF7Bzs1l5n5gFHxiFCYzi
-N/SyCFpFILXal1LvR2rxI3b64vt9saM+6OmXyCUvxIY7DOwKhTvv4zxBJN9l
-WuAMsP6H94oj2uSRderIUgAenphpSE0xAC88MX+8o3rrG9zVXc6y4aeCGTv2
-yl3a9m8EyI9I5A/buB8WSD+M0H9oZ/1QzbucL/g9TXQ3XmIbBdTL+YU66Iku
-9rEx08Zcfu+49cbp8C+WmZ90q5eUOxfEh99yMP+kUf6GpP1tk/r3Keo/Oin/
-rCD/K43072jiD5HAu7QT8HpGiHDDxz7Fp9rgcuyxFc/Qzc+Rvc6IcRfYossh
-yBkCcTrAeO4Q/TeoocvMqDnum0lh7KgkYVCR1Kv+0KVLbTOktwCA9+JGAPZe
-22BqrAfw7111AAp+sN48Wg/A4WcaAFD8chMAjQe1WXY7zAfdZlivCTlgwgwB
-eHnSOICap88A2HnOopGuHaZo+wmaHoy6A6FqhSob95S1IEXlqrxsXlY0Ic0b
-luQNiPN7RAUdwoIWAYC4r+EVVnCLijnF+eySLFZpGqs8iVkRy6iKpteE0OqD
-qM0AKp/YE0gYDMCN+2Nm/FDLPshNLzjY/RDuAsF57ZD81mhB86zQCW7EIHC+
-impSRVXpXhcDcP6UT4b0ZENOLADtLwvSV3vpWl8o+5wk40/487bM9TuU3V/x
-hz/BUD+C8D/OkX8cov/Yxv6xknclT3Djo+hevORRlOxpwB/1eqqLszdm2prL
-7x+33Dod+vVo5rJ+5UfV9kUJ9DwP/Q2D9CWW9rdd2t/nqf/op/yznvJNLvnb
-ONL5V8Sb4cQnwQRPP0KIF+G1Cz7JAZ/xGFf0FFP7HN3ughx0RUy7wVYA5QEU
-Zv3v+OyQgzfokSusmHle7LQwYVyaNKxIGVCn9ejSuwxZ7aaCNlNpK6BUqG8B
-9AodzeaeZvNAC6BdmGgFFAzzbZaldkDKsNF5tN19BO6zQAcs8GFA3ICbMBOm
-AJUDbR7QOrBWTBTdKFE7iNX0IdVdh6p2sKp5S9mwpqhZkANiiHEpIIkYEAPC
-iA4hII9o4FfU8CrLeZXF3Ko8TnUGuyaVVZvIrH/DaIygN4fT2sMo3WGk/lDi
-SAh+Mhg7F4hZ8UeBfBHglzA4oK7YIwVsUEOWmOHT3MgR4ate6as2ZXSdNroM
-uHImZwEKjOxEQ8EbQIpR4a9v8NJ0vpAPOYmmHLhLNozNW+T9X3DwyxDMT+uE
-n2YoPw0wfmrhXK7gX80T3vwofhAvfRwlexagcHFXB1vr5WDMtDOXPThquX0y
-8Nvx9BXD8k/qrUvSgwsC1LdM4j9JtC8gtC9XqF+NUr9uA35U/TaVfP416Zco
-ol0Y0S2IGOBLiPIgxDsTPj7G5z7BlT/HNLmge14gR90R8x7wDQ8YGNCLQAj+
-u5SwTUb0KvvdAj9hVpQ0KU0dVaQNqTP6dVm9htxuQFZS0QmIS5o6zO0d5u4O
-QGgy3AnITaa7LHPdgO5ktfdoo+9oawDQoBwMHx+OHiEnjjBTgCSFNG+hLFno
-K2bmmpmoG8dph1GaAZi6d1/dua1qW1c2LSkA5cq0DNCvjEgaBsSAkKVDBMhZ
-GgT11fz6cl5DEbchh9OYzm76wGqJY7ZGM9qj6d2vqH1RlKFI0lgEYToctxCK
-XQ1GbwUg933hcK9DrM8+KXCLGrrKjJjjWO8G0YOSmE45IJGp0seWAFqZjxmA
-YiYv3lAcA0hnqn30LZ6qXjfp6HPBrD1n9SF9+yYJ8jMG8fM+9vIq8fIU9XIf
-83Iz5+dy/m+5wtsfxQ/jpfZRMsdAhauHOuSZLu6JMfORuezhUfPdk/7fj6d+
-MS79rAH9KN+/KEScZ+O/odL+jqD9Y5P2z2nqv3qo/66hnMsmf/eO9H0M6V4k
-8Xko0TuQGOZDeOtOSH5OyASkPLhaV0z7C/SAB2rSy7rCw7cAfc8h2htCDN6l
-RoGYb9c48UuCpDlx6rTs04Qyc1SdM6zLGzAU9gFKoJpec2OvufUPVVBfL6AN
-GuuzTPUDIqHFgaPVoaONYUAwtDsKyIagE4B4CDV7jJ0HVETklSPa2hFjw4LX
-TaK1o3DN0IG6f1fds6HqWFV2Lik65+Ud07KOCVn7iLR9QNLWI27rEAHyo3pB
-azW/tYzXVshty+a0p7E73rO6Ypk97xj9b2lDb6ijr8mT0cS5V4SlSNx6OGY7
-BHUQiIT7wrF+EFLwDjV8nRG1yIme5r8eEb/plQF6Juu1pcL4vgjQNmV8AhRO
-hbGGsleGymB9g4+2w1Mx6CqZdOQv2LPWH1B3bxAOf0Giruzifl4m/TxB+7mX
-9XMT90oZ//dc4Z2PYtt4qcMr+fNAhZunOtRRF//UmGlvLrM9arp30n/jZPKq
-afGKdvOyAvyDGH6Bi/uWTgEEVbu0fy7QvhmifttMPV9MufCBfPEt6UY0ySGS
-5BFKDAogxngTE18QPzkS8hzxFda7iTu22xM98hI1641c9UHsApIsGDYASo7Y
-o73eYsWtc5NWBKmL4vQ5Wda0MndCUzCmKxoxlg6Zq4bM9X9IuDoHASHX4JBl
-dAhQdM2OHC2OHq2MAequrQlA47U/fQyZAcReyPkTzNIJfgUQflE3julbxxjd
-NEI7DtWM7GkANdimanBNObCs6J9X9M/I+yZkvSPS3gFJT4+4p0MEyMXqBd1V
-/O5Sfk8+ryeT25vK6UtiD7xnDifQx+Jpk3GUmXfkhTfElRj85ivcbgQGEopC
-BCJwgYfkUDA1EsSIXuG8nuO/HRe9G5QB4rNm7bsaQIWWUgBo0XI+Aoq0kreG
-ikhDTYC+xUfd4ykfcRXNOPKWHzNB9yn7v+NhV+HoX7bxvyySr4zRr3Szfmng
-/VImuJEruvdRYhcvffJK7hSkeOGlDn2ui39mzHQwl9odNT046bt1OvmbeeGq
-buNn5d5PEthFHuY7JvkbAv0rCP3rVdo3E7RzndTvqijfZ1EuxZJ/fkO2jSa5
-RpD8Q0iRAcQ4b2KKGzHbkVjsgq91x7V5Yft9MBO+6EU/1KY/Egyo6OD4ECgl
-GsyI3Wa/3+SlrgnTlyVZC/K8OVXhtKZkUlc+YawcM9f+IblrH7X0jFkGxwD5
-3eT40ezE0cIkIMVbnwYEebuzx+B5QJkHWzpBLp+gV09xa6fEDUCrR9s5Qepm
-DrVTB9rJPc3EtnpiUzW+phpbVo4uKEZm5CMTsuFR6dCgZKhHAmj7mkWAwq9S
-MFjCH8zjDaVzhz9yRlJZ4ynMyWT6TBJtPpGyHE9ajyVuvcHvRWOhkWhkGAoX
-DCdHHNBebTNfr3HeLvJjp0RxI1JAKdiuiWvQJ1YZU0qM6fmAdrAgFciZlb8G
-fkJqCNB1+KgGPKUTrsL5Z5y1R4yde2TINRziVyj2Koh4dZ5ydZRxtYt9tZ73
-a6ngVo7owUfJ43jps2i5S7DC3UsT5qSLdzRmPjGXPj5qfHjSe+d04ppl4Vf9
-+i+q3Z+lhz8K0N+zSOco9K/h9G9A9G9naef7aRcaqReLKD98oPwUS773hvw8
-muwdQQoLIb0JICW9JGW4kQpciBXuhKaXuG5f7Ij1KBWIXglCbQehIIDwEUGM
-PKS+3Wcm7nJStvjpG6LsVWn+sqJoUVU6r6mY1VdPG+umzI2TlrZJS/cUoJUc
-mT6amD6amQF0kytzgHoStHC8swjIKCErgJgSuX6C3gBUlYQtQFtJ3TuF6xYO
-dQsH2nmwZm5HPQtSz6yrppeV0wuKqRn55KR8YlQ2Pigd75EAWsxmEaDIrBSM
-FfPHc3jjWdzJTM50Oms2jbHwkb6cQl1LpmwmknbiCfvv8IevsagoND4cSXkF
-pb3eY77b5MQt8+LnrCcoSeKgIrFbDYg7awGJZ3qxMTvXmJ8OyD3L4wHRZ12o
-oTVA0+OjGPGQTLvyl56xNx/R9+6SDq9hUL8d4H7bIP06R/11mPlrJ+e3ev61
-UuGdHJHNR4l9gswxWu4arPR4qQl30SU8N2Y+NZfaHzXanvTcOx2/cTR/zbD2
-q3rnFxn0shD1A4dwgU77Bk3/9x793BL9u1Ha9+20S5XUHzMplxMo12PJT96Q
-PaPJwRHk6BBSQgAp7SUp15VU4k6s8ya0++H7A3ATwdiFEMx6KHovDA0DtKoo
-8msYPQHCSgFz03cE2SBx/oaseFVRtqKuXNLWLOjr541Nc+bWWUDY2j93NDx3
-NDEPiFwXFgGp6/ryMWgF0LyC1wDlK2zzBAkCJLC4HUAISwKfUvbPELq1Q90q
-RLsC1izvaJZA6sV11cKKcn5BOTermJuUz47KZgalMz0SQDvbLAIUtOXC6SLB
-TAFvNp87n8tezGYtZzLW0umbadTtFMpeMgmSSIDH4tBvsIRXaIr173+3z4zf
-5iSs8d4vCpOmJYAGt1+V1KF93wjocdPLAVVufo6x+BMgz62KNdS+MjSG6DsD
-1AM+8nEP8ZwLb/UZa8uOun+XCL+OQv8Oxl9bI1+boV0bYl3r4F6r418vEd7L
-Edt9lDxJkDnFyN1ClF4+mghXXaKzMdPRXPrkqPHRcc+D0/FbR/PXjWvXNNtA
-07gY+RMPf4lBBTTBEMb5dfqFKfrFXtqPDbTLhdQrHyhXEyh2sRS3NxT/aHJk
-BDkuhJwSQM56SS5yJ1d5E5v9Cd1BeOsZeDoMtxyBBUViDqIwCOv4fIWmxsEZ
-yVD2p31e9p4wf1tSApKVbyir19V1q9rGFX3LsrF9ydy5dNS3dDS8BCiSp5cB
-XfLy6vH6GiBQ3tkAZMqQrRPYNqBXRu8CqmXC/inp4IwCPUPoQTDdJkS7Adau
-72rWttRr66rVFdXKonJ5VrE0KV8clS0OygChc7sEkDvXiBYqhAtlgqUS3nIR
-d7WAvZ7H2sxhbGfRd9Op+x/JhykkxHsCJh5HfIulxiIYCVDW+11O8ib/w4rw
-w5wkZUIOaKZ7tIByugHQT2eXASrq4uw/foB4DyiqGyINbSG63gDliI902lO4
-6MLdeMbctaNC7xAQNxDYG7uE66uU69P064Os6+3c67WCWyXCBznix2nSZ4ky
-5xiFe6jypa8m0k2X6GLMem4ufXrUaH/cbQNotedumlava7evKQ9+lSCu8HE/
-sijfkxnn4YwLW4yL8/Qfhuk/tdF+rqD9kkX9NYl6L4HiFEfxeUsJj6G8jaQk
-h1IyAij53pRyb3K9P6k9mDgQRpiIwM9H4dejcbsxWOhrrHWUEt9h6ElIVhqM
-mw3hF+yLSvakFTvymi1VPUjTtKlr2zB0rJu618x9a0dDa4CCfHr9eH7jeHkD
-UJODQICmHLxzAtkFxOVIMCAxx0FOCVBAa06BnSH1uzDdDlS3va/d2tWAtjSg
-DfXmimpjUbk+q1ibVKyNylcHZas9UkCb3iheqROt1gjXqgTrFbzNMi6ohL1d
-yNrLZ+zn0KFZVHg6GZVKwiUTSAk4WiKakQRjf9jnpm7zP64L0xYlgLp9TJk2
-oPnYpU9tMWXUm3KqAMl7cT4gfK/6aKxNBBTwzRGGrhDNYKBiwkcy5ylYceWA
-njHAdhTYbTzqFgx3c4d0c5l6Y4pxY4B9s413s1Zwp0RkkytxSJM+T5S5vlZ4
-hCl9/DRR7rr3bsYsZ3OZo6XxyXG33eno/ZO52+bVm7qt66r9a1L4VSH2Zw75
-BzrjAprxPZhxaYXx4wTj5x76L/X0Xwtp11Ko15OoTxOpXnHUkHfU1zGUxChK
-WhglN5BS4k2pDiC3hJB6wkkjUcSZGMLyGwLoLX4/Fg+Pw2HjcORELOMjip2F
-4BUcCksg4sp9WS1Y0bCratnRtG/rurYMvSDTAMgyDDoaAx1PgY7ntk6Wtk/W
-dk5Auyc7eydg8Clk/xR2cIqEnKKhp7jDMwL8jIQ4oyCt9TqA6/ehOvC+dm9X
-u7ul2dlQb6+qthdVW7NK0KQCNCrfHJBtdss226QbLeLNJhGoQbhVJ9iu4e1W
-csHl7IMSFrSIAcunI3OomEwyPo1E/kCgf8AyUxHsNCj30x4/HSTKWJVkzMsy
-ppQZI+r0Pt2nDmNGsymnzlRQaSouMZbnGasyjbWpxoYEY/NrQ3ukvi9UPRoo
-n/YVL3ry113ZO8/oB3ZkxF0s5g4Uf3uLfHuJdmuCeaufc6uNf7tWeL9E9ChX
-8vST1Pm9/MUbhVe40tdf88pDl/TCmO1qLnOyND477rYHIE5zd80rt/VbN9X7
-1+XwayLMVS7pZyb9Ep55Ccr8cZNxeY5xZYjxaxv9WiX9ejbtZgrtUTLN/T01
-MJ76KpYa/4aa+oqaHU4tCqJWBlAbQymdkeTBaNLEG9LCO+J6HHEngQBNJKDe
-EwhJeGoqjpWJ4eYj+aVwUSVMUguVNx4oW/fVHWBtz56+f884tGsa2bWM7x5N
-7ZzM7Z4s7Z2sgU9A+yc7B6fgg1MI9BR2eIqEnaLhpzjEGQF5RkKdUdBnKP0h
-XA+F6iAHOsie9mBbs7+pBq+q9xZVe3PK3UnF7qhiZ0C+0yPb6ZLudEh220R7
-zUJwo2C/ngep4R5WseHlLGQJA11Ix+VRiVkUSjqJ8QnPykBzMmG8rANB9o4o
-e0OSsyzLnlVmT6izhnRZPcArTV6TqbDWVFJhKi82VuUZazOMDSnG5nhja4yx
-J1I7FKacCJLN+YpWvHggV9beM9qhLQl5H429ByHeBVHuLtLvTLDu9HHvtvLv
-1ghtSsX2uRLHTzLXJLnHW4V3pNI/UBPtpUv2MGa/MJe5WBqfH3c/OR21O527
-b1m5ZwDd0YBvKWA3JJhrfOJVFu0ymfkjgnl5h3lliXl1nPFbD+N6A/1mMf12
-Gu1+Ks31A80/iRaZSIuNo6W8pWXG0AojaRUhtLowalsUtS+GMvqOPBtHXk4k
-gZJI4GQSLIWISSWSPhLpGQR2PpZXihZWocR1CGkTTNF2qOqCanohugGIfvjA
-OHZgnty3zOwfze2fLB2crEFONiGnO9BT8OEpBHYKg58iEado5BkOdUZAn5Gw
-Z1TcGcqAQOjhhzr4gQ62pz3c1kA3NZBVNWRJdTCnOphU7o8q9gfl+/2y/V7p
-QbcE0imCtgsPWwSwJh6inousZaOrWLhyBqGYTi6g0nIozCwiJwfLzUXy86CC
-fLAof0uSvybLX1Tmz6jzxrS5g4acblN+m6moyVRaa6qoMFUXm+pyjY3pxuYP
-xrZ4Y9dr/UCUZixcMRMkXfQTrntxt92YB89ocFsS+iEK/2CfdH+Den+BcX+c
-fb+Pe79VcL9GZFcqfpondUqXvUiWe71T+kapAoM0r711H7yMOR7mcjdLo/Nx
-97OTEfvTOZujlQdG0D0t+K7y8LYUfUNAuMahXqWzLmNYVw5YV9eZv80wrw8y
-b7Yxblcx7ubS73+iP0+j+6TSw5Ppb9/TkxPoGbH0/Nf0sih6bRi9+RWt+w11
-OJY6lUBZTKKsf6DspJKhaWRkOhmfQaZkkpl5RG4Jnl+FFdVjJM0oWTtS2Y1Q
-98E1QzDdKMwwcWiaPjTPHloWDo+XDk/WDk83Yac78FMw4hSCPIWhTpHoMwzm
-DIc9I+DOyPgzKsFaLzRCjzrUoyA6JFiL2NbCNzXwNTVsSQ2bUx1OKg/HFYej
-8sNhGWxQCuuTwHtEiC4hsl2AbuVhmri4eg6hhkWqZFJL6fQiGiufzC3E84rQ
-gmK4sBgiLt6VFoPkxavKogV10ZS2cFSf328q7DKXtJnKG01VNaaaclN9kakx
-19SSbmz7YOyIM/a90Y28Uk+Fy+eDJav+AtBLzp4bE+pIRdoRsbYIgg2YbLNO
-ezjPfDjGedjHe9gqtKkV2ZdJHPOlrhkyjw8K7zil/ytVUIjmja8+xduY62Uu
-d7c0uh53O52MPD2btTtasTWBHur27qsO78pQt0X4mzzq70zWLwTWVRjrt23W
-9UXWzXEmoDtpZD4oZdhkMRwyGF6f6KEf6W9S6O+T6Z8S6XnxjNK3jOoYRlM0
-o/MtfSCeNv6eNveBuvqRuvWJup9BhWdRMDkUYi6Flkdhl5B5VURhPUHcgpN2
-YBU9GNUAWj2M0o4h9ZNI4wzSNI8wLyGOVhDH68iTTeTpDuoUjDqFoE9hmDMk
-9gyDO8Phz4iEMzLxjEr6jDbgEAYsTI+B6DBgHXpHi9rUotY0yCU1claFmFEi
-pxTICTlyTIYakaIGJeh+MaZXiO0S4Nv5hBYuqZFDqWPRqpnMcjq7hMorI/HL
-ccJylKgcJinfl5bvyK1H2bJldemctnRSXzxiLO4zl3WZK9vM1Y2muhpTQ7mp
-qcjUmmNqTzd1Jht74g1Db7UT0arZSNlSiHgjgL/jzdl/wYA5UtD2eNxjOPHR
-LsVujW43x7Id49r28m1bhY9qxU/LJM4F0heZcq8UhW+8MjBGFRKmfQewXIx5
-3uYKT0uT+3G3y8mI49ms/fHKI/OmnX7PRg19IEfdE+Pv8Ck32czfyexrKPZ1
-MPvmGuv2DOvuEOtBO9OmhmlXwLDPZrhnMYIzGDGfGIkfGWkpjNxkRkkioyqO
-2fiG2R7L6EtkjCbTZz7Slz7RNzJpu9k0aC4NlU/DF9IoRTRmCY1bSRXUk0Ut
-JEknQd6LVw7i1CNYzQRWN40xzGGMixjTMsayhjnawBxvYU52MKdg7CkEdwbD
-nyHxZxjCGY54RiSdkcmfqRRrvQhIAwGmx0P0OLAOt6PFbmqxaxrMkhqzqMbM
-qzCzSuy0HDspw41JcSMS/JCY0C8i9grIXXxKO4/WwmE0sFm1TG4lg19NEVQT
-RDVYcQ1SUgOVVYPl1dvKqnV11ZLWersvnzCWDZsr+szVXebaNnN9o7mpxtRS
-bmorMnXkmLo+mXqSjYMJ+rF3munXyoUo6WqoCBTI3/NhQ90ZSEcK5gmW4HBI
-tt+h2a8yHs+yH49yH/cKHreKHOrEz8ulbgUyzyy5T6rCP+EPgEyENjZQ/9Hf
-mO9rrvS2NHked784GXE+m312suJg3rQ37D3SQG0VSBsp7oGQfJfLuEVn38Cx
-b0LZd7bY9xbZD8ZZNr0su2aWfTnzSR7TNZcZmMOMzmImZDA/fmLmfGQWpzAr
-k1kNCay2OFbPe+ZwCnPqE2PBeg+1Xm3yGAcFDHgxHVNKJ5YxaBUMtvXj1NOE
-rVRJJ0XWR1YMkVRjRPUkQTtD0M/jDUt40yrevI63gPBH2/jjXfwJGH8KIZzB
-iGdI0hmGdIYjnxEpn8nUz1TaZ7SRjDSQYAYSRE8E6wg7OsKmFr+uwa9q8Mtq
-wqKKsKAkzCqI03LipJQ0LiGPiClDImq/kN7DZ3TyWG0cThObV88SNtBEDWRx
-A17SgJY2wGUNEEX9nrJ+S123pq1d1FfPGKvGzVXDlto+c32XubHN3Nxobq0x
-t5ebOotM3Tmm3nTTwAfjaKJuKk49/0ax8kq6GS7cCeId+LJhHnT0cwrOEUN8
-BqU83aE/WWU9meU8GeU96RU8aRU9q5O4VEjdi2QvsxV+acqg96rQt+rIKG18
-sP5ToLHA31zla2n2Pu7xPBl1O511Oll5Ztl8Ytxz0ELtVchHMpytiPyQR7/H
-4twicu4gOPf2OA/W2Laz7EfDbPtO9tN6lmMxy6mA5Z/PispjxeewUrNZ2Zms
-onRWZRqrPoXdmsTuTmYPfmRNZLDmslkreUxQIRNczDwsY6IqmPgqJqWGybCO
-Z+snamWIu+jSPpp8mKocp6inyJpZsm6RpF8hGddIpk2SeYt0tEs6BpNODkin
-UNIpjHyGpJxhKGc46hmR9plM/0ylf8YYqUgDBWagQPVksJ68oyNtaUkgLWlD
-Q15Tk1dU5CUlZUFBmZNTZ2S0SSltXMwYETEHhaw+Aaebx+vgClrYIutfYh08
-rSRpK07WipK3wBQtB6rmXXUTSNu4qm9YNNTNmGrHLfXDlqZ+S3OXubXN3N5o
-7qw1d1eYe4tMfblA19BIimEySTsXr1p6J1+PkWxFCMHBXKgfC+lJx7qQCM5o
-shOE+nyb4bjCdpzlOo7yn/UKHdvEzvWSF5Uyr2K5b44i8JMyJFkVEat+Fa1N
-DNVnhBgLg8zVAZYW3+OelyejHqezrqcrTkcgR+PeMx30qRrpIMfZS0iPBHQb
-Dvs+lXMfw3kI4diCOI+XOA6TnKf9bMdWtnM127WE7VPMjixkxxWwU/LZWbns
-whx2RRa7LoPd+onTlcoZ+MQZy2LP5rKXC9mbJezdMjakko2sZmNr2aR6Nq2R
-zW5i860fqosl6WfKhhmKCbpqmqaZp2mXqPpVqmGDagJRzDsUyx7laJ96DKGe
-HFJP4dQzJO0MQzvD0z8TGZ/JjM9UprVedKSRDjfQoAbavp66p6Pu6qjbWipI
-Q9tQ09ZUtFUlfUlBX5Az5mTMGSlrUsIeE3GGhbwBAb+XL+ziirvYEuuw6aLI
-uojyTqyiE6XsgKnaDzRtO9rWTQBC0LRgapy2NI1bWoYtbf2Wjm5LZ5u5u8nc
-W2vuqwA8zoO5f7R4fdTPftAsJirXYmWg1+LdKMFBKBfuz0J70XEviEQ3FMUV
-QnfZYjqvcJxnec6jAqc+kXOb2K1B6lUl8ymRB+QpQjKU4SmqqHh1zGttUoQ+
-M8xYHGKuCbK0Bhz3+p6MvjyddT9ddT0CuZj2nPTQ5xqkowL7VEpyENIe89i2
-DK4NgWsH5z7e4z5Z4z6b4z4f5Tj3cNyaOO4VbK8ydngpJ7aEk1LMySriFBZw
-KvI5dbmclmxuVya3P4M7msOdLuAuFnPWyzg7lZyDGg68joNp4BCaONQWDrON
-y7WO7S6upJ8jG2ErJljKGaZ6gaFdZujWGIZNunGbbtqlm8F0C4R+dEg/htNP
-kIxTNOMMwzjDMz8TmZ/JrM9UtrVeTJSRCTcwoAYGRM840DHAOsaulrGjYWyp
-mZsq5rqStapgLcnZCzLOnJQ7LeFNiPmjIuGQQNzPl/Rxpf0sWT9dbl2W+wjK
-XqyqB6nuOdR072s7d/Qdm4b2FVPrgqV1+qh9wtI5YukasPR0W3rbLf1N5oE6
-81ClebjYPJJnnsg0znzSLaRoVpOUm/Gynbfi/VeCwzAuMpCFfUkjeBLIHkia
-+wHjxRbLbYXrNst3GxW69Ynd2iWejVKfanlAqSK4QBmWpYr6qI5J1Lx9q/sQ
-pc+ONJaEm2tDLW3Bx30BJ2O+p3Mvz1bdj0EvzHtuBqirFumswjrJSI5i2lM+
-y4HNe0Tm2aN5TyA8xy2e0zLXZYr7Yojr0cn1quf4VHFCKznvKjgfyrmZZdzC
-Um5FCbeuiNtSyOvK5/Xn8kbzeFNFvIVS3lolb6uGu1/HPWzkopq5+DYeuYNH
-7+Kxu3n8Xp6onycd5conucpZjnqRrVlh69ZZehDLsMMy7THNB0wLlHkEYx4j
-WCco1gmGdYpjneHZn4nsz2TOZxrnM8bERhnZCCMbbmAf6tlQPftAxwZr2Xsa
-9o6as6XibCq560ruqoK3JOMvSAWzEuGUWDQukowIZcM82TBHPsxUDNOUQ2Tl
-EF41iNEMILT9h7q+fX3vjrF7w9S1YulYOOqaOeqeOOodsfQNWAZ6LIMdADJz
-pM48WmkeKzGP55lnsg0LGbqVj+qND4rtRCk4VgSN4SMiOOggJt6HRvLGU14i
-6F77TM8tjucKz2NW4DEGwCs8OqTeTTL/WnlwuSKsUBmZrYr+pH6TrImN06XG
-GHKjjWVR5voIS3vYcX/IyXjg6Zzv2ZrXyZanZc/DCHXXIV+osW5yoouE5ixk
-OXJ5T2m8Z3jeczjPeY/nus5zX+B5jvNe9vN827j+tdygGu7bGu6Ham5mFa+w
-kldRwasr57WU8bpK+P3F/JFC/mQJf76Cv1rNB9Xx9xr50BY+so2P7eSTuvm0
-Xj6rX8AdEFjHuWRUIJ/iK+Z4qiWeZpWr3eDqtjiGXY4RzDFBOOZDjgXOOUJy
-jtGcEyznFM85JXDPSNzPFO5nGs9aLy7ayEUZuUgDF67nwvRcqI57oOXua3h7
-Gt6Omr+l4m8qBesK4YpctCQTz0slM2LppEg+IVBM8BQTbOU4QzVOVY2R1KN4
-zQhaO4zQDUH1g2DjwLapb8PSs3LUu3DUN3s0MHk0OHo0NGgZ7rWMdlrGWizj
-9ZaJKvNkqXmmwLSQq1/J0q5/Um2lKvaSpJB4EewNHxXFwYUwiQFUsh+O5otg
-+OyzfUBc7xW+96zw5Zjo5YDEu1Pq3yILrlOEVSoji1XRuWoAT5eiSUjQpb01
-5L82VsSYG15ZOiKPB8JPxkNO5wPP1nxPtnwsYG8T9KUe6aXBeiqJ7jLqCxHT
-lc91YvKdSHwXNN8NwvfY5nsB/xLfb5Qf0MsLbuGFNvBe1/OS63mZdfzCWn5F
-Db+uht9Sze+qFPRXCEbLBZNlwrkqwUqtYLNRsNsigLQJEJ0CTLeA0CegDAgZ
-Q0LOiJA/KrSOdtmUSDEnVC0J1GsC7SZft83X7/GMBzwTlGeG8SwI3hGKd4zh
-HeN4JwTeKZF/RuafUfifafzPOBMfa+RjjHyUgY808OF6PkwngGoFEK1gXyPc
