summaryrefslogtreecommitdiff
path: root/IsingScalingFunctionExamples.nb
blob: 39ec9400aaf06d3cdba2fc888e20f7b867a0a9a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 13.0' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    667710,      12917]
NotebookOptionsPosition[    661856,      12816]
NotebookOutlinePosition[    662252,      12832]
CellTagsIndexPosition[    662209,      12829]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"SetDirectory", "[", 
   RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}, {
  3.872827316271285*^9, 3.8728273233104467`*^9}},
 CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],

Cell[BoxData[
 RowBox[{"<<", "IsingScalingFunction`"}]], "Input",
 CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}},
 CellLabel->
  "In[132]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],

Cell[CellGroupData[{

Cell["Checking Convergence", "Section",
 CellChangeTimes->{{3.88717558687833*^9, 
  3.8871755894618473`*^9}},ExpressionUUID->"c6615333-57fa-470a-9d07-\
45b7998853ef"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListLogPlot", "[", 
  RowBox[{
   RowBox[{"Abs", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"Rest", "@", "Gls"}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "10", 
        "]"}]}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "10", 
        "]"}]}], ",", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{"DScriptMCasD\[Xi]List", "[", 
        RowBox[{"9", ",", "\[Theta]0Cas"}], "]"}], 
       RowBox[{"Table", "[", 
        RowBox[{
         FractionBox[
          RowBox[{
           RowBox[{"(", 
            RowBox[{"m", "-", "1"}], ")"}], "!"}], 
          RowBox[{"m", "!"}]], ",", 
         RowBox[{"{", 
          RowBox[{"m", ",", "1", ",", "10"}], "}"}]}], "]"}]}]}], 
     "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Numerics\>\"", ",", 
      "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",",
       " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \
6)\>\"", ",", " ", 
      "\"\<Casselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "m", ",", 
      "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"-\"], \
RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], 
     "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, {
   3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, 
   3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, 
   3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, {
   3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, 
   3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, {
   3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, 
   3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, {
   3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, 
   3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, {
   3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, 
   3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
   3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, 
   3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, {
   3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, 
   3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, {
   3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, 
   3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, {
   3.887182861536953*^9, 3.887182887361492*^9}},
 CellLabel->"In[50]:=",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{3., -3.2476887336074802`}, {3., -3.247688656415082}}], 
          LineBox[{{3., -3.247688656415082}, {3., -3.2476885792226895`}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{4., -2.682936452811683}, {4., -2.6829364235557143`}}], 
          
          LineBox[{{4., -2.6829364235557143`}, {
           4., -2.6829363942997464`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{5., -1.6934518408101742`}, {5., -1.6934517864279734`}}], 
          
          LineBox[{{5., -1.6934517864279734`}, {
           5., -1.6934517320457758`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{6., -0.41677183895602404`}, {6., -0.4167716872504016}}], 
          LineBox[{{6., -0.4167716872504016}, {6., -0.4167715355448022}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{7., 1.077614026885801}, {7., 1.077615048105556}}], 
          LineBox[{{7., 1.077615048105556}, {7., 1.0776160693242682`}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{8., 2.747270914255491}, {8., 2.7479117345273405`}}], 
          LineBox[{{8., 2.7479117345273405`}, {8., 2.7485521444115397`}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{9., 4.572130331909891}, {9., 4.572233685741827}}], 
          LineBox[{{9., 4.572233685741827}, {9., 4.572337028892852}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{10., 6.519147287940395}, {10., 6.520621127558696}}], 
          LineBox[{{10., 6.520621127558696}, {10., 6.522092798170153}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{11., 8.58110651715989}, {11., 8.582980931954241}}], 
          LineBox[{{11., 8.582980931954241}, {11., 8.584851839890053}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{12., 10.747207591575448`}, {12., 10.749355820113736`}}], 
          
          LineBox[{{12., 10.749355820113736`}, {12., 
           10.751499443656988`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{13., 13.005829561148378`}, {13., 13.008074231002201`}}], 
          
          LineBox[{{13., 13.008074231002201`}, {13., 
           13.010313873595706`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{14., 15.35237777756354}, {14., 15.354526006101828`}}], 
          
          LineBox[{{14., 15.354526006101828`}, {14., 
           15.35666962964508}}]}}}}, {{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{3., -3.2476885792226895`}, 
             Offset[{3, 0}, {3., -3.2476885792226895`}]}, {{
             3., -3.2476885792226895`}, 
             Offset[{-3, 0}, {3., -3.2476885792226895`}]}, {{
             3., -3.2476887336074802`}, 
             Offset[{3, 0}, {3., -3.2476887336074802`}]}, {{
             3., -3.2476887336074802`}, 
             Offset[{-3, 0}, {3., -3.2476887336074802`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{4., -2.6829363942997464`}, 
             Offset[{3, 0}, {4., -2.6829363942997464`}]}, {{
             4., -2.6829363942997464`}, 
             Offset[{-3, 0}, {4., -2.6829363942997464`}]}, {{
             4., -2.682936452811683}, 
             Offset[{3, 0}, {4., -2.682936452811683}]}, {{
             4., -2.682936452811683}, 
             Offset[{-3, 0}, {4., -2.682936452811683}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{5., -1.6934517320457758`}, 
             Offset[{3, 0}, {5., -1.6934517320457758`}]}, {{
             5., -1.6934517320457758`}, 
             Offset[{-3, 0}, {5., -1.6934517320457758`}]}, {{
             5., -1.6934518408101742`}, 
             Offset[{3, 0}, {5., -1.6934518408101742`}]}, {{
             5., -1.6934518408101742`}, 
             Offset[{-3, 0}, {5., -1.6934518408101742`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{6., -0.4167715355448022}, 
             Offset[{3, 0}, {6., -0.4167715355448022}]}, {{
             6., -0.4167715355448022}, 
             Offset[{-3, 0}, {6., -0.4167715355448022}]}, {{
             6., -0.41677183895602404`}, 
             Offset[{3, 0}, {6., -0.41677183895602404`}]}, {{
             6., -0.41677183895602404`}, 
             Offset[{-3, 0}, {6., -0.41677183895602404`}]}}], {{{1., 0.}, {0.,
            1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{7., 1.0776160693242682`}, 
             Offset[{3, 0}, {7., 1.0776160693242682`}]}, {{7., 
             1.0776160693242682`}, 
             Offset[{-3, 0}, {7., 1.0776160693242682`}]}, {{7., 
             1.077614026885801}, 
             Offset[{3, 0}, {7., 1.077614026885801}]}, {{7., 
             1.077614026885801}, 
             Offset[{-3, 0}, {7., 1.077614026885801}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{8., 2.7485521444115397`}, 
             Offset[{3, 0}, {8., 2.7485521444115397`}]}, {{8., 
             2.7485521444115397`}, 
             Offset[{-3, 0}, {8., 2.7485521444115397`}]}, {{8., 
             2.747270914255491}, 
             Offset[{3, 0}, {8., 2.747270914255491}]}, {{8., 
             2.747270914255491}, 
             Offset[{-3, 0}, {8., 2.747270914255491}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{9., 4.572337028892852}, 
             Offset[{3, 0}, {9., 4.572337028892852}]}, {{9., 
             4.572337028892852}, 
             Offset[{-3, 0}, {9., 4.572337028892852}]}, {{9., 
             4.572130331909891}, 
             Offset[{3, 0}, {9., 4.572130331909891}]}, {{9., 
             4.572130331909891}, 
             Offset[{-3, 0}, {9., 4.572130331909891}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{10., 6.522092798170153}, 
             Offset[{3, 0}, {10., 6.522092798170153}]}, {{10., 
             6.522092798170153}, 
             Offset[{-3, 0}, {10., 6.522092798170153}]}, {{10., 
             6.519147287940395}, 
             Offset[{3, 0}, {10., 6.519147287940395}]}, {{10., 
             6.519147287940395}, 
             Offset[{-3, 0}, {10., 6.519147287940395}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{11., 8.584851839890053}, 
             Offset[{3, 0}, {11., 8.584851839890053}]}, {{11., 
             8.584851839890053}, 
             Offset[{-3, 0}, {11., 8.584851839890053}]}, {{11., 
             8.58110651715989}, 
             Offset[{3, 0}, {11., 8.58110651715989}]}, {{11., 
             8.58110651715989}, 
             Offset[{-3, 0}, {11., 8.58110651715989}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{12., 10.751499443656988`}, 
             Offset[{3, 0}, {12., 10.751499443656988`}]}, {{12., 
             10.751499443656988`}, 
             Offset[{-3, 0}, {12., 10.751499443656988`}]}, {{12., 
             10.747207591575448`}, 
             Offset[{3, 0}, {12., 10.747207591575448`}]}, {{12., 
             10.747207591575448`}, 
             Offset[{-3, 0}, {12., 10.747207591575448`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{13., 13.010313873595706`}, 
             Offset[{3, 0}, {13., 13.010313873595706`}]}, {{13., 
             13.010313873595706`}, 
             Offset[{-3, 0}, {13., 13.010313873595706`}]}, {{13., 
             13.005829561148378`}, 
             Offset[{3, 0}, {13., 13.005829561148378`}]}, {{13., 
             13.005829561148378`}, 
             Offset[{-3, 0}, {13., 13.005829561148378`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{14., 15.35666962964508}, 
             Offset[{3, 0}, {14., 15.35666962964508}]}, {{14., 
             15.35666962964508}, 
             Offset[{-3, 0}, {14., 15.35666962964508}]}, {{14., 
             15.35237777756354}, 
             Offset[{3, 0}, {14., 15.35237777756354}]}, {{14., 
             15.35237777756354}, 
             Offset[{-3, 0}, {14., 15.35237777756354}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}}}}, {{{
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.368417, 0.506779, 0.709798], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., 0.3058939805973386}, {2., -3.016888706538089}, {
         3., -3.247688656415082}, {4., -2.6829364235557143`}, {
         5., -1.6934517864279734`}, {6., -0.4167716872504016}, {7., 
         1.077615048105556}, {8., 2.7479117345273405`}, {9., 
         4.572233685741827}, {10., 6.520621127558696}, {11., 
         8.582980931954241}, {12., 10.749355820113736`}, {13., 
         13.008074231002201`}, {14., 15.354526006101828`}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.880722, 0.611041, 0.142051], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., 0.3058939805971186}, {2., -3.0168887065353305`}, {
         3., -3.2150683102154654`}, {4., -2.572538454827262}, {
         5., -1.4892648280222789`}, {6., -0.1386048937927774}, {7., 
         1.3936280651903656`}, {8., 3.068229298025496}, {9., 
         4.86877207063148}, {10., 6.787701993282389}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.560181, 0.691569, 0.194885], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., 0.3058939805973096}, {2., -3.0168887065293206`}, {
         3., -3.247688691772541}, {4., -2.68293641315294}, {
         5., -1.693451794998496}, {6., -0.41677165264981303`}, {7., 
         1.0779209886099572`}, {8., 2.751072258729848}, {9., 
         4.580918301921699}, {10., 6.559514133636299}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.922526, 0.385626, 0.209179], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., 0.30713407270311166`}, {2., -3.067110308065294}, {
         3., -3.4304577212393763`}, {4., -3.0879090822971853`}, {
         5., -2.4123077494594973`}, {6., -1.5399609645024661`}, {
         7., -0.5375360276296015}, {8., 0.5571798344870343}, {9., 
         1.7206870273901242`}, {10., 2.937388810483148}}]}}}, {{}, {}}}, {
    DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> 
     Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["m", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
\"-\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, 
     AxesOrigin -> {0., -4.900657053954936}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         15.954589770191003`, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.528488, 0.470624, 0.701351], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.772079, 0.431554, 0.102387], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.363898, 0.618501, 0.782349], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[1, 0.75, 0], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.647624, 0.37816, 0.614037], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.571589, 0.586483, 0.], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.915, 0.3325, 0.2125], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[
          0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
          AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], 
       "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> 
       Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> 
       True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0., 14.}, {-4.900657053954936, 15.35666962964508}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.05]}}, Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        15.954589770191003`, RotateLabel -> 0]}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"Numerics\"", 
       "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\
\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\
\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"PointLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", 
           RowBox[{"Joined", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{"False", ",", "False", ",", "False", ",", "False"}], 
               "}"}]}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, {
   3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, 
   3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, {
   3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, 
   3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, {
   3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 
   3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, 
   3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, 
   3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, 
   3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, 
   3.8871778469623938`*^9, 3.887182910688779*^9},
 CellLabel->"Out[50]=",ExpressionUUID->"1e4ad944-e98e-4c7a-9635-ca69ead5609d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListLogPlot", "[", 
  RowBox[{
   RowBox[{"Abs", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"Rest", "@", "\[CapitalPhi]s"}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptF0D\[Eta]List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", 
        RowBox[{"10", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptF0D\[Eta]List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", 
        RowBox[{"10", ",", "1"}], "]"}]}]}], "\[IndentingNewLine]", "}"}]}], 
   ",", "\[IndentingNewLine]", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Numerics\>\"", ",", 
      "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",",
       " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \
6)\>\""}], "}"}]}], ",", "\[IndentingNewLine]", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "m", ",", 
      "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"0\"], \
RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], 
     "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.887176095335842*^9, 3.887176195096656*^9}, {
  3.887177268477648*^9, 3.887177312454509*^9}, {3.88717809517518*^9, 
  3.887178096950481*^9}},
 CellLabel->"In[48]:=",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{2., -2.199250858729474}, {2., -2.1992508587114377`}}], 
          LineBox[{{2., -2.1992508587114377`}, {2., -2.199250858693401}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{3., -4.108835370883289}, {3., -4.108835369665774}}], 
          LineBox[{{3., -4.108835369665774}, {3., -4.108835368448258}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{4., -8.23957016697712}, {4., -8.239569788186014}}], 
          LineBox[{{4., -8.239569788186014}, {4., -8.23956940939505}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{5., -7.57318515764723}, {5., -7.573184963114589}}], 
          LineBox[{{5., -7.573184963114589}, {5., -7.573184768581987}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{6., -8.473827235511466}, {6., -8.473822447718424}}], 
          LineBox[{{6., -8.473822447718424}, {6., -8.473817659948304}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{7., -10.012900713523315`}, {7., -10.012878401308493`}}], 
          
          LineBox[{{7., -10.012878401308493`}, {
           7., -10.012856089591494`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{8., -14.970693198120777`}, {8., -14.967523623359499`}}], 
          LineBox[{{8., -14.967523623359499`}, {8., -14.96436406306913}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{9., -12.356895535264757`}, {9., -12.354572653848617`}}], 
          
          LineBox[{{9., -12.354572653848617`}, {
           9., -12.352255155708255`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{10., -13.13241371325783}, {10., -13.127375919227873`}}], 
          
          LineBox[{{10., -13.127375919227873`}, {
           10., -13.122363377404328`}}]}}}}, {{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{2., -2.199250858693401}, 
             Offset[{3, 0}, {2., -2.199250858693401}]}, {{
             2., -2.199250858693401}, 
             Offset[{-3, 0}, {2., -2.199250858693401}]}, {{
             2., -2.199250858729474}, 
             Offset[{3, 0}, {2., -2.199250858729474}]}, {{
             2., -2.199250858729474}, 
             Offset[{-3, 0}, {2., -2.199250858729474}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{3., -4.108835368448258}, 
             Offset[{3, 0}, {3., -4.108835368448258}]}, {{
             3., -4.108835368448258}, 
             Offset[{-3, 0}, {3., -4.108835368448258}]}, {{
             3., -4.108835370883289}, 
             Offset[{3, 0}, {3., -4.108835370883289}]}, {{
             3., -4.108835370883289}, 
             Offset[{-3, 0}, {3., -4.108835370883289}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{4., -8.23956940939505}, 
             Offset[{3, 0}, {4., -8.23956940939505}]}, {{
             4., -8.23956940939505}, 
             Offset[{-3, 0}, {4., -8.23956940939505}]}, {{
             4., -8.23957016697712}, 
             Offset[{3, 0}, {4., -8.23957016697712}]}, {{
             4., -8.23957016697712}, 
             Offset[{-3, 0}, {4., -8.23957016697712}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{5., -7.573184768581987}, 
             Offset[{3, 0}, {5., -7.573184768581987}]}, {{
             5., -7.573184768581987}, 
             Offset[{-3, 0}, {5., -7.573184768581987}]}, {{
             5., -7.57318515764723}, 
             Offset[{3, 0}, {5., -7.57318515764723}]}, {{
             5., -7.57318515764723}, 
             Offset[{-3, 0}, {5., -7.57318515764723}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{6., -8.473817659948304}, 
             Offset[{3, 0}, {6., -8.473817659948304}]}, {{
             6., -8.473817659948304}, 
             Offset[{-3, 0}, {6., -8.473817659948304}]}, {{
             6., -8.473827235511466}, 
             Offset[{3, 0}, {6., -8.473827235511466}]}, {{
             6., -8.473827235511466}, 
             Offset[{-3, 0}, {6., -8.473827235511466}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{7., -10.012856089591494`}, 
             Offset[{3, 0}, {7., -10.012856089591494`}]}, {{
             7., -10.012856089591494`}, 
             Offset[{-3, 0}, {7., -10.012856089591494`}]}, {{
             7., -10.012900713523315`}, 
             Offset[{3, 0}, {7., -10.012900713523315`}]}, {{
             7., -10.012900713523315`}, 
             Offset[{-3, 0}, {7., -10.012900713523315`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{8., -14.96436406306913}, 
             Offset[{3, 0}, {8., -14.96436406306913}]}, {{
             8., -14.96436406306913}, 
             Offset[{-3, 0}, {8., -14.96436406306913}]}, {{
             8., -14.970693198120777`}, 
             Offset[{3, 0}, {8., -14.970693198120777`}]}, {{
             8., -14.970693198120777`}, 
             Offset[{-3, 0}, {8., -14.970693198120777`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{9., -12.352255155708255`}, 
             Offset[{3, 0}, {9., -12.352255155708255`}]}, {{
             9., -12.352255155708255`}, 
             Offset[{-3, 0}, {9., -12.352255155708255`}]}, {{
             9., -12.356895535264757`}, 
             Offset[{3, 0}, {9., -12.356895535264757`}]}, {{
             9., -12.356895535264757`}, 
             Offset[{-3, 0}, {9., -12.356895535264757`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{10., -13.122363377404328`}, 
             Offset[{3, 0}, {10., -13.122363377404328`}]}, {{
             10., -13.122363377404328`}, 
             Offset[{-3, 0}, {10., -13.122363377404328`}]}, {{
             10., -13.13241371325783}, 
             Offset[{3, 0}, {10., -13.13241371325783}]}, {{
             10., -13.13241371325783}, 
             Offset[{-3, 0}, {10., -13.13241371325783}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}}}}, {{{
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.368417, 0.506779, 0.709798], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., -1.1431595731895612`}, {2., -2.1992508587114377`}, {
         3., -4.108835369665774}, {4., -8.239569788186014}, {
         5., -7.573184963114589}, {6., -8.473822447718424}, {
         7., -10.012878401308493`}, {8., -14.967523623359499`}, {
         9., -12.354572653848617`}, {10., -13.127375919227873`}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.880722, 0.611041, 0.142051], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., -1.142336471413771}, {2., -2.1989962191985897`}, {
         3., -4.103810189060422}, {4., -8.065760593479503}, {
         5., -7.572071121129541}, {6., -8.412217606083276}, {
         7., -9.901326241951773}, {8., -14.355261061061876`}, {
         9., -12.066885002703703`}, {10., -12.97499027628151}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.560181, 0.691569, 0.194885], 
         AbsoluteThickness[1.6]], 
        PointBox[{{1., -1.1431591915024921`}, {2., -2.199250198756966}, {
         3., -4.108834678398851}, {4., -8.239399371579477}, {
         5., -7.5732366791273495`}, {6., -8.47382080668392}, {
         7., -10.01266927712387}, {8., -14.940294452135808`}, {
         9., -12.353924318358052`}, {
         10., -13.127410732077774`}}]}}}, {{}, {}}}, {
    DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> 
     Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["m", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
\"0\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, 
     AxesOrigin -> {0., -16.052840588323026`}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         15.954589770191003`, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.528488, 0.470624, 0.701351], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.772079, 0.431554, 0.102387], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.363898, 0.618501, 0.782349], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[1, 0.75, 0], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.647624, 0.37816, 0.614037], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.571589, 0.586483, 0.], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.915, 0.3325, 0.2125], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[
          0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
          AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], 
       "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> 
       Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> 
       True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0., 10.}, {-16.052840588323026`, -1.142336471413771}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.05]}}, Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        15.954589770191003`, RotateLabel -> 0]}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"Numerics\"", 
       "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
6)\""}, "PointLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"PointLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", 
           RowBox[{"Joined", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{"False", ",", "False", ",", "False"}], "}"}]}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{3.8871762120034847`*^9, 3.8871773104168453`*^9, 
  3.88717753344375*^9, 3.887178350360724*^9},
 CellLabel->"Out[48]=",ExpressionUUID->"b3456563-de2e-4cab-8de9-9936c2f54801"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListLogPlot", "[", 
  RowBox[{
   RowBox[{"Abs", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"Rest", "@", "Ghs"}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", 
        RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", 
      RowBox[{"Rest", "@", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", 
          RowBox[{"PrepareArgument", "[", 
           RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", 
        RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{"DScriptMCasD\[Xi]List", "[", 
        RowBox[{"9", ",", "0"}], "]"}], 
       RowBox[{"Table", "[", 
        RowBox[{
         FractionBox[
          RowBox[{
           RowBox[{"(", 
            RowBox[{"m", "-", "1"}], ")"}], "!"}], 
          RowBox[{"m", "!"}]], ",", 
         RowBox[{"{", 
          RowBox[{"m", ",", "1", ",", "10"}], "}"}]}], "]"}]}]}], 
     "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<Numerics\>\"", ",", 
      "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",",
       " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \
6)\>\"", ",", " ", 
      "\"\<Casselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "m", ",", 
      "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"+\"], \
RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], 
     "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, {
   3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, 
   3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, 
   3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, {
   3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, 
   3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, {
   3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, 
   3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, {
   3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, 
   3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, {
   3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, 
   3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
   3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, 
   3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, {
   3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, 
   3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, {
   3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, 
   3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, {
   3.8871780781341352`*^9, 3.8871780927035418`*^9}, 3.8871829559006443`*^9},
 CellLabel->"In[51]:=",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"],

