summaryrefslogtreecommitdiff
path: root/essential_ising.tex
diff options
context:
space:
mode:
Diffstat (limited to 'essential_ising.tex')
-rw-r--r--essential_ising.tex206
1 files changed, 0 insertions, 206 deletions
diff --git a/essential_ising.tex b/essential_ising.tex
deleted file mode 100644
index d6a92cc..0000000
--- a/essential_ising.tex
+++ /dev/null
@@ -1,206 +0,0 @@
-% Ising model abrupt transition.
-%
-% Created by Jaron Kent-Dobias on Thu Apr 20 12:50:56 EDT 2017.
-% Copyright (c) 2017 Jaron Kent-Dobias. All rights reserved.
-%
-\documentclass[fleqn]{article}
-
-\usepackage[utf8]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{amsmath,amssymb,latexsym,concmath,mathtools,xifthen,mfpic}
-
-\mathtoolsset{showonlyrefs=true}
-
-\title{Essential Singularity in the Ising Abrupt Transition}
-\author{Jaron Kent-Dobias}
-
-\date{April 20, 2017}
-
-\begin{document}
-
-\def\[{\begin{equation}}
-\def\]{\end{equation}}
-
-\def\im{\mathop{\mathrm{Im}}\nolimits}
-\def\dd{\mathrm d}
-\def\O{\mathcal O}
-\def\ei{\mathop{\mathrm{Ei}}\nolimits}
-\def\b{\mathrm b}
-
-\newcommand\pd[3][]{
- \ifthenelse{\isempty{#1}}
- {\def\tmp{}}
- {\def\tmp{^#1}}
- \frac{\partial\tmp#2}{\partial#3\tmp}
-}
-
-\maketitle
-
-\begin{abstract}
-\end{abstract}
-
-It's long been known that the decay rate $\Gamma$ of metastable states in
-statistical mechanics is often related to the metastable free energy $F$ by
-\cite{langer.1967.condensation,langer.1969.metastable,gaveau.1989.analytic}
-\[
- \Gamma\propto\im F
-\]
-What exactly is meant by `metastable free energy' is important to establish,
-since formally the free energy relies on the existence of an equilibrium
-state. Here one can imagine either analytic continuation of the free energy
-through an abrupt phase transition, or restriction of the partition function
-trace to states in the vicinity of the local free energy minimum that
-characterizes the metastable state. In any case, the free energy develops a
-nonzero imaginary part in the metastable region. Heuristically, this can be
-thought of as similar to what happens in quantum mechanics with a non-unitary
-Hamiltonian: the imaginary part describes loss of probability in the system
-that corresponds to decay.
-
-One can estimate the scaling of the decay rate of the {\sc 2d} Ising model
-using ideas from nucleation theory. In this framework, the metastable state
-decays when a sufficiently large domain in the stable state forms to grow
-stably to fill out the whole system. The free energy of a domain of $N$ spins
-causes a free energy change
-\[
- \Delta F=\Sigma N^\sigma-MHN
-\]
-where $\Sigma$ is the surface tension and $1-\frac1d\leq\sigma<1$. This is
-maximized by
-\[
- N_c=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)}
-\]
-which corresponds to a free energy change
-\[
- \Delta F_c\sim\bigg(\frac\Sigma{(MH)^\sigma}\bigg)^{1/(1-\sigma)}
-\]
-The rate of formation is proportional to the Boltzmann factor,
-\[
- \Gamma\sim e^{-\beta \Delta
- F_c}=e^{-\beta(\Sigma/(MH)^\sigma)^{1/(1-\sigma)}}
-\]
-For domains whose boundary is minimal, $\sigma=1-\frac1d$ and this becomes
-\[
- \Gamma\sim e^{-\beta(\Sigma/(MH)^\sigma)^{d-1}}
-\]
-Since $\Sigma\sim t^\mu\mathcal S(ht^{-\beta\delta})$ with $\mu=-\nu+\gamma+2\beta$
-\cite{widom.1981.interface} and $M\sim t^\beta\mathcal M(ht^{-\beta\delta})$