-Uwt3VKItpXhDIV6TS1Zk0kWpfE6imBUpZwXKGa5qhq2aZqinqZopknYSr5tA
-68cRhlGocQRsGtq2DG4cDawcDy0eDc8ejUwdjY4djQ0djfdZJrosk62WqQbL
-dLVlpsy8UGxcztev52i2MlW7afKDD5LDRBHyHR8TzSGEMcnBFGoQjh4IZwXs
-c/xBPL8Vgd+syG9c7Dcg9e+SBbfKwxoUUVXKmFLV2wJ1bJYmIU2blKTLiDMU
-vjNVvTU3vbZ0Rh8PRp1MRJzOh56tBZ5u+x+B/UyHfgakrxbroyK+lFO9JEwP
-IfcFR+BGFbjjBJ5wwUuwwHdT4L8kCJzmhwzzw7r5kc386GZ+chM/s4lf2Cio
-aBTUNwha6wVddcKBWuFojXCqWjRXI1puEG02C3fbhAedQniPCN0nwg+KyMMi
-+qiIPS7iTYqtC5R1zMvnxcplkXpdpAEJdTtCPVhggAiMhwITXGBGCixowRFW
-cIwXnBAFp2TBKUV4RhWe0YWfCSYh3iTEGoUYgxBtECL1IoROBNOJoFoRRCPe
-V0v2VJJtpRSkkG3I5asyxbJUuShRLYpUi3z1Ale9wNLM07VzFO0sUTeD00+j
-DVMI4wTUNA62jG4fjWwej64ejy0dj88BP6ROjh9NDR9N9x9Nd1tm2iyzjZa5
-GstChXml1LhepNvK0+xmK/fT5YepEkSSEB3Hx7/mkCKYlHAyPRTLDIGzg/e5
-wVv8oBVh0Nz/29F1NrWRbdu/+OrVCzfNzJ1sj8cep3EOY+OMbWywAZMzQiAE
-IgokhCSUc46t1DnnzKt6LVed0gelD716r73W3vucBv++Bv99AfnnNPbdOP7D
-MPHzO/LCK+rSAHXlEX31DnPjBnf/Cv/sd/HdJenTRWXqgrr4i2b/Ud/+t3H4
-je79pxr4hxT+Ox//O5v5G5X/X7z830j9v8DWf3a6/1Hv/Weh91/J3v+Een/z
-9f552P1mu/udvfvDQvenye6vY92rY917Y92no703o70Pn3ujn3tTn8D5EXBl
-GFz/CG19gHZHIPcodDIBBaehyCyUXICyS1BhFaqsQY112BIAVk6BtmB0GyF2
-YeoQpj0Q44O4AMSHQCECijFQSoByClQyoJoD1QKoFUG9DOoV0KhBZkGEciKU
-FaAMD6V4KMnBcQ6OsXCEQUI0EqRQP4X6SMxL4Mc4cYiR+wi1D1H7PXqvQ+8B
-zG6D2amyrhK3nee3MoIzKTpi0kZIXvcrayfq2pFqP1DXd9WNLdXhUBxr/dkS
-57yyNa1sjyvbn2TXkLw3KB6+4j3PWd9TKvCICN1Ho7fhxPVe5konfwEo/VSr
-/FCsfZ9u/DsKfBdof+vpfrsPfrMFfWNHvllEv5vBfvyC//KJuDhEXnpDXXlO
-X/uLuXGfuXWLe3RNeHlVHLoijV5Wpi+pyxe19V9110+G+3vj5Ds1+K0c+UZI
-fMNl/kUX/kmU/4HV/w63/rfX/W+g9z/l3t+yvX/Eev8K9r719L7f7/3o7P1s
-612Y7/022ftjondvojcw0XszAX78Ao59AafGwYVxaHUMWh+Ftj7Du59h9xf4
-ZAoOzMKRBTixBGdW4cIaXF5HLIFtaTZLBoA7CLKLWvc/6UZpD8KcImwQ5kKw
-EIXFOCwlYTkNy1lIycNqEdZKsFaB9Sps1GGjKCIFEckLSFZAMjyS4tAkh8ZZ
-NMZgERoL0XiQIvwkcUKQHpw6wugjhD6CGHePcbfZQ4A9qHP7VX6vxO/mhZ2M
-6EpKWzHZGVIcAdVxojmO1c1D1bmnOrfVrU112666VhTXgrIzo+xOKLuflf2P
-svu96BnkfK+YwDMq9ISIPkQTd+H+ZsOrneJvQPnXWu2XQuPnNPBTtPVjoPOD
-p/fDPvT9Nvz9Ovr9MvbjHP7rJPHbKPn7R+qPd9T1V/TNAebWI/buHe7JTeH1
-DfHjdXn8qjJ7RV25rDku6TsXDPfPhu9HLfiDEvleTHzPZ/7NFL4jK9/i9W+Q
-1r/A7j/a4D9q4L8K4Lep/jPif/CDPx2Dv+6CFzfB31fBK3Pg1Rnw3gw4MAMO
-TkMfp6GxaWh6GlqYglen4I1JeHsC2fuCuCcR7wwSmEfCS0h8FUmvIfkNpLyJ
-1rbQpgtt76KWGIAPMIuyiCOM8mLMKcYGUS6M8jFUSCBiCpEyiJxDlAKilhC1
-jGhVRK8hegM1SiJaFNGCgOUFLMtjGR5LcXiSxeMsEWWIME2eUVSApE4J+gRn
-TlDmBGG9EOvtcp42dwzwR3XeXRUOS+JBXtzPSLtJeSembIfVrYC27dO2PZrL
-rbr21Z0dddep7q6rezZ1b0nZn1UOJpWDUeVoRPJ+EHzvuMAbJvSSig7gib/Q
-1AM4e7tXuNEpXwaql6r13wrNi6nWhWjn10D3Fy/48wH88zby8wb20wp+YZ64
-NE1cHievfqJuDNF/vmFuP2fuPWEfPOCf3Rbe3hJH/pQnbirz19XVq9rmFX33
-d+Poonn6i3b2ixL9WUr+zGd/Ygs/0pUfifoPWOt7uPtdD/q2Cf27DP2QhX5K
-QL+EoAs+6JIburwD/eGArq9CN+ehu/PQwDw0OA8Nz8Pj8/DMPLw4h9jmEMcc
-sj2L7s2g7hnUO4cGFtHwChpfQ9MbaH4TK21hVRfW3MXa+5il36AjHD3GcS9O
-nhC0H2fPcC6C8zFMSGJiGpOymJzHlCKmlDG1gmk1TKtjegMzKhJeFvGiiBcE
-PM8TWZ7IcESKJRMsGWeoKE2HKfqMYgIkG8BZP8r5Ye4U5E67vK/NnwCCty54
-qn1vfpSXDjPyQbJfZ94Na7tBbe9U2/Nq+0fa/oG2v6sebKkHDvVwTT1cVt3z
-ytG0cjyueEel0xEh+IELvWOir8nECzz1FM0+ggv3eqU/O9WrQP2PavNKoXU5
-1f492r0UBH/zQhcPkYs76EUHdtGG/75I/DFLXpugbo7Stz7Sd98x91+xDwe4
-x4/5l/eF9/ekz3fkqdvK4i117abmvK7vXTWOr5j+S3roNzV2UU5dFLIXuOIF
-pvIrWf8Fb/2MdH+CoB/b8E81+JcifCEN/xaDfw/Cf5zA1w7hGzvwLQd8ZwW+
-tww/W4bfLsMjy8iXZWR2GVlaQtaW0M0l1LWE7i9iR4vYyQIWWMHCa1h8HUtv
-4rktvLSDV/fwxgHecuPdI8JSccgJgfkI4pS0IoI5I7kIwccJIUWIGULK4XIB
-l0u4UsbVKq7VcK2B601cr0pERSTLIlkUyIJA5nkqy1Fpjk6xdIJhYgwTodkQ
-xYUILoRzZyh/BvNBkA90BX9bOAUsiyeeVCVvSfbkleNsv8J8GNcOIvrhmXbo
-19wnmvtYcx9qR3vakUs93lSP7erxqupZUD0zysmk7B8Xg5/58DAbHaITb8nU
-azz7HM0/gUsPwcqdTv0m0LhRBa4X2tfS3aux3h9B6MoJfNmNXt7FLm/il9eI
-q8vkjXnqz2nqzjh97xPzYIh9NMj+9ZIbeMq/eSR+fCiNP5Bn7ivLd9X1O9r2
-Lf3gpuG5bgb+0MNX1PgVOXVZzF3mi7+zld+pxiWi9RvWvQhDF3rwhSbyWwX5
-PY9cSSJXI8iNAPKnF7l9iNx1IQ82kEc2ZMCGvLMhn2zIhA2ds6HLNtRuwzZt
-2I4NO7Dhx6v4ySoesOHhdTy+SaS2iNwOUdwjqgdEw00Ax0THS4InpKXlUCvX
-BCnKigjrIkcpPkEJKVLMklKelIqkXCKVCqHWCLVOaE1CB0i9JlFVkaqIVEmg
-iwJd4Okcz2Q5Js2ySZaNM1yM5q3/iRJ8FOMjqBCGhTAohrriWVsMAlKgLvur
-/arXSUH1ZvvtgOO4fhzVj0O6J6B5fJrHq3ndmndf8+5oJ1vqyYZ6YlN9S6pv
-TglMy2eTYnicj31mE8N0aojMDuL5V2jpGVx5DNbudRt3msDtavtWofNnuncz
-Bt44g6/7+meXXdvDr20R19fJm6vk7UXq7iz9YJJ5NMr8Ncw+fc89e8O9eC68
-eyp+eiJNPJbnHymrD1XHA811Tz+8Y3hvmcGbRuS6lriupK9JuWtC6RpXvUo3
-rpKtP/DuFRS6DCG/t5ErdeRqCb2eRW8m0Nth9K4fve9BH/Zbr+hTB/psA323
-gX7eQCc3sPkNbGUDW9/AnBv47gZ+uIEfrxO+dSJoJ8IOIr5Fplxkbo8sHpAV
-N1k/JgEv2fGRlleCAxQapPAQRYZp2oqLGM0laCFNi1lKzFNSkZLLlFKllBql
-NiitSWkApdcluibRVZGpiExJYIo8m+fZHMdlOC7F8klGSNJCghQShBDHhDgq
-xmAxCkqRrhRuSyFAPqsrwWq/ROkvaL6sdpLut9tOYrovrPuCus+v+U6002Pt
-9FA73dVOtzW/Q/XbVf+KGlxUQnNSZFqMT/LJcTb9mc4Ok/n3eHEQrbyEa0/B
-xqMu8KDZvl/t3Cv07qbBO3Hodgi5ddo/aO7P/f5xjrcc5N016v4y/XCeeTzN
-PPnCDnzuH9v+8h3/+rXw4bk49qz/1JjFp+raE23zsbb7SHc/MHz3zLM7RvSW
-nrylZm7J+T/F0p989U+2cZNq3SS6NzDoOoJe66HXAfRmFb1VQO9ksPtx7GEI
-e+zHnniwgQPshQt75cTeObFRJzblxBac+KoT39jCt7aIvS3CvUV4nMSps9+g
-jzjJuItM7VK5A6ropirHVN1LAT6q7ad6ARo6oy0Rbuk6IkpTFpUlGC7J8GlG
-yDFigZZKtFyhlSqt1Gm1QWsArbVovSExdYmtiWxVZMsCVxK4Is/nOT7LCRlW
-sH5rwZ0mRYtUU5iYRKQELMVBKda1PHi/bBJpKKFqv54cLGiBXL/R5k/qgbge
-iOiBkB4I6AGfHvRoQbcW3NeCO1rQqZ2ta2c2NbysRBel+JyQnObTE2x/++cn
-svQRr7xDa6/hxnMQeNpp/dXsPK52HxXAhxnoQRy5H0bv+bF7HvzuIXF3h7zv
-pB6u049X6SdLzMAc+3yKfdl/uFL/sQjv3gojr6Uvr+S5l8ryC3X9ubY1oO8/
-1Y//Mk4fmaEHZuy+nrqnZu/JhXti+S5fu8s17zLtO1T3DgHdxtBbEHarjd1p
-YPfK2IM89jiNPYlhAyH8uR9/6cFfH+Bvd/D3LnzUhU+78MUdwrZDOHaI7R1i
-f4d075DeHdK/Q53t9Nv08V0qtU/l3HTxmK546bqPbvrpdpDuWvY2zCARBosx
-hCUVrOyTYtk0y1uXPceKBVYqMXKFkWuM0mDUJqMCjNZmtKbENSSuLnI1ka8I
-fFngS7xQ4IUcJ1q/soC2YtOiUysDZjApjcgpWE6CffedaPdrXLGGGqn1i/+h
-Yr/FdpYxzlJ6KKGHonoorIeCeuhUD3n10JEWPtDCu1p4Wws7tKhdjdnkxLKU
-WhQyc3xumu3v1R0jK5/w2ges8RYBXkHt553Os2Z3oAo+LUJPMvBfCfRxBHsc
-wB+dEA/d5MM96vE2/cRBD9iZ5yvsywX29Sw3OMm/G+OHRoQPQ+LoW2lqUF54
-o9heq45XmuulfvDC8Dwz/ANm+IkZf6ynH2u5R0rxkVR5JNQfcc2HbPsh3XtA
-Qg9w9D6C3+/hD1v4oxr+VwkfyOHPU/jLGP46hA/68XcefOiQGN4jxvaImX1i
-aZ+w75Ob++TOPnlwQB4dUCcHVOCACh3Q0QM6sU+nD+ncMV300hUfU/czzSDT
-DjHdMANGGSTGYgmWSLKkJRisHGTRmhUp1sUvclKZk6usXGeVBqsCrNpitTar
-ARLflPiGxNdFoSoKFUEsC2KRl6zvWxAXGKlAWblPtuRKDpOziJyBlTTYL5Wk
-2v2CZKKhxWp6tNJvrkXy/RZ2JG1EkkY0pkcjevRMjwb0qE+PevSoW4vuazGX
-FnNqCYeStMtpm5RdFvKLXHGOLU3TlQmyNkY0RjBgCGkPQp3Xne6rJviyCr0o
-ws+z6LMkNhDFB4LEUx/59Jh6ckAP7NAvnMyrDfa1jR1c5t7Nc0Mz/IcJYXhM
-+DQifvkgzQ7Jy+8V+zvV+VbbHdTdb4yTV0bwpRl5fp4cMDIDWn5ALT2VK0/F
-+lMeeMp1njK9JxT8hED/wvDHEPGkQww0iedV4kWReJ0lBvubhYmhEPHRT4x4
-ic9uYuyQnHWTy25y3U063dTuEXV4RHmOKN8RHTiiw0d07IhJHvVb9jkPU/Qx
-FT9TD7LNENsOs90oC8ZZOMGilntKc2SGoy3ZYGUii9yseLEgKPNSlZPrnNLk
-FIBT25zW4bSWLACS0JTEhijWRLEqSGWh/00L3BIrWxRaomRLqBRwpYApeUTJ
-wWoWVDPdfiky3dKSDT1R0+OVfic0XjDiOSOeMeIpIx434lE9HtbjQT1xqie8
-euJITxzoiV0tua2lnUrGIefsYsEmFJe58iJbnaNr01RjggBGsfYw0hmCeu86
-4NsmNFiD35SQ1znsVf8GJ16GyBd+6oWHfnFIv9pj3rjYt5vsu3VuyMZ9XOKH
-5/lP08LohDA2Kk6NSAsjsm1YcXxUXR+0/SH9+L1x+tY4GzRjr89TL43sS73w
-Ui2/VKovpcYLofWC77xgwRc0/JxCnxP4M5R4DhIv2+TrBvmmQr4tku+z5Ick
-ORwjP4XIMT/5xUtOHpNzHmrFQ214qG0Pteel3V7a66VPvXTQy4S9TOyESXrZ
-jJfNn7DFU7YSYOtnbDPMtqNcN86BCQ5OcWiawzMcacnyPM8UeNbKRxbFWVFT
-EaQaL9d5pckrLV5t82qH19qy2JJEQJIaolQXpZooVwW5yssWshZ5WvnOkihl
-UrGMQBFTi4hagNU8qOV6WrajZ1p6ummk6kayaiTLRrJopPJGKmuk0kYqaaRi
-Riqip870VEBP+fSUR0+59dS+ntlVs9tK3ikXHGLJLlRsXHWZrS/QjTkKmCLa
-X7DOZ7Q3DIEfO9AHAB6qoe9L2Ls8/jZNDMbJwTD1JkC/OaHfHDFvD9j3u+yH
-be6jgxux859X+dElYXxO+DItTk5Ic2Py8qhi/6w6P2u7n7TDEd07bPg/mOEh
-M/7+PP3WzA3qxUGtMqjUBuXmoNgaFLpvOPANA7+h0dck8RonX8PkYJd82yLf
-16kPFWq4QH3KUqMpajxGTYSpqQA1c0LNnVCrPtrho10+ev+UPjplTk4Z/ylz
-dspE/Gzc359iyvrZ/ClXCnCVM64e5ppRrh3nugkOTHFwmkezPJ7jCctJWeLc
-0nuWhCgLfaKzYqcmyA1BaQpKS1DbgtoVtI4stWQJkOSmJDfE/qcWoP3FKlam
-q9F9PVkh1QquWka7hPZrWUVQK/T0fKffl8k2jUzdzNTMTMXMlIxMwcjkjEzG
-yKSMTNzIRI1MWM8E9cypnvHqmSM9e6jl99XCrlJ0yWWnWHEINTtXt7HNZQZY
-oNqzRGcK742j4CgEfe4inwB0pI4Nl/GPeeJDhvyQoIYi9Psz+v0pM+RhP7jZ
-4X3u0w73eYsfc/DjdmFiVZhcFKfnxJlpabG/3VRxfFFd49r+mHY8qvtGjeAn
-MzJiJobPMx/M/JBRGtKqQ2p9SG4OSe0hoTvEg0Ms8p7B3lPEe5J6h1JDEPWh
-Qw0D1Kc6NVqmxwv0RJaeStHTcXo2TM8H6UU/bfPTmwFmJ8AcBJjjIOMLMoEg
-Gwr2RzoTZ2z6rD/LVDjjSmd8JczXo3wzxrcTfDfFg2kezvJojsfyAlEQ+paq
-LLAVgasKvJWbav0IskBRAFFpiWpHVLuihZfcluWWJANS/30LSiv6LMK0cpwl
-SywlWafUGtm32FVMq6BaGdZLkF7q6cWOUWgbecDMNcxczcxVzVzZzBWNXN7I
-ZY1cuj+SmosZuYiROzNyAT3v0/MevXCkFQ/V8r5S2ZWqLrHuFBoOvrnOtmxM
-e5nqLpC9GRyaROEJCPnSRccBbKyOj1aIzwXSurVHktRIjB4OMcN+duSE/XzM
-jR5y43v8lx1+ckuYcgjTdnF2VZxbkhbm5JUZeX1a2ZpWd6e0w0ndO6H7vxih
-cTM2ZiZHz7OfzgsjRnlEr46ojREFGJE7I2JvRIBGOGSExYZpYpiihnF6BKE/
-gfRomx5v0hM1erJMTxfo2Sw9n2IW48xyhFk5Y2xnjPOM2Q0xhyHWE2JPQ2ww
-zIbDXCzMJcNcJsLlIv2JpnKEr0b4eoxvJvh2SuimBTArwDkBzQtYUSBKAlkW
-aMtVVb9qP0tOWBnKIr3mV2jaUh+vnqh1ZaUjK21ZaUmqBaIVdxZVWtnNEiSW
-hmzSmuXUGqRm+esapldRvQrrFajfiyl1jWK736QuNs1ivT+9U6yYxZJZLBjF
-nFHIGIVUf+S7GDWKYaMYNIqnevFEL3m0ypFaPVRq+1J9V2y6BGCLbznYjp3p
-2ujeMgnNE/AsisxA6FQXm2zhEw1iokJ+KVLj/QMn6LE4MxphR4Ps2Cn3xctP
-HPNTh8L0njDjEuac4vyGuGCXllal5SV5bV7ZnFddc+rBrHY8q/tmjOC0EZ4y
-45NmeuI8N35eGjMrY3p9TGuOqa2x/rm4vTERGuORMQ4bY4lRmhol6VGMHoeZ
-iR4z2Wamm8xsjZkvMwsFZinHrKQZW4JZi7LrYXYrwu5F2KMIexJl/VHuLMpF
-Ylw8xqVi/fHOfIwvxvhyTKjGhEZCAJJCOy10swKYE+C8gBRFrCQSZZGsiH0j
-bHmrumgpwL6osPKURX2tr3h1JbUnaT1Z6cpqR/q6xD5JWnnNkiKWemwxfY8G
-WM6a1BuE3sD0OqrXEKMKGRXQrHTNctsst/pDIOWGWa71p63KZbNcNMt5o5w1
-ymmjnDTKcaMcMcohoxwwKqd69USredT6sdJwS819sbUrtF18Z4vtOhjQTkOr
-JLxEIAsoOg9hc118tkXMNMjpKjVdoqfy9GSGmUywE1FuIsRNBvjpU37GK8we
-CfMHwsKeuOgSl5zSikNatcu2VXljWdleUveWNPei5l3Q/QtGaN6IzpnJWTMz
-c16YOi9PmtVJozGpAZNqe1LpTsrgpAhPCugkj09y5CRDTdDMBMFMocw0xMx2
-2fkWu9Bkl2rsSpldLbJrOXY9zW4k2c0YuxVj9+PccZzzxblAnAsl+GiCTyT4
-dILPJvlCUiglhUpSqCWFRlIE0mI7I3ZzIpgX4aKIlESsLParglWRrn21w5bD
-akqWDrSkhdT+SoCdrzD1ZK2nWK8WcBZ8mkWP/YzG93WjJfUtd2YZ6hbVL1sB
-hN7EjQZq1BGjDpk10Kx2zWrHrLbNKmBWm2a1blarZrViVktmpWBWcmYlY1RS
-RiVhVKJGJWxUz/RaQK+fag2f2vTKwLHUcovtA6G7y/dcHLjFQA4atlPoKoGt
-YNgyjC/1iMU2udCk5mv0XJmeKzCzWXYmxc3EuZkIP3vGzweEBZ+w6BGXjsTl
-A3F1T7K5pLUt2e6Q1+2K06bs2NTDVe14Rfet6MFlI7xkxJfM1KKZWzgvzp1X
-Zs3arNGc1VuzWmdW7c3K0KyEzIrorIDP8uQsS88yzAzFzuLsPMIugOxSl11p
-satNdq3G2SvcRpHbzHPODLed4nYS3EGS8yS50yQfTPHhFB9L8ck0n0kLubRQ
-SAvltFDNiPWM2MyIQEZs58RuXgSLIlySkLKEVSSiJpF1iWpITFNiLVMMyLwl
-3S01aAkMK2dZNNj7iheoaKD1KvWXRY89QevxWpfTu6zeYfQOrbcpvU0aLcIA
-cANAjSZiNmCzDpr13nm9e15vm/WWWW+a9YZZq5m1qlkrm7WiWcubtaxZSxu1
-pFGLG7WIUQ/rjTOtGVABv9LyyW2v1DkWu26hd8CDexzsYhEng25QmJ3A1zDC
-BhOrPXKlQy0D9HKdWaowi0V2McctpLmFBL8Q4xfDwtKZsOIXV32izSOuHUn2
-A2l9T95wyY4t2elQXOvq/rp6ZNdO7Lp/TQ+tGVGbmVw1Myvn+eXz0tJ5dfG8
-vmgAi3p7Uesuqr1FBVqUkUUJWxSJRZ5c5OhFll2g2UWSW8K4FZhbBbm1Lmdv
-cRtNbrPGOSvcdolz5fndLL+X5g/SvDfN+zP8WYaPZIR4RkhlhWxWyGeFYlYs
-58RqTqznxGZObOWkTl7qFiSwJMFlCa1IWE0i6hLZkKimzAAyC8hcS+bbstCR
-xa4sdWW5pyigoloLVjRI1iBJg0QNFHVQ0EFe73F6j9W7jN6ljQ5ldEijTRgt
-3GxhJoCYTfi8AZ03wPNG97zROW+0zxuA2WiajbrZqJmNitkomY2C2ciZjYzZ
-SJmNhNGIGc2oDoS11pnaDiodv9z1ST2vCB4LkJuHDzhkl0VdDOakcQdBbGDk
-OkzaQcreoddajK3BrFbZ1RK3UuBWsvxySliOC6tRwRYW14Ki3S+t+6QNj+Q4
-kjcPZeeevL2juLaVPafq3tS8m9qpQz9zGJENI75uptbNrP28sHZetp3XVs+b
-K2Zrxeis6N0VDVxR4VUFXZWwVZFYFahVnl7h2BWWW6E4G8GtoZwd5jdA3tHh
-nS1+q8m76vzO11btfoE/zPHuLO/NCoGcEMoJ0ZyQyAvpvJjNi4W8WCqIlYJY
-K0iNggQUpFZB6hSkXlECyxJckdGqjNVloiGTTZkCZKYls22Za8t8Rxa6ithT
-pJ4ig328FEhREVm3FizpsNhfkKBDvA5yOsgaPaa/LMi6pNEhzA5utjGzhZ4D
-8DkAnQPgOdA7B7rnQPscaJ0DTRNomEDNBKomUDaBogkUTCBnAhkTSJpAwmjF
-9HZU64TVbkjpBWXQL0M+CfKK8DGPuDn0gMV2GXybJrZI0olRToTaBGlHl9lo
-setNdv0rA9mL/FpOWMsIa0nRHhc3oqIjJG0GJadf2vLJ217ZdSTvHCq7+8re
-rnroUj3bmm9bD2zp4S0j5jSSTjOzaeYd56WN8+r6/9Xt54DdbNuNjl3v2TXI
-riJ2BbXLuF0i7SJlFxg7z9o5zs7w6yS/gfObKO+E+S2Qd3X4nRa/1xT268Jh
-VXCXheOi4MkLJ3khWBDCBSFWEJNFMVMUc0WxWBTLJalakuolqVGSgJLULsmd
-ktwry1BFhqsyWpOxhkw0ZRKQqZZMtxW2rXAdhe8qQu8rXqAiQYoMKQqsqv8P
-8R1SeA==
- "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction ->
- RGBColor],
+1:eJztyMEJwkAUBNAlXjzagl14ErwEvEZSQIJr8LKBTUDsIm3aRTbgORU8ePOZ
++ed+bF5VCGE6ltN0n1vO3fdxKqNN03tI8XlPcxxivvSH8lz+2fqvvgIAAAAA
+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
+AAAAAAAAAAAAALBjBcshkTw=
+ "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable -> False], DefaultBaseStyle -> "ImageGraphics",
ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]],
@@ -2174,7 +2554,6 @@ v4fOyXeuunO4ndvsnF/nwjpH1LmTzim0r90+aPtm7bM0l2+O29yvOVFzhb5D
S+r/WPq/h87Jd666c7id2+ycX+fCOkfUuZPOKbSv3T5o+2btszSXb47b3K85
UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w=
"]], {}},
- AspectRatio->1,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
@@ -2199,8 +2578,9 @@ UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w=
CellChangeTimes->{{3.857790326376232*^9, 3.857790371760695*^9},
3.8577912617645617`*^9, {3.857791601138686*^9, 3.857791647292798*^9},
3.857793207906136*^9, 3.8577932784582577`*^9, 3.857799952996063*^9,
- 3.858849758989471*^9},
- CellLabel->"Out[7]=",ExpressionUUID->"316a1105-8eff-4541-b7ab-c807e95c3253"]
+ 3.858849758989471*^9, 3.8673872033934526`*^9, 3.867392578825694*^9,
+ 3.867399193184537*^9, {3.8673993021765738`*^9, 3.867399322064127*^9}},
+ CellLabel->"Out[10]=",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"]
}, Open ]],
Cell[CellGroupData[{
@@ -2212,7 +2592,7 @@ Cell[BoxData[
RowBox[{"Most", "[", "prep2", "]"}]}], ")"}], "[",