Cell[BoxData[
 TemplateBox[{
  "N", "meprec", 
   "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\
\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
SuperscriptBox[RowBox[{\\\"114\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"10\\\
\", \\\"\[RightSkeleton]\\\"}], \\\"4503\\\"}], RowBox[{\\\"7\\\", \\\"/\\\", \
\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \\\"\
\[Pi]\\\", \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\
\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \
RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\
\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\
\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"+\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \
RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 51, 55, 
   31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9},
 CellLabel->
  "During evaluation of \
In[51]:=",ExpressionUUID->"9b0aa616-8fe6-46d6-a9be-6d62ea62ac99"],

Cell[BoxData[
 TemplateBox[{
  "N", "meprec", 
   "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\
\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
SuperscriptBox[RowBox[{\\\"114\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"10\\\
\", \\\"\[RightSkeleton]\\\"}], \\\"4503\\\"}], RowBox[{\\\"7\\\", \\\"/\\\", \
\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \\\"\
\[Pi]\\\", \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\
\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \
RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\
\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\
\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"+\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \
RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 51, 56, 
   31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.887178351227854*^9, 3.8871829569063053`*^9},
 CellLabel->
  "During evaluation of \
In[51]:=",ExpressionUUID->"3cf38fe5-056b-4e76-a342-8e2c2b0786c0"],

Cell[BoxData[
 TemplateBox[{
  "N", "meprec", 
   "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"\
46681463692889041973700532620906696296885587180818594561\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"Times\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]], \\\" \\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"13\\\", \\\"\[RightSkeleton]\\\"}], \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \
RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \
\\\"383435814415399100830298627422256492275580379991986176\\\"]}], \\\"+\\\", \
FractionBox[RowBox[{\\\"1995291215029551557786949\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\"-\\\", \
FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]], \\\"+\\\", RowBox[{\\\"12\\\", \\\" \\\", RowBox[{\\\
\"(\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\
\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\"-\\\", FractionBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \
\\\")\\\"}]}]}], \\\")\\\"}]}], \\\"104122350499534957937152\\\"]}]\\).\"", 2,
    51, 57, 31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.887178351227854*^9, 3.8871829569141273`*^9},
 CellLabel->
  "During evaluation of \
In[51]:=",ExpressionUUID->"9f39e826-00f7-402f-871b-4606e9158cd2"],

Cell[BoxData[
 TemplateBox[{
  "General", "stop", 
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \
\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 51, 58, 31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.887178351227854*^9, 3.887182956920743*^9},
 CellLabel->
  "During evaluation of \
In[51]:=",ExpressionUUID->"a67bf71d-de22-4a04-a00f-2a4e90ec18e4"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{4., 2.1203089445691155`}, {4., 2.1203089451690884`}}], 
          LineBox[{{4., 2.1203089451690884`}, {4., 2.120308945769061}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{6., 4.555653733134874}, {6., 4.555653838211157}}], 
          LineBox[{{6., 4.555653838211157}, {6., 4.555653943287428}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{8., 7.284539665889405}, {8., 7.28456024759707}}], 
          LineBox[{{8., 7.28456024759707}, {8., 7.284580828881137}}]}}, {
        Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{10., 10.161573447047902`}, {10., 10.161650696951378`}}], 
          
          LineBox[{{10., 10.161650696951378`}, {10., 
           10.161727940887767`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{12., 13.124361380067}, {12., 13.126355398673866`}}], 
          
          LineBox[{{12., 13.126355398673866`}, {12., 
           13.128345449081875`}}]}}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], {}, {
          LineBox[{{14., 16.147654453199863`}, {14., 16.1573163641116}}], 
          
          LineBox[{{14., 16.1573163641116}, {14., 
           16.166885815127753`}}]}}}}, {{{Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{4., 2.120308945769061}, 
             Offset[{3, 0}, {4., 2.120308945769061}]}, {{4., 
             2.120308945769061}, 
             Offset[{-3, 0}, {4., 2.120308945769061}]}, {{4., 
             2.1203089445691155`}, 
             Offset[{3, 0}, {4., 2.1203089445691155`}]}, {{4., 
             2.1203089445691155`}, 
             Offset[{-3, 0}, {4., 2.1203089445691155`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{6., 4.555653943287428}, 
             Offset[{3, 0}, {6., 4.555653943287428}]}, {{6., 
             4.555653943287428}, 
             Offset[{-3, 0}, {6., 4.555653943287428}]}, {{6., 
             4.555653733134874}, 
             Offset[{3, 0}, {6., 4.555653733134874}]}, {{6., 
             4.555653733134874}, 
             Offset[{-3, 0}, {6., 4.555653733134874}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{8., 7.284580828881137}, 
             Offset[{3, 0}, {8., 7.284580828881137}]}, {{8., 
             7.284580828881137}, 
             Offset[{-3, 0}, {8., 7.284580828881137}]}, {{8., 
             7.284539665889405}, 
             Offset[{3, 0}, {8., 7.284539665889405}]}, {{8., 
             7.284539665889405}, 
             Offset[{-3, 0}, {8., 7.284539665889405}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{10., 10.161727940887767`}, 
             Offset[{3, 0}, {10., 10.161727940887767`}]}, {{10., 
             10.161727940887767`}, 
             Offset[{-3, 0}, {10., 10.161727940887767`}]}, {{10., 
             10.161573447047902`}, 
             Offset[{3, 0}, {10., 10.161573447047902`}]}, {{10., 
             10.161573447047902`}, 
             Offset[{-3, 0}, {10., 10.161573447047902`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{12., 13.128345449081875`}, 
             Offset[{3, 0}, {12., 13.128345449081875`}]}, {{12., 
             13.128345449081875`}, 
             Offset[{-3, 0}, {12., 13.128345449081875`}]}, {{12., 
             13.124361380067}, 
             Offset[{3, 0}, {12., 13.124361380067}]}, {{12., 13.124361380067}, 
             Offset[{-3, 0}, {12., 13.124361380067}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}, {Antialiasing -> False, 
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798]], 
         GeometricTransformationBox[
          LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], 
         GeometricTransformationBox[
          LineBox[{{{14., 16.166885815127753`}, 
             Offset[{3, 0}, {14., 16.166885815127753`}]}, {{14., 
             16.166885815127753`}, 
             Offset[{-3, 0}, {14., 16.166885815127753`}]}, {{14., 
             16.147654453199863`}, 
             Offset[{3, 0}, {14., 16.147654453199863`}]}, {{14., 
             16.147654453199863`}, 
             Offset[{-3, 0}, {14., 16.147654453199863`}]}}], {{{1., 0.}, {0., 
           1.}}, {0., 0.}}]}}}}, {{{
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.368417, 0.506779, 0.709798], 
         AbsoluteThickness[1.6]], 
        PointBox[{{2., 0.6126028894906074}, {4., 2.1203089451690884`}, {6., 
         4.555653838211157}, {8., 7.28456024759707}, {10., 
         10.161650696951378`}, {12., 13.126355398673866`}, {14., 
         16.1573163641116}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.880722, 0.611041, 0.142051], 
         AbsoluteThickness[1.6]], 
        PointBox[{{2., 0.6126028894906093}, {4., 2.125551226398849}, {6., 
         4.569765668638038}, {8., 7.309210808612832}, {10., 
         10.196845411019185`}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.560181, 0.691569, 0.194885], 
         AbsoluteThickness[1.6]], 
        PointBox[{{2., 0.6126028894906148}, {4., 2.1203089451602413`}, {6., 
         4.555653877221086}, {8., 7.284512472617333}, {10., 
         10.160831450583395`}}]}, {
        Directive[
         PointSize[0.012833333333333334`], 
         RGBColor[0.922526, 0.385626, 0.209179], 
         AbsoluteThickness[1.6]], 
        PointBox[{{2., 0.6126028894906075}, {4., 2.1203076183853526`}, {6., 
         4.555652330600042}, {8., 7.284510465974837}, {10., 
         10.161378578451433`}}]}}}, {{}, {}}}, {
    DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> 
     Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["m", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
\"+\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, 
     AxesOrigin -> {0., -0.6046080204606854}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         15.954589770191003`, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], 
     Method -> {
      "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
         Directive[
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.528488, 0.470624, 0.701351], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.772079, 0.431554, 0.102387], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.363898, 0.618501, 0.782349], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[1, 0.75, 0], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.647624, 0.37816, 0.614037], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.571589, 0.586483, 0.], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.915, 0.3325, 0.2125], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[
          0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
          AbsoluteThickness[1.6]], 
         Directive[
          RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
          AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], 
       "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> 
       Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> 
       True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           Identity[
            Part[#, 1]], 
           Exp[
            Part[#, 2]]}& )}}, 
     PlotRange -> {{0., 14.}, {-0.6046080204606854, 16.166885815127753`}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.05]}}, Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        15.954589770191003`, RotateLabel -> 0]}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"Numerics\"", 
       "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\
\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\
\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               TagBox[
                GridBox[{{
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                   GraphicsBox[{{}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], 
                    PointBox[
                    NCache[{
                    Scaled[{
                    Rational[1, 2], 
                    Rational[1, 2]}]}, {
                    Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, 
                    ImageSize -> {10, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                 AutoDelete -> False, 
                 GridBoxDividers -> {
                  "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                 GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
                  GridBoxSpacings -> {
                  "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
             GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
            "Grid"], Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
         FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> 
         False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"PointLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], 
                   ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}], ",", 
                 RowBox[{"{", 
                   RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", 
           RowBox[{"Joined", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{"False", ",", "False", ",", "False", ",", "False"}], 
               "}"}]}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", "}"}]}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, {
   3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, 
   3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, {
   3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, 
   3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, {
   3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 
   3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, 
   3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, 
   3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, 
   3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, 
   3.8871778469623938`*^9, 3.88717835171142*^9, 3.887182957347884*^9},
 CellLabel->"Out[51]=",ExpressionUUID->"03a49490-2ef8-446d-ba98-3e5c10e80cea"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"freeEnergyData", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        RowBox[{"ut", "[", 
         RowBox[{"1", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}], 
        SuperscriptBox[
         RowBox[{
          RowBox[{"uh", "[", 
           RowBox[{
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}],
             ",", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
           "]"}], "[", 
          RowBox[{"1", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}], 
         RowBox[{
          RowBox[{"-", "8"}], "/", "15"}]]}], ",", 
       RowBox[{"Re", "@", 
        RowBox[{
         RowBox[{
          RowBox[{"(", 
           RowBox[{"DScriptF0D\[Eta]List", "@@", 
            RowBox[{"PrepareArgument", "[", 
             RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", 
          RowBox[{"0", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}], "[", 
         RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", 
     RowBox[{"Evaluate", "@", 
      RowBox[{"N", "[", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{"\[Gamma]", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]], ",", 
          RowBox[{"1", "-", 
           SuperscriptBox["10", 
            RowBox[{"-", "4"}]]}], ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "}"}], ",", "30"}], "]"}]}]}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, {
  3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, 
  3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, {
  3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, 
  3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, {
  3.8871830446215487`*^9, 3.8871830462680683`*^9}},
 CellLabel->"In[52]:=",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"],

