summaryrefslogtreecommitdiff
path: root/essential-ising.tex
diff options
context:
space:
mode:
Diffstat (limited to 'essential-ising.tex')
-rw-r--r--essential-ising.tex79
1 files changed, 52 insertions, 27 deletions
diff --git a/essential-ising.tex b/essential-ising.tex
index b1c17e6..312becf 100644
--- a/essential-ising.tex
+++ b/essential-ising.tex
@@ -3,12 +3,12 @@
% Created by Jaron Kent-Dobias on Thu Apr 20 12:50:56 EDT 2017.
% Copyright (c) 2017 Jaron Kent-Dobias. All rights reserved.
%
-\documentclass[aps,prl,reprint]{revtex4-1}
+\documentclass[aps,prl,preprint]{revtex4-1}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,latexsym,mathtools,xifthen}
-\mathtoolsset{showonlyrefs=true}
+%\mathtoolsset{showonlyrefs=true}
\def\[{\begin{equation}}
\def\]{\end{equation}}
@@ -124,12 +124,26 @@ F_\c\sim\Sigma^d(M|H|)^{-(d-1)}$. Assuming the singular scaling forms
$\Sigma=|g_t|^\mu\mathcal S(g_h|g_t|^{-\Delta})$ and $M=|g_t|^\beta\mathcal
M(g_h|g_t|^{-\Delta})$ and using known hyperscaling relations
\cite{widom.1981.interface}, this implies a scaling form
-\begin{align}
- \Delta F_c&
+\def\eqcritformone{
\sim\mathcal S^d(g_h|g_t|^{-\Delta})(-g_h|g_t|^{-\Delta}\mathcal
- M(g_h|g_t|^{-\Delta}))^{-(d-1)}\notag\\
- &\sim\mathcal G^{-(d-1)}(g_h|g_t|^{-\Delta}).
-\end{align}
+ M(g_h|g_t|^{-\Delta}))^{-(d-1)}
+}
+\def\eqcritformtwo{
+ \sim\mathcal G^{-(d-1)}(g_h|g_t|^{-\Delta}).
+}
+\ifreprint
+\[
+ \begin{aligned}
+ \Delta F_c&\eqcritformone
+ \\
+ &\eqcritformtwo
+ \end{aligned}
+\]
+\else
+\[
+ \Delta F_c\eqcritformone\eqcritformtwo
+\]
+\fi
Since both surface tension and magnetization are finite and nonzero for $H=0$
at $T<T_c$, $\mathcal G(X)=\O(X)$ for small $X$. The decay rate of the
metastable state will be roughly given by the Boltzmann factor for the
@@ -168,33 +182,43 @@ energy in $H$ in good agreement with transfer matrix expansions
\cite{lowe.1980.instantons}. Here, we compute the integral to come to explicit
functional forms. In \textsc{3d} and \textsc{4d} this can be computed
explicitly given our scaling ansatz, yielding
-\ifreprint
-\begin{align}
- \mathcal F^{\text{\textsc{3d}}}(X)&=
- \frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2}
- \bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2})\\
- &\hspace{10em}-4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg]
- \notag
-\\
- \mathcal F^{\text{\textsc{4d}}}(X)&=
- \frac{A}{9\pi X^2}e^{1/(BX)^3}
- \Big[3\Gamma(0,(BX)^{-3})\\
- &\hspace{2em}-3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3})
- -\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big]
- \notag
-\end{align}
-\else
-\begin{align}
+\def\eqthreedeeone{
\mathcal F^{\text{\textsc{3d}}}(X)&=
\frac{AB^{1/3}}{12\pi X^2}e^{-1/(BX)^2}
\bigg[\Gamma(\tfrac16)E_{7/6}((BX)^{-2})
+}
+\def\eqthreedeetwo{
-4BX\Gamma(\tfrac23)E_{5/3}((BX)^{-2})\bigg]
-\\
+}
+\def\eqfourdeeone{
\mathcal F^{\text{\textsc{4d}}}(X)&=
\frac{A}{9\pi X^2}e^{1/(BX)^3}
\Big[3\Gamma(0,(BX)^{-3})
+}
+\def\eqfourdeetwo{
-3\Gamma(\tfrac23)\Gamma(\tfrac13,(BX)^{-3})
-\Gamma(\tfrac13)\Gamma(-\tfrac13,(BX)^{-3})\Big]
+}
+\ifreprint
+\begin{align}
+ &\begin{aligned}
+ \eqthreedeeone\\
+ &\hspace{6em}
+ \eqthreedeetwo
+ \end{aligned}
+ \\
+ &\begin{aligned}
+ \eqfourdeeone
+ \\
+ &\hspace{2em}
+ \eqfourdeetwo
+ \end{aligned}
+\end{align}
+\else
+\begin{align}
+ \eqthreedeeone\eqthreedeetwo
+ \\
+ \eqfourdeeone\eqfourdeetwo
\end{align}
\fi
for \textsc{4d}.
@@ -275,8 +299,9 @@ better express the equation of state of the Ising model in the whole of its
parameter space.
\begin{acknowledgments}
- The authors would like to thank Tom Lubensky for a reason that Jim should
- really flesh out.
+ The authors would like to thank Tom Lubensky, Andrea Liu, and Randy Kamien
+ for helpful conversations. This work was partially supported by NSF grant
+ DMR-1312160.
\end{acknowledgments}
\bibliography{essential-ising}