RowBox[{"1", ",", "\[Theta]"}], "]"}]], "Input",
CellChangeTimes->{{3.85779358958924*^9, 3.8577935913652163`*^9}},
- CellLabel->"In[8]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
+ CellLabel->"In[38]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
Cell[BoxData[
RowBox[{
@@ -2272,8 +2652,9 @@ Cell[BoxData[
RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]], "]"}]}]}],
")"}]}]}]], "Output",
CellChangeTimes->{{3.8577935448317623`*^9, 3.857793591563696*^9},
- 3.857799954963155*^9, 3.858849759739835*^9},
- CellLabel->"Out[8]=",ExpressionUUID->"c57d6a51-b537-4cbe-ac96-92ebb8cedd38"]
+ 3.857799954963155*^9, 3.858849759739835*^9, 3.867387206768237*^9,
+ 3.867392580100976*^9},
+ CellLabel->"Out[38]=",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"]
}, Open ]],
Cell[CellGroupData[{
@@ -2291,7 +2672,7 @@ Cell[BoxData[
RowBox[{"-", "1.148"}], ",", "1.148"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8577935086036673`*^9, 3.857793511851841*^9}, {
3.8577935977894907`*^9, 3.857793599909363*^9}},
- CellLabel->"In[9]:=",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
+ CellLabel->"In[39]:=",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
Cell[BoxData[
GraphicsBox[{{{}, {},
@@ -2507,7 +2888,7 @@ yGdH9QVkv8j+YoUaD0JHz4lkai6gf3PFm3ltcdD318J9UGcBcT/x0NJ4dh/v
V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn
+Glqw3IBXakLi2/BIuH/34sh6v+/F/sfz7K6AA==
"]]},
- Annotation[#, "Charting`Private`Tag$5464#1"]& ]}, {}},
+ Annotation[#, "Charting`Private`Tag$197751#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
@@ -2548,8 +2929,9 @@ V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8577935124961348`*^9, 3.857793564055354*^9},
- 3.857793600161285*^9, 3.857799955432135*^9, 3.858849760373335*^9},
- CellLabel->"Out[9]=",ExpressionUUID->"f0af288f-6d62-4e20-864d-98a3f00e528f"]
+ 3.857793600161285*^9, 3.857799955432135*^9, 3.858849760373335*^9,
+ 3.867387207845401*^9, 3.8673925806357822`*^9},
+ CellLabel->"Out[39]=",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"]
}, Open ]],
Cell[BoxData[
@@ -2572,7 +2954,7 @@ Cell[BoxData[
3.858849847281784*^9, 3.8588498617377768`*^9}, {3.8588511148250217`*^9,
3.858851126714478*^9}, {3.858851205810751*^9, 3.85885120581146*^9},
3.85885146277564*^9},
- CellLabel->"In[50]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
+ CellLabel->"In[10]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
Cell[CellGroupData[{
@@ -2593,7 +2975,7 @@ Cell[BoxData[
3.857795427006524*^9, 3.857795440446805*^9}, 3.8577962389098873`*^9,
3.857801064357966*^9, {3.8588511121776543`*^9, 3.858851141707258*^9},
3.858851460264333*^9},
- CellLabel->"In[51]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
+ CellLabel->"In[11]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
Cell[BoxData[
InterpretationBox[
@@ -2634,8 +3016,65 @@ Cell[BoxData[
3.858849768101416*^9, 3.858849849927265*^9, 3.8588498882662687`*^9, {
3.858851116580223*^9, 3.858851124971182*^9}, 3.858851163937449*^9,
3.8588512104999847`*^9, 3.858851461109468*^9, 3.8588515200472*^9,
- 3.8588516053495693`*^9, 3.858851645594129*^9},
- CellLabel->"Out[51]=",ExpressionUUID->"af000ddb-e1d9-42c9-8898-089a4381de4a"]
+ 3.8588516053495693`*^9, 3.858851645594129*^9, 3.867387230042351*^9},
+ CellLabel->"Out[11]=",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"DScriptF0D\[Eta]List", "[",
+ RowBox[{
+ "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
+ RowBox[{"{", "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[",
+ RowBox[{"2", ",", "\[Theta]"}], "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"-", "1"}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"R", ">", "0"}], ",",
+ RowBox[{"\[Theta]0", ">", "0"}], ",",
+ RowBox[{
+ RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\
+
+ CellChangeTimes->{{3.867392252744265*^9, 3.867392308104785*^9}, {
+ 3.867392401627043*^9, 3.86739242170674*^9}},
+ CellLabel->"In[30]:=",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ FractionBox[
+ RowBox[{"45", "-",
+ RowBox[{"8", " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}],
+ RowBox[{"120", " ", "\[Pi]"}]], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[", "\[Theta]", "]"}], "1"],
+ SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta], 0, {
+ Rational[1, 120]
+ Pi^(-1) (45 - 8
+ Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2])}, 0, 1, 1],
+ Editable->False]], "Output",
+ CellChangeTimes->{{3.867392275309338*^9, 3.867392325117755*^9},
+ 3.867392402170586*^9, 3.867392436325769*^9},
+ CellLabel->"Out[30]=",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"]
}, Open ]],
Cell[CellGroupData[{
@@ -2643,12 +3082,12 @@ Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"8", "/", "60"}]], "Input",
CellChangeTimes->{{3.8588515122487593`*^9, 3.858851514504118*^9}},
- CellLabel->"In[43]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
+ CellLabel->"In[12]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
Cell[BoxData[
FractionBox["2", "15"]], "Output",
- CellChangeTimes->{3.858851520077345*^9},
- CellLabel->"Out[43]=",ExpressionUUID->"0d1a07f3-3dbe-4537-a762-6504ecebe3ad"]
+ CellChangeTimes->{3.858851520077345*^9, 3.8673872300867767`*^9},
+ CellLabel->"Out[12]=",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"]
}, Open ]],
Cell[CellGroupData[{
@@ -2656,12 +3095,12 @@ Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"16", "/", "120"}]], "Input",
CellChangeTimes->{{3.858851523424665*^9, 3.858851524816543*^9}},
- CellLabel->"In[44]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
+ CellLabel->"In[13]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
Cell[BoxData[
FractionBox["2", "15"]], "Output",
- CellChangeTimes->{3.8588515254659557`*^9},
- CellLabel->"Out[44]=",ExpressionUUID->"062f12b6-ea91-4e05-b0ab-1496de323331"]
+ CellChangeTimes->{3.8588515254659557`*^9, 3.867387230110116*^9},
+ CellLabel->"Out[13]=",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"]
}, Open ]],
Cell[CellGroupData[{
@@ -2733,6 +3172,119 @@ Cell[BoxData["$Aborted"], "Output",
Cell[CellGroupData[{
Cell[BoxData[
+ RowBox[{
+ RowBox[{"uf", "[",
+ RowBox[{
+ "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
+ RowBox[{"{", "}"}]}], "]"}], "[",
+ RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input",
+ CellChangeTimes->{{3.867391939682372*^9, 3.867391982506528*^9}},
+ CellLabel->"In[23]:=",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"CYL", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Theta]YL",
+ RowBox[{"5", "/", "6"}]]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
+ "\[Theta]YL"}], ")"}],
+ RowBox[{"5", "/", "6"}]], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", "\[Theta]YL"}],
+ ")"}],
+ RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}]],
+ " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
+ "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], "\[Pi]"],
+ "+",
+ FractionBox[
+ RowBox[{"C0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ FractionBox["1",
+ RowBox[{"B", " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], "+",
+
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
+ "\[Pi]"]}], ")"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["R", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
+ RowBox[{"Log", "[",
+ SuperscriptBox["R", "2"], "]"}]}],
+ RowBox[{"8", " ", "\[Pi]"}]]}]], "Output",
+ CellChangeTimes->{{3.8673919604421053`*^9, 3.8673919827729807`*^9}},
+ CellLabel->"Out[23]=",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"(",
@@ -10055,6 +10607,114 @@ wo7f6M9G3DFukf8bRl0snUqA3/GXTldOhv+77B+O7zRF\
Cell[CellGroupData[{
Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[",
+ RowBox[{"R", ",", "0.1"}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"R", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.867392839450399*^9, 3.867392886363302*^9}},
+ CellLabel->"In[51]:=",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwVx3k81PkDx3FKKOXKrza5o1SSytGh3kiNRW2hn1QkOqTWkQ6kLYXsRuwv
+O5IjosnZjDIS037MGAqDMeabksjVKlLJEcV3+/3xerweT32fQJcjM2RkZM79
+6P/XF6XbMsxyMCnNuS64KiErGH/GPgjKwfXEdU6+xyREEh347tXTHKzPqIv5
+xVpCDGeaFJievYsDnhaDm/qbSc1UjqlUwgLzH3/VBkYzmfuFaaEbl4fSE1bZ
+zfpiwl1zhunQkwexaNez5Okm4hXkOh68MR8aF3K3hJQ3EfYHlcfC/nyYDNkH
+PDVvIi79sdb+2wohFpcTp3WN5Obr8K3c6fswLleWT3YVEVstj5yOPWwILes3
+pWuKyPt9VrMUi9hQrT2nbttdT3QGw3yLVnHwU0mMnVtIPQk8bmkk086Bg0tR
+/a60OqJ+mJ17d/0DFB6y116tUEv2emSxP30uwZuO27LZZjXk4yu3OXc0uQia
+3S1nMbuGxHgpHnHdykVEQnSNenc1eegbqFmaxAVvYEqhKKmaKAdsjj5vVQq/
+zefObJkSkurLL/fJX3iEwckly8bbqsjaQjV5LcVy9C/aSIkEfFJrWu3dYFaO
+QaH/hnnZfOJdHFrxm0c5DLeE1v92hU/iSzuDuvLLcfO5ps4Xez7pryx6xdpR
+gYgl2UmqdZUkg/q5eM0NHmScviz95TEhSnTkAYYOAWe6KWgCPHLzuLuXyfYf
+tozndyjxiKHUxFstgCDxdchB+RcVZEteq++rJwRiQUbfouAK8jiPyX1kWgmz
+wUfuNqxy8sF1kOfUWIlYq7kWclqPyZ7c5PqQeQJU8hOepa8pJWmel52P6gtg
+bB4VWixXSrrVf23YayHA3jKt8LFWLgm8YNe02VMAReIoVL/IJb+7fJAoFAnw
+aa9oOraphDz5bteW6lyFXed5/9MIe0iMdg/1V10TInPet23LBzlE8yJj47Es
+IWJ7n6i48zlEtSjz2pxHQoiDbxQUMzlkUtHVdHe3EA7LJL0DthwirnwU0rG+
+GplrYlul5mwSbhY5/bWvGokMvZCrrELSqKKhYWrzFIl1C4dOCe+Rc40bcHOk
+FnoBz2VTU9KJsim3r1axDjIp5gO0ZjrJiTeL+6ZVh0sRVd01aWmk2XnZS69t
+dXhjoZkZmpVKVtZrhBgx6+AdJvlpPzuFdD79yHpgVQ/vyrWBGe1/EQb/rnJD
+uAiXZLL0eobjyMIStQ5Z2SbI9JZRLEd7Utq9VdRkLYGM80x1lbYUCPzTF3sM
+ShG6IL2M0snF6NLNKkW/tqLwYMiG7/kczJgoUF1s1AbD4lPhdku4sKS9S13v
+t0Oma112V38ZRFHmjTUrOjHX49j5L0486CYOTOQNvUGs640CXhHBwHhnB2XW
+DccChz/4znzkvK+oU77eA0WHKvuuagGUte997O3txch2C0V3XSHijnOPZhq+
+RYYbZauzsxpjNgW9fhf/gaoyL+3ZlRqcXissWVDVj/wO1h7tv56i877wWrP+
+e2iFqRuPFT3DN39p6vLwAeQz5KvLHtZipa3C9NGKQWzUnqOQnlYHxh39Y8UL
+h2C3ZAGzN74e57QPGnQd+IjSu2pyUUdEMBnco9S64xOe/b44jWnWgPkqnxSF
+k5+wIoK5c4dcI+RIKntJ2mcYM+Sv+wkaccK84uVsp2FIDuVefRfbhIKffTL/
+HhtGzI1Zt/YZiDE6oKn6lvkFVp1afd/PisF1ZcxMsh/BjD8XBAibxLjoEH27
+5O0I1u28/J7WbYb+a8cX2dGj8EmqjHQ92YyNVlFJi9aOQddt6/YHvGYc0Gma
+kG0Zw/BJkcuVWRKM1sV3B0WOQzxhobbeRYKbcl6nXQy/QqR+ROl1sgTzO7h3
+Zgi/wleOs8inTYJZFyLdNgRPQC8rdl2BXgtk8rzY3eqTGGONlqR4t+DULXa8
+umASHYsr+pbltODJylhFtYBvMJ95trO5twVqjqdMLit/xz5HlzPlulK0rxK3
+hPG+o8fOz83ASwpOBgx7vabwd5fh8PxkKTzZlmra01N4ThmHlTVIcSk6K7I9
+fxq3Qob6eQoUivq1U5WdaYi+zt/Gs6YQmx7t3bGThs555QjWZgqHXT4Y3d9N
+w99DNiNxCwUtHo+zw50G267zzmEbCn8k7K+J86HxX+s+jpI9BT/LlM9zwmgM
+6/h07XGiYBCl4aDAouGWvep+mweF6fUR81pzaTjfCXIS7KPw8kOPhFVAw6XN
+QJq3n0Ki+0PP7cU05BJ67oV6UqBXuIRE82iYKlh7/OcQhfbmhIyZLTSM+8+8
+dfSjUBYz7ttC0dh52tt6zXEKSZsOLs9+QSNm9ciFhf4UnO6alth10NBLMBL2
+nKBQHtpQG/mOBtNWw/N8IAXmKouE3YM04lILVQ8FUQjuTnPT/0ijrWoOZ3sw
+BWPnk52VIzRsnix9oBZCQU5WmpM4TuN5/oDG+A+/4W7y956kUXs7yrf9NAWe
+f/ZqsykaM4xH0/lnKCTrKo3SNI3wRhsh6yyFfwEnzdXi
+ "]]},
+ Annotation[#, "Charting`Private`Tag$236918#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 2}, {-0.2895361321455564, 0.33536690869662034`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.867392859949072*^9, 3.867392886626802*^9}},
+ CellLabel->"Out[51]=",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"{",
@@ -10063,8 +10723,8 @@ Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
- RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "1", "]"}], "[",
- RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}]}], "}"}], ",",
+ RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[",
+ RowBox[{".1", ",", "\[Theta]"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.148"}], ",", "1.148"}], "}"}], ",",
@@ -10082,321 +10742,224 @@ Cell[BoxData[
3.85779801950991*^9}, {3.857800886978672*^9, 3.8578009121390047`*^9}, {
3.857800968380188*^9, 3.857800968803484*^9}, {3.858850385148155*^9,
3.858850391852289*^9}, {3.858850587967984*^9, 3.858850605599574*^9},
- 3.8588520958839197`*^9},
- CellLabel->"In[53]:=",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
+ 3.8588520958839197`*^9, {3.867387377621475*^9, 3.867387402908786*^9}, {
+ 3.867387457214499*^9, 3.867387468630344*^9}, {3.8673875335359592`*^9,
+ 3.867387533607287*^9}, {3.867392588550147*^9, 3.867392633414612*^9},
+ 3.86739272401696*^9},
+ CellLabel->"In[46]:=",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
-1:eJwVlXc41v8Xxs1EVmRnZ0aFjKz3W0VWpSiiIgllRgNJSEI2WZUkKikrEeF8
-wteWlb13ZT3PY0XGr99f57qv+7ru65zz+uMWtXU7e42Giooqh5qK6v8zZs4X
-KV+mwN/U+IPrm/EEttMfPGtFgfJrAs0OR70JUh/nPXcLCtQXWOtWNTgRaWeG
-eSPPUaBml5P54ShbwqTufVH2WQq82RhW/HrGiqBCd8zqT1NAbE/waOTZc0Tu
-Zx3KlDEFFh7IfrI+fYa4LMcSTWdIgaCkYAfeX8YE6+seebETFEj23aV+JUuf
-qODLaETHKSAgRz+Se1WXcI12u35JhwLySVup3U1HCSEGDYZ72hRw0xlWLS3E
-RPP9HZlJGhR4CBUr1itahO9S29EiNQoUPnX4M8OpQcg5vRjpUKaATC6vn0W6
-GjEw6uhHVqSANH1Pm0uYChFucXgv2yEKLO3rCGwvPUxotmyXyMlTwDt/tshE
-UomY0W00N5SlgFac45OcSgUipSxh2UGKApjX4NP440OEoZJt3KN9FGgf25PP
-M3yAWM+SV3gtSoHYqPOCtL/kiPcia98JIQr0ynBPykjsJywTq52HBChQt1zH
-lR0uQzCyRjNt8FKAAaziOvikiS9BVu/4uClwJtD780itJOH4V1JPlZMC7JP1
-im2xEgSvB2XcjJ0CCSkTL/HdfUTdz/IADxYKXJoc7jH0ECe8rEOFo5koENne
-5Hg7QIyQ6jIr/8hAgd1/zga/SBclgqtm/vykpsCfk7qPyzlFCBX14oQd22S4
-dM1Qw/abEDGZF3h43wYZfm7PPGb3FCTipU6166yR4WYr87aF+l7ieCqfu/UK