Cell[BoxData[
 RowBox[{
  RowBox[{"freeEnergyDataInterpolation", "=", 
   RowBox[{"Interpolation", "/@", "freeEnergyData"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, {
  3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, 
  3.876370747760907*^9}, {3.8871830509234037`*^9, 3.887183054611264*^9}, {
  3.88718324727179*^9, 3.887183248687171*^9}},
 CellLabel->"In[55]:=",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"pCovergence", "=", 
  RowBox[{"LogPlot", "[", 
   RowBox[{
    RowBox[{"Evaluate", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"(", 
        RowBox[{"Abs", "[", 
         RowBox[{
          RowBox[{"#", "[", "x", "]"}], "-", 
          RowBox[{
           RowBox[{"Last", "[", "freeEnergyDataInterpolation", "]"}], "[", 
           "x", "]"}]}], "]"}], ")"}], "&"}], "/@", 
      RowBox[{"Most", "[", "freeEnergyDataInterpolation", "]"}]}], "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", 
    RowBox[{"PlotLegends", "->", 
     RowBox[{"LineLegend", "[", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", 
       RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",", 
    RowBox[{"AxesLabel", "->", 
     RowBox[{"{", 
      RowBox[{
      "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\
Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \
\", \"\[Delta]\"}]]\)\>\"", ",", 
       "\"\<| \!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \
\"0\"], StyleBox[RowBox[{\"[\", \"n\", \"]\"}],FontSlant->\"Italic\"]]\) - \!\
\(\*SuperscriptBox[SubscriptBox[\(\[ScriptCapitalF]\), \(0\)], \([6]\)]\) |\>\
\""}], "}"}]}], ",", 
    RowBox[{"LabelStyle", "->", 
     RowBox[{"{", 
      RowBox[{"Black", ",", 
       RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, {
  3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, 
  3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, {
  3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.8763718721351347`*^9, 
  3.876371879486059*^9}, {3.8871830602203217`*^9, 3.8871830720200863`*^9}, {
  3.887183263600458*^9, 3.887183269024135*^9}},
 CellLabel->"In[57]:=",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt13k0Vfv7B/BDSJTC4WTa+zgcw066KUNFtkoZUhENt0Shay6SqTShkEyh
DNdwSaYQZSo+z6VcpZIMRaHIMRzzkCl892+t3x977fVa+5/P3p/neX+eLX/u
goUDL41G66Wu/7vbFUaNrawwgOXbTKysIYC+KK206zcD6O699YcFCXi1/9Fp
7zkGJN79vDlNgAClroo3w+MM4Nutr0OuImBobW9G+w8GmGLpbgG/VeGis+aJ
kloGxPOpbxseVYVr7A44f4cBn7wvdSQ2q0JikkLMexEGtAwmau1IVoXU7pAL
5mskYeDswfoEpipIfjx6WFVCAoKb6RZR2SpQf+TovgY2HTJuSvw0U1cBI1W2
lwJLHIRGV0YNM5VhZ8HprMYtYtDQPh7ExJRhIey8uIaqKLioGx4vva0EM7OZ
cWeUN0Bn8COPRi4bXrFitle7icD7HIcH/1qxYRf/9ZJN9mvBtbMkjXyiCLGk
trZBgBBs8oknmcKKYJd8om8oVRAslZ6PIEcFaHyMreFJFICznxxSX5SyAFtb
tBWV8sGeSElUL8oCISancTCXF5L7zVG3vTy4WgY/zM6mQSR3bv/u/5iQvly5
jUinQarsWwWx10xoyx7/kJdAg5k34ev7a5hALp3iLwyjQe7FbdKx1UygZ2l4
Pnelgbe1msricyZUzXab1vxBA599YSHLmUyQ1bq8XOaxgjroQ659gUywre1u
wGKWUKUnNnfXkAkH9OYcOm8uoe1REq/u7GWCetkGWrLHEjK1gX3BBkz4nWuw
Xcp8Cb37p98lWI8JD2MyksU3LKGsUr07iZpM+Hj2LzfBiN9oQV4nWUqJCQa0
MZHJ0EXU983X1FeQCSr+q3OK/BZRdEelRYEAEzZM43svOC2i+rkeYw4fE7r6
j/gMGy2iJv8ekdM8TPBvLO7mrF5EM22kUfU0DsUp3kVfgxdQs0vKZGg7Diy9
ZfPXN+cR/7hQqmYWDh9F9dQSPOfRePODoycycLjGuSLgZjeP8IvRNdfScOiI
nK+kG84jy4327W2JONzvmVawF5xHZVd/qD2LxIEvhDvDGzmH0jS1Pdj+OHA+
fUkgk2dR2uvaNxPmOMQ+ZnjR780iu601SlGHcdhz9dihgYBZNMCrF6hhhkMK
u4U3ymYWHWQTewKNcDju2+jSzZpFso+8hK30caiXq9O7lvMLnUozPfliMw45
jiU/XpTOIOb95eMp63BoOZeKm2bNoC1vTNkPhXGgWd+17oibQYdcrn2PX4PD
MXO79jmvGbQisVE5gx8H3p3iTZrbZtBQzi752SUM/hS+BIWF02hUtlQ8YgyD
YH6b5d2p06gpMMvr8wgGRSsmuh8ippFzwMUO9jAGAtOs8mG3aXRH73RF0wAG
xd8+FaqqTSPNLUk/HXowECrQSM3InkIx22Q6brRhoJmNdWo8nELRTwWEZFox
sP1HSKbmzhRyH2s8VNmMQWl8T/z381PoTaSgtGATBueux0TIsafQgeuct98b
MLjnd+1dPn0KZfS8ep7xFoPyS85CunxTaGt5X6XLGwxEHPfc/rN3EnlzZSWF
/8Og8shkwIP0STR4jIndqcGgz6TrhVI09byPZ9DzXww2GL6df35jEmkofGiy
AwzO7/jncovNJBqO8Fm2rMZAjGXhJopNorTpmgavSgz0ZHfnpa2bRByj7nuh
FRg4ShKDW5Ym0K3g1gsZ5RhUC/E6HPo2gXq9Xt/nlGLgPPX09N3ECVTa5W6d
W4JBgtbErr/CJpD70YG/ucUY1Pv9IbPXfwKt3oE3bqXMphW2L5ycQENcx1Xv
izCw3Dta3mY8gRbn9QRYlG/d3vyweMcEMl1lNX+lEIPva/OPOUtNoKd/hRbu
LqDe/whXc/+aCfQ4XNvz8RNqvfcJCdb8ONqua6woQTlRKqe5/cs4cna/bLWS
h4GVUtYR44fjSGZdQY9ILgZBTn1b2CHjyLTTlpGaQ+1nvuJ6Ht9xxLKN09lO
ecO2jPflx8fRxGDqbrdsDPS9e/JjD4wjF63LLFHK7hXy4Re1x1HS27fjFY8x
aNBPM1FhjKMWnmcm0pQXbnWr8q0eR1I3GK1NWRiYh+uJwcgYKudJOhBBuUDs
5Uef92Mo8M2D9MOU1ybsjNzyZAzxGZztkaDshFeY9YePoTlewzU/HmFQ90h7
barrGEr9FibxlLKiWunbYwfHkF+bl8BtyjeLt4eKqI2hlq36X20od+mUHKgT
HkPqfsz7uynroq0C17ijSO6a8WYW5QTDoleaDaMo9lRfthDlXw3qgSO5o6gt
WIp/LpPaD4snBo/CRlFdLb/BEOWnXzbRrJ1HkYbeq1M/KIvY5FbTTajnfk6W
nZRd+1QC3qmOokYPPqKL8luXx7uC1owi9o2Ur72UlSfZC7sGR1DRlV2Oo5SD
fDPLp+pHkERx+4clyj3LLJ+87BHUOughIkathwxO17QLGUFefrPsTZT/FmZO
SzuOIA/tE3RjygvRKcWfDoygL5FXv7hQPrFRziNMeQQZBh7wuE+5NCVpy57V
I8izIL4TURZnS4/Oc4bRO+M9shOUL+Y9zH9aN4zkDOTUlKnv/WErw8Upaxjx
ys8In6O8qTxOVf72MCK2xFSmUw7ZTR/44jCMNrmVaXEo7zUVdTBiD6MfGuEx
AdR+pzVFKtD4h1F/5OMLHykvHxfpKfvJRbLvWRIqVL2U2wvbKGdyUdiTzyV9
lCW5oXLdgVwU3X8015Sqt0segt/i7bjoneZzu1LK6tf4TwoocBHTxUsqkapX
6cqPDwb4uCi/ltYoRNUz/6+ktrecIdT91THzOuVvbhqWkblDKEl0JOdyPgZh
1jaHN2oMoZdhHb9jqH7xTiAiFsSHULKpV4Qi1U9nW2fefZsZRD/xBs1Kyjpm
4SbpFYOIY3IKJqj+69etMCQMBpHU2eGUaKqfP/kGBa1VGERpP9zL9z6j+v/Z
4dpRvkF0Ji372zzleDUOWVI/gGSMr+p7UnmwT1ZcV/fIAAoYCzC8T+VH2qKr
xiGbfvQxPm85lsqfcG0djz8M+lHYxNX1d6h88rm0qkhMoR8tXHIWC6Dy6xA3
YfNnDgdZ7ucZ8HqFwVJHnYqtOweFG+/NuF9P5XclE/cM6EMWK9rtd6n83P+L
a21p04cG6sP1X37CYKtGWbKWQR+qndxxdZzKW8FcM+lFvj4kFWzoYU/lc2mC
v0RQ+E90iy4n6f+Vqg+/FuH4pF60zfZx+p8cDOZW5kXH/HvRdfDz4PRT/XQb
32j0Zy86e6Yr1XsQg+xYZ8WFjb2ozVxJJJM6H3YX0fTOxPegE+A4oDFF9W+/
mrtS9A9EcAP2YzzU+ZonlO62rhsp1R1J2MjEwbjC6gn+rguFpy8KbWLhQP8v
raIprAtJGl8MNFCkzrserU+agl0otnP5qr8Kdd5J2a1a5u1EnS/kSNmtOBAh
Lxwi5jqQ0WqOk+xeHD7buxKFvW3Iwk5rat4Jh+rOI9qlWW3oNJEzdsoVh6xj
mvuqnNrQ3KkLUv+64+BltGzdMNaKhlPjhmIv4bBBLSq6f7EF1erY7TwXQK1v
qmQOpzcjZZq4YXQ0DpdXzd6TD/2ANDZ/8VN/iYOPPxHxJq4arasS0exfy4RD
o+NthVlVSP33XLSLCBOUzpXh8WUvqdmtjzWxngmtxvuenmuvRMOFsV9XxJiw
TepMy6JsGXLmWR+0SYqaZy4oaJ42KkT9fOcjK9nUfJSPdVtanEf24jduFegz
ITdSh8z8o0o/4Wba6CNvJkQ43WyzvfVZv2XU+KzFPBPWTR/clW/eq2+tn3RR
LkAevnvVbfcO4uq3HTZsfEPNj6MVZjU+9RP6RoXRCegRC7LupNvah87oq7tu
VvilrgDsX3nivknz+vWq3r7ToABdxXjVLsclfdcmr4wLhopg9eB7CDeKRk6s
U/ORrFWElEfhVQfjeUlZibqgo/vZwHfKbYTfj48MpBFiHS/Y8ME257FFkABZ
96AmaEhTCZ6vk7aedRUkY1ulxHkzlEApUX5g9UEhskh7gCdiDTVfewct5R1d
S7LcazZKeikDd0FGJFtHhIwWNdSyalaGtL/utMgobCALX5dmGmipQJTBu3Ap
tij539/aVab3VUDkQt6eWgkxki7fkVbAUYHqfeVVpdLipLaRmm28niosudlo
HROhk6tKLOlxd1WBZ/WnhE1LdNIuK1fmRKsqaBl51pjQJMkYyRSrOBYBC9/y
ByQmJUmzuyVFLEcC9rnWR5n9kiQ/HHI303ci4N5ir07wgiTJKfYeOeNMAFNa
JnSal0EmPEvRynYl4MDxUNVmcQb5uWb1gqMHAbFNDs5RmgwyK+4rRr9CgHod
NizkxyATJbS8e+4R4Gu1M3ZPAINs1hrWnYkg4N+fVrr+NxnkZrpItXAUAZar
7oUPhjLI52ZiIftiCLhCLqrVJzLIkxfXeA3HE1Bf+dkt+CWDNGccLYtJI0DM
ZEqiChjktOnpnSnpBJxuF6mefsUgY7rwsfx/CBibNRSxf88gZQ85DbRmEiCp
+axgTxeDNEkuHz2bQ4Dtq8Zj/j0Msv6u9UJ0LgE5R7nLTzkMcn1jTGddHgG6
nqzD8mMMMsQ/ZpV+AQG3eXbPnphikNoHl8ZvFhLwMepkatQsgxRzifOoLyJA
mnn5QP0ig2T6tayIFhPw//+H5MzXksQtJQT8D5MIPME=
          "]]}, Annotation[#, "Charting`Private`Tag$2320297#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt13k0Vd37APDbDYncyHANIfuijLkkMh5FvIYMRUrSKymiDEkUpVSihLeU
oTS9QqWkVJL99CYJoRIpGct0M917zeG3v2v9/jjrrM/aZ52z93Oe59lrq/ge
dNtDp9FoQ+T63333w5Th+XkmOJ/4/uH7hBZIzcirm/5hQmJskpfOuBZUbPx3
x+FJJmyptL0Wy9cC9bYX73+PMEH5WEDSilEtGFjSfbulkwnrM7cH/z2gBSGB
hp7Fb5hQazL1trlVC2LVvoH/WSaYLRWTTH+tBZlZrLQPDCbY7x9b6JGoBTnt
CQddF8uAs8qiHNGlWiDTsNlZQ1oazj+5Led3RROqXDZb16hJwYWAn1JXFTXB
TkPtEAtJwiLHXj32JQ0wKdyRW796GaT7WuytZmjAdKK/pL6GBIwfe/At4Mgq
GJu4c3nnSnGAnArplraVUIHS1pQHM4D2JT7wgP1KMBU8XqzltwS2q33d6nhH
HS5RRkZWMSJwTdLRR0tQHXZne/4ayBEGG7fgx2/91aD+rtLiBZlCQA/VN3pZ
qgpKSx6xcYkAnDWuWp2qqAoiK3rq+wvoMFTo6H3iGAtas4VrOm7RQbZQ6Z1q
NAseyGlVNmfSobv3u1l1JAtcJEPK3ibSgdUaukU2nAXpQtN5NwPpoHmj9sDr
ABagQbGT2zTpIBiQp/nXVhaYlhqueZ+/ACoj/D6bG7AgaMvpq3l5NIj8xvhl
NIzg5lypgeZNGvRca/HfPIigKW+k7l4GDb731TmGcBBQs16CDxNp4C2e71jY
i0AqVz/saRANKt9pu5h2IHg10e7wnx4NjitxhbI+Ili+NmLuWeg8vjJ8SC/2
KYIziR1rXvrO44er7RreFyMYaXPYX755Hh+Ii1/KfIyg4iz6WmE4j+9+Swgv
KUQQ3FJf9HFqDhff+yiwOA9B+THNPZy4OayKnnfNZSLY9aa9RiltFie5fJc0
OYnA1nxyz4+4Weyuumoy+wQC3WfitOzQWbxrcLMw/TiCPwVWa+RcZ/HRQwJP
Px1FcDXtdrak+Cwu+nHmWHIEgoa/9wYLJ//B3Q53bocGIHj2/fiidzF/8Npb
fNvJvQiuu1+9eTr4Dy4RZJvE+SMI+uv9F7rTHxyTmyueuRuBMFvLYlb0D5aO
vFDe643AijbM4J6bwdfXRbfx3RCsil6U/yhqBu95ydp80xWBOF95w8GAGRxs
eszQxQVBW69L5G+7GeziVGf/1AlBdP3j9p5FM3hT1O7f2XYIHl8//Oj76WnM
mRP+t9sCATKfc30bN4XntD5Ie+mQ+UuYa2eETWGHmuuNAdoIYnuOCgXvnsJf
zmR0RGsh+HZxqlTKZgqLhXX+vK2B4J8uPstPeArrx81jCXUEAgmcMfrFSazx
x+y1tzL53g7Nhqbjk3iFN+9HqhKJNzugoCBkEi906d5WpYig7FvPTje3Sfxm
3YVws+UIInS63t2UnsTiVdr2VnIIej59zaCyJzB/XYFXuSSCS3eZh6QuTGDH
RulOWeL1xzw29cVM4JiltY0Ry0h81RrpKT4TeIPJQREjCQRbj9Tvb0cT+KKw
+dsmBgIhJ8bGYskJzL4Dn62Jn6g4rTgrMIFN1/Z7PBUj8aypbtTtGcdmFnLl
15YgqFKsNI/NH8eO9nWs8yIIDnMFZN0yx/HepgCOGLHquw1ctaRxvCDOUCdt
MYITIa9zPwSNY5FzP1VuCSMwflO2VFFvHA+FZHe0C5H1XJnpH1kxjukt1YkR
xJeCTCoqJMYxsu4qFiMekX5+JIg3hlc96I+3EUSQv6+482XJGA6yOaj3eSGC
Rt8cZYdcMj5zojKCmOad5P3t8hgWebTNWYHYw3V3y+ShMRwwfMb0IB1BnIMz
M8FvDHcf685RJL5vY+rO3DKGrUZkpuoWIKCbSH40NBjDhZ3tSSbEOmvmGW/R
GNZK9Kzk0xB46nIctywbw5phByaKiAvRm6qwUT52ui9oaUjcsvyhEL2Tj1P9
bDxm5lVAgJllndrAx5HKOXsqiLeLhsPDh3xc9nUg2If4tKDPnEUOHyecPbyX
Tfxo3t6sLpmPbyc7bxci/j61Nto7lo9TvJ5tbJtTASE+ev47mI+bXg5ovyBm
DzHGj3rzseOEitgV4h190waiTnysXZ7SG0l8tqsnNNOMj/vW+Zd5ET9u/fRQ
Q5uPoxd/SFpP/KOpfPC5Ah/zzTju2sTCHwu07ET5WNWzS16O2KAmPaB5mocd
dtV/Eybe+fbkXf8BHt75sfryzKwKnMMHfo218LBOQZ/DKPGTF9tZp9/z8BJf
49l+4vbijX9LvSDPT1Tk/yIWKdTPuZ3Hw8mcS64/iQ3zlH7oX+VhzY0F/P+N
77olovDfWR7efpH+zwBxUva4p2skDy/uT9fmEpekd6V3+PMwbdrr9R/izpS6
xoMePPxgxspVhMxvSVLpsnkbHvZ4uaZVntjodK5LsiEPh19X8NUl9j2elqyo
Rt5/o6XLmvhCVGztfSkeFtjmtHMn8fPwQBEzAR5WmHdpjCbuDvawq+Fx8arQ
UutMYsa+9We2d3OxjbbXwzLidb66Ff2fuDjtb5pUF7HfDnl61H9cnNweFiZC
/l+pCzfmyk0uNv7ng4If8S/7tpfqqVxcPMj2v0wsblM99fQEF/fyvfLfE/uv
uxXR6MPFTiHVsqYkn1INkot3O3PxdUaA9RHiMp3oUa4FFwtmxO19TrwMuQVL
KHExXMtNsyL5ar7c4t4NMS4WyedkJBLvk9HsXz07is26Fa40EZeL0Pdsah3F
z0LiQiNJ/gfyinYkZY5i6YPuGa2kXjLWjpruTRzFwtwXUaYCpN6j9BQ2RI/i
AVu+3jViNdrDlulto3jkZ41KAKnHjiX3PQLlRrFX6+5ZtAgBw4VjuHHxKLYf