-with $\mathcal S(0)=\O(1)$ and $\mathcal M(0)=\O(1)$,
-\[
- \Gamma\sim e^{-1/\mathcal G(ht^{-\beta\delta})^{d-1}}
-\]
-with $\mathcal G(X)=\O(X)$. This establishes the form of $\im F$
-besides the prefactor. Results from field theory predict that, for small $H$
-and $1<d<5$, $d\neq 3$,
-\[
- \im F\simeq\bigg(\frac h{t^\Delta}\bigg)^{-(d-3)d/2}(g^*)^{-d(d-1)/4}
- \exp\bigg[-B\bigg(\frac h{|t|^\Delta}\bigg)^{-(d-1)}(g^*)^{-(d+1)/2}\bigg]
-\]
-\[
- \im F\simeq\bigg(\frac
- h{t^\Delta}\bigg)^{-7/3}(g^*)^{-8/3}\exp\bigg[-B\bigg(\frac
- h{t^\Delta}\bigg)^{-2}(g^*)^{-2}\bigg]
-\]
-with $\Delta=3-\frac\epsilon2$, $g^*=2\pi^2\frac\epsilon{n+8}$
-\cite{houghton.1980.metastable,gunther.1980.goldstone}. This is consistent
-with our form above. We therefore predict that
-\[
- \im F=t^{2-\alpha}\mathcal F(ht^{-\beta\delta})^{-(d-3)d/2}e^{-1/\mathcal
- G(ht^{-\beta\delta})^{d-1}}
-\]
-In {\sc 2d} we have
-\[
- \im F=t^2\mathcal F(ht^{-\Delta})e^{-1/\mathcal G(ht^{-\Delta})}
-\]
-with $\Delta=\beta\delta=\frac{15}8$. In terms of $X=ht^{-\Delta}$, this is
-\[
- \im F=t^2\mathcal F(X)e^{-1/\mathcal G(X)}\simeq At^2|X|e^{-1/B|X|}
-\]
-
-\cite{langer.1967.condensation}
-
-\[
- F(X)=\frac1\pi\int_{-\infty}^\infty\frac{\im F(X')}{X'-X}\,\dd X'
- =\frac{At^2}\pi\int_{-\infty}^0\frac{|X'|e^{-1/B|X'|}}{X'-X}\,\dd
- X'
- =-\frac{At^2}\pi\int_0^\infty\frac{X'e^{-1/BX'}}{X'+X}\,\dd
- X'
-\]
-since $\im F=0$ for $X>0$. $\pd{}h=\pd Xh\pd{}X=t^{-\Delta}\pd{}X$.
-Unfortunately this integral doesn't converge, and it seems we cannot evaluate
-this result at the level of truncation we've chosen. However,
-
-\[
- F(H)=At^{2-\alpha}\sum_{n=0}^\infty f_nX^n
-\]
-\[
- f_n=\frac1\pi\int_{-\infty}^0\frac{\im F(X)}{X^{n+1}}\,\dd X
- =\frac{(-1)^{n+1}}\pi\int_0^{\infty}\frac{Xe^{-1/BX}}{X^{n+1}}\,\dd X
- =\frac1\pi(-1)^{n+1}B^{n-1}\Gamma(n-1)
-\]
-for $n>1$.
-
-\begin{align}
- \chi
- &=\pd[2]Fh
- =t^{-2\Delta}\pd[2]FX
- =-\frac{2}\pi At^{2-2\Delta}\int_0^\infty\frac{X'e^{-1/BX'}}{(X+X')^3}\,\dd
- X'\\
- &=\frac2\pi
- \frac{ABt^{-\gamma}}{(BX)^3}\big[BX(1-BX)+e^{1/BX}\ei(-1/BX)\big]
-\end{align}
-
-\[
- \lim_{X\to0}\chi=-\frac4\pi ABt^{-\gamma}
-\]
-
-\[
- \beta^{-1}\chi=C_{0\pm}|t|^{-7/4}+C_{1\pm}|t|^{-3/4}+\O(1)
-\]
-$C_{0-}=0.025\,536\,971\,9$ $C_{1-}=-0.001\,989\,410\,7$
-\cite{barouch.1973.susceptibility}
-
-CORRECTIONS TO SCALING, $u_t$ and $u_h$ instead of $t$ and $h$.
-
-\begin{align}
- u_h
- &=h[1+c_ht+dht^2+e_hh^2+f_ht^3+\O(t^4,th^2)]\\
- u_t
- &=t+b_th^2+c_t^2+d_t^3+e_tth^2+f_tt^4+\O(t^5,t^2h^2,h^4)
-\end{align}
-\begin{align}
- c_h=\frac{\beta_c}{\sqrt2}
- &&
- d_h=\frac{23\beta_c^2}{16}
- &&
- f_h=\frac{191\beta_c^3}{48\sqrt2}\\
- c_t=\frac{\beta_c}{\sqrt2}
- &&
- d_t=\frac{7\beta_c^2}6
- &&
- f_t=\frac{17\beta_c^3}{6\sqrt2}\\
- e_t=b_t\beta_c\sqrt2
- &&
- b_t=-\frac{E_0\pi}{16\beta_c^2}
-\end{align}
-$E_0=0.040\,325\,5003$ $e_h=-0.007\,27(15)$
-\[
- F(t,h)-F(t,0)=\sum_{n=1}^\infty\frac1{(2n)!}\chi_{2n}(t)h^{2n}
-\]
-\[
- \chi(t,h)=\pd[2]Fh=\chi_2(t)+\sum_{n=1}^\infty\frac1{(2n)!}\chi_{2(n+1)}h^{2n}
-\]
-
-\begin{align}
- \chi
- &=\pd[2]Fh
- =\pd[2]{F_\b}h
- +\frac d{y_t}\bigg(\frac d{y_t}-1\bigg)|u_t|^{d/y_t-2}\bigg(\pd{u_t}h\bigg)^2
-\end{align}
-
-\input{figs/scaling_func.tex}
-
-\bibliographystyle{plain}
-\bibliography{essential_ising}
-
-\end{document}
-