-GURO1sue5hIglvZMstxfJMOd6BRBbRp+IuNJXnYKiQxse3/Opm3zErTeJ6Y7
-f5OhZscrT29JHqJggePR4jQZ+qNN6F+d5CZs7YfEdk+S4XwOX36iPxdRaXr7
-svEwGUIF57x9d+whPBrwxvUBMtAa1R4ZN+ckRHWYUx73kuHor79F9AUchP+B
-152VHWQYzPlgKe63mziU6eo50kqGxK/CQbsX2IlhAfXdW81ksFVlrU61Zye0
-GduMj9SR4UtSxY7hFlZi/sHz3+f/I8PhT89of42yEKkrDiG3Kskgfv/ogtIW
-M7E5vlWVW0aG+Or2R7Kmu4gPlg1Xmkv+7RPGdPVbGBNxse3p9u8iMkACKcKl
-gZEoq5DTkMwng5FgUf4xm52ET7JlwfNMMnhNXepU7acnuK8bHPZNJwO1j97e
-m5r0RIGaWpHVSzLc+Bxu2vqajvjVzVXKn0wGBQFx5pKHtETQWzrN9adkkPmU
-YvHhLw0hcnexvDeWDIHjTCeTvGgIC+62b0nhZCghH/a28acmlibhmFcoGbwP
-nX9az0RNRH3O+c88+N99ddpPjidTETVm4fXc/mQY2rGqcOnhNijHnWiL9yQD
-jn8vrnt3A1ptVUxvuZNBOvK8c2bVX3BWlOg0dSHDOjIWe8v1FzLaaHo5HMgg
-aKu/50X9GnCwV4xEW5Kh9vspVzunVcgZ/mDrbk6GbxajpbVDK2CY+2zitBkZ
-WH98JyudX4GAU94/WU+RISvGjTrUZBlI4YdJ4TpkYBe7X6nutgjhF8U9nLX/
-5SWM6M1sUUBKjmPJSIMM91Vk05/GUOBy48IqkzIZhjUMg52BDM2M2dsh0mQ4
-kXf63S11Ejj2Jgc4SpCh6fRpLa+KBaDLCqHVFyODb22oQTDzAmjq2zMw7CXD
-hYmRa6Gf5+B9sCjbI7Z/OZ4V+VdVZ0DvPHuMHTMZpF7RPuR59RvGJLY5jjOS
-gX9RqO0o62/g+2+Am5b2H+9XNdVxlJ8QQpskFLBCgkK7jiHbkSnY1xGcZrNI
-Ao/8u5dZr04BpN8WwyQShNi3cHr8nIQVHVPJ7V8kkAkrTuD4OwHX/FkP3B/8
-51cJmhVojQNdNU9ZTB8J6iZv1dD0j0EGg6jhm24SiBwfvavqMwZjkUr2LW0k
-mEwYbN9bMQo2LyxSRWtIcFObVy7RcgS2R67IqVSRgFU/xbGGfgRS9zmVGhIk
-yPI5EUB7bRgGs+93eZaSYPdKY92cyBBYlqaz1uSQYL5hc7qytB/WNrOf92WT
-wKlOpnxGqh+SdD7LLrwjgXgNi/zrxD7orqvV431Ngul3WjqBfr1g1j3rdyOR
-BIYyR3TvOnbDqSWVBVb/fxwexppIpnfAnCq+L36fBNXkDYadih0Qfs9gl5oP
-CbxWL9wvrGqHRpqLUldukSCeytDhxGwb6O8OsP7kSALeq2pHzM+0wtEDjS3m
-Z0hAW7XToqW2AUZv/rjkfIoEApOpEhO8DeD/eXDG34gEU4V8o5HO9QCaJIb3
-uv/+txgv4ilQB5pGXHjjCAl+79u0F0v4D1QdrfPSxEjwWFs16dIyAdLO/dNV
-wiT4w2DxWdiFAF53c+HpvSTg2PNoy60Z4M/d05HyPCTYYt8/EVdRDqWPkXPp
-rn95OnUHZBtKwOcUMnn3awHSnabry7wLwOq8KsyPL4A6bV4C6Xk+aF4+eEB5
-6J8vFhYxW5kHmy7CzJXtC1CjI3hJ4EAO+Eds1/Z/XYC/fN0RLuVvIbgJEFvk
-AoR88dfKCk0Ehx/FOedCFiCaMSdtf2E86A/kCj4PXIABO1oRrekYYJx9+Vf6
-7gLov89p3dEcAuG7/IuP2iwAVat7WJb1RYg1xAfvKC7AUhBzUARHLPI8q5Za
-JrcAhd8Cauhd45GZ5SEWWql/+nb3cntlAuK6ITITJbAAX27WDrRbPENJoVRv
-s+gWIIxdODhqbzp6WUcIDXbNQ3v16eUXbu+RReD2ubet88Ak8KlsMzAbsWtq
-R9xsmAefSq6qE3EfUGDu17/0FfMQTzAKNL3PQfYJRT0HMufBcKDpqIdVPpKz
-+xDr7zkPZSdad0ZKfkaTgjP1hi7zsO5woAGlfEap3TLUXA7zcK7o4VY5cxFi
-N3rrlmU5D1psVNcV54vQokK6cbvOPDCI0z/0fv0FlW4n7tjHPg/Ne5yVlfu/
-Is+SLq15xnmQNZW/V6RVhuQ8uW5/oZ2HcgMXd72XZSh1KnbceHUOPIWm89Os
-y1FAcwRxe2gOho6ZXHnZWYH0nz30qf0wB8t+Om9amgjUqeI2f8NgDl6pUjNv
-GVahhJ4xrZfH5uC7xV69jy5V6LzP+YgOrTlwaKmZ54+uQl3lWnKainPg+oyL
-X/nHP32c+QaLwBw4srNy3r9QjbrOZk3mzs5CjWz2IueF/1CP6/jAUtQsOIvD
-cqJCLUpiN5eTCZuFROcK5ZSTtciioOHepaBZaGYVO+dxvRb1LOfz13jNgk5Q
-zZM3af+0r79F4pVZ6NhImjrAUod6wwR/HFGahW3341zqw3Wo7415o1/XDPwV
-b4wsv9GAPNZ3j6u0zgBvR+nSvaAGxHSqaX2+fgYoSRruAqkNSH0Zy1qXz4D9
-07DP260N6Nkx2VCUMQMnWTICnJQb0cWRDT0qjxmwTr0eorHWiIb40isDWGZA
-aE7yd5tbMxoPny0JOv4beK/EBU9xtyKvZ6NXhkt+ArsovQltVjsayGbnIQym
-wfKEhvq7Q51ohU/O9uGxaRgv4z6pp9mJ2EJOfNTTmoYK9VKFmROd6Kid37Hm
-Q9Ow1VeWa2DdibL2zrr18UxDtKq9mlVkJ7oTUVu3NDkFI6c8DwzNdSJ2Nz8f
-mcAp+HnoWVdLQRc6rjg7GFs6CX5u55SKzHvQtRBNHaJwEmR5lqcT7HpQ8FB4
-xlzOJBjc5Rnzv9mD6sLknfRfT8ITzawe9yc9yGjc9c/mk0nIExCXq4QedDae
-zHH90iTwuMjYKsv2IpuVlROIahJOfXX5WLSjD90rpS6Y0Z0AXDvuuTXSj7Rj
-VB1V8ASE5HKrnSD1IxpHF6EA9QlQ24xie77dj0K4esO4D06AMaFx4IbQAIp3
-z7uqwzsBlIp9b5IvDqAPktZcib/Hwbi0IvBM/wAaiC3zOho1Dvy/O+4/HhtE
-2k53UXLPGAx1uq28YRlBvYuL5Q7tY6DwJfBgB88IuuXrrqnSNAZm6W8qdoqN
-oPcR1490wBiMG0vvilYZQTx5Vkosb8fgsJZuPLvNCCItIamA22OQPEE6NV44
-gtL9drJd5xiDTr3IYlH7UaTF8ChClXkMWun8+KJujqKeKGrmHTv+9ZbCwVMM
-90cR66v1na/XRuFcceFV3vhRdK9qlmZwZBS69SxzKipHkdnOthWT3FHYQP53
-pcTG0I7Y5CE141FoohkMafw1ht7RGN2+qTcKNfRXPrUujyEjz41d7/Eo2DEK
-dIxQj6NoM+sjAsqjEPA8bZ8Y/zji45GI3xQchb85k7dkjcaR3PM8g8qFEXht
-tCh/KXccnXlTW2gUNwJ+TOss7/0n0BK3t1FQxAg8ls/MlYqcQAmPZcfKHo/A
-3cEnW/nPJlCfYwTbAd8R+HnPb2S2aALZ7Te9wX5tBDLpeK9szk2gO3lDwp0q
-I/Dk0HeaxMuTSO32DFd54TC4c5lrCxtOIfnS/g7ld8PgiHZOJVlOIbHtxpic
-Z8MwrFo2Lu40hXaFfmBJCxyG6Yg4bdfwKTT03IX+ockw0Pp82NndMoUeVS8s
-6c8OgX9AsByr5TRq51zq+CE+BMLUs5n/+f5EtRYTMSd5hmDxbMTtlKifqOzF
-j9M1TEOgYiHW9zD9J3oj9bmxmDwIL/Drrvi6n8hb405VCgyCjQNvTwHXLyRy
-9U+BjdUgdA4bh619+oVcCjZiZmMHIIllkSmWega9+VO8/DJ4ANpt+KNauWfQ
-iLbnBVOfAegjlXZKys2gs42/REqvDMAXvhRlAfMZpDLRlfv40ABwrpbslcqZ
-QVTc+c1i3/vhSoO5yYzNLIrzvsZ4gbEfeJUDbyj2zaEmEHFh3uyDCm/GkXzK
-HNqxY6AVSH0wL1Tz9+SueeQVezZJsqcPOp4bdw9ozqOL2Uhq6U0fGKXvY7Z8
-NY8kB/l0o473Qb07LeNftwVUgr/7//egF66xl8smxZIQlfninpO3euH76t+x
-vpckpO/Cm/XDsRci4yvq5T6SUE+ybdv4mV6wbYQHW7UktEJZEaXZ1wvZK85i
-F7dI6HCmcJV2XQ+8lpJ8xOVKRjmMN+m/sPcAb9sPbWVLCloRTkhG9D1geUHm
-ZuR1CtJS+Spfu9YNkyK6/OteFNRkS3++a6wbCvUT9BmTKGjma/KbpcJuELzQ
-dp2pm4KkXStPKFzoBjydrfLJYhG9bucMe/+qC+r8JGhCnZZQinFNzpGnXSDt
-udC95LeEYmu8OupCukCB77jLvdglFFg6uHfarQviG7+m9pYsIdv0t7ni2l3A
-P9OfN8y4jEQ8NDqf93XC80cn2nDuMnqx+6pIFGcn9PPPLU2wr6L4J1y6Qgz/
-/LQ2F07pVRROX3f94/oPUOvPnrmKVpHvmtynxtEfQEq9y+Dsuooujq7o7sz7
-AfqS1NYi31cRf36YU4DxD2BTIM1axP9BiSYFRZ6POqDOZ2edvPY6Sk35vqvb
-uwP2O208MLFYRxkTv23UXTvAREkvPtljHeV5ie+iNu+AM3tbGNLerqOGtHjr
-SOkOGDq7RQRz/kUbpDs7sxrbgeVyvT3t4l9kE6NhObS7HSia9dtSHZvIvt88
-V2dHO3x901hZRtlEzhK36DLX24Dtoa7+Q44t5F3yIcdpvA2kQu4bvz27hWJH
-BWnXCtvg3kCgpXnnFqpWoPrAadEGbmyl+WUT20imvXpTP7UVfFz1SoJ5qPHI
-A9fxTzGtoEoPPoFy1DhBnrde6FErxHX9/ZOhQ43/QYpfcmqFt7ufl1g7U+MB
-xLE/7UgrKOq53y6uosYiVpA3n9UC585pvDvpQ4Mjijh8q6NbQIgqOmMqhgav
-77Y/kXK3BfYM8at8zKLBP+qYh3R1W8BAdpb2v14a/FjFcteLke8Q3d7MLa9J
-i+d3L18z4vkOk5cunTdlosNWLvoKolvNEK7f30MjQYfr6p5trEw0gx6PhetP
-RIfTHxyNSy9oBrnyRRWLO3T43FwUsXayGfLP+d/rn6TDZXWyAu+CmmA97IML
-TSs9Dn1g00pHaYBfGzPbPzsZsN+gwfTp3gYoj7/Ayf6HAd/SUNpKIRpALjkz
-KpB/J7ZZpZdTiGoAxjHNGydtdmIVt+zHl+Qa4C622vV0YSceu7yiXWRfDwJC
-9/maBJlwT9nwOepT9cBku+QsrMuEm/nrnY2V64HD907Sd2cm/KXrWcoYbT2U
-8QQc1C1nwlGndFZYX9WBT9CdwM+2u7CmdvhHh/5aeERSr/yPYMaKz29XF1TW
-gv53Qew2z4yl1i/3b2bVQqOL3GroXhbMUaTAGO9VC0Y2yTp8Piz4p3y3HcFV
-C2p8cXJN6qz4qaDYXj6TGnCqD0ml/cGG5zeKwxqqq0FyVknmv5LdmOrvLZqK
-j9WAHzyVtejejTnXFHzyE6rBK6lM98jybqy2nH09ybEaVIgyy98KHDhw7qW+
-PXM1dOnxKcvkcmDuocc7aMyqwPikk4lqKSeWHjjut6xZBU+7Y6x0BjmxRh/1
-yk+JKug5GBGfQ7UH23Tdm2xZrYSg6eDGL/p78PvvbtUvnlXCxa2DFSWDe7A2
-mAceGf8G3BSJ8pW93NikfM+6XNM3SK4W/kl1ghtf/dp2U+TzN2DZb3D+yU1u
-HFJsdIXh8TdwHibny9Rx4/ZchDtlv8FmzDXBpns82D5Nasvdg4A8cxqP9i1e
-7JU6cdvOioBWUSYytSIffvL81Zz5cQIMxqtH+67x4bwkgUFtbgJC2/hfPG3h
-w8uiwl58twB8rlZcD8vmx0K0C4smtBVweUphMDFkL6aLTJU431YONE/EbK82
-78W/eE+ZW70sh7GgdGUtTkFceOBj6TWNclBBD+OV0gWxkaVTgI9nGcCV/bH9
-zUL40CT/pwc6ZeBxofdHnYAw5nZvmAhiK4P/po6U/bkhjMceyehHZX8FouiO
-+ssdItgrf5o1Y7wU3lcMaovki+DLmok4K78UzAKlFaMHRfCxWj2PnAeloGRi
-kFrJJIpZBzM7vwiUAjlWny7QQRRn7LR73mxaAsKKwT/WZMVwm/WIzGpVMaye
-vzXbNySOi35HWW3EFEPC3et6LPz78PPbKILaphjSohKU7c7vw45PUkm7Norg
-NqnEO619H94qulgscrgINJWFTfX7JPCEDvMvCZoicPL8oxonLInrm77y72/9
-DJVsR68b20vi+DF+P2Xnz/DaciVA+Y8klmXtPW6YUQj0oxTmAwelMXtyyJ3T
-HoWwuT/u8OEAabwsrvbODBeCyvETvsyd0pg4krjLeuATDLGzBboFymDza+fa
-Pfd8gpbOnJq6ZVmsSaKj8x4rgD7fudsSFvux2L1CZb+8AuhiE3oxVLYfz0dz
-JocYF8DpLyJtpRFyOKiszfpFUD7cIqmEpp8+gDMeS5sunssHk2KlLEs4gKvO
-PtAzkMqHDouj+Y0KBzHNLzn55fo8EOOLhxdsh7A/V8i6MVsenNb9KJ/JpoDR
-t/J+3W+5ULh/IXbQVAH7mTtVkq/mwoktG4mpZAW88bAmyiArB7YVO9Zz9yvi
-1QFf2TWlj5B0sPP0OUclrOIpuzuz6wPEFDhmqJUr4VuMPasm3h9g8uKrG4l7
-DmOKstJ/7yqyQaA17+LhxsNYoWkk2+xKNlwcuzj3QVYZu9tGxlLRZUNxizmZ
-K0IZz0f+srYweA+3WA7G6lipYHmJRD262SxIjnK1P1mrgp2/HpfPi8yCEYeO
-GwMqqvj39Mt1hh/vYPXbodOHRNXwFD7/tPjyW3jirz5LL62OJbppfa9Sv4Xc
-q7MvPD6rYzuXfFu2jDdAlc3/h1lfA48lMx9y+JUJAcVl8r/va2LRQ6XcnOGZ
-sO/BnS/1olrYpsZhs+JAJlzhXFPb3aSFhyiVDdy3MmDMOXHNTBlhwVD3/Eru
-DLg4YkMjtozwRWGhJNeS18Dofnjb9zLGfUbe12q20sFHs6DYXkkH841JGnu8
-Sodrp8l3KBk62MLrh6LQ8XRQnUntThM4ijszDlLdCX0Fr0nNKvV8x/AejcEp
-UblXwBQVLMCYfgybtoU1N39Pg0GJB3jt0HHctjmZIrEnDcRP1ViP2+liEWkp
-2tcuL+EmPc3aHyY9nGoW2LpekAqKn22k10r0cPJHNaf3Wi/ApKXO7oWyPubu
-i1OjefgclB8F5U7SGuD4HQv0lnXPwJlcFW0/ZIA5lAw78lmeQaqLe6xCjSGO
-ts5MYzRNASeG+gteZUaYNZzK9UpSMtxMW3WPqTTG4V+sNEoGk0DpRxpps/ck
-DtnN0eXomAgRYQ1Uv0VNsPFZQSqn/ATQ2KUal1dvgtnipGVd1p8C6nJvgPtn
-cHuHkpnbsacw68Iu7orO4oQ9yO9meDy0/bkbcZzdFFueM3zn2RkHSSZ+ZAaK
-KRZKONd+WygOlC+m/KqeMsNjXTYbdx1iISv+j9kQ6RzO5HGW9MmLgcHq+Xhh
-TnPsaHHXxHctGrwPzcV1mFhgueRAH7+j0cB17JXA2McLeOSTgAE1TxQU2MfG
-LR+wwg7Kii/osyKg9lgz94fei3i+SJ/MqBEO/RMGO3sKL+M7ata6rM1hoD8U
-y+5kZ4M3S24nc1iHwmvrM4NU0VdwkEb4HDf5Mei9DVF8P26Ld5Wn6wg8DAYO
-lcEL6Q52OFa75Kkw1yOYz3R8HSBpj/mJll/ibx9Cj9iRQfEDjviVzpSW9JFA
-MOYqebUdfQNLV23EyDX6QxqNrsBhRxdsHSrZdKXUD2IZhPfbOblj13DTWzeG
-7sH5+b6aB489sG+U/15PGm+g/vTKrkL+Ng6L/Vh9T/IOHCz20plI9MLJT/uc
-gww9wVOKvMi97z5+l8TAFeHqDjrt+x7xfg3AzqrXffZLOMFOsqXEC9tgHKpV
-1aDpcg1Er2G7jM4IbPxYXeX5DWvIccrSOfn5KQ6Om++qWDeFL/5xNwPz07Gz
-tLyWjJoBYDvslH8wD/8Pr2kVrw==
+1:eJwV13k0ld0XB3BzeQ2pTJVUepMkDdJryBAVRb0i8paQMkUaqISQmQyRDI2S
+SiSUiOh7L7cMUYa4zxUqlzsZkqSS9Du/v571WWufs9Y5++y917PM7bitu4iQ
+kJC6sJDQ/7+pIyEmus7jEMvsebutvQOmRyx7bQ+MYzw4NMuvswNj3fODTziO
+Izl+2Owa1QGbhoLyQttxpPMiEv70dUD2DrVGzWIcardep30e6kCi40aVOevG
+oWdvenOPxDvE1A394AmPQ1qz0Dpq8zsEZe9/fP3uF/wl3XpH9OE7uIfLap/v
+HUP4R489cTmd+MfLpSRHbQzFjjO210O6cKuBptrbNQon7rwl0WZMOEb8sb/f
+OgpjWKo+3MaE3GbjpJNNo0jPKV7XZslERPHzX+IvRrHqqV20wr9MeGSUU9p3
+R2Hnp1wQc4AJrSMP08L9iUuW1s8OYKLqT6bE33Kj6B1eSg++w4R/ZZfRqOQo
+mib3xrneI/H+CqefiY4i1+yAkvkDJm5y0tjW30dQcLIhUriYiQstSbTTfSMI
+LHzjcLiKCctrkUH1D0fwV+G70WetTHRuOj56dMcITpp8On79FxMZVL/RLfMR
+xEWXJkrOMOEQ5JDUYTSC/Sv8zgcIUeiqMdLavGEEu4QZHebixFulj8osGkGq
+WcXyBlli2weDxcPDEPPXaXdfRoHyY/dMpAzDhF19m7+VQpbcPq1VCcPIEM/6
+KmNBwfFxU/DBqGEoT1Sy1+4g8d9KF74KHEb9Jfss313EIeGOmYeG4ZFWuqLR
+ngIrYfE7fZ1hlPZ88JbxoNB9b9/r0K4h1Dm4JFREUTg1NZe9qXUIVZXd5U9i
+KPy1u3lqtHEIrQ6/3z+Mo2DwzVTTpWYIRzadn52RSOGauWa8Sd4QdPrjy8zT
+KTh9nN4udGoI88bziv66Q2FCp8L5mc8QJs+JhnXmUUiMPXnmhPsQapRua964
+R6Fam3P3o+MQAmNWSi4voLD4/FsxuskQ9mpEFs8updC3ILf2gswQHFR2Sxi8
+oHDmmFO3/iyyv/qdm22gIEtXHP8iNISE7xNf3ekUjL0uLnObEOCHjOebKAaF
+W+UB4WbvBVBJLpa71kTB1c7CWPSBAOLh4qYaXRR+3BN2eJ4rwI6/hzoSmBQu
+TT0/5n9dgBnFitkCigL99rob7BQBLKXVd998T0FtbMF03RkBAkdylPs+UmAn
+DldGbRWgqEt2Q6WAguqhxL/3GwtQHbAu+8MQyY+uVspaPQHq18TdExmh0Nzr
+c6R7tQAr0u8VGX+mUK49JLtuvgBhA4FmyV8pjIlcPCcuI4DthEpJ9gQFTabm
+QLeEACGMRxW3v5HzhB2tjJ7io+ptUvL97xTiWvmH33/iY8Z00fqEXxRq8+Lf
+lLzn40itxNagaQq/A1fpx3TycX8ve8DjN8nvMm/Z9Y18HFKLa9L9Q+HAKd6z
+mBKyPvv49AMRFrTluTIbwvgIPbixXDCbBS9eTOCsc3ysicz4mSvJQm61Orvn
+FB/+g6wn+/5iQcnd41msBx/3RH1jy6VYECofdOvdxQdjZ3fkDlkWDBKiWx5b
+8OGqsX/fIPFp5xV6cVv4MCgtzDg/hwWBhLuMji4fl7z22t2RY6Fj30BFnAof
+9JafN+vmsSCrFaXmrMjHlLNhodl8FiyF/k7SkePjUXeq8gvi6vzDbn2ifITr
+680tkGdhMkS05clvHlRe8rIXKrCwfs+df+K/8+CZfDw0lvjez37pjUM8KAve
+2jsosvCxJeKs5CAPQgPy258RL8xV6+/r4+HjsESSohILKTvdKuLbefhHwFzQ
+QNykKqLm0swDTWPNwUXKLIh9vZ248RUPl6RVxo8SB177dOhDJQ8F52ql/hBX
+7SsfUC3j4UT0FzmTBSz8mn/R0/kRD+22H3uDiTe3ughu5PPwyCv55FPi0MSN
+x3pzSfzB6aYhYpql5JjKDR6uMlfzVReyICzed8opk4f3yUte7yaOOh8b+P4i
+DxKjh7vyiF/pO/1aGEPWu+F3E/GsyXWh+8N5ePloYmCE2PKxuPDVIB56hqUu
+yixiIcGvO5IVwMNva9nPq4ibNYslFhzn4aiihJw5sSw3Mt7Rm4eQ/JlhR2Kb
+O47SWYd50A0Wi/YhTnVZk8I8yEPy0hXMIOL2RSLzlBx5GN16vD+GWJ7qSnew
+5WFfyfjdFGKH9EKlDGtynxa0pVeIs2zCr3Zu58FASrAnk7hb2n6xwhYenFQi
+9TKIFzWuytlrSPavvNWRSuwUPaOWrstDzRZ7tQTim1s67nas5UFSt2p5GPHH
+3/c15mvyoKbL6TpBvKwqpND2b3K/EuMGLsRuZ/Zop6nywEn9vnsncd4G9dI2
+ZZIv9tx5G4g5o1M6c+fzEKZ9MFKReGXh23IbGR70Xk/e/k7uz8szT//SLB62
+Gvz27SQuWH6u+q0wD/Z/X2IXEw9/2GUyZ5qL0AOtYrHEa66r1e6e5EK658Pb
+/cR+jt+3Jo9xkdnyyXw1cYl8c32LgIuPkVMuP0i+x1tzdsoMclEc9u/yWmKd
+pNMt1h+4WHhiVlIccbn4ko7XHVz8wzS1kSL+Qf9qL/WG+JpCfj15b/qhDdTO
+Bi72jn3NDSeunjzZ11jNxa95F0J55P3WcRn8+rtcmK2XKk8h710sL9t3Vg4X
+T5Rt56wn3u7q93n7VS7kr64Sf0vqpYlS+vYymYsBdfc6IeLWxqNCjLNcqHB2
+BxiS+psXYxIpeoqLgGjb63RSr3Zm8hLmvlxYxVXv30rcVVUjVetKznf8VabJ
+XBZ6CuWUaDu40BuXmpEm9T+5QMst0pyLjepV4j6kP8yJsyjabsRFsqqp6EsZ
+FsyOhJq3rOMiia3X4yvNwgOV4ePdSlx8OyM5cpH0o9qEWc9vzCX3PetKQiPp
+Vz0/1CQOSXHxNGJcUZRYrvO/69wZDswl6354S7BwJqm+YWKQgw+c8EYJURYu
+/eqf/+wDB3GR9q+Wk/73wHvGOZjFwVlF38LNwmS/bbrfhFs4EOsxWO1G+qX5
+TO6yOWUcjHW9Hgom/VbueGjQqggO/FLONPHHSb/uzX45HMzBko4VXxhfSLzV
+U7mS0xzwlnlMXBsj82vl8L1N3hwERo8nGY1S6P3wX4e5DQdCpUq/dvMpFNjo
+ajmrciCpqKVT0EeB8cLm7DJlDnRvRTLNekm8lm/twFxynlPPdzPJPJKTvOPo
+I86B6bn8J1/JvDpLl4sOHB7E12uTllPtFLZuGO5NqxpEUtjhjcavKLjHbd5C
+KxtE+eHqLSVkPsb0JeaNPBrEaYnqPNU6Cg0Ja3ws7wzCw9nt6BiZr1Zsvx+/
+Lw5i1DV5yLOSgm36l3neBwfhJ704+l4hmaeTkxYmQoPY9fiGn2sShQvWFoW+
+UwOYfrSyxOkihdzcTNmrEwMQdTA3tY+nMLBbr3OCNwCVspdWhtEUPO+fcyto
+G4DzlXMy70MoUh/TIQp3BqB9+dMabx8KwVXCj4e2DWDKyJqFbWS+p/7jtcl0
+AB07YlxszSmIeB1TvWAwgIf8wP8+mZJ5qMBKUFxL9psl+2DCkEL6iZLDW5QH
+sPCl1POx9RQeqrsoZArY8Hin2Wa8mEJPWnWgWQob6wLCDm38wsQt73HtpHg2
+whNf19mPMuFmqjHIjGSDq19w23+ICd7I5T3HAtn4lnyzLW+QiQlLH82sQ2zY
+6v0r08tiQubPgp4RHTb+XGTvuUtnwtjnrEk21Q/LBXOOZSUzwfr6tcazvR+j
+0s2zRS4yERByYvOm5n4MzLG97BnLREGSt34H+mGVMnVWPZwJpZIDOjL3+xE4
+qp3pf5KJsQmTlRdO90PEIGfcyo6J3NDZc7zn9WO697zg13wmJNKy+/SsP6Ek
+bfJydnwX8kWsTp/c/gkZi1oL7KO7YOU/LVVg+gliE/nnZC904dJeF/1Fup8w
+U3l565nALixQWpH+e/EnNKUFlal6dkHresmO2s8fcSjuoPY78y7suVdfZnX5
+I1i3QnLeT3VC7/SQQk3ZB/yRXFz31KUTxx5Ppw6n9aCy6JDAiN+BStM34S/D
+WGgQsL9k2rTjTvv8hILbXVD3cRB/+rwVmTaPy/2jOyCkGWIx93sLVrUzflve
+bEWi3JNZNYwmxIe5toqNN8FGu9F8Y2I9Qnt3cP9lNcHxXbTYzvB6BBjqzFyl
+NSHg8xdXj4B6uH4X11qf0oTZbVB84lSPTccLYw9qNWGr1surN9bUo9950rjc
+oxGJFfqLaa2vsNk4scjzfT00piVEI1VeYXS6IqGJwYDvNh3BumYGhH4FiLwo
+YqCkTFuBV8vA/J/rg0ozGDD977XG/UoG9L4Vemd5MfBu/ZuVRvcZiBi5Zekh