GYy/Smz+j6Y0mhrBFRNFbeKk/jPl8j+3fB3Bz6LchURIf3BXz3X56+oITqi1
llQSRRAf8Gu1WsIIzmoelSsgfnxfdemCIyPYWWrboDHpP+IGtz883zqCpwe3
TOwk/anG8ob9KuYIdsk0PVm7lNT34zXnGNrDmPPoZam2NOn/xsW2laLD+IG0
gPYvYjPMForlDOGxU6d23JBBMF6je2qwYAirJW6dUJIl+8+vVTG1GkPYvW5q
0kyB1LusYmjiykG8sSrTdkYFQcn1rNXrFw3izemVBu0IgaSa/NBUz298azat
7i0LQR2buT8g9zcOb40XzVJDsMFBYo+d2m/8PSnq5B6yP+jGCm4TYnHw27KY
bVFsBPKlDVf6BDg4WvJNYIQ+AsHxrKbqngHsMd4B4QYIWoP1t1wsGMA4PcIo
0hBBorePs6z+ALYq+EsvYx2CXrMXNppW/Vja2sLbbj2CGzNB+pt8erEqZ+CJ
gzuC80bGoXpWvfjfIieTZA8EkeELHy1j9eLMwaH2T1sRbOJk6DT39ODjfZNn
fLcjmP1WuWrXgR78tMNIJcsHwfbSFcphMb9w1YMvgSGBZL1RjaLpWd14i+s1
01txCCbnpySGo7txSqCNhO0pEu8zyrJ227vxZN1hw6F4BHmXAlWnZbtxi8NR
3w0JCCwe0cx3pndhfd9xxcUXEQT0ah9QT+3EaVqFybRrZH+9J3IzWKwdq382
fJdWiqDZL0jzYXcTtuz3+fpjhuTvDxejktwmHF4fbt49iyDXw9D6VUATXrFe
y3JgHsEhuznvmuEv+M4m/2WzC1kgrp2S2jvTiH9YGX0wXMKCv3jFk8pSn3F1
63Vz7nIWRCycuKByrg7P2XZtPW/JgshozeT3l8txydqg8JEEFhRcNKbu6L2y
lPbSTkhVV4XkgLimXSebLZuky3WEO1VBjO9oet+12/LLu2MaR66qQcehyjWH
4zmWZ0Ls39X6qcPQC6f/IqtGLSvZkh81V6+E3LM3d/mdG7O8FO61oWdgJaiN
35M8kjVl2Vjkq+lavAraHiu/Mt03a5l2ra1MIVAD3K90JHBSaJTrSjHhCFlN
uP7v+VeO6XTqtd/j9nv1miDgFTwoGCVAGb455VZ+SAvqduXfdYsXopK6DV7o
q2jDUzF574kgYaquvyROt0wb1DNV+hY5ilCZ/HuWlzfpwPTh+Nl7m5dQFQZ9
0r69OsCZVmDkGTMo45yRx5dCdOHG3rONCixx6uCmTfF35nUhxar2vJyaBDVd
FSZadGY1MA7eW/9Gehnl7YZ7GDQ9KLd+/qpEXpIy7PfcddJSD2aDfdZ6MKSo
jNmWwMIjerBg0acMrVkpyk1I7PtAoR6stQv7z54mQ+3sXragrVcPplvv90lz
ZShRz6glcgpssA6qSnEal6G2rT3f8I74wky38elpGWq59XBS9XI2NCXOd5TN
yVA+ep4/mhXZsEJe4RyfzqSe1zIym5XYEJi/lq29iEnRjwtlVyiz4YmxW8tu
USb1oCGTmbqCDXPvguOyljKplwJJbxxV2GC79ZzGZ0kmxRTwtpghvvRxT2CK
IZNS9Lz8z9AqNuhWKv0WiWJSTfv0Ti43YsMRd5NL62OYVOxJuirbmA2vf7qb
Rccxqc7leX1q69ggcij0Z9FpJvU2yZA3R7xl4YXz/eeYVFwD2/6NCRuOUjPa
VZlM6lDv7VSWBRuqSpuDT5cxKYlJVoqyDRuW2fOkXwGTuuN045vCRjbsaGGU
8yuY1BWXLZ9otmzI3afpr/2eSQWV7F9QTzw8YcPw+8CkDH90ZsTZsUHG8Enh
+jYm5WnUsFPIkQ27Kuo9oruYlHxtdfgCJzbkb+bMFfUwKYa4SswvYm6X0N3+
AbJe66jNRZvYYBaGnFWGmRQH/xvv7syGMwssJjx5TCrD0fZjG3FDyraclAkm
ldD89WKKCxvkV0TYVs0wqf0d/Tk1rmz4//Ms5ZYxlt3pxob/AxlbfUM=
          "]]}, Annotation[#, "Charting`Private`Tag$2320297#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2Hk4Vd/XAPBLptD9ynRKyZThXDIfY3IQSRlDo8hQUUIklEohJEkqQ0mT
TKUoU8NeRVKpkCEVQuZ5nsJvv8/z/nWfz3POvnfvs9de66wr5epj58HOYDCY
bAzG/3265cUPLy0RMNAkcPHzaQqE58Xk9P8RkHaMxdQ5RUG52cN9gTMERCYf
KmwPpkCupeTjwAgBqkxPy/lACvr4O+43tREgE8s03udHga8XtaugjABZdZX0
cQ8Kzsj+hIMXCTjre3X5khUFKakyCV+YBEiK+6z3kaTgTmuUj+1yUVCevzgS
VawJotU7rEkRERhuSfR8sEMTKm12bP4sKwwtmi+fdAxogDkpGyAjLQQXe62/
dgdpgN6TfRnfVAShKLmapcmjAXMxB4XUyZXw0G0hkyNaHSanH1zfLy8ATn9W
6I9wqUO5dILmG28mcJ48lTwTpQb6nGcLFN35oTTOsfvavCok0traRqG88Jnj
8v7b/qrgdmtXZ98dHsh4yGgRaVSBb4/WLWdL4QKBkRdJ3I+VYR3/UzVUyAFs
YnNTOskbgFey61tvNjv4CgsHJwUpwVH7iKTMTAbEvn90dclPEe4ulmqw7jLg
vmkVm+sxRWjIHPmak8yAoLZcvQovRaAX9nLmxTDgQuULgUQ3RRDOUD/+4igD
SudMr5s6KMLr6dZt71QZoPpDR49dVxHWap1YLPJbQsUR9c/H2RTBpaz187qE
BWR8yi7SJIUFWwxmPJrDFlCI9Aqh3hssUC4SYNzyW0Dvef/6X73Ggn/ZRpqr
bRdQSljl675YFiQl3L8lJLCADnqy3qOzLKg+cMibJ+4fkt1Hq0x5sMCIMcwc
i55HeY1chpmaLFAI4c56GjyPjGV3Nz9WY4HAhISJj+c8qkduWYXKLGjptjk5
YD6PLBvG6moUWBDyLb+1i3semWa7v1UWZ0F+WuDTXxFzKOLorHgEFwukDRZt
34fNokBF3dDnv0ioXmmglHx8Fl3RW7nOpomEM12nuLzdZpFCQFH5UAMJP6/M
lgqbzqK7TCaLqiXhWvuEjDvPLFpuHnq+q5IEjqj+SfYrM0jty5NPvwtJ6Kr9
kUzfmkb5PuVDUtdJSHxEBAhfnkb8q3u0pK6RYHza0aondBpVd4Tmy1wlIU22
jj3eeRrFmKWbq18mYWfQtyOt0tNoxMdTIDCChErxCoMzWVOIW5Z3ISmQhKzD
BW0vCydRYalzu91eEupc70hsy5hEghnn4pJ2k8BwuuT08/okUlkxuK59JwmO
tm5NMwGTqO7c9+Fz9iSw6wnVUBqTKHt/wcFBSxL28PlDXt4EMjNp1j9vREIE
p/PipjsT6Jjv9rNcNAlPlyw2fo2bQEzP+adxm0jgmpAuHvCeQFoO8Cdbn4T8
37V5pNIE6vPcflpQiwTeJ+p37meOowlOhY40RRKozHXN6knjSEpun6oriwSX
e7xr3l0cR8ueVPuQJAmFN9pv/Dk4jmzR4/dlciS4nk2IE5cdRweDXL7IS5Nw
OfhMVa7wOLJP6crllSKh2N+LdyPHOCJvnz0zKkEC87Bx5J6OMfT5i8f0J3ES
Sm3GQm/eHUMHnmjpP15NQqdFy0u5q2OoWTw7I28VCQKmn2ZfnBtDDz4lsRcS
JBzUvXeiznkMbTHMj/kqQoKgtJ33ynVjyGNGpVZZkASv8Wf7LqWMIscJn9Yc
PhKStUb1D8WMou1W+tdGePH+BKuuMQkZRc+ZEvy62LKMvKa53aPIROyTRT0P
CX/4cx29Vo+irSrNvXpceL42/ZTZ8lEUxfn6+W1OEgyusUSkZ0dQzT9vQw7s
lNVZ35t+jKAP5VZXfy8jwUEuw2Zr0gj6Mi+7spSNhHDPThXZqBE0Wd9croed
n7v+P7agEVS9cUENMfD6NO5/Kd45gk7d7NL8vqQAhoHtuYlbRpC6Y1ulK/ax
EqlYX+0RNGF8X3BqUQE+G6ZbKBAjyELmSZk89tz5VpKDewRdleckKxYUwDbW
QBAGh5EItyF9GJs/We+KyuNh1Glkca7onwJ4SpRYdscOo+u7eB65Y1c81Oa/
c3QYNb8/f0oEOyxfM5qpNIzOSe8mz88rQItOwZYKvmE0sXCOsQl7I1LjOtM/
hCK5Fs8tzClAsunTcurzELKKz8kC7KnPyhcGs4dQxxHX4IvY9naPjR7GDKGn
N6eGbLGf/VBkOHkNoZ2ndZZLYjOds98IWwyhkx0TFaOzCnC0UyG0ihxCdccm
5T5gfzrySD98+RDyMVuUT8eWH5Od0+8dREPCNZWnscODHhSPVw6ivilFHifs
9kXpkzmZg8i658NfGpuOuEu5RQ2iRYN9TgrYt/kkJ8QOD6K7fKm+QthzV9Py
a7cMol1JGuLs2LtWifvFyA8ij081ByZmFKAwLVXFmHsQWdmKG/RhC8mKDc12
DSBxwdLHHdi+OUm5zyoG0GSjRf4f7K9qxBHPjAG0dOzI1jZsxeLrpFTkAIr5
VejXiR21Sbjnh8cA2hZSTg5id5UnZMSbDiC9+3K+M9gm21Z6mMsOoHMN3ibc
eD7pNVdkGJwDKNRJ/t5q7MWdzPaiv/3IZPB3jAr23pbYdJ/yflRQIfTPHLvY
nc9Z/kE/kvljPeGBLdofLd56oR/dXxQ4Hont78fz+4ZbP6pMqfPPxq6ejkyx
MulHUdOCMzXYymc4d3PJ9CM+5uaFf9hipdU3ezj6UZdDo5kC3i/OqdSGT119
KFL7aIoj9m9vdfsr2X1IsOPMnlfYlVkLCX6xfaj7++HyceyCzsqaHcf6kN20
koYyjp8YJ2frVep9yKqUUywXOzCZFTcn1Id6twdcGcY+UD9Z9XuyF/WZ+XNo
4XjUsYy1uFvSi86eR92fsbs3lpiyjHpRbkyA9xoc/7VB4eH8Mr3oo4N9SSD2
m+fWZUMcvejhu6rZOuwbSl10QWUP6o/tsEvB52nzWqGNG2160C+jXwbm+Dyq
7moJWafegwY9C7leYq9JzCphCPcgl6kXxarsJIzx0drvG7vR9Ujz2vX4fKfP
H1W3cu5GhjF2+Sr4/Mdq6/ipGnWjA87zKSXYJ/2XPRWU6Ub3GjtdzHD+sOpP
3tDY1YX0vnqdOcxNwsLPCgWXY13o9KtD9V+Xk9AjmnDI2KYL3XxrG+qD81Gd
nVPGevUudDhdbUoQ56/cT+MyvZOd6Fdpgr0rP87/pZISx0M7kbTS25vS/5Fg
NtXvZO/ciWT4rFObsNXUi25pGXUinTOKbtcESODJthSb5+hEJzwP6f6H82Nh
cohIeOxf1BaTWyuP86dQcB3fjdQOlGZz2+LXGhJmlmZXDod0IGLBmL1mLQkt
kRKrzPd0IN3O6F8fcb7OTPRaP7eqA1Vf9ukrx/l801OGwf4b7ahMO9TgjwwJ
nt1Kx+SutiFtG/Q9Swmv/5hdwFnfNiRVGHavegMJmpMnQ35Yt6HJMdJ3TpmE
RfayyBhmG8qR3bnkqIbr77rdd4Yu/UEmL9fnaeD6dCaH9673ilZEZ9UeCMb1
bWuJw2OJqhbU99Va+Buuf8If0ktqYlrQ5lcc9+RNcL1t16qleFpQlQ2fWZsp
fp6r3ZYtsjcjk6l9foHbSGBFvfSIm/mJ+vcX7pbD9bbR/Sgrr6MBEc8fhsf6
kvCm2Ua7MKMBSaq/L1h7nIQMR2rza88GVHTtn2SePwkB5otOn4frUW6uxZOf
uL4LKMVf7Z6vQ7O6li7bQ/H8xgtmJIS/I8b+wbCkGBJOLJu+LBX9Ff0Ug7KK
DBwfIay4j9ffIH9tlq9wJ34+QyMNeRmvkUM0pbemmwQ51yKJG0WvkMz1By9l
ekmo37r5mWtTKfr3cL5Zd5AEjdX76+bXFiFeLbbjIZN4f3xkqH3meeiAXIz7
Nvy+VJ27rtXe7iAyNlm/IEmyIPuKDv1A9bVhARwIMfJnQZxnWIPL+UbDm9bv
ru2TVYQVE9v1c207DLWdBq27finCn4AKzcDwfkPt/E11Xx4rwVCJ5buTlaOG
JTd3ible2AAZF++6uEdPGjZWjX6ZslQG2akcoaDUWUNnv52OkSwVaMmXeK1/
eMGw/5PkMtNpFXC4+SeqP55B25YcEHu/XxXSHsa+3n6DnR5+Fql+tFIVOPZ6
D3IGc9CCdrclGhTU4KtL1iO7cC5aTUc8uDRODV6sEHOaPspDF/JeW2ncrwZy
KVI93Nt56UMSjF3HTdRhLjB8IWcHP61rqDtplK4O/XNrmJk6TPrzEFeY7oQ6
pB+6WLdGRoB+q+FX4LBdA+KNqmJXy66kFVs/klzpGsD0yTEuExGkN3KpxyX2
a8CbzcWvC8WEaP69Hzi36GvCgrezliNTmN5EX2ah85rAxl2brLggTFt/TgO9
Ck3QMj/+zoIhSmuO5TRP81Mw9zu3R2RMlG5pdt3Ltp2CzUcr4y2nROmVe5hq
my0puDzfoRMxJ0oXmDx4MWBLQUPM0p9Xi6L0na3hb9rsKJAUWxM9wU7QHWUS
cQk2FHhlaakpcRN0Q1HZ6p/WFDzXsWty48NeVaKqbE/B4gfvsNT/CFpw1QfF
U7sp2LIzmvwuRND+P2zUDRwpSKzx8IqnCDqzxjjhhzMFLS5hgpW6BD1nSRiJ
ulMgP3KrdMmAoF+7fbe85IL7tbPFrtrGBP2t8u8/2/0UlDLreH3MCPo0dZJ/
4AAFHGnD+RkWBP1yzw6OXwcpsNrAt7fFiqB3m3Je+HqIgqRXcstEdxD0mvXy
rp/w97dtM86x3EnQNeDqEIT7P9Yvpx0RewlaL9Kg9gK+P8AreP6VM0Hv9/xQ
VO1FwZvZxPsTbgSd7vtK19ObAp7op9uUDhN01Cv7u0JHKLBbVTXudpSgW294
qjZ5UpD6qDs11ZegCwNzlh7j63+1lm3+HkDQKWVzSv7HKVCuWDfAG0zQ4X2T
C0x/CoIc9BKNQwn6l+uG9GvHKHj712FjSBhBq8ht8prA5g3w+/ssgqB5fOZM
nuHx9ssux/ZGE7Sspu6J9JMUpCVkakrFEbRH6oZWTdzv9kiV/96VgNd77Kfq
TAAF6s9aw+NvELR55bos8RMUnKLnlSpTCHrTpqB9b/D95d9E65fSCNq5aji8
DPfTTGf1UO37BN3X7x669gwFu4YsZX0eEXT+vEb8nRAK7oV6fsnIwfHQLst+
PIiCAf6IEy15BK1cUPL+HR5P3UoXF31O0J6n6zWiz+P+WvHVe8tivH86O3Tv
XqCgsrTRO+IVQS+WjZ5+EUqBoMW4yGsg6Kvf9oQX4d/b18R8M1FO0Eo6plcq
wijIOMw6qPSRoFe9de/Sj6RgeNqU6f6FoPnN6o+sj6JA5+KBwtQagm5xz4rM
iaDgvGjo/u/1BP2qgn1FcDgFVQ+TuPh+EvQU2xa2XmxR6vkT4xaCXr3x/L+Z
aApcyr85hrQT9MbiSqfReAqydvQvPusiaJHtlx7mX6JgrJ3rUW8fQf/+2fQo
6yIFG49LW0sNE3SiUif3Dzw+km3T9K5xgo4slJptvUJBdfzuO/HTBG0qZdnG
eZMCMckTWyrnCXpteOPyMHz9///PoJc3DDQeiKPgf1Ddh4M=
          "]]}, Annotation[#, "Charting`Private`Tag$2320297#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmXk0ld/3x5Hpo0h4nouSkOFe83gfU06izIWSBiUqQ6T6lEqlKIUKTSr6
GFIyFEpJprOTSikapEhpMs/XTPie31q/v+56rXPO3vvs8977nGddJZ8Qtx0C
fHx8Mfx8fP/365uf0D87y4JZF2O+TC1jkJmSVzP/ywIh5eaYDZrGULXy9ubQ
cRY06lql/2Abg9r3J696BlgwdPSLjby6MXTN+53R+JMFdSrzM7cpGcOeQGPP
wmdkXCTn5nzaGMJVm2DnGRbAPNMpjVkjSEpWufhWggVLVMx7K98ZQWpLdIjr
PzQovU8OWRlgBPQ799VsigK0nLfhj6ARVK9xt6lRlYGZ2FJRnGIIdmzV/SrK
0nB9bcqHBE1DMMvbnFmnKwUmi5pf1pYawGTsTmkD9gL4z+eyS6+lAYyM3bqy
RV0SlH8tU4oo14cq5YtGFcES4O2x1StmuT6YCx0v1Nw+D+b3+ipPFenBZcTl
Lj8mBiqNS56cMtAD3xuerV2ponBu1jayy0sX6u4s/oc/SRiWJF7e3Yl0YPG8
An1cJAj7OyJ4Gy21QWxJW11njgB0V/fnqxtpQfMN0ZofNwUgYbW01io9Lbgn
p/nic5IA7Ile4++vpQVrpPeUPY8VAFkxWZ2CpVqQKDyZlR4oAFT8Cod1lBYo
94pHbuAIQLwGO3N8VBPMS4yNXmXzA3z9ZVZaqglBa6OuZWXxQRHvxb5eR01I
nykx5KTzgYmERd07O01oyBqozb3OB9kl2sFFtpqApjcJ5cfywVDI7UPRVpog
k2mw71EQH1B35i+0M9SE8rEWx0o9PsigWke4CzVhkcmBmcd7Z7HSrgOyvT0c
OB37w6jUZxZfs3ozqNDFgYHvjrsq3GfxJoUIX9d2DlSdUf5SZTyLww9fkIef
HAhurLv/fmIGF1/8tKS8gQMVRzk7uiNm8IfNYfXcpxzwftZSs/jiNP5R0JG1
/BoHVlmO7/gWMY0vHVtge+UKB3QeS/Ld2DuNW9rFXXoucuBvznIjOddpfML2
9oNb5zlw7WLGDWnJadzcskne6iQH3m3zCxaN+4u/XakcWxTCgeV8/RK8mCls
32Cen2DPAY0wkeyCw1N4pdzdw+tXcUByWHFFSMAU1gwXF1O25cD39jUHe+ym
8Lhc7OlKxIGwugctbSJT+GtFvYE+w4EHKaEFX6MmsXyjQuBLdQ4oW864Po+Y
wArFR8rb/iH+F1hqXd83gddgq6V2ohwIbzsiHOw7ge+7H5S8J8yBpviJEhnb
CTzHRPh4xBwOXPo1rLJddAKnreR9XTvNBsHo7hGB+HG8dtEEzhxkw4PNnHcN
x8fxiwBppeUDbPDWD8jJ2TOOI4POLGrpY0NZU9sWN7dxnPRXqF21hw0HtH+9
TKfG8QUN087vbWxo+/DlOroxhrfzpUbPNrPh8h3WfpnzY9jB5p54/Vc2WB/1
cOk4NoYDrs+1vNvEhhTVeoGErWP4IiOS4veFDesP1e1qUR7DX//tDRerZ4Ow
s8TKQukxvEXtv6C/H9jwUMl5yRnBMZwW80CM954NkjWv63XaRvHo60cbO+rY
UK3wwjI8exS/E7qzif8NG0J5grJuSaNYpU/ju2QNG5a+XMFTPTuKZ6abqaWv
2XBiz9PMt0GjWHfHr8x11WxgnpXNV9AbxdpzAze3VrEh27/wZ2nRCC4IKwh6
XMGGep9URcfMEdzz9uXxoXI28Hmd9Wq6MoKfdikNGxL2cPVtHN8/gjMOn+Ov
LGWDgJn0e2PDEXyPbfhQ6gkbtI1mJZ4rj+Di5piGvcVs8NTpdlorNYJ3+Tls
+vSYDXnKz6r3DQ7jIrkF57KL2LBx7r+Qnz+Mu1IzY04/ZEOU0NaZZanDuKPa
s0KUcMGsg0Vt3DAun/y2Nr6Q5GtYubgneBijd4mZ2Q/YoN8nMXrEaxg3nHDf
Zkl4c8ek4VznYZxqMXL0031y3s0f8tlawzi88/4nKcLfGip6ixcOY/2RJVLF
BWwQfZ+jaTd3GLc5LMzbRtiwJjHg8+QQzrW3yJ5PeMvzyDs7u4bwuLbMnMp8
NsTg3a0jjUO4q1av9BDhh082qkS9GsI3K6j3hoTF8gxSM7KG8EJffZnHeWww