+zUD+yFL7xggGFPtiJUT21sFL7mWPlyGD/Nfsi9Bn0+HKbvw1+bgONjXyU1rN
+dIi5Nv5bWVCHw8/bTi59Skec+9yTUbl1iKuwOjQrlo4e7ahNuml1aC82Me3U
+pOOEUHuc8Kk6eOSsnDlxioZnEu/krXTqoCr6+auN6AvkGTo9f1NdC7Hkmysc
+2mqgYWHMUX1aC77y7n0HbtUg0Kn9v6CiWpRpF1W5G9Yg/aS6vt3NWljt97kQ
+5F+NZsX3+UnhtQgs5crmsaugMuhatNqiFs6bM00flFYhT/7yOx3TWpjXbz/1
+KKwKeuwFzyz0ayHbe7fz2SISv+bq27TVtcibfeR6i10ltIJ1ZsrlatHm8nHV
+97oK9Fh+WW7US0e5IOXAdGoFyqp3rhdj0nH9tEmSsGsFloa/OsxspcPr4s0x
+qely2LQ12+Qy6Jgpd6pYurEcrvHLvzU9pENTlrV1Z14Z8hfKpfqG0RFV3eZy
+I6oUOda5E0radOTFath9tS/FxnSHoJpVdNTZhm3fsbIUphxjbb8VdIjwtdZ8
+aywBrfLd2i8qdIQrxE1ZzyHOWCASKk3H954QzZ86RYhScRUtH6Fhk7/m3Ltd
+DxGVsniJnICGAEnqu825h7jE3HX7NIeGcV2dl/kvCsHbh0G3DzSMJvNdHHcU
+wLWV8fJVGw0cU4crFc73MZEZG1j+jIYVTNGQw8L3Yd3veaThKQ1HjpW6zcm7
+B2WG/ODgYxr6s6XXefLvQvmxZLF5EQ1947VNigF5SLS4VpCQS8Pi+BOltYp5
+kPdwi/h5iwanJapZfpV3EBixTyTgBg3dVufcX83kIrG+UjQxi4bOvLVCZ+Jv
+o8E6x9IyhQZ5w17OMq3buP7L9aZ8Eg12bQktLW9yMFy8pGg4gYa234NXV8jn
+YG+uwW/E0JBdpOdTYHQDrboLrn0NpUGx+7KeSOR1BChsG158noZ0ic/i+xuu
+QSXkvtjeYBouudzNkbS7iqwf7qnsszTEzZ3X5eWViYb13VsvnaTB2naxkE9p
+BiY23jBceoKGOZc1NI9NXUG45ZmU5340ZMibhJ5MTIeXsoadvC8N++135vt3
+XkaiicXLtqM0qGbYt59WvYxmK8nsq9403FXyVQ8qSYVrW6b3bk8avBzP2oT8
+vISyZicvfQ8atLIjgkLNLiH94dPmte40eOpuuCH+IAnP6vMbjQ+TfJVbfpE0
+TETOsZHD+9xoOKPnsk22JQFCzQs9gw/REGWYOKL4JRYq08qFgy40SNXkblkU
+GYOH09tGVhOnGVdeWaIQjR9y8tfOO9OwkPaWv/x+JMS6lJ92H6Th9haOkYZ+
+BBiLPhqaE2vUTadqvQ6HBmdobYUTDS7x6s2HqkIRd7QsdROxX6JdwNG+YIjJ
+5R+iH6AhJCVcxV/kHBKPr87ZR5yQVsQIVj8Dmz3Zu37uJ/m50u0btdMflo/M
+jt4jzs+apZDkdwLriv0mnYl9//EOWr3CB4EF+8fViOON6po2H3MHT93Aefw/
+ko9Yg03Xj7ogkNpk0EIcc3m068WUHX7knoh5QuyrscZold4OyHVPiz8g/h9U
+mVUt
"]], LineBox[CompressedData["
-1:eJwVVXc41n8XFrKyVxIyEknIyO58jCQKGRXFTxSSUUhWRkqUMpIVJWQliuzx
-/Rohskf2HtnP89izt/evc13nOvuc+9wCVs6Gd8jJyMhSDpCR/V+eI3OxFq3R
-AjHTNEKGdh6KVFZLK6w1hX0lrQOsr9+h7Jg6cp14K6C1KjohkR+BwiIc8hQM
-7aBj/O4tx7chyOUlq5UInROcP5/tLP0zEGWpD9IcGnsAOxbyPes7figBci3J
-K9ygqu1ZaHSWF3qt8qR4K/YRzM1VFsrh7shP0YSZ6OYFTD4Kz6SrXdH9s6J2
-fwweg6O+Yewr2wfoW9zeiDOnP5TV50l6UjojMa6Zl/eeBsAWrU1Qzsw9lBzd
-Jm9LegIPxWWUqPXvoqMcpRNWlk+h59idpgO8tijqTUqYRcszGHB91CKhcgcx
-sL5SNlN5DhPr8DgpwRoFhbvPmGQFA9lC4EtNaSu0z2j55grXC0hoSnX/tWKJ
-Hr26CJeDXkLOsR9lw/n/IcIhmXnt1VCQutDyuKnCHNm94InRtHoNc+F8pw7v
-3kBjNFQaqC0MtL2fUivamqEvNY82eD+EQ8DLlg2Kreto7olD89GrEZBCM3r2
-ZvY1dEL9VsoRhkhgfPXl7F+fq8jqwFXPw7WRMGTnUHjd1gS9x3X0ObzfgCzF
-wahbdsao3w+E2aSj4EyD4Oizx0boMMjuMM9GQUTLgkN4qiEKr+BNp78WDY6Y
-4O4+/xXUqKbiFsEbA5xq4/r8dwwQZZ2ZGudkDLiodhhVO+qjczqejO+yYiG5
-ICax6qQe8miJGTj2IA5GZqw8f+9cQnmGhRmp8vHAR6XgNDumixZ6uh6e3I8H
-t5QqPr5+HWQ5wsIs8zIB3PjskmO3tVG8tdRQ0ZVESOY2aRfi10ZdM3pZKlzv
-YUnAwdTA8ALSJrzU1Pr0AWp8qzzCe88jNaXu4Cm5JEgwieyfEjuPLHxuL4vE
-JQEPG9ucaZAmiiULLM/+7yOYCD1o3zPRQAXqrELL1R/B/cJtGcqf6qjj6ceQ
-MyeSoe8793SHujqip8WvFi4kA2XSbMmetho6qatfsamfAmt77Q6hXQhpvRoW
-Us5PAZpAtrdadxDyZ9kjYJ6psPkiyY50ElCiUeg18qFUWGoNZMRszqHSt0cr
-NdEneB8VkxLzWRWtHlF6+ZMqDYiWvShGVwXdFXwk3PkmHZoXoy2r+xRR0G2q
-UI6NdJB91QtxuoooNe0t6ZpZBuTXxXJHVCugYbHv2CB/JjR6hTAMVcqjHQeN
-E8eeZsIJCUPTYg15xJXbEXprJhPe+rRYVP86iwxliKbTX7Igv7srJXZODjk/
-9MdFWT7DwwChCGo/ORRaxCRyz+0zTCVT8c9xyqE6ZYnVZaVsEHsgGuBgIIuU
-NO+93qr/AqxB3y3Cp6XRtaDtVeVTOUCrwHXye6Q0cmsIueH7OgdG7NZ9NNWk
-Uc6lDFEKk1xoOy02rPXpDIrIcrlF9eArNPAo85gHSaEk3dKo9OSvECEy7X5H
-QwrlLBxo0O76CmTyx+qkyKVQk0SExEv5b1Ccz6SSQCuJDubn7jDtf4OeO9Jb
-ewqnUT+bgaOleB48elnsydMpjnLcCMNfzfJgP/C0/XNncXT97JnqK0V5IBZp
-encz5xTKKskLfnM/H17e9ntupyWG/LiNtife58M4sBhQEU8iY++Ve7LN+WAa
-xXPCKfEk2lOR1e8++R2ie6z0bXZEkQFewHF44jvcuqcfktAogo4LXH1uy1IA
-NPR9tWJPRNBWwPpmERQAH927SSFlEZSsIT94PaEATIoIRyS/nUBrdcXJ8SaF
-EHm41TctWxjFN5dJ8jUUQbiaRsNunxBykrj50Wm9CJjIJnvlUoWQRtguK3a8
-GMoEBv/cdBZCCwaq6/8FFIPzcAW5BY0Qgq7K8o9KJcDF9rUnSlMQscv9J0Gy
-K4HYk1EqnzgE0Z+3fz+ox5SAQFftpueMAIq8hgInVkqgKpbiicUrATTZX3VR
-+EspuF7665U4xo9KlK3KHg6UwnXeYDnTYn70OoH8dB1tGdCpkL8vDuNH8hYa
-zLY2ZbCU2X3RGPGjF2O1PRnHyqGegeee+pVjSPJPvbV4ZAXwvnVo+C3MizRL
-pd9Y1FZA6G29cLsRHnQ9NLE6fL0ChEwqgw7F8yB/KVeBNbNK4OdaLbzPyoPa
-PPhGKoQw0Lzwcp6X6Sgqfqr0Jd0MBx5z4lq6zBFUvbhci7visOyx37K4w4V+
-Xf002BeKw0bYlZrNWi40KspMT4/hkHtLpEnPlAvRNE/Z3xeqghu32kWiXxxG
-phwRoooLVeDSGXY7l54T3fbVQoYHq+GrU31n9ggHcprZuXaPrxqGvFXOquRz
-oCclNs8TDaohQ5gjiOomB8oyV5k+UFANIbGtdyi/s6PtTzMpjY9rYLDsk0SW
-NxuiZEosm4iuAdYzlSjnKhti9DDs3M2tgSdhvIcFpNmQoE4FueR4DRwqHenV
-nWNFOkuRt95o1QKVzUm1Z/+xoviz547dZPoBvrm57AI3WdDRRPP5vyI/gDpH
-7ne/KgtKoHhclIJ+QCJfrtnMMRb0oa1Mf/7BD2DeqStZmWRGqfaK/l5dPyB2
-43lpsQszyn0vOxYbVwedvlyTW/JMSOqg8ReVvDrQ6NhvLaBkQnn3XD1HG+ug
-9ixf32o7I/qukMciulsHAUkPdlYdGVFph6R6kUU9XOhRuf7rMwOqpTqV0i3U
-AF7zx6xsVenReUcdZ0+VBkAhggsvWOhRXeddZV6TBkg/5TV1ePoQ+pmU0Xk7
-qAHWyp+m24UfQi1KJyhX/zTA5WfaivgsHepzErjDmvMTJLEYSqkcWrTUc1hE
-X6EJONm1oo3cqZFhonWkjn4T1KTnBUdeo0ZF1rl7522awF1CSZBJkRr5E7S6
-VKKaQPDM1feVu1SIhc49QIzQBP2OpiGTQVRIVrVr4GDGL9g727JZ9ekg8koJ
-Dy8/3AI+k8OtA7SUaPju4E6RRAtI2x11yyZSIA0pUdv88y3w6oi2WmYfBaKv
-wFSzXFvgMbNDnHAWBUrsWZqLaW2BM5dXrXkvUyCc9vJ51+etcDF48ndOPDmi
-KKbci/JuA9L+t8DaKwdQkDyv4KHgNki/esKvWOUAoimSuxAQ1QbjDbK1HSIH
-EH2hTYTjlzYQvyuf7bFPhti/NwhrjbSBbg9U+n0hQ8e/huptqLfDfETyhjgr
-GdLMYE8ypesAUrrFwbcze1AncvpHK2cHaFBl3P/xYw+008/PnRfqAIoH0t4S
-qXtwKc1dVlqlA8YV520ybu2BcWpvA51TB7jr8peeHtmFO0kJxLL2DjB5aU3G
-PrkDQbHHNfjiOiGY2nwVsW7D9oVOeTy1E9Yydu54bG6B40aAuNXXTqA7s36u
-e3gLjK+OcKTVd4LVVY2/e5+3QJA9/s/p9U4gV9tuotDeAiyM6bWqURe4Krp5
-pgRtwmbQdu9Nhm4gpqT7OfBsgMPZzOZ9rm4gnVmzaaHagJGpa9VJx7tBd3G0
-6DJxHeo0Cz5PKnfDibL4ipS6dXhLft/Xwb4bJH60PEt3WQdp3ykhn/puiFth
-phlrXYN7D9uc3gX0wOiGkFNT4irEC32vIH/VAwNK3817Xq5CY3sMvX1sD2TP
-SI5veK6CqMR/WQq5/x/2ELPv1VWYnF6c6h7sgXL6uZlI5lWwuH7InFnhNwQF
-qr6rDF4BQ2Ut3WdLv2HNqeaJRDAJAmZPxi9s/YYQ19zseg8SfI1hmDU62Aur
-59/JuN4lAdNqV5AgTy/0rMAEmS4JfmVbV2MXe6HMxCd5hZEEWnwBitupvaBn
-7CfMF08ExQPlIs43+mB+58CHlnICFOuyTrfY9kHeo2t+5jkEUIi2S5Vw64MC
-egbR/Q8EOHuKQ2AptA+iJk0s3AIJIG3ixO1Y2Qc+yZOqZ3QJIJbJz3BPoB/s
-Bw8xZpYtA8+VZySbmX4gozSV4OBbgnfvBr7WrfTD5GPOAZWDS8A9fcb5BNkA
-RCqdyQxYWAQu7+H5Ka4ByOAfXrtVtgjsn+SnbusMgKbSKW8Ps0Vg2Jr9bfVl
-APg5gj/+TlyA/SS9CgvXQaDRD3+grjAPTkeVded8B+HarQ+lp4/Pw8hbkb6H
-LwYhf+AilQTzPOAvyNZCPw6C7Qy5jOOfOQh0yxMvax0ES72NpvG4OaDR5kw4
-LD4E8MtpPpJsDliXh7zaJofA58BOv/7gH3hyt5HmJmEIgt5rvkxv/AMrE4XR
-MztDIBGjTsFS8ge6esPy9lmHgbOYd4kr+g/EVKvNiasNQywjhfS2wR/gif5k
-GpI4DBp1ReTLP2dAWNVRQf3qCNiYx79haJiGaaNfcnVWI5B3oFxduGga0uxP
-yeg4j8A1vpoqvbRpOBE7e9oweAQGgzpae55Og+jKHSGr0hHol+OJKVafhmhj
-SWo1plEY1KfPyamagng6UZKl6ygssqfHNjVNwkf3Iw1JymMgG0cid6SfgO0j
-UTkeamOwczS0W4psAgwrGN8aXBgDHk39mb8r40BJSWlFZjQGVenmUdjAONhF
-LO38Zz8GX7cnsms+j4NUdo3ksbgx4BMS7uq8PA74mGNM4voYTEu2Xcf+6Ucv
-VdvEfxsHFdPFzwZ6oxDjfG3buGgcYhXbNUs0R0EvcuEVU8U4yP3gpRRTHoWy
-35wFTxvG4SZLXIeQ6ChEW92jcB4ZBwfin5JH5KNw2YM9SYNhAkaUPlyRfjAC
-pSk2fQt2E5BnlGHCbDIMUdt0l4B/EgTD01gxrUFwvWd62P3EJPA0DdS3yw2C
-4WD6eLb4JBRKLrGvHB8EpkpNT27FSXDZ8ZK6RTEILwJ809auTIIXfv7ZLD4A
-/jQksuzASTgS/Dn63bkBcODsK+CamYQZm/1sJs1+0JBOP0b6MgUMDEvJua69
-wF2Gd1TmTwFly5RUu00vkDT6n70smYIGyqKVHdNe+GjCsHD8xxR0JDZMO6Be
-+OvhWnxtcAraTjw+VcbwD6cYXKmgm4b5zeHH+5m/QeZy75Ng22lwfnyTpelP
-DwjZ0U7zCcyAcb0bqd2nG/6KYPGm+X/g/na5/d/8DtDH2KPh3BxsPnn0X6BA
-G6SdbuY4oDkHJg+avX4cboPdd8/eVl+cgzsmP50pGdsgw2M96rzJHPDWXdgl
-rLYCmXTvG12HOQjQfPXcIa0Vvqa+i7gWPweCv2lbRqlbgfmF4Cvn9Tko9bYx
-E6xpBpvNfvozu3MgSeln5JTTDOU2b0JJB+ZBtaXGOzuuGew0KEMfMswDmXaw
-2r5zM+C7Uy+8/+Fy/B1l+/LRZrjvnBn83HAeHqZHcTTe/wVtxlJPP+TMQ4WO
-o44YfRPosSQrD32fB2Fu89OyK43wq5lthbtsHsKFdAoE+huhQWvjVnT9PLDK
-tVZ9Sm8EXKESXo3Og16ucJ+GWiPk8lza8WJdAPeEQXFrp5/wetLW5ar7AqhZ
-facRz64H+o99J6N8FuBUoV5c3Ot6eGGuO9b+ZAHCYyKnf9+vh6AeCYPLYQsg
-x7LeUiNbD74Na6c1MxagNCyWqFFaB07ZgbNn+hfATjPsvVzZD7js9sGS4dwi
-JD2486n2dQ3Uag/+HdVYhLCf1kLCDjWgxHvkw/eLi7DG+OWKxsUaEK2LHLph
-sghNBc6MBeQ1QM4VZJblsAgf+Jy9jFyqobjMwfjCu0WQpTwvmaBRBZLhmSvc
-HxdBS2Sm+xZPFaTdno5cSluECWuN1q5VHN4wWLa/zVuEb5fbuCtTcXD6z0hv
-8ucilLfK/PAhw+E4hZJ2wOa/fCIhDwQuV8C73+4zxvuLoFDh1SWxUg6s2flB
-opRL8NpsKdkxthz+Gv/je6Yl8Oxwb3QdLYP+NH51PpElOCa8m3PZphTCdahV
-ykyWoKP/rIu9VhHsRHRJruUtwa4oi+D+ua/QNnXK53PxEljs7WCbr3IhVTGw
-4VblEih00H7zf5cDemNnbrX8XAL7RyOHGHOzIUkqLDJ9dAkMahwD2IoyQLP1
-4pop4zKURnydHVdLAi6hj2rM7MvQa5zr/1v3PSy6b76qO7IMmh7uyt8YEiCa
-L/2EjPAyJPycrLrhGwN/HCmv06ssw/3+idA4gVAIpcdKK+8uwyiLamrVQw/M
-0pKT+qHzMiik3RC2fxGAyX13NDr1cBn4fz9wGZgNwoZv8CzE+C/Dd9qC2fKF
-cEzqsyfvg5hl+LV/zjtQLQHrvijrL/RjGQoWsKdF+llYVuLLX32N//xpeGie
-z3/GfInjXOFty5Cyn2HsE/oFE42L+LY7sAx6H+bduJy/Yl5/lsa7Sf94slSN
-PnUsHwur6RLUZCaA4aMUczKTMuw1+9BtczYC9FcRmO1ty7HQO1Np7pwE2Fis
-5Gl7XIEFU6+LZfL842EJovNoIYb56x6WYTxJgCHZm2mnJKox34RjD0XECVDq
-X7Hn0lCN+SyKFCFJAtQKaoox3qnBPMMUlF3lCEBh77Hi/KkWc+k01ehVIwD1
-wehBNc167P5xq2dETQLcfZ7yLIhUjzk9tK+n0yaAtWUi2/OUBuzeYW9dVT0C
-PG8qtV5naMRu30gwSjYjAJ2lrZQqVTN2dWLY2sGVALbO7F/Tf7ZjxrIzn565
-E8CNXNs6SKkDM3y2PPPekwBX5idTrnzpwPRFyBza/QjQfOZQan9sJ6Z9T8Dt
-bCgBoqXoO8lDujGt8pOF+mEEkN3a5wqn68E0GaQ37SIJ4HGy/JHD6x5MLVfd
-510sAQzCdiZ1En9jSivWT8k+EUCf1i9cra8PU9B0qDuSQYAHVBp7M0792Nm3
-bjQynwmgfeIDhxn1ACYj/yz0zjcC5Pcxcc6iQUzcOy2qseJf/Cuan372DmN8
-FLOpUT0EMOrZUT53bRzjGu3p9+gjwM/G7Tn7wnGMraKW2XyQAIkUZkTHwxMY
-zaMkH+FxAgzrfDkuOjKBrcxdMy5c/GfPgQcNBk1hS/XnX8QTCLBoM4OLrk9h
-f1JlcN8VAoScTD9YYjuNDVswiV/YIsAuudnY1JUZrKGjjqKXkgjZl9xJhpqz
-WHXud8VyaiLo3J+meV8/i1WEJjsn0RFBfJo9pOLyHJan5Ttgx0wEL24H7lar
-eSyxVC5/6ygRth8Za+B5i1hsjNDsEB8RtOs5H5zWX8Ii3ViOVQsQIUqQy0dq
-eQkLllh88UKECKU90VNyvATMJTnV6qgMEUZ6qOQi/YmYg19k7F85IpjZ/FDu
-HCZitjf9WyYUiMBO7+tnDSTsJudNpexzRMjMHO+vol7BLrxgY1XVIYKfarNN
-X9Eqpm57QFvgMhH+Go28IYmtYSqay48PGhChrXHOmP3jGia93zjbbEKE43SK
-/hPR6xiPy5Mqi1tEiKZmC+HJ3sQ49e9vqN8mAs792nxYaQtjEbc4LWJLhDut
-CMtv3sKophXjlh2IoKe0Lo3IdrADNSKtnc7Ef38zS94gaQfb/cBxsNiFCLvq
-nevC53cxoinxvr8HEW6X88UsJ+5hC2dH0m57E2Gf/TzBwHAfm2ZrHtT2JYL3
-hqCJEf1fbLA5Q5vl6b/4KiJJPBfJ8Do1S/7kMCIIzvl5ZKwfwB9+H3QYjCSC
-/4WdEipPcvy4iGkJZzQRcl/QZzuSUeCB9IaGLxOIoD8hROtyjBKX9mt5/+MD
-EUSCBAKziijxcaLO/N9kIlDWR5UIXj2Io98aT90yibBIk5Gpm06FL1/E23Ky
-ifBxoFqvyYwaf1+uwjubSwRe2lXiSU4afPejXKF5IRHeFJzKepJGi39mzyOP
-LSHC91+t0dE+dLjZcwn9jnIiDI8+tcduHsJLHET+aNUQ4X2RrxTrOQbcbiRF
-NqCOCGLm/Yo/ECPOZcgfUPaTCEezb24kGzDh7vJHuKXaiPCY/AXXVDMzLpz1
-1sa+81+9sYXpKQ4seBcPa35qDxEa2kM0JdhZcWnyQ5eODBEhJJmW/bk/Gz7m
-9jzWaPTfvkzkO9e12PHwGYqpVxNEqGhSkfA+woEjM/8zDdNEOGd9rltoiwNf
-/rX7mHyOCORfMy7yz3Di78GzUWWRCIFD5NG1k4dxvbw1zkcEIrT/7R59vcKF
-Z8cs5c6vE6H2UtLrEN2j+A26e7vC2//u91z0bmMsD073eEbbcu8ffhgcr9/9
-y4uXLFu/jScjQYqG+sLZJ8dwO6vRsS4KEqDS10yKkfz44e6bEkzUJCiPuMy8
-6CaA113o87pIR4Kf7alKt+8J4u6lJvWBDCSgb7S2FvUQwoVPd7BVMpOAjl/g
-ruz743jXBz3LTTYS7BRd8GYYE8afsjZlSx8mwa4Ar+2Epggu8+zClgM3CW51
-MV4sbRHFxzdqzqfzkiB+LnI16akYHmGPIsf4ScDOlflr01EcR0Plw0ePk+Ca
-Z+549xsJfFlf8dRVERLwX+QuwP2l8PfVBY/CxUgw6U7+K3r8DH5ZTrq28TQJ
-eN74H/T0kMF303OYD54hwSNWxkBuPTk8m/uUOciS4EJq5+aQizx+41V6pqc8
-Caj4nx212lHE6ciOr+crkWCO89OHKQpVvNQlSX1J9V/97MGTh8wQfneKJ0xU
-jQRZdMUshcnqONf1uAErTRIUJqZ4Hnp+Hq9v5BBNvEAC3+vstO90LuLuqpFu
-v3VIwMwoMS9rrocLf2WsYtEjwd+4OJW0akO8S/Alw6Ur//pRkWysEbyOB76l
-NgsyJsG4iBm5hq8lLk3zNA2/RoIQ81nab8t2+LgX2cq2GQmoqSyLZAUe4RGL
-PiBn8W/e76Mkt/ei8P8BTEPpSw==
+1:eJwV13c41e0bAHCiQbwksyEpEaUoDcVd8opSZGRUSEsIRWh57ZHsjKTIiCQq
+ynafY+cnicP5Hin7DCtOkhC/b3891+ef57mu+7nH82y0dzW5tISHh0eSl4fn
+76rNc+OCUo0eTGiKVWRbUTAvsX7JsWR76E1uS/pGOirG+e0+EwewTOcGC1hT
+8Ea4mL2ioAvw/Fk7BKRzdbpXrOy7Dg8WNhT6kU6BArsllR7goFQ/0UI68qB/
+ye8kL8hTaX6ieIaC/+03F530uA3S7KHScNJue5Qc2Mb34OG1St050m8e/elx
+lfQFszmuludZCipLs8KdAv2Ah2991jzp9ITWvVe4/lCr0Hgr8hwFH8ZlRNm0
+BEEgZFyl2VBQWCzigPXBEJj3LA8ItaVgcLQnyzw3FFIMFQT07SjoFWEAJ4LD
+YSrWxJRznoITK3eN6E89gG1jBZL/s6egw/11ibr2kbCzNFan5AIFX9V4/Vqf
+Gg3Rg69biy5RcNjf+ePa0zEg/nOvWu1lCm7ROZ8hIxwLSt1fpr9doeBTyjEj
+iTtxQNn5/NUeRwpGV67PFrJIAI81FnkurhRsOnzQI2Z9IgR+SrOdcaMgf731
+YcnBRKi1bLgedYOC3i2JXzZcfwSGlep5QzcpaNezSnRXeAokPTYwUL9HweQL
+O78Wn3oCrxee1mz5j4I01sncg9JPYX5VYKSSHwX1J8J19bJSIceZEDYLomAS
+T0BFnu0zSHKu9DwWScF3OmKbvlc/g7uXeDVfRFOwLfBZmNqWdEhRVjsoEUdB
+IQHK6fej6TAzFvRDPImCvqv+TOCtTFhndI/5Np2CV+W9FNrjsqHWFzwvl5Hx
+vbjsgcSvbLA72s5MrKRg5vN4roV1DjhcUrjaSaHgN+Ui7JZ7ATn5E/G3Gyho
+smvSivkqFyqqatVsOyioqesU+bvhFVgmGJon/KCgRfDs1AGVfHh4/bN24i8K
+ejSGnfGJzIeKIz8XM+comG+Yo8RnXgBK9ztmmHxUjMm9cX7Z9dewzvKcMb8E
+FZcWFsyJLLyB+ZavjWn7qdi12via3ba3cNf+1fs12lTM95j49tr6LbS6aCek
+6lDRco9a9anit6Ab931N03Eq5pa+DY1zK4TMwsSmZzZUNKa8k5AaKILdpvcU
+LIOpmPyxfIdsYzFIW+xYUf2Vii6qZ5+5TBdD0SkldswAFY9EzYvh5hJ4+FpF
+xZlDxVFjrWlbvxKwXK9RDz+pCLSqimeapbBi9D3VXrgaB7uoBgqvyqA3+Lp2
+HFTjDnbDhW2xlVC0NVDB+2U16papx9nUVkL3tjQ1+cJqtHzwpDp6uhJ2b/V6
+Ri+rRt+d7ht/WldB84eciItN1djqLdtTuQkhcGEjLh2uxpJAzVfZ1hRoHMh+
+YqNSg1YSMUr7R6nALy/Ap/a+BpP3aG84K1IHE4+vWboN1+LaJ+dGFhXroKKz
+67fvVC2m8N0rzjhUB603TL2SF2oxtbXcaOR6Hbye3NvHEqvDTMf9vrdpdaDb
+t8lp5EAdFjzd3Zf0qB7sEpZIRkTVYe0ylYyOTY0gPhgX9utgPY53Sika7fsf
+zMg3z2nlNyBfCf+fh3dawaNyRiUmtQmDkzYfkX3UDgd/u+TICbeg081Wl8d+
+nVDpWsMpedGK+3krFF3PMOAl6yrv7ME2XEg7WWnj3g2te/1FIxntqKB1bZ/O
+6R5IsxP8vXNPBzJNmzXq7Xug3ynwa/mBDnzuqLLrmGsPvHyle/3I4Q7cksTZ
+bhLaAzHW51L0DTtQ6celTfZlPSA5rlCmbN+BCWY7lh8W6YWlBVzO8YgOTBZU
+4tq594KZ8oXwyd4OfOYp05h2oA+itwzanrrXibMyD/O9D/eBj6pZZrZfJ5pU
+/hNvfLQPmv6RiJoN6kR+fn57HtM+4K9SNEmI7ESHmPE5W8c+yLp0+2pWaifu
+zKvZseFRH8w5fKqQo3Yipe9a4pPpPrgoV/JfAC8dZYLY927O94HzwbLNzkvp
+eEPpwsUTS/rhgA7PsVMCdNzsaqn2R7gftpw7smrVKjqGzuv876xCPyx8Sve8
+LEdHYynpxbVm/VBqPll7RZuOvYbVl5Pf9EN9VveuKi86JrpazJoV94O4Nq1i
+0x06nowdjRCp7AfphBUtQT50LKdLvgts7AcBBe9gCKJjgr0Tn2tPP2SGyWuF
+xdLxhLd42hHhAWjYb7LnZh4dyzIuM0YdBmDCS9T15Vc6Xq+fc852GYC+9Lov
+ab10VOJE89h7DECw8lmMHaBjvGq5Iv2/AaAkRHGcOHR0KxXxpCYMQJ3cLvwx
+RUfFTyViCbUDQBs6sMFqJYEPZwUNQW4QNAtik701CHR3spLy3DIIMwE5j9X3
+EWjSnd2ft20QHmjJXGVrEihSpXtrzf5BMG887HD0EIH3/Xye/zw1CHoM5LYd
+I9B3BZcnL2AQCpzDZORsCbS9dai5P2wQtOrXtCScJ1B7ODJRJnoQom+JnBC4
+SODc/1RUQ1IG4YXw4os+BwI9oy6dsX83CLKCYT22Nwh0lmS8k2YNQpebkHZs
+IIHHQxT9jMYG4W5My6O6YAKVZ24aBv8YBIIZRJkKJZDFEBv4sTgIYY9OuupF
+EGj/xFD0k/QQdFAVTxfHE2i5meIYdGwIHPkbXT9lEXhEPXsD99UQmNycD+iq
+JnBNOaWtqnAIKm7WKznVEsg90hUUXjoEhfEJyjN1BD4zFx7dXDcEeTqP9ZZ/
+IHDR273EonsIaAafOb9bCCxHOFUpyARvfcUdal0Exupb8d8XZcJUw+lPIV8I
+dPx8o/i0JBM8NWLburoJlBnIWj+xkQnf4pl8nj0Eei0TGpbfz4Sq4uuyfoME
+7jpB+IdeYcIr75jHw2MECnZOaphfI/cT8c1Y/p3AfpuVnI3uTGAukZTcOEFg
+jJu2UbkPE0yumGkZcAn8Hpe5djyeCfNzGhku0wTWr6tqKXvMBGqeq4jrLwKf
+ZtH9Qp4xofDc62GnGQJPFAuy5V4xoasgdsJ6lsCXXW5FprVMaHQ6dOyfBQL9
+L9y/ItfEBB95YeCSth7NWDP2iQkJEU+z2xYJFFjo9A3+woR1tWGdobwMvLJR
+60Qplwm7YWtlEz8DNzkIMGU3suDqVQfIEmSgPHS3XlFkwfdKhXGblaQlC8pf
+b2eBm3GDj7gQA+VqzWJ0NFkw02Js4C7MQFm5tIOXTVlwfEj6yaII6V83FAus
+WJCeH+yRJMrA9S3/is3YsoCx66DG9lUMXHd3hBXmzIK09aaex8QYuIbYE/cq
+iAUvoy+LmYmTLhDwmQ5nwb7wA0bNpGWCux0glgUGfjvvHZJgoPRuf+3PT1lw
+wyP09TpJ0ivNt67JYoHX0HRxIGmpfkXxCy9ZcH9PShGbtGT0R85UMQuSct7F
+ZEqRvpJG06pigeqBIx7zpCW03TG4lgWtEZrGxtIMFB+Vjpf+zIJ8q7yZEdKr
+a0b+O09nwb+iJxt2yTBQLLnKMfcrC6IXsuO8SK/Sv3jo4DALBCqGtv4gLbph
+r0rQBAukLyz8VF5DelpAsmWaBVHj+2ptSIt87OaR+kPGc6EwPpL0P5kFI7Z8
+bHj6Lcqp7K/v+HfmCLBhd9C4Xj9pYRNz6qQIG4RifigtW8tAoa1KeZqSbDDW
+rxXb8tc8cwkB69jwKyFkqc5f0z/6NcuzwVn48hJr0ivz05wltrJh+luYoAtp
+wSB3C5sdbNjSK7vB56/P6ulka7ChK8jk8P2/3iWzfeIAGw4PmN6IJS0gOCq1
+X4cNVTmmhQmkV/RVLfHXZ8NZ+cCliX9dEjPWdJINt/fIOMb9ddRFYrU5G/Qv
+6veHk15+eW/N2TNs8KzWd/UlvUxLMD/rPBsy/5iIXf9r8a9J41fYcMjiWfO5
+vx4pCNjrwobhDNdUPdJLq/1dfD3YIHlsLlyFNP8jc6sPt9nQcCggTuiv3ZR0
+xfzYsO8f/WIOGS/+o3OqZ0LYYFMfPlNNmk+2RSYzgg2hArGWSaSX/EzjH4tj
+gxZfGnH1r5vdv2sks+GFw/ytvaR5M/S6fNLY4OD1XYuXNM9tmbqG52zQmapW
+aCDvd1ERk60K2eDP3H/5KOmzPnnqQaVsyNXbI8JHuoz2qOk1sqHvdw1/OZk/
+Hn4es8ub2XDeK6ZrA+nP9POxu9rY8PiDaWUzmX+qqkbKtgQb3t/Nm7xJmtO1
+1fr9IBtadTXMKsn81VOT4vYNs0GPxQ08QzozhP++8CQbVPnshabJerDZ3VN6
+8Q8b7qDPZjnS7REPZVZLcsA6dfNT/dUM3Dno90Z7HQd6OzpzPpD1FqnpauAo
+zwGd4jfiR0nrswxuUVU5MOu6R2IvWZ+VhxYJ16McMNwn3TPyD1mPiaNuj09w
+QOFnurQxae8xxooGUw6IOcpXvSbrXz25aJ+sHQfMwMfkCtkfsn9cTWr25sCh
+MYeGFwLkfRyz2Dnjw4GrL41CJlcw0D5Nt3FTEAd8fhlUaZBed2LDzO0YDqg3
+ySUWLmNgzHOaxdZcDgQmq68L4mPgHSuQCv7CAce2jve+8wQSBdsK3vRx4OuG
+7Q+j5wjcs2zN0a8sDswb1C+mkP1x4u2U5+4pDqx+VBTykuyfl4RyO/uFhkFa
+3i8wdYpAIxRPAO1h+CZfHTQ4QuDz7R8leHWHIXdna8/nYQLnHwfFVxsMQ0pI
+qVEFh8Ac7+mH/5oPw8kZNc9QFoE86kTccedhcFH15F3oJ/B15uMYi+RhUM5c
+rm7LIFD0vnyE6/QwOKbvUuUj59XlmS4htflhaJZK+RBPzrOKy3EPuLwjEMkj
+n6VAJdDhCP+Dm8IjgMQyea0qAinzQ/fvbB6B8TiW1fESAt1cX4SGmIyAFK/R
+7NBLAlvNdgam5o9AVAZ9eH0MgSdXpR/4WjQCD9UElDSiCGz+uPrHmvIRSKJe
+sjUg522j3q/zCQ0jkNyiVOsQRu6/rwoiekeAf6wtOcCPwIJ1hnO3xUah1k1T
+SeU6gZGDV26c9hyFdFUnK6OT5PzxSLUT1h4D2aw7Dmd5CKzV717sPTIGVJET
+q8b/0FFzvUxqkcEY9Doqhd6bI98/9bFfz5iPgZPFclb8NB2XSAdb5zqPgbZ9
+b3LeKB1Lyp3Njj4egx9fqq66E+T7jk9T329mDNpUUwzc8+k4F0Pb8fPtOEwd
+jjfMNKNjVA1NXld0Ah4E3Dx5MaYTZfk4mQ87J4C387NFf04H1h+2k0uPmoQM
+oY+cnnoa3izqdu6OnYTc3v5VY9U03KxoVSqZMAkE1+P+bBUNA4RMTMJTJmHv
+bFmAZDEND9GPBHq8mITlPW2aptk0LHVWZOvVTIJ62e99QyE0zEscLxiZnoS6
+KYuiVAManhF0mleYnYRPNiFhtf/SUPAeS9/uzyTscOl7N3yYhg72vX00Pi7M
+jqgaHNCkocL2ttVVolzYnts5Nq5Mw6fV77yilbngrFIjWyBEwxMa6rVN27nA
+3pi4fHIFDeez80WXqnFBfLutu8ZS8ryI7Be39nLhvkiTbv2fdpS2fPTFXpcL
+dgOr9FZ+b8eGJgmlJ0e5kJ8dXnRxpB09tWI96Me4EFi9vJTKakeafLiw4Sku
++NvKaYb0tmNA/HLrYDMuPK+Llpnobkf1FYHPKRZceKoD5ufI/0b/bZ4fs9Zc
+KHtWqvipox1jxu6Chg0X+BO7P/3b1o7/BzHMMUc=
"]]},
- Annotation[#, "Charting`Private`Tag$436983#1"]& ], {}}, {}},
+ Annotation[#, "Charting`Private`Tag$231073#1"]& ], {}}, {}},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{None, None},
- AxesOrigin->{0, 0},
+ AxesOrigin->{0, -0.39230902671276946`},
DisplayFunction->Identity,
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
+ ImageSize->{824.0000000000001, Automatic},
Method->{
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
@@ -10406,7 +10969,7 @@ PiBn8W/e76Mkt/ei8P8BTEPpSw==
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" ->
None},
- PlotRange->{{-1.148, 1.148}, {-4.492828149378882, 7.7277590963299785`}},
+ PlotRange->{{-1.148, 1.148}, {-0.39230902671276946`, -0.12773605998196258`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
@@ -10429,8 +10992,10 @@ PiBn8W/e76Mkt/ei8P8BTEPpSw==
3.8577980205886602`*^9}, {3.8578008901725283`*^9, 3.85780091538914*^9}, {
3.85780096624469*^9, 3.8578009715733852`*^9}, 3.858849775298038*^9, {
3.858850387194827*^9, 3.858850394650468*^9}, {3.8588506002888317`*^9,
- 3.858850620305167*^9}, 3.858852097408359*^9},
- CellLabel->"Out[53]=",ExpressionUUID->"3cc5cf10-40e7-4f49-b49b-2b27df5676e3"]
+ 3.858850620305167*^9}, 3.858852097408359*^9, {3.867387370900909*^9,
+ 3.867387405618146*^9}, 3.867387471536796*^9, 3.867387534689898*^9, {
+ 3.867392586082136*^9, 3.86739263513975*^9}, 3.8673927258991632`*^9},
+ CellLabel->"Out[46]=",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"]
}, Open ]],
Cell[BoxData["dGd\[Xi]"], "Input",
@@ -10481,7 +11046,7 @@ Cell[BoxData[
3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9,
3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
3.857792220388947*^9, 3.857792221589129*^9}},
- CellLabel->"In[13]:=",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
+ CellLabel->"In[8]:=",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
Cell[BoxData[
GraphicsBox[{{},
@@ -10588,8 +11153,8 @@ Cell[BoxData[
3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, {
3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9,
3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9,
- 3.857792222287586*^9, 3.858849787156363*^9},
- CellLabel->"Out[13]=",ExpressionUUID->"33e7c0ba-20ab-4cf6-a29c-389c57994027"]
+ 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9},
+ CellLabel->"Out[8]=",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"]
}, Open ]],
Cell[CellGroupData[{
@@ -10615,7 +11180,7 @@ Cell[BoxData[
3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
3.857792220388947*^9, 3.857792221589129*^9}, {3.857793456034882*^9,
3.857793480107435*^9}, {3.857797401964308*^9, 3.857797402122551*^9}},
- CellLabel->"In[14]:=",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
+ CellLabel->"In[9]:=",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
Cell[BoxData[
GraphicsBox[{{},
@@ -10893,584 +11458,14 @@ Cell[BoxData[
3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9,
3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9,
3.857792222287586*^9, {3.85779345804388*^9, 3.857793482920364*^9},
- 3.857797404294942*^9, 3.857797851408039*^9, 3.8588497893548727`*^9},
- CellLabel->"Out[14]=",ExpressionUUID->"b7e91f97-bef2-4342-aa10-56fd59db8ada"]
-}, Open ]],
-
-Cell[BoxData["dza"], "Input",
- CellChangeTimes->{{3.85779011850522*^9,
- 3.857790118981881*^9}},ExpressionUUID->"0feeca6f-7c3d-42df-96a3-\
-eba02ed3f0e7"],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Function", "[",
- RowBox[{"\[Theta]", ",",
- RowBox[{"Evaluate", "@",
- RowBox[{
- RowBox[{"h", "[",
- RowBox[{"\[Theta]0", ",",
- RowBox[{"{",
- RowBox[{"g1", ",", "g2"}], "}"}]}], "]"}], "[", "\[Theta]", "]"}]}]}],
- "]"}]], "Input",
- CellChangeTimes->{{3.8577498385691147`*^9, 3.857749855143888*^9}},
- CellLabel->"In[42]:=",ExpressionUUID->"ee96b162-d408-4f1d-829d-62c01734a1cf"],
-
-Cell[BoxData[
- RowBox[{"Function", "[",
- RowBox[{"\[Theta]", ",",
- RowBox[{
- RowBox[{"h", "[",
- RowBox[{"\[Theta]0", ",",
- RowBox[{"{",
- RowBox[{"g1", ",", "g2"}], "}"}]}], "]"}], "[", "\[Theta]", "]"}]}],
- "]"}]], "Output",
- CellChangeTimes->{{3.857749851353796*^9, 3.857749855283477*^9}},
- CellLabel->"Out[42]=",ExpressionUUID->"a6438d16-9b69-47fb-b129-edbda292b468"]
-}, Open ]],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"DerivativeList", "[",
- RowBox[{"f_", ",", "x_", ",", "n_"}], "]"}], ":=",
- RowBox[{"Through", "[",
- RowBox[{
- RowBox[{"NestList", "[",
- RowBox[{
- RowBox[{"Derivative", "[", "1", "]"}], ",", "f", ",", "n"}], "]"}], "[",
- "x", "]"}], "]"}]}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"EfficientDerivativeList", "[",
- RowBox[{"f_", ",", "x_", ",", "n_"}], "]"}], ":=",
- RowBox[{"Module", "[",
- RowBox[{
- RowBox[{"{", "xp", "}"}], ",",
- RowBox[{
- RowBox[{"NestList", "[",
- RowBox[{
- RowBox[{"Function", "[",
- RowBox[{"g", ",",
- RowBox[{"D", "[",
- RowBox[{"g", ",", "xp"}], "]"}]}], "]"}], ",",
- RowBox[{"f", "[", "xp", "]"}], ",", "n"}], "]"}], "/.",
- RowBox[{"xp", "->", "x"}]}]}], "]"}]}]}], "Input",
- CellChangeTimes->{{3.857755250612409*^9, 3.857755319553091*^9}, {
- 3.857755422678203*^9, 3.857755424189089*^9}},
- CellLabel->
- "In[105]:=",ExpressionUUID->"d8cfd93a-f879-48e0-a27b-95b9cc513688"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"f", "[", "x_", "]"}], ":=",
- RowBox[{
- RowBox[{"Log", "[",
- SuperscriptBox["x",
- RowBox[{"1", "/", "2"}]], "]"}],
- SuperscriptBox["x",
- RowBox[{"3", "/", "7"}]],
- RowBox[{"Sin", "[",
- SuperscriptBox["x",
- RowBox[{"1", "/", "3"}]], "]"}]}]}]], "Input",
- CellChangeTimes->{{3.8577553401391706`*^9, 3.857755381037498*^9}},
- CellLabel->
- "In[101]:=",ExpressionUUID->"9e014371-5790-478a-a2c4-4dfe8ce3b446"],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Timing", "[",
- RowBox[{
- RowBox[{"DerivativeList", "[",
- RowBox[{"f", ",", "x", ",", "10"}], "]"}], ";"}], "]"}]], "Input",
- CellChangeTimes->{{3.857755332457055*^9, 3.857755335775176*^9}, {
- 3.857755384961171*^9, 3.857755396809326*^9}, {3.857755434233383*^9,
- 3.857755434473165*^9}},
- CellLabel->
- "In[110]:=",ExpressionUUID->"fcc52228-f93a-4127-9745-1d6483b4cd17"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{"5.335467`", ",", "Null"}], "}"}]], "Output",
- CellChangeTimes->{{3.8577553908469267`*^9, 3.857755440088213*^9}},
- CellLabel->
- "Out[110]=",ExpressionUUID->"a76ccc99-43de-4a3a-91c9-6c5b0b9d3834"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[{
- RowBox[{"data", "=",
- RowBox[{"Map", "[",
- RowBox[{
- RowBox[{"n", "\[Function]",
- RowBox[{"First", "[",
- RowBox[{"Timing", "[",
- RowBox[{"DerivativeList", "[",
- RowBox[{"f", ",", "6", ",", "n"}], "]"}], "]"}], "]"}]}], ",",
- RowBox[{"Range", "[", "8", "]"}]}], "]"}]}], "\[IndentingNewLine]",
- RowBox[{"efficientData", "=",
- RowBox[{"Map", "[",
- RowBox[{
- RowBox[{"n", "\[Function]",
- RowBox[{"First", "[",
- RowBox[{"Timing", "[",
- RowBox[{"EfficientDerivativeList", "[",
- RowBox[{"f", ",", "6", ",", "n"}], "]"}], "]"}], "]"}]}], ",",
- RowBox[{"Range", "[", "13", "]"}]}], "]"}]}]}], "Input",
- CellChangeTimes->{{3.857755404449452*^9, 3.857755431789523*^9}, {
- 3.85775552628896*^9, 3.857755638920166*^9}, {3.857756155805472*^9,
- 3.8577561621590548`*^9}},
- CellLabel->
- "In[151]:=",ExpressionUUID->"56426949-8cfc-4977-90ce-38dc748eefaf"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- "0.000217`", ",", "0.000525`", ",", "0.001141`", ",", "0.00335`", ",",
- "0.009593`", ",", "0.03427`", ",", "0.141814`", ",", "0.578457`"}],
- "}"}]], "Output",
- CellChangeTimes->{{3.857755406978237*^9, 3.8577554319755287`*^9}, {
- 3.857755586489668*^9, 3.857755615341913*^9}, 3.857755656164979*^9, {
- 3.85775615942632*^9, 3.857756163158482*^9}},
- CellLabel->
- "Out[151]=",ExpressionUUID->"bd542387-dd30-48b3-ac8a-75c8be4d170c"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- "0.000233`", ",", "0.000344`", ",", "0.000584`", ",", "0.000931`", ",",
- "0.001271`", ",", "0.001725`", ",", "0.002238`", ",", "0.002929`", ",",
- "0.003621`", ",", "0.004433`", ",", "0.005236`", ",", "0.006274`", ",",
- "0.007287`"}], "}"}]], "Output",
- CellChangeTimes->{{3.857755406978237*^9, 3.8577554319755287`*^9}, {
- 3.857755586489668*^9, 3.857755615341913*^9}, 3.857755656164979*^9, {
- 3.85775615942632*^9, 3.857756163196397*^9}},
- CellLabel->
- "Out[152]=",ExpressionUUID->"0b0601b9-e2e8-40f8-bca4-46e6faaeeb0c"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Timing", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Derivative", "[", "#", "]"}], "[", "f", "]"}], "[", "6",
- "]"}], "&"}], "/@",
- RowBox[{"Range", "[", "13", "]"}]}], ";"}], "]"}]], "Input",
- CellChangeTimes->{{3.8577560587526007`*^9, 3.857756084388484*^9}, {
- 3.857756123969215*^9, 3.8577561508268557`*^9}},
- CellLabel->
- "In[148]:=",ExpressionUUID->"1905df0b-1226-4655-8431-1d968eb57183"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{"0.006562`", ",", "Null"}], "}"}]], "Output",
- CellChangeTimes->{{3.857756085610165*^9, 3.857756151297426*^9}},
- CellLabel->
- "Out[148]=",ExpressionUUID->"012c854d-bc35-40d2-b50e-09b978f1c772"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Show", "[", "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"ListLogPlot", "[",
- RowBox[{"{",