zlr8zeDaED7o5YaOE/a+Kbaw8swQLrOVrHYkfPbGqKfrwSG8behdziLCRYm/
En/sHMLS1FD74D02/EyorQ/xGMLbDWvDawjPO1siNWs7hBWMH+3OJsyNylwT
ZzyEw57zis4S9jl+MU5BdQhTaW899hE+fzj8zV2ZIfxL/aSzF+HifwPFLASH
8KlKpyQnwr+DPexqhng4R2CLBSIs4W99euNvHg4S+mnAEDb10anq/MDDHn3T
R40Ib98sL3C4kodDy+vljAnHewgj0Qc8PAXHRc0Il6zhHbuazsODwVJ2Kwi3
OnwvVbvAw25bkj6vISxp+3ri0QkeNs9eUuRD2NyqiGu7h4e9uzJ/HSK80/Tm
gfqtPMzOYW++RPiCYVyh72oe/hSdqvSAcJl22CBvGQ/H+o3rfyLcrr5TN1KH
h91DFM/9JSyl7Ba8YDEPZyhP6GiQfFouWpabJs7D/YI75DwJ+9OcTt3pQbzb
28LhHOFLkrQ67hnETgbuUEW4Qkxgh0vzIC6wOxjGT86zU7Dv5reaQaz+Z+9B
a8Iys40/gkoH8YptQkVnCAcO3d98NmkQR0l08BYTvVw3GTT3ix3E3idrd4YQ
rj6st3BF2CBOzRUZeEZYlS+/cXLDILZSWW95mOhx7Yq+4gb7QXwnq36mkXDk
ae1rD0wH8f6bIe+WET3/mHfXI1BuEHPLrqfIEP1LrOk2XvnPIH4ssfNaFGHL
SxxKeWIAS919d2OScJJc9sfGLwN49YUqPEDqZ51a5hr7awPYVUfPVpzU36mA
Vl3V6AFsNCKyK4Xwg7tL5/MfGsDBO67GG5J6lTTMeFu8fgCvKrheG0DqucYq
zUGDNYBX2q8aEypjw2RkC1tQZADL2iq0FRF2PWcpBb39OMQy78Uu0h/mXTeL
173Xj6+91PX4SfpJxAOjGAmtftzprBI+9ZQN35nCVS/m9uPUkk2vayrZYIH1
hcO7+/Cf0VWTqc/YMFqjc7I3pw+78Q9Muz9nQ1CrxrE37D5898pZ7y7Svzxl
FfbGqvdimzm57bXvSL2kJOtai/Ti4u7Yc82kX0qryvdNtPXgJn/H0V7ST2v1
WbsCMnvw2wZzyUWf2LDCccEOO9UeHL5jztLbjWzQCRfaIKzSjX9rbuf5/2aD
fMm7qx2C3bhOUbUk+Q8bhEaTG163deE6MfW771vZ0BxssDY+pwvfeVgssqqD
DbFeW1fLGnRh59V6get7iR4tnthylnfiouhgK/FxNqRNBRm4bG3HmjcX9eD5
HDjHZfbqLW/HTxQcvdYu4MDBf+cUSKm0Y4HoH6XdUhxw6b6u/bmtDTeZuJiq
0ByYbnqh4b27DWvWK04/XMSBjSVLFPcda8UwK9q6jcMB6cP1cxOTf+Ml7ke6
PpD7d3x2YkF/2G9sxOlp6CL38/fTirJ2G3/jgnKVdiEnDmRdDlw6KfsbX51Z
5m+7hgPLCvgstyT+wumO4Tc7PTkQ0K61W+3CTyxtZp5WFUju21yx9GDxFuxz
pHLifgIHPm8P4uT/bsDVEd0jH/+Q98e3NdyizAbc02Omt4e8VzI9jG3KAxqw
W2roRQnyntlvN+NV0/8Jf81SeeHaT94HWgkX2qfqsXb6UN7gBAfshwrHFWU+
YrtHCXevzNeEA3PGzivF1OKtz5YXbLXQhINhnLhXVyrwilO6a2OSNSEnnkG3
9MqtSvXja0/4a0FcQESDd+RnK02l07J/N2mD+LCT+V3X31aLzCS2dDjpwI/9
L4xCT3VbLd77WnjHJl3oe+JcebB60KpEK2P7jJEeZJ5J994eM2K1I+2kVluh
HqiO5kofSp6wQrVNc4Qs9eH7A8Vyc/9pq8ur/TZkl+rDuqs/orsT+NDzbac2
9hgbQMrtc+VOiQLoDYi+/fvYAAQ3BfcKHRZEsr3Hay/rGEKtd/Ydt1PC6POt
bbfacw3hkbi811iQKPrE8O94qWAEaklKHSJOYsj1RygVHGsEk6GnpnPd56GH
p2X5O/8aQffkQoksRgIdl1V7mbTdGNL8ztQvVJFEcXHI/fN7Y0hY/uacnOoC
lMK8dlQ1MwGJkFzrZ5QUOpnbYBN+1QQqbIrLi+SlkdZoa9uSaROYDt5q4iEh
g6Y7WtdWe3KBX+TDdc1pGdS7QHj36YdcEI7eTzP8FIpYdtSng7DYP6xLNkIU
EtyxuEkrjwvzY5/Md/2HQs5dVXETj7kgM3fzOS9xCmlZmTHvK7ggd25GNHAB
WR/o6eGcz4XF4ulRoRSFNh69KR9XzAWVuBUCJ+Uo9F9l6i/vF1zQmN8WHq9A
oUCPV53LS7mgnRA9laxEodbzB9+pFXHBYIHmoSxVClH3C+vvv+aCycW3ww/Z
FFp18+7Ej+dcMJfes/epNoVq9q2ZYEi86LJU31t9CmmrNJcsqeGCDfUosMmY
QiZKNuyBt1ywT1zf3mZKIc1lhbrHnnLBhTXpO2RJISONqbsXXnLB/dqNH7PL
KRRbv8ht7QcueMpZec1bSaF5Gqa7eG+44JX0s1HWgUJzx1P5v1VxwWfhKQ9V
Fwo9zVa4tYXM97uh9lHfjUILI/TNBT9xIUjh1eplHhTaZuPnv+EjF/ak7Hrj
sJFC7fS1VJFaLhxQlLBfv4VCQX/3PtnwhQthaQXPfX0otGG6yUKuhQvhSu7W
e3ZS6MYp2uVSHRdO3hypOBpI5l+g79s2cCFa5Zp5zG4KpYrU7afauHD+llnx
lX0UUpPe45X5gwsXVb8Z3QylkLD1LzkVsv5q5vH7eWEUkr968Gk1mX9DXVmn
NJxC07cVn0b2cSE9qyrnZSSF+FbjCZvPXMhk+6nXn6bQ29XKf+uIvZycf279
iCX7eZwu9GiUC/mad5f0xlFIOq7ua0w7Fx7edflv4iKF1qYveLacxFesPSgn
fJVC+lZ9vv+NcaE871KiVDKFVurHi9XyuFCpayKtmEoh65htkVs6uPCy4Eu8
ZgaFjIcWHNDs58Ib/SPzmDsUij5+xPUy8ff+gUKMTS6FNuelPjEl3GAIQq75
FBoayfGSGuTC14c+kV6FFIoZDFWfJfzDWGg24DHRS1RseuhfLvwpunMktJRC
T17euvyKn4FOrsN4JKaQZNpGvxjiv6+4Z3/8MwplBu8WNpzgAs80fjD5JYm/
pJFXIcbAWIn+7qwaCoW3tFlpCTDw17y+62Ed0VuPeopGL6mn8lC/px8ppDwl
XflOlAHhZXJ/3n4m+ZGc4/mRZmAuLvVu+kqhn2nLou+Nc0ESbfnW1kKhxlq7
4P4pLlBP+TYO/abQ+53O/SlLGJC3zmiYbadQ/KX6x2clGFj8zNZ9Xg+F+M/9
Tgol+VSx6aiTHSD+lka/WyTNgMbzWCfVYQr1bT/i+kueAa2V2q/0xylU9ihx
75Q4A/ov62yX/aWQwegkfXKG1JPdvkoHPhqdD1lqPyjHQIzB3P4FgjQ6k/Os
Zc1CBpoX3VrYKEKjddceH58m8euKWNqlzaXRjpHuozxiL3Lw036/+TRy4YiH
9ZLxT193p+tI0+hIjqKllxKJ54VI7QhNo6+ZAvPYagwcKUibLJMn602TVfLI
+tokU/VTi2kUUPPvazWyXinqg7ujMo3UMprFsjgM7A/ZdUJKjUbnjuRbjzEM
vNwgeK+RTcbLlHrXS5L82PzXmKZNo8jleWa7WAwE65gI++vTaFu8RWKOCQMg
W2ega0wjVw0Nq1YzBmTm+G8dZWik/uIYz4H48+vlO1duQSPktrnakeSr5PP1
4lOIRiGesbbXbRiQqDRodbShkWKj2uPj5gxsu1uzQNqORlJFuuFJigw8TNy+
rMmRRnnPU08sXcyASMR0YPpqGmnlJq2psWNg467Eq/7uNFooWfd3ypKBe+t0
q3TX0yj10LbLGloM8KHqgdGNNPLWbNqkp8yAO2ebQsUWGlVa71FwWc5Apsyk
fZQPjXbOBh0eJzwxczHUaSeNaoRx2w0Sj1OnZoZ0II3wDv8NbnoMpH6sqmsK
plGj89x9b0wZ4JV7/U3fSyMrdofi+5UM2GaNagQcoBFHzpYd4syQ7/34dXqH
aSRT1rP6M7HXfVQjcuwojfrEc2rnGDCwzO9pXsUJGs2x5JPMd2TgguvGr1Gn
aLRfeZPEc28G/pgPiThH02jw56jIEMmXXqtHScBVGj0bP3DDaTUDJ+v62/SS
yf7T/VbIqzDQ8CRaejyFRtWWL2RVXRlg31JC+CaNrq8PPXwsjIGjcSVBpzNp
dNlysEJmIwN1h9yvO+fQaEGc19Bjcp7Kvj3PZfJoRJ2un7lN7Ic6R/G+3qfR
VbdJ/fr9DLziLlbMeEQj3z1qkfO3M7BI+bFj4BMaaXivbjrlxMCeeWsO6ZfT
KJ2lrr7FgYFnox23xoFG+YXdDk67GKB/RrzHVWQ/G5DgFcIBNfIzp6uJHkaU
kk19GSh7VMhxeUMjL32v/tdrGZif5rSeekejPUfH0qK9GPCJbT3Z/JFGSdvb
y+t2M/Bof3hBxmeiL9a3jIZDDIhuZX0L/Eojybpf6c77GNhkX/CPQQuNWhTs
jpeS/OYZ2ptM/KKR8e5PRVJBDPAv/uUDbTQyenYsPSqWgbWiR+LPdNFILERu
QOoMA3d40mUufUSfncOBC6wZmGy+20HxaNTQYb1zuw8DNkHVCc6jNDp78Vxi
bhID56d+M1GTNKKp3ZIHib2G2NkfZTM0Gi495vTXnoEl8gtjhgVY6MGq0KM3
QhgIzDbR1xJhoT2rH086FhK9M26NvnNZ6L1/TPfHUwzMvAyOSJ7PQjzGL7DK
nYFV62PYH6VZaPWM5GzYSQYS2m69F5NlIcZ2yxf7DAaaDsBh60UsdKAvIds4
moGlQs1KYUtYqMZi/ZmmnQzsvjz26v5SFto3nt/5MYGBYhXpfZ0aLDRln6eo
TuLnL9SRV9JmoRcdb27cvcyAg7VDpac+C/0++WUil/i7/H5HYIIxC/m8umAx
eISB794RUtWmLGRdmSh69ioD6gM3SmYtWchr35zW+TlED8eLfbjWLGS+Z6FX
5G1S/xL1YiErWWjc7ZagODl/wZT+B5kOLDT0/XrLceLfRXvupu8uLFT2bxnH
oprUT5naHNqdhfg2evCfvcnAT0frXOf1LGSz6I/TPaIHzlcv96hNLHTo0YnF
t9JJPws8PFW2lYXywncHPOtjoGLicsawLwtNJzd8YIh/0ZgCRy1/FnJI1fGD
DQy4yb4Z8g1ioVg4dF48l4HkO+3JyXtYqGGX0PrwblJ/JnNsPu4n9u4HDoTc
Y0DnxeIescMsZJp2bvbRXgYOrTO7bH2MhV5PF44dfsjA0z/rLMIiWGj91WEq
o4kBsf17/9yPIvmtsFh6oIToa875c50xLLRETu/nuwsMpFzMMlKKYyF7ya1O
/MUMdChVNXteZKGk81fWHnrNgMH9llMJiSxk52ko+JXwETSlVZ3EQuJlr/4t
Jfaq6uhPsykspHQt23+c2JPYanCMm0H0sVO698oTBjz7nFVD7hB9mUnyfJsZ
uHks4G1mLgt1bPvPU6CXgZ55UQe+57NQVcSotNpZBoxvpCnQD0m8C5VrzmYy
EK5Z9ty5mIXYOLoji+SjuuRzcFQZC8mamX0P0zAFKYchqhxYaPTZbx87or/N
jRIVw1UstMqMr3A70VemP2en1iuy/tCOEL9hBvrHbCW2v2WhlLgR23wjU2DO
bCtKfs9C35QO8V3C5L6jj235+ImFnjQ+YgkdZODN7WvCc5tYKEoqOD+IR/qH
8cM86+8s1E3f7LPXMQXvqjqPsF8s9JO3WSz0GwPZ7t0z99tY6Ez9wcwuol/e
L+E7nV0sdPkNvq70mwGLfcqrlfpZKLLmdkmVvCmc5l825jnEQu1/e/hMxhl4
l7AhNWGMhXI8Ew/KE/3JLzmwqnqKhV4J7xXXfcnA////gEAjZdXpCQb+B2Kp
/2E=
          "]]}, Annotation[#, "Charting`Private`Tag$2320297#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        MachinePrecision, RotateLabel -> 0]}, 
     AxesOrigin -> {0, -25.205799457979587`}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         MachinePrecision, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "ClippingRange" -> {{{-5.999999755102041, 
        5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}, \
{{-5.999999755102041, 
        5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}}}, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\
FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \
\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
         TraditionalForm], 
       FormBox[
        TagBox[
        "\"| \\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \
\\\"0\\\"], StyleBox[RowBox[{\\\"[\\\", \\\"n\\\", \
\\\"]\\\"}],FontSlant->\\\"Italic\\\"]]\\) - \
\\!\\(\\*SuperscriptBox[SubscriptBox[\\(\[ScriptCapitalF]\\), \\(0\\)], \
\\([6]\\)]\\) |\"", HoldForm], TraditionalForm]}, 
     AxesOrigin -> {0, -25.205799457979644`}, 
     CoordinatesToolOptions -> {"DisplayFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& )}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 12}, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, PlotRange -> {{-6, 
       6}, {-25.205799457979644`, -7.661000555932736}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{"2", "3", "4", "5"}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "12"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, 
   3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, {
   3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, 
   3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, {
   3.87637134045012*^9, 3.8763713522979193`*^9}, 3.876371879846971*^9, 
   3.884692135165325*^9, {3.887183224363449*^9, 3.887183269387279*^9}},
 CellLabel->"Out[57]=",ExpressionUUID->"a1a5856a-a28d-405e-8e1b-5efdfee445c7"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"magnetizationData", "=", 
   RowBox[{"Table", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{
        RowBox[{"ut", "[", 
         RowBox[{"1", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}], 
        SuperscriptBox[
         RowBox[{
          RowBox[{"uh", "[", 
           RowBox[{
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}],
             ",", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
           "]"}], "[", 
          RowBox[{"1", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}], 
         RowBox[{
          RowBox[{"-", "8"}], "/", "15"}]]}], ",", 
       RowBox[{"Re", "@", 
        RowBox[{
         RowBox[{
          RowBox[{"(", 
           RowBox[{"DScriptF0D\[Eta]List", "@@", 
            RowBox[{"PrepareArgument", "[", 
             RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", 
          RowBox[{"1", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}], "[", 
         RowBox[{"[", 
          RowBox[{"-", "1"}], "]"}], "]"}]}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", 
     RowBox[{"Evaluate", "@", 
      RowBox[{"N", "[", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{"\[Gamma]", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]], ",", 
          RowBox[{"1", "-", 
           SuperscriptBox["10", 
            RowBox[{"-", "4"}]]}], ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "}"}], ",", "30"}], "]"}]}]}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, {
  3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, 
  3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, {
  3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, 
  3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, {
  3.87637139299862*^9, 3.8763714209705677`*^9}, {3.887183678121203*^9, 
  3.887183686457292*^9}},
 CellLabel->"In[58]:=",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"],