- RowBox[{"data", ",", "efficientData"}], "}"}], "]"}], ",",
- "\[IndentingNewLine]",
- RowBox[{"LogPlot", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"4", "/", "5"}], " ", "x"}], ")"}], "!"}], "/", "4000"}],
- ",",
- RowBox[{"{",
- RowBox[{"x", ",", "0", ",", "12"}], "}"}]}], "]"}]}],
- "\[IndentingNewLine]", "]"}]], "Input",
- CellChangeTimes->{{3.857755616497011*^9, 3.857755625893159*^9}, {
- 3.857755675831479*^9, 3.857755681071005*^9}, {3.857755731557303*^9,
- 3.857755830871949*^9}},
- CellLabel->
- "In[138]:=",ExpressionUUID->"35b92ab9-72f5-426c-91fe-d87a2358f71c"],
-
-Cell[BoxData[
- GraphicsBox[{{{}, {
- {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
- 0.012833333333333334`], AbsoluteThickness[1.6],
- PointBox[{{1., -8.031685375634536}, {2., -7.3777589082278725`}, {
- 3., -6.744786450703997}, {4., -5.7625775211667065`}, {
- 5., -4.432394042037668}, {6., -3.307679716543695}, {
- 7., -1.9544172318921198`}, {8., -0.5466445296323826}, {9.,
- 1.0163829142026093`}, {10., 2.5961112802916646`}}]},
- {RGBColor[0.880722, 0.611041, 0.142051], PointSize[
- 0.012833333333333334`], AbsoluteThickness[1.6],
- PointBox[{{1., -8.334871634622283}, {2., -7.951879382366177}, {
- 3., -7.410282099933433}, {4., -7.026538814972104}, {
- 5., -6.608391701756518}, {6., -6.3105684895681025`}, {
- 7., -6.0356254428937515`}, {8., -5.834802737094605}, {
- 9., -5.637994734118198}, {
- 10., -5.424561093122287}}]}}, {{}, {}}}, {{{}, {},
- TagBox[
- {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
- Opacity[1.], LineBox[CompressedData["
-1:eJwt1gk0ldv7B3BDLhkznYMMr+kcUbdCg256Ntc1JJeiiMhMEiWpRCQacERS
-MmuW4UcTSWzKXOaSDHFQhgZD6ET89733v9d617s+691rv9Pe32cru/rv8uDh
-4uLqI8c/5x/mfulW/vHbDAsDCllXKXzOnanRzPADA0mJswevUfj11yEfFuM0
-1M7+edIkmcITD/+M9WXEQXHa6Xec6xSOoE3L72NkgPakSYppOoUba7cPWzMK
-gGMk03fpJoULjktY7VtWCFsind9Y3aLw8Ziw/LiZQvgzb0Z0xW0KCzzc6z3d
-+QBcv+laXbxDYU0e0b6ytCdQwozd6pVDYf+soHpLRjloO8zptxVQePOjQUYE
-vQLaQq9rnvgfhbncNQztl2HQ7a4OlC+kcP3xpMzYGQwMY0rDuYjC9pn+9pOd
-VRDq821jx0MKh3xVbSlNqwGLTT47DpdQ2PnE+0Vr6VrIiwlqXCA24klY84VV
-C50Ktvj8UwqL0BajlcLqINHBXPx6KYUz9N/9FenSAOlKR4/nlFG4Mjb2mQWj
-CXoMz16IwBQuH+t6JZTTBJoKtFquSgqXmTL76rWagadupVUosQOPC9dNmRbY
-LbHc9EgVhXeXz6soKbaC00L0gtFLCtscuqF1en8r3O8eefaYeJe8mW5vVit4
-l5xpU6umsFXw1b9SVdsAoUShReLtG9d701e1g3vjx860WgqbDnceDvJph/ub
-Bk5x1VHY5Mrpk29y26F21dqzrsRGU43Rib93wOncrErlegpvK/DMF9N9A0aM
-HQxWA4V1GGlT/NAJAW0HGmReU1j7jeG8Z3gnpFrA327E6yJHeWsqO8FFutw8
-j/h39kbpSKN3oLPyV4leE4U1Mlo3cW3vAkPZiXDDZgozLE6g/TFdEBUUNxtO
-rL6gaFb+qgu412tOPCdWsfe1D7F8D39E7AvUaaGwPI0/9IdNNzhesBoUbqWw
-XHV+lO3VbuAVi00FYtlAm7gnnd1wxeTawGFiWlt2ZqB9D9w/PLCymVjqjOm9
-9tQe+EvwtMQCseS6b4XavT1gU3g7ldlG4RVxW6sm9vfCjJW+TzCxqP5gg2V2
-L5i4LxRlE4t8vthewO6FuOdD8bXEgts7h3w9+qCOu0xGrJ3CyzmhXxrv9MGa
-mfEX64gF7qnNao70Ac2kVnAnMd9vAfyjPh+AsvzmzyIeMQsTm777AR7c0Sq/
-S9zAiqX/GiLXTc92YeLa6PbEC2v7YV220KlvxCWr318T+bsfNn1Y4OHroHBO
-U3/qZd9+YJ+IdpAljpH4ejMtpx+6Dn09s4045NH3u8p1/aB289ROS2K/PfO5
-dz72Q+dniRkn4v0/uAu1+AZge3XsoUPEVikCjwpVB0A3FD8LJjbYKlaywXAA
-pvUj+88Ra/dJl5U6D0CXUH5PArFquDyGsAE4XCdalEospaL68mX6ABTqhjjd
-IuZ7uarOrGwA0HTNcC7xrMe6V03vByAzusLkAfEn/k0t1pwBsPPaEFVM/C5H
-v+MdnQ1U32zGM+J6c6N3jhvZsLimNamcuPTL9h62DRs8I+J9MHHepZ39XkfZ
-YD6zpFBJnL7ebuhzAhs2JIwW/nM9rt1p5EghG3ZY09QqiMOPeXyebWKD45q/
-T5QRH6H7Tpz6woY+fruCEmLXpwHfuYQH4fMLTs1DYmuHkz+iNAdhm/6Pqnxi
-o19hC4Jmg6C0g37zDvGGzHNc8V6DYFsr651BzDBgLZM+Nwi0c5USScT0wUSB
-lFuD0O3SfDOaWCAqRVjpxSDs3MwrH0bMYWSvuDUwCL9/WRkSQDxWd1dqFdcQ
-8Pl2vnQn7vYpkClQHAKl+1Ozu4lfCT+W19EfAqN7qySNif9nVaWmHzwEYqvf
-CqsSZ03VaVQlD8HrhfJxMeLLV5pXmxQPwV/M+8XzZP4EvuvR3fl9CC5Mucm2
-EHsED25+KzEM0eEZhSXEe+THtjqsHwZx44ebsog3O88ZefgNQ7i/nowv8Sqe
-RdOx2GGITxY7akUsd2uZhX/uMBSeu4h1iBc+ie8+OTIMkdkaG+fI+sD+qz1Y
-rh/Bxlk18whxkbjOAYkzH6HFec0NC+IbD/UOXcv8CPfGjdI1iCPnjI9l93yE
-sPsGp7vJ+jQLc4l6vOcTXCip/aVLrH2p0jg78BP4hXx4uJxYPlNZgHX5Ezxf
-bnSkl+TDRPlAtHvTJ3BJ37ssgvjqoku8pPEIcBr2plWQPAkXrdq55DYCjYLh
-6bHEPooqkuNnRqBGIP++HbH+NnZS1fMR+Cp/cPwLyauhUNfUIxtGgaN0hiZC
-3MSq2udoPQoxSePn20i+laSrKJodGQWmzvjya8Qxz9lZVP4oHMobMlD4Jx9/
-ud5pVhuDOrvNCYqvyP1D3IrWSI1DW40Uc4bkq0/siwBZ7XEYKfYezCW2SVPV
-5bMaB07n9xIXYmbZ4JOemHGId68vaiD53DTvVhbD+xlUKl+PJJA8lz/lXjs6
-9RkuMp/1zpB6UHzSo/d261cI1Q3cRa+g8J1tBzvlpr7CleT98Tnl5HvwHmm9
-JPENhEwVWrcQB7FCqk9aE6s7O9o/p/DG7MR8izff4MllySLWM1KPhvrLg30n
-YMLg6ovqYgq/FxK7pHJ4Eh6jCa8wUl93fRUXdgyfhKA5e8lpUn8bWqQuXouf
-hAQ00eZBXJokd1a4aBJ2/cyIN82ncIoS4/js5CQc2CoqxZtL6q+O/v6Go1OQ
-XxuVs4PU9y77g2sDjk/DVa1xzw1pFI5mm/heOzcNXtxL7ddSKbzFRy2nLGka
-RhK6wzkpFE472avC/2ga1n3Zn1pK9hvOyZa0tIlp6BBM6dUh+xOuf9t3eJ+0
-XiyG7F8+vdH5VX3gO7TUsYd5LlN4xmqhQXbfDKC1pw5Jn6ewuAnLsxLNQZtD
-d4qiP1nvOWWgtXMOVGY3Jxv6UfiE0GeZJJc5yDi6+pXHIQr3N29v9I4g/bks
-unIOUrjQTmDdipdzICGZc1nDm+Spz1mOk8kPmJl3auNyoXA862TsggUH1sbd
-4CjuIvWmw+PBJod5sOpujVHTJnlK+eZEuS7Bj4rrZjFvlfDm3kONBpe50Qjn
-ZvNppIQrf4bv6EjlRV4RbLwQo4iX/m286PzqjebqnorYu6KurjyCDx205LIX
-6lDA193uykk786NXWkET2yUU8Bq7gdlFj+WoJ7mFvlxbHvdNWzYhMyHENxqe
-4WezEk99kF1H2y2C3gsxghJs5TD3v99PFH0M3mQhwi2H43ODvWxtxVBdpkQh
-spbFDDEBixOpK1CxnVKgyR4Z/ORweG5cpjh6nTEobqtHxx3qifw7L0sg+q22
-RxPqNKx2tl3D8bokmlpb5vJkUgrz/Du+FApihd3IPyaF9aw+6GamSqGpK+fj
-0p5K4t7DUdtYsdIIWX+Qto2TwA/09opUJ9AQVmnkuBiIY9qe2q57UXQUbT9c
-1sWzAgObK6EqUAb5DVtEWp0X+f//L4sKrsQcuCAkjK/TvEUYJ2RRQ5XP67YX
-gjgi48D5DT5yyJflZSqqIoDTm5Jr4g6vRGM3Ro9d0uPDoX6JEwoB8mjDFt5X
-j6x48LiLhsxeVwVUZazS3LRyqeK/8RWR1tTJD0W+8xUxv8aW9XkqolVyP412
-8nEqSj+bfBO1V0JxVvMB22C64q36ZvYWNQrpscwVtvCMV3ivclubeJtCj/9Q
-cDZ71lNRucfhlIGiMnpuGej5U//hf+OHK6MUf+tOxzuvQcduLEcqWxl9Xvzx
-4OCJN+B71rhTf6UKWjZa72aiSXLSU+And6IKwpO3e/MqJuG5gsvSmJQqeht2
-bKN15A94uniOVzNOFa2/eNtceWQR/nt+NXT/1KoLKSE8qOnhn2MscTWkU6Ao
-av+dB1VTnjWxl9VQVejV39X8fkORxbuzBwTVUXhH7NnKR8vRPpUeJweWOrIv
-rlbeYi6C5p+sXanFz0D1eo6u8XtWoBDe0VdJpxlo+J2icB+PBPrvfRjIsdGE
-s8AvgWhqei7qXExkcGFOvLFTEh332/Nd8CQTBSfbfzRMkEbyG93rGKeYaM06
-qaTFZGmEfx1JMwxlog8qbqzSLGkkyGIZBZ9hohui9+x1CqVRRu7LK6MXmah+
-QtFLo1ka1Yxob6hLYaIStrkhJUJDUm5iQVFlTOQ8vP6t8UUaeqqpsD27nIno
-eRdzhci8cprSVHyOmWguuLC+JZmG7p0xrvn+koyft6vf4R4N/ZEVSnN/zUTv
-OPpBx2ppyLV3/IlhHxNxDtrBEz464r/NiXbqJ/3/fpERJkJHeb78+4PZTBSW
-kWpsJk1Hs/Mq/A8+MlG5YYh/rxqZt3L2tsrfmEiP20Z9uREdrWV7aelPMtFS
-TnhthzkddeQcW7KbZqIdNmNFWdZ0pKiXcDd+jomqovft13OjoxdcmafyOEyk
-ILBX5beDdORdl2dZN89ETgeC17QH0JFwfKnq0C8mysopDc8KpqMi27q5pSUm
-4q6WlPeLoKP/A0XAqdc=
- "]]},
- Annotation[#, "Charting`Private`Tag$4811188#1"]& ]}, {}}},
- AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
- Axes->{True, True},
- AxesLabel->{None, None},
- AxesOrigin->{0., -9.19028308136882},
- DisplayFunction->Identity,
- Frame->{{False, False}, {False, False}},
- FrameLabel->{{None, None}, {None, None}},
- FrameTicks->{{
- Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
- 15.954589770191003`, RotateLabel -> 0],
- Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
- GridLines->{None, None},
- GridLinesStyle->Directive[
- GrayLevel[0.5, 0.4]],
- Method->{
- "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
- "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
- Identity[
- Part[#, 1]],
- Exp[
- Part[#, 2]]}& ), "CopiedValueFunction" -> ({
- Identity[
- Part[#, 1]],
- Exp[
- Part[#, 2]]}& )}},
- PlotRange->{{0., 10.}, {-9.19028308136882, 2.5961112802916646`}},
- PlotRangeClipping->True,
- PlotRangePadding->{{
- Scaled[0.02],
- Scaled[0.02]}, {
- Scaled[0.02],
- Scaled[0.05]}},
- Ticks->FrontEndValueCache[{Automatic,
- Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
- 15.954589770191003`, RotateLabel -> 0]}, {
- Automatic, {{-9.210340371976182,
- FormBox[
- TemplateBox[{"10",
- RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
- TraditionalForm], {0.01, 0.}}, {-6.907755278982137,
- FormBox["0.001`", TraditionalForm], {0.01, 0.}}, {-4.605170185988091,
- FormBox[
- TagBox[
- InterpretationBox[
- StyleBox["\"0.010\"", ShowStringCharacters -> False],
- 0.01`15.954589770191003, AutoDelete -> True], NumberForm[#, {
- DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
- 0.}}, {-2.3025850929940455`,
- FormBox[
- TagBox[
- InterpretationBox[
- StyleBox["\"0.100\"", ShowStringCharacters -> False],
- 0.1`15.954589770191003, AutoDelete -> True], NumberForm[#, {
- DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {0.,
- FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
- FormBox["10", TraditionalForm], {0.01, 0.}}, {-11.59630707390928,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.585496157805064`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.574800868688316`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.564218759357779`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.553747459490484`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.543384672454938`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.533128172287748`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.52297580082373,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-11.512925464970229`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-10.819778284410283`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-10.41431317630212,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-10.126631103850338`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-9.903487552536127,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-9.721165995742174,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-9.567015315914915,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-9.433483923290392,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-9.315700887634009,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-8.517193191416238,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-8.111728083308073,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.824046010856292,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.600902459542082,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.418580902748128,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.264430222920869,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.1308988302963465`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-7.013115794639964,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-6.214608098422191,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-5.809142990314028,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-5.521460917862246,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-5.298317366548036,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-5.115995809754082,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-4.961845129926823,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-4.8283137373023015`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-4.710530701645918,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-3.912023005428146,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-3.506557897319982,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-3.2188758248682006`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-2.995732273553991,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-2.8134107167600364`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-2.659260036932778,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-2.5257286443082556`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-2.4079456086518722`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-1.6094379124341003`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-1.2039728043259361`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.916290731874155,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.6931471805599453,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.5108256237659907,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.35667494393873245`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.2231435513142097,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}, {-0.10536051565782628`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 0.6931471805599453,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 1.0986122886681098`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 1.3862943611198906`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 1.6094379124341003`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 1.791759469228055,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 1.9459101490553132`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 2.0794415416798357`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 2.1972245773362196`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 2.995732273553991,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 3.4011973816621555`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 3.6888794541139363`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 3.912023005428146,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 4.0943445622221,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 4.248495242049359,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 4.382026634673881,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 4.499809670330265,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 4.605170185988092,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 5.0106352940962555`,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 5.298317366548036,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