Cell[BoxData[
 RowBox[{
  RowBox[{"magnetizationDataInterpolation", "=", 
   RowBox[{"Interpolation", "/@", "magnetizationData"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, {
  3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, 
  3.876370747760907*^9}, {3.8763714277972183`*^9, 3.876371431900972*^9}, {
  3.887183690448813*^9, 3.887183699080945*^9}},
 CellLabel->"In[59]:=",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"LogPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"(", 
       RowBox[{"Abs", "[", 
        RowBox[{
         RowBox[{"#", "[", "x", "]"}], "-", 
         RowBox[{
          RowBox[{"Last", "[", "magnetizationDataInterpolation", "]"}], "[", 
          "x", "]"}]}], "]"}], ")"}], "&"}], "/@", 
     RowBox[{"Most", "[", "magnetizationDataInterpolation", "]"}]}], "]"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\
Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \
\", \"\[Delta]\"}]]\)\>\"", ",", 
      "\"\<| \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \
\(0\)]\)\!\(\*SuperscriptBox[\"'\", StyleBox[RowBox[{\"[\", \"n\", \
\"]\"}],FontSlant->\"Italic\"]]\) - \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \
\(0\)]\)\!\(\*SuperscriptBox[\('\), \([6]\)]\) |\>\""}], "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", 
    RowBox[{"{", 
     RowBox[{"Black", ",", 
      RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, {
  3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, 
  3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, {
  3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.87637143608066*^9, 
  3.876371440221603*^9}, {3.887183707042214*^9, 3.88718373222613*^9}},
 CellLabel->"In[60]:=",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2Xc81f8XB3CzJNkhFZ97r33TMCvq3lBRVlFpoNKgkCRKWkKEjBANo5CV
kbKScxAZZSVSRsiWvefv8308fn/dx/Px4T4+j8/nnNf7HChnrxw+z8bCwpLP
ysLy36dVWuDw8rIoun/ip1hqK6DwvLiMxoIovlBfLL2wRwE/74s75Twjiq/S
t9PtGQoo05pbPjgiis/rsgg3DQXs5+l83dQuipqT5+pDlBXQ4ZKqWWaxKG4/
Ps7IpSngHelfeOGhKCoW3G38xq6Az57Tgr/xiuL92/v7qcXyGNXmfeXQKhE8
a91xnV1ZHkVqTIzk167Fxo9aRpffyGGZsYlOpbQw2ijzZiesk0NdeWknGlUI
V1+N8d7uKos7U0/FV28RxAgln16OPzI49+iCkJK8AGoU8p3iU5bByenYUAtZ
fgwZP3vt5QNp/EwNVimw48XWy+9u3v4thRqcdzPp53gw/NGZGmeKFIYw1dX3
3ObGBLOYhg2ONLR6YdbVH8WFnOX1Xwy+ULH6jcQq1mcrMH9Fo36JEBUleNK3
QRYH7j0g9XvUhYL2f+WaA1I5sIo3/LfjdQoW5Md4nY7nQEPeAcNJRwqa2z35
zRrGgVsKop4t2VHwRZWzp851Dry+YpcE7RwF1wXtaipX5sAvq2+9zjKmoLBI
5b36dHa08rnWL0Gn4LkhbXpcAjvqbPV+Xi9Hwfel+T+uR7Pj1NUJBT8ZCpq4
pCqIBrLjuodW4yxUCgb/DKo/foUd5096BLGuoyDfczO5NkV2DJUd1j27koLc
RHd1XxIbGhvrluV3Edj8gqvyzys2vCEhQ4FOAt+uo5c2PmPDjOfZUNxOoLGQ
Q37JIzaUosy0fG8hMGzFXELMJTZ8vZKLn7+BQOq/Ne7HFdiwaV15x3wpgRp5
qirliayY24QrIYlAHnWzLRjDig8XvygLJhLYmumqkB3BiopN45ut3xDo/haI
OB9WDD2jE7chlsCyaL01921YMaqiUjjhJYGmD827t8uzolizsYJBEIG2pp7h
CQksaJNXi2OuBMYs5SkrxLBgXNoPU7hJYEPCSFVyBAvuPzb39/ENApmLJznT
HrFgL+xcre5MoHC8kuMHWxZ8cLVjIPkqgZ+m2w4WbWVBHOseo9sQOBaztkdb
ngW1kpXOKVgTKKt/0L2EwoJXDwaKb7pIYFB0Vk6ZIAu+7wm22XGewMpg8YOR
fcsA7jGibmcI3KB2fSn76jKc2hfHGn+CQK9Hf1Q+nl2Gl5Y03t/HCRxpPXi5
wGQZfGzE0oRIf35I/flZdRniqvYUBxwj0K6pOqN2dgken9UvyzQl8KeiRm99
/xJ0vVrBs4K0lnu8xM/fS+AWgrynTAgUod/2bf20BI/OiV0UOkxggZvC+YH7
SxBlELCUZkSgXG3o8yHHJVB9qfWDIB0szVo3arUEX4RTnoYaEnihqnH3zN4l
CIhIn3pkQGANVfv6vNoSXKAMRq4mvdMlNXlJdgmkJSUPBOoTyEd4inFyL8Ea
/42FcQcJdHUaMeSaX4Rgj+ZwNdJ/y056rh5chDOnXH0rDxCYc1VpTKBqEfg5
3zWxkqaWvpRbC4swWPx0z2s9Av3EV1mKpS+CRdBEsy7p08VtlRLBi5BsSf8S
rUvg/l0z51vuL0J0tFOxPunN2fwsL64ugkfK4erF/QSu3Sb/7MSZRVByYh/P
JL2QtEdl3aFFaH7ZoHaFdKfUiapG5iKY9iq+3kK6ItLROmzrIrhcuc2c3Edg
hpgv2xFiEXYI6Isi6fDg1y+E+Mn7K1LeGkj6Lk++Wt3yApR3tT85T/qCV31N
4PAC+H4QPcgkbcDy75JR2wLAsyQLgrSKKycnb/UCfAzwaOQkvX5iY9TXggUo
CYgtGNlLIJu92g7f1AW4Ny2xsZ10X4/hd73IBVj4t3GhgXTNmYt2XI8XIPZX
+7k60tm/7678cnsBlKoKT38nHXkkPMbTbgGeLtJnm0h7Vqdr6JgvQMPWePVu
0rZ65T/YDBage3eV9Axpk+L2K4WaC7AccOIbH3k/O3fNrbq3aQEOPRXfrkia
ki0Yu3vDAuw3mb5iTJprG3334uoFeNs+fucm6eEk7Z8f5+fBcUHxSgLpBqlT
jq4D8zDl13qghfSnSCeeHb/noWjXiQ1i5PONFfOPn66YBzsBwSEz0r7Bccys
vHmwmn9SEUXakafgl1PSPJi6+eYPkt7DMsw75jMPvxsJngjy/cq5rkxMv0le
35N2d4Y0/4Sk9hWbeXiYH6piQdZHa4+xy6DuPARPpwdokvVUcsZGIHn7PFwL
aNH/QDrl9/1kG7l5WH/B5KbKf/VZ/a6te+U8lPMGGu0j6/eMXuXNuOk5eEyz
F2girVvcKXSuZw50EkocHcl6F8kW1m0vnYNrbrl7c8n+eBfpnP7bcw4MzSKD
ww8RGCEWcODZ9Tlos5b5cIbst3vBb/6anZ+DPwa0tm1kPxp6/RRr0JkD68Hq
ez1kv/bb7bxfwz4HUi7iPolmBNb2HF4fMD4L06DolEL2f86Zyx8MOmfBfLPf
r6z/8uLIi76KolkwK5U81nGK7JddS4dK7s/CC32PqlAyX2oEdm2KcJwly80o
G88SeKf71go7q1ngySVCx6wI/BUwmye8dxYM5VKsL18g8EnHBO0c1yw0Hnqw
KvMymR/ZykvqszNQorRZWdSOzCNfx5+r+2dgX+jZcnd7AvVVR/wyK2fA937W
LQcyHzm8BybZAmaA/cua8jcu5PM4pVDTcHcG0hiHZPTIvD29zSYpyWEG6rMb
Xf7L4/xf3RaHD8+An+GGPeZ3CLyu2PElZu0MbJirvRfqSWB33c8I5otp2Gt0
3/1VKIEhb0SdhP2nYXzthhtfn5L353bUsPf2NNilt2csR5D1Ll3PFmg5Da8h
0dQ9ksBjN6ovt1GngdO0QWaePD9WGPDuyxSahpZjytyO5HnznmJAPOSYhjUJ
vRzjKWT9VFbUb+6egj18Ve+F3pHny8bSXXcSp+Dpr7ZD3/MJdB7jEDv8bArO
lWsxIoFAqS/aY9K+U/A6+NhupyLy/ToUxn+znYKt1gkLe8oI3F6cz7dx6xQY
mW10tq4nMNE6s/1j1iQ0lusf5BgmsP5slOTB+EkojKFuaxsjkMXc1/xX6CT8
dLdRqJgi8Oghq6YZp0mIplRY1i6RebBTqFZVeRI27GF/kMJHQUWVZd4S6iR4
vpCP4xOmoNnmAX1TwUko99pC8xSjYCq1uMxxdAI63tl5JFAoeGL1NUxLm4BR
J6GsXyoU9OS0XNodNQGZAY73fu2gYPryAc2qxxMg6dbxdHg3BVdMUHMG7SYg
fHrNxZN6FHzXXJcmv2kCdnfYuu2zJOeDVKWo1wnj0Bdewt8RQEHVBIkWpfBx
6E3s4nUKo+DpV9zrix6Ow8VnMT5SLymYFdYR9ucCef0l96a/SRQ8ezf48Ubp
cXh041nR1BcK+t+88zVFeBwoiZxrQqspmHPtErcmxzhIDyobH2+kIK+1lteJ
zjFI2uJsbdZDwTzjsdtPY8ZA7bvspOkqKnYdaP0oEzQGt0Vmi/YJUpF/b8Xs
h3tjQAufeGGznooXdry6Xm85Bl7RXQF6m6koSD1sJyAxBgn7tl1MOkrFXRt2
J0evGYPFIZg+eYaK1iIKfVsWR4FhpTJvZEvFAm6284bNo6CdWD7H/YCKl8Yz
Tvk+GwXO09l3FN5TMUJtVOPio1EIzJjaxFtIxbKbW9dru47C6KkX1oZVVJRm
SWuaOz4KHVvqD8/0UdFUeyinQW8UUnd6TtnOUNHdSzH83Y5ROO1xj266koZ/
eFKOXlo3CgY6yB0mQ0Ne4wHVfatGIXefmA6LOg13PVFYS50dAZ/KoRML+2n4
bF3i96afIzDmzfhcd5mGR2TijfXCR6B2r9WTE/k09LDp2iLtPQKZLFaBGXU0
fJcixcd6YwRMVhxYEuynIb/y6285x0bgvvlzisUGKWQ4d6SE7B8BgYw1773U
pdA+l+LnoD4CWuXt+jtMpbCSEX1ATnQEWqrN9ZeDpXDOvU2eY+UI2JWcvev3
QQoP+e0SxH/DwFfwe+zFLylMFcyvcfk2DApp8UEhbNLIE7EzYMvbYTA+Lp0y
oiiNNpK5Bj1+wzDAqX7mkLk0lsap80TZDsPfhr8/HgZJo9SmrIqj+sMQvTjv
kVIpjfffqfjwbhoGtcWpLu01Mti6PXN/6ephKGP1pd4xk0FN2LbizsAQxNYY
rU5Nl8GIvemfVSuH4KXjsuiu9bI4Vbn5wb+kIVBVSzToipFF08Nv98Q9GgKh
lzGKrMflMOMnncX80hCs7NjR5XVDHnktkwqEDwzBDlYON0OdTWjbJXf7q/wQ
GG/XsORrUMCKy280PFYNwa6Hc52X2eVRdkx6TqPvH3AUhfOGCMmhx43YnPGy
fyA7rKO18qosdixRXZIT/kHGn+eV45MyyPSMUbXy/gczeb7be4Jl8OVqYkLc
+h8E37eVW8Uk95egyHd1+//BoGJ8cM2MNJqJbbz6SPYflFCXzc/kSWNW5PMt
Wiv/wRaLPoEad2kUkhYfmu0eBBZv35wiY2l0SA5PySgdhIuK9/w1adJYtU30
sk38IEif8NO6OyuF9JxQeYrXIJj3vJudrpNC793CvT/PDwIXV9mcUpoUah8U
OK8rPQjvbcM7/e2lMLo2gMbCOQivctZ10g5J4dIx3o7svwPAJvDI9oyqFOac
W20pGzsAXXb2axXYpFBkwGdj24MBWO2RWH6FrLdrV7maw6wG4GK7MkvNdxpu
vsN5fAVtABauxdq7J9JQPK/maS/HADis1hGZD6Mh59Tzhoruftg/0RUk5UnD
Zjsl04CkfvC3uSt00oqGZYmLwVf9+mHb0UduJiY0zOwqqzWx7weHUim179o0
fGRuaSSm1A9ioz2iemQ/OUcoPJ4T6ofqAOVt28RoeObH5NfmyT5I2XvvqAc3
Dbcb+B2Iye0DxlrfiCMjVOzRzN2rsKcPtNqZlyWRinU3PDx4aH1gv8E8tZHs
/4L3RsVDHH0wVMLP+zORimGbupmZZb2Q1Bw0GRtCRZ0NQpqaxr3AOffCW8qO
ilvNWl0llHoh4djD7bVWVFwfkpjLItwL6j+y+N6doOLYaqZ6SWMP2P9QqOLS
o2L0vK2SoWUPKDSzbmmWpaKf+varW/f0QOGH0IE5SSq6XGNPF6T1wIgn37E9
YlQ0HIhQbOzuBh6/7AtMMh8Xf5XKnbbvhrhStazeQQr2igRf1DLuBse/e4qk
uylYf9g8XkqpG+zV0je5t1EwpWKc1jfZBVFmO8pD68jzI4+QdLzdBW6HDAoE
8yi4b2rA3NSyCwZtdgurvqfgNqXsF2p7uqD8/O1Jh1QKciUZiM9zdEHIKrYp
pddk/ke4rvXw+wtfd+TY1fhTUOhm/eqw552Q0J3XyXGRgjPLswLDrp2wafCE
GvUsBVu9JMV0T3TC+oGvFabmFEwIuSQ1J9YJboVTy9MmFNydzrLLIqwDWi0U
j9C1KCilLqOdfb0DdOqDTXp2UXBVwUE9/iMdIBb73PUDeb7VV4YdKRLqANlD
DcNe2yho07PJXiaoHSo8zQsnyfPR0P6w012HdhgrcNDYKUFBlUkX159G7cDl
5eDyWJyCS2zFXo9420H937TCeSEKhkgcjxry/QP73udGfuak4J1k7hi7NW1w
+1r14rp/BOrlHnkr+bUVtHOxaXc/uU9+ic6tfdQK/MEWKx16yHmgQ61OlasV
gvvsEqfI/bl+nRX7ElsLvGyNuBPYSGCUbCpfemEzLJz7eUToB4GXVGfXn73X
DKoifRoxdQQuGweolC7+huhD8rEt3whU8P54/vHMLxBZSJH48ZnAydAVjszs
X8CjuCI6hZxP8PWhO2PXfwH7KiXaYyTwCPSEHR1vghNd8MGenG/uTQmVSQz9
BFZfjZZX7wlsPGerkNbZAITXyacQT+6LLcbqWfEN8MIuoVYnjsD4o6o6n2wa
QGL96WO1rwl00l0yrxz+AazuOQvL0eQ8tSkwqGe+HqyHTpZkPCdwOtYpcqig
HgIj+K9ceUbO5xuPJ0/er4e3f7h/K5PzWwoftYSdqx72qF7Iqwkjn9945oyk
8Hewvfe41yyYwK224ZyyjXWw3sdh4gC534t1uQluflYHSaxzetqB5LzYsHeT
JlEHb72mI/Y9JtA9r9HSbFMtRNa8Nw57RKCNcr6t5XANDL4+R8/1IdA4Jfrm
hXc1cL+w6m+7N4ESkTZPnLbXAIdrX6HOQ3IeZZ/2p/hUwfqvtrWGHgTqTMKb
LXxV4JvToh/1gEDBHu/CXaHfQCnPb/+kO4GpFeKTx2O+whW5v/4Z9wl0y+/k
tZb9CnpXfYpFSR9ITZFzflsJz7jO6z+4R95v0O5TwbkVoHdcW/HSXXIefbDS
OZpRAUICFg5d5Dzsfr0mILWkHOQ/tzSfJy15/GxxRW0ZiOS/WeV8m8ChA/SW
n8fKwGgDXxYn6XzNianuli/A4yh87pkbgWaElwJ7fyl8+uceWXeLQBlBIx0B
h1J4eXxO1Jn0BLuYheRUCVyRpdtJkC6a/OOi6FYC2fs6QyrJ+TyoJzFIg60E
Wll5vG6TPt3kmKzn/Rlu3EhUVyG9uVKj5BjvZyiQ/BU9TM73FanfZq6JF4Nl
4LCzE+nw6DBB9+giaPQPrNtF+kKw5aZAmSLgVtcsXk1axUNuX2RKIdzy9Ge2
3iCQ3XnUMkWpEIqW1bQ+kK69mHczLwfhjR4bBpKOOv7gSdluBI386gwH0r/C
wk+89QGQWAjlO0LaxVXhcXloARwLPVO7i7Th0EhDWvwn6HsSqE0nLXM2WzIs
Ox/Wscq3bSC99OO2tVvZR2jb2PtCkPQPPZ2Ms0158Fss8joP6ZRP3HO6/blA
fat4lpu0x7ZarS3zOdD/0ffkf9dPxT31XcuTAzbr4cR/v6+8zqJ+fkM2EPv/
mP33/dz+Uhs7FLPg/pKYkQLpDpaB82W7P8DbFbFqmqTznDJSU43eQ+7yV67D
pIN6XaZDTmfCwd/DBZdJW5/azbx19R1ID9w47PPf36dqOHzOuGdApu7f/CTS
YjqVtfufpENI26fpatKtV2iqp3TTYGwoemGGtP+x9FK5S2+hYla9RJp83pqM
XWaTvslw8azmwaOkB2Qq+grfJsIWE2fvR6Sf8R679bj6Dew7ku9cRFpvqpPn
5Ggc9JqM8y2RnmlxiJQVigXqWl7DXeT7P/r2USEejQZ+i+XoUtLcClvixUdf
gB0uJ/KT9WQ9q1ueqRIBL83VmRakaeFufN0fg4Aht3WRnazPmhSJNtPDF+Dk
hr3iN8n65ThzkPDWNmREckb/ayWduPmVC0+eI+NjhwZFl6z/liabtBhDb0aV
+csnUmS/uKQZHBwUe87oH9Ll5yT7S/yPspzJj0hGXc1zY0/SFlz+bC26MYyL
B9Z/4SL7k2XHtTZtzjjGqgULrXVk/+o8Y0QI3ElhZEmc6bYk983Qd+9W7j2V
yhgrVNefJX2tS1BDc2M6o9YqB0O9CPy86Jl4ZT6DwdBPKmok8+HCZluvhuwP
DCK5N/4umS9JAduZsVs/MWpL8kdPkHnE8Tkqf6VKAePGuJCqCplXljMrdlxW
B8YW5ZmP/GSePUrvF1sXhQz50tw7358QuHtdrsCfuCLG949PtO6S+218/xF2
+8xShkfkrNrlKAK/e/gUSqp+YYDfvKYzma8skp/u1mZ9YaywVFTxiCHwhInU
gkpeGeMrx+eOBDKP+fLHJuaxgvEgkP2jcAKBN/wDun2qqhjXoyV1HDMIjJMt
jtUwrmZsM+qVSyL33brCqbP/aqsZqxQ4PvzNJFBkPvVKwqUahgtnccaZLAId
togMrravZWjbw2fXjwRKh//9W+f0nXFyJiNGupTAxzb3G067NzL+dTiu0moh
0LuS9cPfgkZGzIfY+pRWMs8U3Z9Yzzcy0jtD7q37Q76/UXdjB6efjPy4EfuZ
DjJfbnpU3L3QxHj8ZZvp114Ct/k8LIg88JsRtVu2qHyCPB8T/OObBdsYPS81
J1byUnDNhL5GyqFORhNzcwvbXgry/1KycnHsZKReSsqc3kdBYRTz1XrSyQie
m2QZ0qWguN/fXz/rOxkn7ghMtupTUE7KzZXT7C8jLOjjdK0pBbVMk3MtLLoY
0fNWa+fOUdD5/artApd7GIa6g41MLwr+cSpVcfYYYHxqblkr9ZWCQ7kGRS5l
owy97h8z7RZUjH8Yc/qczyRj54bgppAhct+bSha68XyWsfFWoIq9Pw1b30l+
0rBeZAhlzKpkUqTwyNM/3gOBLEzpKzf378yQwsg4v0/6YWzMRYvSBy/1pJHj
pN0/zpscTAkD07ft38l5/XTim8MeK5g9uQJF7Odl8MMacfNpWy5mWtafgd89
MijzjNK7Up+bmfIp7fx7K1mcc/ZYTDbhYcq2cYhQu2RxYG49b8J2Xmb8xcNr
rpL7TfTFh/XrafzM2uZS1891chi456vfOmkBpsFUdNyhveS+cyVZq3itIHOY
I7naIEUeC3RyPmWJCzFDHDdfGRNVwEU7S7WjvMJMbyUPqYYbCsi6si6CvijM
NHjVdPBNvQKq6ToWHWARYdI+u38YUaHjXHNK79oxEeYh71K3r7501LEtCzSY
EmHeexCszPCno/9853bPORHm/j+dpzIf05EQX+8zwSbKvGCUERAdRMf9x3zk
vwuJMkvoIjlBT+kYUnv+UqCqKNNbU8XL4zUdN5dKDHLfFGVeyvkiyvORjjeO
7AzRuk3+/IWZluv5dCz8e0TT9b4o89bOUZf2T3Q0Zff36/MRZbLMurkWIB1v
Mec3lT0TZQYLWkc9KaVjWV6jnWe+KPOkUgbjQh0dBQ+Mr/2EoswU5RsWFd/p
eKqJt2DisyhTea3cqq0/6Dg8vZf33DdRZgPvWz7Wn3QUUX2fqtUqyvwVEKuK
LXQ8/bn6qGuHKDM+MOSJWhsdE00GljK6RZmW/FNn0/7QUdORakQZFmVGDEfo
JHTS0Yt197TZuCiz/9w1ulwXHWsCj0cFTosyhbsLfyd201GcuL6/bF6Ueb30
KZ9iLx3///86JvPVKu6IPjr+D05eNpg=
          "]]}, Annotation[#, "Charting`Private`Tag$2620620#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2Xk01N//B/AZO0X2QQvNe8YylhAqwhSKtEgl+pClKEVJpBRR2StLUqhs
hRBKJcJ9FUlZkiT7vivr2Lfv/Z3z+8t5nOPc98x93/t6vZ5nNjtcNHdkI5FI
WWQS6f/+nsqJGFtdpcBQ1CvFw+pKILooJauzRIGMlT2OJ1SVoGzPC+srcxSI
qCMfPqWiBLLtBd/+jlPAJuqMhwdDCYbX9qQ0dVEg3EfC+wFVCdzOaVrmlVIg
dy6svkxYCXzpzeAURAHy9Koaa1IR4uKJqGoBCmzM66q+9UYREjqCLx7mFQfr
M6NW01RFEK89ckhBTAwaBL/Ocj5mQIXZEcNKuiicseMzElzDAGMFugdBFYFv
SZaHPrgogHa2deqPLcKg+S0+pO6XPCyEOomoKwjBL68nxBt5eZieff7wpJwg
DCmq0lOuy0EZNUqjxFUAdELfvb/WIAs6nDfzFE+vhVdkz+u1MrIQzdy2bZcP
H+x+t8d9vRcdTj2x7BtO4AH+Myo1pHoa/EjbxEuO44IsSh7pphIN7P4B2SOK
C4Lsm9sZDBpMqp9a6A/lAsMGzbI/cjQQLUkbqbrOBWNcja80CBpY1qvWPLbh
AofveXqLkjToJhk8UN3MBS8eZ14q5qbBjNWZjXbpnBC52/2NXC8BQQm84r8S
OcEgZnHnfBcBEn2ZAntiOeEhZYNMVQcBOm7jq4qhnEC6YLbo2UKAX+C17tnz
nNDt+eJocx0BfHlhaeFbOGGfa4zk4CcCNq3NVUPvOaDOppqsnETAhV751vBs
DpCMeJPEkUBASVFSoF0qB7i9dzNpf0KAjeuDFnIMB9h/Dvj06DEBT2quBBh6
csDBTyNVRAQBkpG6Td+2ckDnxlrl5zcJEBWv9KvPZYfWff88newIOD1qoPgi
nR2efj77J+gkAW/Li357JrLD2ZR3DZnWBBzxymZQIthBOsC/dNGSgKjGyHqr
i+ww1N07+PEwAeviLeU7lNmBQWsX/2yAv49M/4+hDDYQ8Hf35GcQ0PqEp7Iz
mQ3K1XV2RcsT8EpSsfxPHBuUCdTt3iRHgJmIW9GXUDaQOXR9VYdGQAzXQnrS
OTZIY13gTdhEAPUf/y0rBhvMru37wyNKAMtZ1ceMygYbfioOfhEm4Eu/+dW9
UmxQX2X2IFCIgLOdjy5o8rGBfiD5t/A6ArJ/bf5PaJgMEsmqZcf58Pso1NT4
9pIMLhJOLrFkAtZus9wCSWTYPip+9gGJgPY8b0Z+LBkukMMuRq5S4dYrJPMi
hAy6p6tQ7DIVKhJN+P2dyfBtwUqndZ4KcRtdeK7ak0Ek1Onc7BwVzsfdZ79o
RYb2w03d4tgC0b/mrU3IUPhj8IfDDBWOBtn0b1cgQ24bm++WKSrIcvh1bdlM
Bllz+RbXSSrM+iW3ykqSwVHbvDR3Aq/vPVAnyksGs8rvFobjVHCZ5a1ZQybD
53JzkYdjVND1UPrGNk8C5TvmPsOjVOh0vYTGB0nwk7JwI+UfFd4MPygc6CSB
tvhlGjf27TPv37U3kkDTmuvpxb/4+faLmVUVJGCsztMPjeD1jwY8Tk8ngZO+
eLzJEBWSVgq3MpJI8O1i653WQSo0pI/XZMaS4NXASMdlbObyf5w5oSRgvc/m
zR2ggmdaZKLqbRLkKbgPHsXOOPxV5811EvhtSLRc6aeCaKq6+zsXEuwepwvY
YpuYneXf5kiC7enU0+LYvgtP0z/YkECHp96lro8Kec9/GWhbkCDKo1j1Afbg
Qd6OjwdJEOJz5YMl9sZ5PW/dvST4LJO5lsA2T/EQQ/okUN+9QWuylwrBBzJy
mdtJMLYpUbccu3i2w/SzKglyoqlKCdiTSWIDBgp4//Re8Plgy+03vfVlMwlK
/mN222Jbz/ht3CtFAvtmatFe7MjE9x8qhEkgxPkgSQO7fN/fI/vWkGDuxmi8
LPYia/NYJTt+nnTm243Ydno5ovFzq8jO6Pi0JHZllJTps6FVxMeIO7MeW2sg
wD+peRWFh2qIUbETdSbyn1euoqJlEo8KNl+E9Wha0SoaOMky0cf26P1Ky3y1
ilIebuo7ht2+fet/2c9WUXVpRs8lbON7zyJfh6+iPEbnoQfYb7p4K976rSJO
e6pGIfYGLc+V/Eur6PXYRFw/dmBop8ZHh1XEte3ffQm8f+PtpudLjqyiZ7dq
pcywT2zNT/pkuIqCubxM7mGXBVEbyzRXEbdDC70WW6X1nkCFLH4eIfFRAr+/
x6rzhpUU7NtnRc9guzb9eP1zfgWdn2pkiuHz0KisM1g/vILKFyQUPbF330rd
1NiygnLVs7lbsMUVfcLai1fQN/+krx/w+fK7OfipK3sFHTffVaqKz+PwryNz
vQkriM3/Y1c2dskNhuOI/wqSULhQUDxMBfmfD+NH3VeQQSpx9yA+z1F0ct3E
qRWUbpHztg/bqeaP3pzRCmo/JrZTDt+HWqqB56LWCqK4lb37ia3tlZ25IreC
rqpOF97C92mdTIAEJ98KOsV5K2EO3zdvj/GDPIvLSO8kI74Y38feiv8C1vxd
RjfoYydC8H39cEl9UqhmGd3JfmCvie+3XWlH5aaoZfQl44p6F77/e3XnHNv8
l1Hb0JasqVm8f/mCpCeX8P/bc2UL4HqylLFLQ/LwMkpaOfXs5CLez6iUJyKC
y+g5VSH6LK5PN9cWadWtLqHUqarsT7h+OQXW10aMLaHXmZ/ZaewEaHhzcgr8
WELTXduLObgIqLU/48pzfwkFjIgq7lhLQH7LTe6vPkuI4a9T185PwLNjj5MC
XJeQM7nA7z6uly4m336zHVhCvdOPTq0VIYBHTVFvec0Sco/bcDFAioBdpDGB
yZBFpJ/fJRSsSIC8N/fL3GuLaFE6L7hVmQBBlrTBRedFJFOwZZ2uKq6nA2Ze
f40X0bjIrgGqJgHeP9509HMvIh2+UZ1AfQLsTSqvvZhdQFmuvsn6uwkwLu0R
OT2wgBL9fzpzGREgni9q3FW+gPqa9/wp2kfAm2dXclsCFlDetGxsnQUBsRLh
++I8F9BO53nnJSvcX6PSei0dF5Ds3RhNTRsCDgY2SjQYLqDu+F/P608RMOyq
7V/LvoA0lKyjf17C/UV35fAX/3mUb/zdahX3y1ohXaVY93mU3CsjNxZNgG//
dS7XU/MoQSO8bwz31+bw+UJRo3kk7BTjQMf9+UE3izjNM49WTdM3Or8hYHf+
1pVt83NI+/Y9+tB7AsbD3BvXDM8h0d7mghsfCdivOX43r3IOce/ftqazjACO
4JFptvA59DflZHpyI/5+1ozahptzaMIryuJ7GwF2as4ZGW5zyLG4dZqnh4Ci
5v6T5uZzaCtPK3f1PwI8lbu/JonNoXmXkqibHDTor2uMZT6ZRZ+lLUKkttEg
Oo3iIXpvFgWmaarO69Jg9w2Lg4M+s+j51r74eUMaPKPXs0XYzqItZQNPTh2h
wfGrP853UGdRx3ur6flLNOA6ILAnT2QW/VUQV+HwpsHbzQdkgjhm0Q3dPTt3
3KKBYOX3epX+GVThbRSh8IAGFRvLdX1fzqDTNaX5h/JpcGWSQ8I8bgY9s7tU
1Qo0oH01mKSHzSAujvW+yd9p4Of2KbXaZQYtavz80NlOg+2lRes2qs4g7Skb
RTc+OvQ/Whwal5lBtVIJZF5xOkS7aJeVCc2gnNfxQ+Ob6TAu9uGqy9Q0cko+
bl6sTYeXZ/O6Pr6fRmCgvKfcjQ71DgnSpqnTSPi13rMIPzqQbMJsmh9OI601
wo0DEXSwOHyqac5jGh1/8FT6VB4d/E0PUYJPT6MPKUutT77QIctI5xjl6DQS
fBGhGN5IBzZtkZ+aW6eR+5QzeyNJFpQ1VgW+UKeRmd9DLzNxWbBUGdl/VHga
2fhwLX1RkoVsammF+wQLTX07Hs5jIwtNG3K42LpYyJyZzrnOSxY4KPGGkbUs
FKnmMBUYJQsn1lyGnBwWunc5NNi7RhYCOG1X9BJYaK/x9VmHMVnIXd23s+Y+
Cy0MjYnGC8tBy7yWt40vC8VPPbH13i4HXCzqh7+uLCSXFODpai8HaqMCM9dt
WEh7lst7+Z4cWA8ubF1zgIXkja/wtpTIQVB3/6W4nSw0mZm/MsqSgzetdTkK
Siyk1aa91VNNHtoaSv59WM9CMfaXzBWuyAPPzwxF4zUsFBXCVhTzRR62VsY4
/1mYQn6L6pFvCAU4+eVWmtPwFDpBsqmnP1KAEHShb7ppCpn9yvl5S4kBbwtO
EAHfppDMbRkLS5IidOTtsRctmEJXPLw37HJTAr5s9YSU9Cm0WTcpa1VFDTTT
N7WpP8brdX1D87pKYJfMt/5z0BRa5Q6W2jHAgLAnM5aHvaaQ0e/0i2XrGfA+
pjum02kK5TkW1D4KVYCuiJr6ixZT6HL3Ff50SQVYG1YovGqE13vpeGBHsTxs
C0g1u685hR55aLmvXJAHh5tR9zfSp1CXuYapqqI83LvmW5UlOoV85Z4vW4/J
wYfL5/h2ckwhW6qtcmOBHPS4WhhXTk2i1LbckoshciBwdnfgiZ5J9Fan7+gu
GznY4aBSNlQ3iVC/TF2ihhyctpZiu/Z5Ev34fc+YZ50cFJpN+jxKmkQl845x
JyploW9f+0fZyEmk9Uo6/GWWLAgafZ9/54fXo3goQLgsOO1I9qy3nUTvEldq
g0/IQuTW+3mnDk2i86Un7Ed3yUKRsvfEpN4k2ttiz+vHkAVhqrmr0KZJpH4y
6/enFTrobtDLTOSfRCEmLYN7hulwVpwxtGV5Aune155ObKBDCR+b48HWCZRW
LJ4e85oO56ZeW4fFTSCkH8RSuUiHWK0JnTOhE4gdDX3dYUeHimuq6w28J9DZ
iffqRYfpQCflNC1YTaD9UcXT/Fp06FybZXFOcgK9ndD9ZcpOBwGzEc09vBNo
6c66e56zNNB9wBCjzo+jr+H1D0dHaBAn+fJXU+M4oqzj/gq/aXBMNtXM5PE4
WpK4axCZRYM7zn1b6MHjyMZ0TL4jmQZvsmjryFfHkfpI/rBjLK5HW1OqPxwf
R+JbnL6LBdGgUj9xnzxlHIltjEiuPE0D/zcaIQJKY2jjU/H1+vI0PD/l7S1f
M4bmuWOlLTbTYCdS4/IdGUWqL7cS4VI471Wq3P6XMYoEdmeGneKngUufvE+V
wigK1EQffFkEfD+fpnOHdxT5vAjXuz9KgNwkfUFn6B/ybDtwpWCQgO4Vqldm
+j/0uuvhWTtczy0lNl4KlfuHJNc3ZnZ8JeD9s/gtu7n/obu5Mj0fPxMgQpca
ne//izoELXRzigmoUaOcd079i+7etLzclEeAgamQozH9L9LRe3RtC+4/Kr6c
VlzECGqLmdEIxflOqrD20SDHCOKf1Ts9dJ0Azpn4hu/9w0jQK8T7+FWcx1zV
j4ZnDKNjV5XdbHH/C7WxPSShPoxUmDMOEqcJuBLLuL8gMoyEOIOSBnE+tP89
XdU6PYSUGKNi5bifbj9wd19SwRDKyLDqSjtOwMDOAiPGriEUwLq0hm0/AXVX
79xZSwyh/QP35rRMcF59e6h0lGMIpbd9KfTag/OdUj8zr2IQrXkdsXnDLgIM
N4js3Gk2iBx1HW3/ahGQuOiiftB2AJ0NDL18F+fBu9u2X1LdNYCOlzLJF6gE
eF1mzxUmBpCDT4GplQzu7yOxyn/6+1Ee0yR9/wYClpvL5e0u9CM2+YePUnBe
HBSPOrPbrB9FKs9uqsV5sd7cJpWm3o/ePTr/gBPnxazvU8TQdB9aZzreG4rn
oROFMtLuPn3odKhd1hKen/bMjNgcte1DaUs86y9wEqCmnv9Ea1cf2pPvUTaA
5y2ejANSixx9yJ1o8pzC89n7WG+xO3d70X5VfcY5PL8l/zY66nShF5Etvhms
X6DCPSGhB8ZmvYh91G35F86Hp0PSBPlFe1G/bRWvNZ4PRa7Vr4mJ70EnrzxJ
KcPz5NzqvNCYdw9iheROxuJ5sz1QWsL4RA968rjykReeR9Ojz9EWJHpQ6N5D
0aZ4fr2/PoJxZK4bBT9LLduF893l5HeqWX+6URVX+5I+nn/1ckm6J2O6EV+g
jvZRPD/Ttska5Ht2IxgslzqH523eElMTwWPdKDBsviAIz+P1lTHHPot0I9ux
naNNeN53HlC6IBvZhUia180bu6lw8IK5x023LmRn7b+Pga0x7eXdeKgLPeYv
vH67iworbKWBoQJdqPpKqqlpJ56XQwbv9vzrRBK1zZUFHVT4JijwYGd1J4Kj
TOMt2NGbrBJGwzrRRP/8gko7nrdf+L7Ye74TzS77iBa0UcFW6Xlm4r5OlL0U
MW6CbZj37fW8QidSvWrs39VKBYb2WL45byfK2Dj84Sb2plsKN47/7EAZPcMh
NOyhcI9g3ogOVD31r/9HCxXePkXRHw92oIvRpZ/9sX0z+ZJc+TtQtMNZQW1s
k4Jjr6Sr2tE1U47SuWacX78mFvwMbUfbY4aqi7Hb60e+3DZpR3pENC0E+2W3
Vp0mTzsC//TCE9ge4/7tA+VtKGRp8rY6tt5K1XBsQBtqXnHyEMTmXSsxa2rY
hsx3bfJjNeH9ljzFvsLWhlq+H49vx06Qy16X+6kVSbp4FdZgn9OcX+/g14qq
JjjqyrA1DAzlRfVbUfy1zAbAXjUL1yhfbkE+iduLP2N/P9nMvFrUggTm472/
Y0e70A8wrregGL1+9kZsW283q9YdLainxfjgCDYj+KPj/blmJLdD7BAH/nzT
D7ncmfnNyIi7aJGKDSmHfSc9m1HVhyqTvdihr5+EPtdoRk2c0yqXsI+hgRiL
qSY0Lk9KSsSWqVZP4XnThOzvNDz8jT3c7JNT6NaEzs/eYBfE+/tusOKjy5Ym
lHRCtPMQtt+MSMWm0UY0Kda0+SG2KYdtfW1WI0pxo6IObHHhjM5b5xuR8UGH
7C34fWYpM+f7B/8gRzcBmw5sL50wzti0P+hofDuvPj4fu00ahEyd/qANyi49
Kdh/Trswcnoa0Fxh9NwNfL5K2sy2vU9tQGwhyUZD2KkWmobFzg3Inqdrxgqf
Rw/jFZvKsd/IO+G5szE+v4JKEZEDi/UoTKqp2hKf99nnHs9GS+pRanLAtQHs
9o1WmdP+9YjxwsPcuwd/vnXUL+w89WjyVdWlLJy3Taby5qRFf6HDOTde40QE
qi6POeX+1KHZlCGhCWyJvhvCKnF1yMzI0+U5vo/9DUZKO2Xq0PYNJ2fFcb69
VfjH1lLpJ/qlGPCRge+7J/vsvc0hNSg83L2dm4XvwzRK27KuBq1Q4qRY2MID
wZ90H1YjnQcHWD3TVMj+LjVtlVSFwhhl52pw/uyP1LOOKviOFh0YP6pxvbKU
CWSwD5cjDumz45c4CJAVPmQo5FaOgp7+inqI6x+LXeKk9MwXZBQ961eE62Pk
wMtIHbYvaPHxNmVRXtwPs6vnLkuVorgOiV3DuJ56eTPuf3tYgn5HyR5QlsD1
enS8ISe1GFF9XxfdkMTrO+RLx+QXIc7Ls4I/cL78bWL42qGpEFlPex6/sZGA