- 5.521460917862246,
- FormBox[
- TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005,
- 0.}}}}]]], "Output",
- CellChangeTimes->{{3.857755623125246*^9, 3.857755626126985*^9}, {
- 3.8577556562208157`*^9, 3.857755681323565*^9}, {3.8577557499171047`*^9,
- 3.857755831159169*^9}},
- CellLabel->
- "Out[138]=",ExpressionUUID->"27cd73fa-a836-434d-a96b-24533fc305f0"]
+ 3.857797404294942*^9, 3.857797851408039*^9, 3.8588497893548727`*^9,
+ 3.870503651391385*^9},
+ CellLabel->"Out[9]=",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"]
}, Open ]]
},
-WindowSize->{955.5, 1060.5},
-WindowMargins->{{Automatic, 2.25}, {2.25, Automatic}},
-FrontEndVersion->"13.0 for Linux x86 (64-bit) (February 4, 2022)",
+WindowSize->{1915.5, 1019.25},
+WindowMargins->{{0, Automatic}, {3, Automatic}},
+FrontEndVersion->"13.1 for Linux x86 (64-bit) (June 16, 2022)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128"
]
@@ -11485,116 +11480,121 @@ CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
-Cell[558, 20, 291, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
-Cell[852, 29, 210, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+Cell[558, 20, 290, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
+Cell[851, 29, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+Cell[CellGroupData[{
+Cell[1085, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"],
+Cell[1917, 59, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[3064, 88, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"],
+Cell[4143, 119, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"]
+}, Open ]],
Cell[CellGroupData[{
-Cell[1087, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"],
-Cell[1919, 59, 997, 23, 25, "Output",ExpressionUUID->"ce3049a2-a872-4051-b925-2b210d981406"]
+Cell[5098, 142, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
+Cell[5924, 161, 20093, 347, 162, "Output",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"]
}, Open ]],
Cell[CellGroupData[{
-Cell[2953, 87, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"],
-Cell[4032, 118, 799, 16, 25, "Output",ExpressionUUID->"3221ce5b-1b38-40e6-a72a-522044bce1af"]
+Cell[26054, 513, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"],
+Cell[26663, 531, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"]
}, Open ]],
Cell[CellGroupData[{
-Cell[4868, 139, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
-Cell[5694, 158, 19978, 346, 162, "Output",ExpressionUUID->"4d2138f6-c507-4fe3-b575-f7a229cf7535"]
+Cell[33898, 672, 199, 3, 22, "Input",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"],
+Cell[34100, 677, 147, 2, 25, "Output",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"]
}, Open ]],
Cell[CellGroupData[{
-Cell[25709, 509, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"],
-Cell[26318, 527, 7079, 134, 175, "Output",ExpressionUUID->"ba11d116-bc7c-4392-9461-520d5c8b9511"]
+Cell[34284, 684, 505, 13, 22, "Input",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"],
+Cell[34792, 699, 30824, 838, 1017, "Output",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"]
}, Open ]],
Cell[CellGroupData[{
-Cell[33434, 666, 514, 12, 24, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
-Cell[33951, 680, 91727, 1522, 283, "Output",ExpressionUUID->"316a1105-8eff-4541-b7ab-c807e95c3253"]
+Cell[65653, 1542, 1533, 38, 24, "Input",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"],
+Cell[67189, 1582, 12878, 342, 472, "Output",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"]
}, Open ]],
Cell[CellGroupData[{
-Cell[125715, 2207, 315, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
-Cell[126033, 2216, 2124, 59, 59, "Output",ExpressionUUID->"c57d6a51-b537-4cbe-ac96-92ebb8cedd38"]
+Cell[80104, 1929, 13821, 355, 496, "Input",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"],
+Cell[93928, 2286, 545, 13, 43, "Output",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"]
}, Open ]],
+Cell[94488, 2302, 402, 11, 22, "Input",ExpressionUUID->"626c9442-a5ca-460d-9253-fd9b4c2f2227"],
Cell[CellGroupData[{
-Cell[128194, 2280, 525, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
-Cell[128722, 2295, 14514, 256, 179, "Output",ExpressionUUID->"f0af288f-6d62-4e20-864d-98a3f00e528f"]
+Cell[94915, 2317, 560, 12, 22, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
+Cell[95478, 2331, 14364, 251, 283, "Output",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"]
}, Open ]],
-Cell[143251, 2554, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
Cell[CellGroupData[{
-Cell[144275, 2578, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
-Cell[144978, 2597, 1715, 40, 42, "Output",ExpressionUUID->"af000ddb-e1d9-42c9-8898-089a4381de4a"]
+Cell[109879, 2587, 316, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
+Cell[110198, 2596, 2173, 60, 41, "Output",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"]
}, Open ]],
Cell[CellGroupData[{
-Cell[146730, 2642, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
-Cell[146930, 2647, 170, 3, 39, "Output",ExpressionUUID->"0d1a07f3-3dbe-4537-a762-6504ecebe3ad"]
+Cell[112408, 2661, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
+Cell[112937, 2676, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"]
}, Open ]],
+Cell[127519, 2936, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
Cell[CellGroupData[{
-Cell[147137, 2655, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
-Cell[147337, 2660, 172, 3, 39, "Output",ExpressionUUID->"062f12b6-ea91-4e05-b0ab-1496de323331"]
+Cell[128543, 2960, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
+Cell[129246, 2979, 1737, 40, 48, "Output",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"]
}, Open ]],
Cell[CellGroupData[{
-Cell[147546, 2668, 651, 17, 24, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"],
-Cell[148200, 2687, 678, 18, 27, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"]
+Cell[131020, 3024, 948, 26, 24, "Input",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"],
+Cell[131971, 3052, 874, 24, 48, "Output",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"]
}, Open ]],
Cell[CellGroupData[{
-Cell[148915, 2710, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"],
-Cell[149454, 2726, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"]
+Cell[132882, 3081, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
+Cell[133082, 3086, 194, 3, 39, "Output",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"]
}, Open ]],
Cell[CellGroupData[{
-Cell[149696, 2734, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"],
-Cell[150427, 2756, 847, 24, 27, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"]
+Cell[133313, 3094, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
+Cell[133513, 3099, 194, 3, 39, "Output",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"]
}, Open ]],
Cell[CellGroupData[{
-Cell[151311, 2785, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"],
-Cell[152815, 2825, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"],
-Cell[153392, 2839, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"],
-Cell[154009, 2854, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"],
-Cell[154586, 2868, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"],
-Cell[155165, 2882, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"],
-Cell[155820, 2897, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"],
-Cell[156437, 2912, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"],
-Cell[157056, 2927, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"]
+Cell[133744, 3107, 651, 17, 25, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"],
+Cell[134398, 3126, 678, 18, 28, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"]
}, Open ]],
Cell[CellGroupData[{
-Cell[157749, 2945, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"],
-Cell[158108, 2952, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"]
+Cell[135113, 3149, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"],
+Cell[135652, 3165, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"]
}, Open ]],
Cell[CellGroupData[{
-Cell[589148, 10056, 1551, 29, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
-Cell[590702, 10087, 20336, 345, 282, "Output",ExpressionUUID->"3cc5cf10-40e7-4f49-b49b-2b27df5676e3"]
+Cell[135894, 3173, 366, 8, 22, "Input",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"],
+Cell[136263, 3183, 3306, 98, 91, "Output",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"]
}, Open ]],
-Cell[611053, 10435, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"],
Cell[CellGroupData[{
-Cell[611240, 10442, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"],
-Cell[611590, 10451, 369, 7, 25, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"]
+Cell[139606, 3286, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"],
+Cell[140337, 3308, 847, 24, 28, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"]
}, Open ]],
Cell[CellGroupData[{
-Cell[611996, 10463, 1226, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
-Cell[613225, 10485, 4586, 106, 179, "Output",ExpressionUUID->"33e7c0ba-20ab-4cf6-a29c-389c57994027"]
+Cell[141221, 3337, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"],
+Cell[142725, 3377, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"],
+Cell[143302, 3391, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"],
+Cell[143919, 3406, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"],
+Cell[144496, 3420, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"],
+Cell[145075, 3434, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"],
+Cell[145730, 3449, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"],
+Cell[146347, 3464, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"],
+Cell[146966, 3479, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"]
}, Open ]],
Cell[CellGroupData[{
-Cell[617848, 10596, 1328, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
-Cell[619179, 10619, 11467, 277, 179, "Output",ExpressionUUID->"b7e91f97-bef2-4342-aa10-56fd59db8ada"]
+Cell[147659, 3497, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"],
+Cell[148018, 3504, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"]
}, Open ]],
-Cell[630661, 10899, 154, 3, 22, "Input",ExpressionUUID->"0feeca6f-7c3d-42df-96a3-eba02ed3f0e7"],
Cell[CellGroupData[{
-Cell[630840, 10906, 434, 11, 22, "Input",ExpressionUUID->"ee96b162-d408-4f1d-829d-62c01734a1cf"],
-Cell[631277, 10919, 397, 10, 25, "Output",ExpressionUUID->"a6438d16-9b69-47fb-b129-edbda292b468"]
+Cell[579058, 10608, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"],
+Cell[579535, 10622, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"]
}, Open ]],
-Cell[631689, 10932, 1030, 28, 41, "Input",ExpressionUUID->"d8cfd93a-f879-48e0-a27b-95b9cc513688"],
-Cell[632722, 10962, 469, 14, 24, "Input",ExpressionUUID->"9e014371-5790-478a-a2c4-4dfe8ce3b446"],
Cell[CellGroupData[{
-Cell[633216, 10980, 402, 9, 24, "Input",ExpressionUUID->"fcc52228-f93a-4127-9745-1d6483b4cd17"],
-Cell[633621, 10991, 235, 5, 25, "Output",ExpressionUUID->"a76ccc99-43de-4a3a-91c9-6c5b0b9d3834"]
+Cell[583902, 10716, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
+Cell[585676, 10750, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"]
}, Open ]],
+Cell[600091, 11000, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"],
Cell[CellGroupData[{
-Cell[633893, 11001, 934, 23, 41, "Input",ExpressionUUID->"56426949-8cfc-4977-90ce-38dc748eefaf"],
-Cell[634830, 11026, 477, 10, 25, "Output",ExpressionUUID->"bd542387-dd30-48b3-ac8a-75c8be4d170c"],
-Cell[635310, 11038, 574, 11, 25, "Output",ExpressionUUID->"0b0601b9-e2e8-40f8-bca4-46e6faaeeb0c"]
+Cell[600278, 11007, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"],
+Cell[600628, 11016, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"]
}, Open ]],
Cell[CellGroupData[{
-Cell[635921, 11054, 471, 13, 24, "Input",ExpressionUUID->"1905df0b-1226-4655-8431-1d968eb57183"],
-Cell[636395, 11069, 233, 5, 25, "Output",ExpressionUUID->"012c854d-bc35-40d2-b50e-09b978f1c772"]
+Cell[601034, 11028, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
+Cell[602262, 11050, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"]
}, Open ]],
Cell[CellGroupData[{
-Cell[636665, 11079, 776, 22, 75, "Input",ExpressionUUID->"35b92ab9-72f5-426c-91fe-d87a2358f71c"],
-Cell[637444, 11103, 16352, 364, 177, "Output",ExpressionUUID->"27cd73fa-a836-434d-a96b-24533fc305f0"]
+Cell[606905, 11161, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
+Cell[608235, 11184, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"]
}, Open ]]
}
]