rZIn6xc35KNY2uTIHK7/7RcJTWvjHKTOteHLFRWc17I2dRw1d0KzCXwr5/bi
PGVvKhNscFA/zEMrdh3uPy9Vkr3WFrrrO5meTX6P82Nbk3NO0sFg/TnkPLHm
IP58OQdM/0rE6xvwI9qvo7gfxenHCvlm6X+aucr104GAjPDtzOeqxfrrnr8p
9/DD65clFHFrlOj7Pd5aHXqLANs5rh3ntyF9O1aQdsod3E9zhyUkE0D/NBA6
LcEE6EkWCHW++Kwf3BV88UwkAanDx9gv5JXrH6O0hv9LJuDqvfD+kJoa/SSR
fdOP8Txw39m/we7WH3369kCNInEa8LP262Qd7tH/lR66jfSRBp0e5RpX7ozo
95Z+sJb3pcNowYHPXhUT+tLktqWtxrKQGpRkdzpkWn+T+JSOPa8c0GcyRa7G
z+u/MI/670irHLS/kS7WObusn9t48+PmRHk49qgzeCSCxDQwfmTkaKMAz17c
Ld4fw8Z0FBzi8JNlAMd/rv84r3EwlQxrtP9rY0CN3cs08ztczAxX/o+NTxXh
Hb+UzawLD/N7CNl/0lQJZOM2D3Lv52OmPs35s3tCCRau3FnOPLKWmdN4KyHm
mTKMLKwXSN8uwHzZm/n2t7YKJJ4Jql9PCDLrpNdVH2pXgYhdVXcl6ULMgw0u
R9df2wICFzN3l4oJM8U3r24zY1OFEsMPxe+lRJgqJbbpTqaqsOxqq2UhIMpU
FI11tLmnCmTuuljFZVHmffOPvWxVqqBl7P55H0mcWVGW0/abXw0WWrMGxSbF
mb62eYSBiRoYulREHJgRZzJqE25o7VODe4s92wMWxJnLO/Ie7jVVAxmp9SEs
NgqT5Da40+WAGuw9HqLwS4TCZFENGq0Pq0H0T8dzEZoU5icX5ZQrVmqgUr7p
L981ClPPXbL8tbMaXD2mHb3bh8L0ybZ2KD+nBp96j+309qcw3YcsYn6cV4Oj
7PfuDoVQmJ3SgWnlrmpwnbmoVBFHYXr8J9MGl9SgovCPa0ARXv+Vsmr5NTUQ
3jclVgwUJh+57k2ttxpYNwmUsMoozMIgakPddTUYmzUSOF1NYe5b/ltb5KMG
4ppvs3e3U5hCDc9USvzVwK7sh4V3N4X5jfk07OstNXh5ZGTldT+Fqc2/klRx
Ww12ulMPbR6jMA3PDGllBqhBIFlv1nKKwuyq25wXFqgGtRFWCRGzFGbx2rXu
3kFqICXjubdikcJ8WyvNHhesBv//exXzxWjFwawQNfgfSt7a1g==
          "]]}, Annotation[#, "Charting`Private`Tag$2620620#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2XlUjP/3APBW0kbrSCpF8TzTriGKmZIlpUKUJdGC0q6FiEqRiErShvJR
KqGFFi33UpJCi7RYivY97dP+e77n/P6a8zrznDPP+/2+977vPSNv43rAnouD
gyObk4Pjf5+2r8KHFxdpyBHxyNJFnIHis6uUdOZoWHyi9tNXUQaW7Uo+7s2m
4dF6DoM9IgxUain4NPCPht27MgkFYQb2Cbb/1/yXhqylu9O7lzLQzZFhmVNK
wzd8TYNHZ7XwiuIPPH2DhpoiPcuk2rQwLn5t5BdhGn7XFFvW81ILH7eGuO5f
Jok2EQrGH3S1ULLmoCkhIYGXBKbJNV83YoXZQYMqRXGUSPb1ema1EfcQip5r
FcRQZUMCcrRq4taXx1Oq1UQx2bV31MxOE2dCT4tpEiI4sXGT/LkfGjgx9fT+
ifUrcC6Gv2qdiQaWKURqlTgLo7HTz1Gdj+qow3s1h24niOfKfgRu0lDHKNbm
zXp+/LioG60ev1MNbRMsO/se8+EXu6wLXiqqWP1Mdhln3BKM1E+1C+BSQVnB
TA3I5cHGRx99Itl0dOnY8OvuSx4c9It+oztOx5KipOsnU3jQICImq2eYjlbO
935yRvNgbPv78Z3ddEz46h1s4MWD7R/GVkk20FEqYlvzp408mGB6+d6K13QU
l6zyr8/kRmkpj8Tb7nTkX9NV3ZvOhVwBGSrJYyT+SuCr+vOEC3U5bXvHhkl8
IUUvb4zjwsZ9el47B0g0E3Mr+hDKhReM/4iMdJAYvWQmNcmRC70dswcdG0hU
GBQKPEJy4b2s9PzBAhJ13jK0PqVx4umE853m10gU3GyphkmcuK5eoWmpP4kt
Ob5kXiwnFvBn7yq5TGLgC1iTfJMTy7/sfsnwJrEi0VAowIET361N2W3qQKL5
DasubYITN9fdzdM0I9HJPDgmNZUD57amMjvWkJi08HYjmcSB4p8/PNaXJbEh
9d/X57EceMNiz8un0iSy5o/xvgrlQHaJQP95SRLFUzQ93jhx4P7GQU+mIInF
U61G79Wp56+229xlEziaJNG9g+BAmnfjavokgeuNjQI/yHOg3+qXzZVjBEYk
5uZXiHKgZuF7d8lhAqsiVxk96l2Emv+mX7d0Erh6k9dCnvsiyP92stWuJ/B6
6B+tQptF+D2CbZJ1BP5rMTpXcnARzlQcKJmuJrDshkJTGWMRWvduS/pcRaBz
c3VW7fQCWMVO5D8rJZDaI/v+gAXoH3h9RPs1gRtq78cPeSyA4BEDK+tsAiMV
OetGbBegPFJi9a1MAk9/bdzO3rkANPf1Hf8yCFy+JnglL/8CCITPGU0mE3iy
tLVKNnIeTFOnuYZiCNy9jW3/O2Ae+Lusb+s/IFA1bwVHgvs8yBux5B7eJ3Au
XU9Lav88+D84c80uksCYyP8SxFbMQ2FABWPbbQKvChZtqlucA1EWffZ9KPX7
1+trwofngCdDb7npTQK1fHl5havn4FM4udv3OoE1p844892ZA4cs21GZAALz
fl5d+tFvDj5bBhONVwl8dCgmKdh5DsLFpdnRVwh0Mvz0nWvfHNjOrQsgLxPI
p0HfPi8wBwqntux74kPgcPqOpsLZWQCtOcMIbwIb1h338O2fBcN3/PQbXgQ+
XRmWMlU5C74C39/dOE+gHsew8OjNWeDRkrH67Urtp+/StMyLs7CSOzuah/KK
cbkdrg6zcDtpx5KNLgS2dJv5DOyZBb+Ub1nJTgR+OOUg8lx7FuReGHL3nSMw
42fAc4cNs5DFk/GGQdm3Oru1a+ks1LZrObQ7EHjKsOpi8tQMeD6M899JeU9p
u5hd9wxkbXFVfHWWQLVtcy8UGmdghlvcdg1lyTzxPX/LZyDhKP/O2DMEzqur
tD3OnYGcusEGKcod6Tsvn0iZAcbqC+uenCYw+5F35s/gGbjYwKFQaU9g7Mq7
e+O8ZuA3KdDnQNk/8lmHpf0MFN5oeihC+YwgXqEdmgHH/Wj4zo5Ak+tNKxsM
ZuBa/taZC5QZHCPZUVozkJ7SWahNebXvsn0H182A7zP/eA7K3OPy3SLiM7BC
dDi5xpbAPuetATXcM2BZptOTSrm2+4D03bFpsPwS5XqTcv6pc2/2tU9DzOAB
Qw/Kj39eMxX8Ng3b5cYCbSlfP5TQW/l+Gs6ekCOtKDtXv752M3saXvimGVtT
Njf8IrPnyTSUsO6yHSjrlHbmLYmcBhuOGR0/ygrbFvZ/CJgGvg6WYizlGpFt
yrEe02Ct8E2wkPKVrktLnG2nQeJ89v0OysqFb/+wzKch+j67SoJaz4+702/F
d05DvE9XoQnlEDvt+z2MaSjc3OZ+l/KmLT6uRUrTcPXNpZlGyh1CuYbhtGkg
5h1sNlD7ea9tfK0d3zSkPrmT609ZP2/jwuZpNjDGJ7n/Uv53y6NJoI8Nx7J/
WBhS5/XoZFZ26w823JJOhALKxox/t3Oq2GB/4sceTep8Z5apnblRxIYd74w5
cyintjjrHXvBBgmz/kkdKj54QvonuO6yYV2jV91pKp6yj5M1DVfZ4LN813c+
Ryq/NRzS093YwGmy3DSHctGPrhMHDrCBvf95uzwVv46vFLco7WDDJwdpmS7K
K4PsxGY2smGN/3v+HGcCvVTaPiZJsMHVP1j/DJUP67jkn3gtYYNFpdILEzcC
6xqsLxtOTcHu5cJCTHeqXvj/Vh9pmgJV7/v/tlL51VXXFMtKmAIFlYsaSVR+
Rj2jeYqHTcFEsata3QVqfy4fNunxm4L59sksQV9qPxTrucKtp6D5zbbIR1R+
W1yoPteqMAVHPpaNbA4kcMk+4V05YlNQK7DGIO8aga/l9625wTMFfl4OwAqm
8rWqsl61axJMVY1DPUIIrJAp33YlbRJalA/NHbxLoPcoz8oDcZPQ32gluz6C
Ws/HHaOKtybBSUhsA+89Kj/c3qV8cZoEfZl1x9qiCdQuLVouoz4JhQnSOuse
E5h2NudvYe4E1Ep/L2zNIrDe5rGcUcoEcPmY0VOoesxhdcvqx/0J+KN0L+NS
HoGH99s2sz0nwLlP64l5MYFcW8VqGRsnIHvHeG3pJwJVtBaFPyhMgLpEFZPv
C4GWqv3G5qIT4OhfYGVVQ+BLhdIKj5Fx+HJ07f2tjQQeFTiPr16Nw9YIs/cf
qfslmNd6YfvjcTgucsI7ppfAzMW9ul/vjENX34k/lwap/RpXyB9wHof2PQWL
lyao+PhV94pQHoc3l9nijktI5H+p+fi/1DE4UmA8b6RMIiNV9rdmzBh48t8J
cNMg8eQTfun3N8agZWRl5otNJOZGt0X/OT0GbM3t/J56JNpcjbwjozgGhMsY
Mi1JDLt45XOG+BiccBEO0T5BYv55R35dnjHoZt0KMLEjUfis/vWj7aPgpOb3
od6NxLdmo34PkkZhfkeIhfUtEjv3thQqRYxC27o4o8ORJK7YWTn9xn8Uine5
FbvFknh6yxOveutR0MtZMS2WSqKowgFnEdlReDZolqTxkcRtq7c/TxQahR5h
h+U21SSelSR71eZH4N7uezRoJLGEn8ve5NcIhGQ8zePpJdFxLOv4rbgREAo7
qNkvRMfYTSM6Z0JHoKcIZq/Q6FhxUV16h+8I2J/9IWskT0dFjlfNM0dG4IZ7
5rL7DDr+Ecw47Cg1Aty/LuVsPEVHYbN+xq5lI9Dk41DzxYmO2+6REgrT/0Dd
gi/lzQU6xkmlfWtu+gfWXeEr/CLoeEgpxcww5h+YViiXnPpIxyCHTjXFkH9w
OLNcqvU7HbMz1i3nvPAPUuwyN9V00HHFxv++5Fv8g883/ZwJHmVkerdlRO3+
B56X2kWSxJXRpUD+ttvmf7B1c8bb54rKWMVM3LuB9g/izeyznhgq40xgK8Gz
9B883XZMNuW4Mu6/vU0UB4ehs0Vg/Tk3ZRSM3XpX7cUwfOg70X4hThkd5Ar2
dd8ehpxgGcWuTGUsT94s+NhpGIzZ5S0nKpQxIFvrprDyMHDUhEX+nFHGFu2c
3eUCw9Be6GEpK6mCuqCx5Er/EDBrvfgGNFUwdmdmGaNqCNRyJZef36+Ck1Wq
1wbTh8A32vVZn7sKmh94oZccOgQuUZa696NUMKuJzmHlOAQMuerk0gIVFLZO
LxHfOwRbojLTm/+qoFPnBr/PxBCMsPnOmQupYuW5ZzpBy4agMl+x9JuuKq4f
VZzR6R2EQaeQixvcVTHowtP8sYpB4De56Of4XBXbFhR8nqcOQuFsrqvMoCqy
gpMYtiGDoPts/Wo3bTV8KLBmfNXZQWCnSf3LDlfDmYhH2XW7B2H/+mef986q
oeVKGffQ9YNwzz+peoyljrmP4tX0lw6CedhrPbsEdRRTXDU03TUAGolmM2/p
Guj2PCYjq3wAjlsb6dHuaOJXDdo5h5QBkBONObKnRQPp+fcJ+esDIGiX2ZM4
po4h28V7muwHwLZMeNjjkjp2lUWmhO8cgGFu77UypDruMBKx36M4AO4+QT3K
zWqYWHt3LQfvAEwuellqe6vhgoVwW15HP/ywLH94ea0aHmu5neha1g9JVhpC
zr9UMd9OwHr90364djDtAf2RKkr235RpvdYP3+JbHladVsXz7ny/om37wePC
IfdRLVWsmboeZ7KjH+LDXnx7slQVVa/wHlmyth9YLL61si0quOptzYMenn5I
kS/4bvRWBXkn4xsqu/rgl86Da90xKvjLWdP8bnof7G7WM9E/roIVafOR7rf7
4OCxG0vCWCqY01lRe9ClD7JKygsslFQw1MradKVmH4T9Vi37MaGM3rHknRmx
PnhlKnHpcKsynvo+8fnXRC+E796l0vhJGbX33d6bVNAL3pq2F6OSlLFbt2An
qdcLj2348rSOKmPdhaAgwbXU9ydeJ7KpfCh5bVo6xNMLlx+ePGC8VRmjlbtY
ORU98N2jvs5/tTIarBbT1TXrAQXB/1iHu+iobtniK6vZA3Mquj8/NdNROiqt
gEO8B+aH/3LHfqHjqABr84fGbuB6bpOtnUvHxFknTRPrbkjNN60Qv0XH25u1
3dX1uuFbZ07AtD8dfc5zZ4qu7QbvQWtBWR86mvTHqjR2dcFDHEhebUfH+R/l
G066dMHK4/5m2Sw69khGntE36wLBgQ2lh7XpWH/AKmWdZhc4bIoIJdXpmFE5
trZ3ohP+Dn3+dWQNHY++XSPn4dcJCTytOzK56Lhrst/K3LoTCrQdnZ7Nkqih
mZewSa8T7Lqem5aOk8iXvm/VLE8nPOKRX23fTdX7WF+JoNsdEGo7orrpK4li
F+sFouPbQSGwd8AyiUT24rTIsG87uFwRFyiPp+a563Ir9xxth0IXu7em0SSm
Rjmum1nZDrmOlrRcqr5vz+TYdiK6DTKMIwyKfUhct1lpR55XG6TTDTTmPUhc
VmJkuOJQGxxcXNFp7kJifVX0ofdibSD6dvGJoT2JDt3KLkoRfyFxWN5Dx5xE
E5cDnlfd/oJ+1HpXZWoe1Jrw8W0y/QtuPqaJGsYkLnCVXg8V/gsX9oWv8jEg
MUr2yOOhW3+AVyrDp4NB4pXn/EnOQq0gk/Egm3M1iYYFh17IfW6B8S2egsJS
1Hz4MbGgNrQFrrrI5xDUvJjWtqmOwdcCYRlXJsJWUO8nZcu9wPUbXjTyCfJQ
9+nj9S+XZ777BQdipv2CuKn7hTEtbeP/C5pyev1FOUlcNLurVT7/E+ydi70O
zxFIhhTa32H/gDweP46L1Dw5cX+JByvvB1iw0xpOjhCI/+2/Mur1A8pC+b+Z
U/PlIeiOPjzWDDbatxJO9lP9yqRYhexQE1w5+nIzdweBRjzW9TUZTeBnUzy/
u42aH0TT/wSeawKftUVFD/5Q84kKa7qrpxE+tw8+tPhNYKOdE/mqvQF0FsWs
D1H9Rclvs825KQ1QfCnjB28DgSmHGQbFDg0Q0e4mANT86rlnwapq+DvYHkhR
NaLm12Pv2hzrsr9D0futYzK1VD+39aNPs9d3kN2wXeR/8+wK5fCI7tl6UC43
4aqg+pupp56PhkrqoYvMTC/8TM1TMkeeTwTUA6+NvEUeNe9mLFf4wM1XD5am
rY7lVH9kOJbDlhP/BlY+Fy30yglUd4rhXd9YB2z0n/L4QPWrnZdFVePq4JLJ
Tc6MMqrfbNiprLumDmZ9nAW1qHn5iym5ZUd7LZSnnOsLfE/1ixXCu/am1ILQ
yoyBpncEBr5ttLZUrgUNeVI6Dgl02FjkZD1cA9ZXXijxUjbLSLx4OrsGHiVP
ivsAgbKPHO55ateAxheZY64lBPKrJrCmJquBS0Q9aoLq75rk7I/y+lUDxwEP
j0DKXtxTYfI3v8KIhWP7qyICDSbgmdryr3BJX+aIGWXR7pB32+5/gWebJrZM
FRL4p2n/TyPpL5DbNe7zlPLLylUTR5I+w82i/byWlC8XtQufXf8ZXue61YtQ
3vsyY4P3iypY0djTWPuW2o9EL/2gjVWwxyuQK4ZyV8T245EFleB5W3O3HeXX
15Z6JzIrwWerdOwmyoFeNXdffvgEld23+oUpm52JTSsy+gTJyhyagwUEyh2x
Ka2srYCJvXInaykP7aX/brKogC71fIdCykW645Ndvz/CsFmZ/nPKoarFKyZs
P8LBFXatiZQt11wnufvKQdLv78YEykqipgYibuUwZJ+u9ZDyOPfKE3KTH6Bq
/6GG/yi/n/jjo3L5AwwPJghlUo7oTovQ4foAWf3W1e8on2z2eG4YUgZbOxJX
NFNWrdL5YCFcBkafgsonKM8V8bTaR5XC1n3mXTRqPZUvv7DPryoFqbwL9kzK
MYnRooGJ76FS4PIWJ8qnI62Vw5XeQ7LuMstHlLWCNux6lPEOjrf15X6nzO09
Yp2h+Q7u1wsYi1L7XXvm7cW3+Qg/JT2FzCk/PnLtXsV2hDub9o7EUfbxJe98
ul8CWnrnpjdT52sy9K/hVUoxfO54sO82ZSWbPLnovCJ4m+3r1En5u6FBlk3z
W5hmnutOpuIlo5h/Zk9fAbzL3q4pRMVXkEatvtpsPvyYMVO8SHmj1In62dV5
0PmpuO0EFY/8Yetk2lRywXB9fEIT5TaOfvuK7W/gjE7e78NU/Eb0+ExFncwB
xYvPvp+k4r3FdS3j+J5XkB/TgGlUfoRZZJZvcHwBIV+CmnZR+aPL3GY5ces5
xJ8P2NJDOU7Y4tKd6meglNhTsJnKv8MvQt/h4UQwJKX7+Kj8rMmQbTU/cBo8
r10edqbyneeU0ZqQHSZMha0xxsbU/JKm+sRH8K0HM24lb7AqVR9+Nzu8SjIJ
YbZsD3NZoOqHz6t9RgMr45lVCn7eVVS9MYhjxopcyWB2/VGQkmgl8H529tKd
x18yw/TH96tS9et8p6iOrkwm86Se1lKjvwSWzQenuc5mMavFl9XeaafOU9Xp
ekPeG2bEbPFeZg+B6Xe1WU/Vi5kSb5JZzFHq/coeFy3VKmGGooZxOlVvrdlL
tpzbDMyAap4VUtR8FJrZt1LqMTJ9pRqecbIJ3C5VIPIn+T1T2eehy8I8VQ/7
DnG75JQzT3L3aiXxk3gh7G7Xza9fmfvGF//aKZGYvL70qY5ZNdN5VqhPZwOJ
de8mbQZrKZ89MytBkig5+9I11bGGuVGgTOmbColuapIDAi61TGGOYGl36j5S
jOnoqPP8xkxYV3p+804S7zgENJwMbGQK2G7QqD5NYkgV55uOkkZmqJjEluaz
JAaqBN47O9vILJ+2ce50JNFnJNDMzbOJmS5/zYTHlZrfLgZVXj3dzDx9qiz+
GHXfaty8UfJo70/mhV1n8p1DqPsrNSzll2grs6yDL1wgg0ShcWOdjP3tTJaV
kdkDNol/PMu1vIP6mTzH1wrwZdNxqGDfe5+KEabHjZuSL32VMeVG0km7mxNM
zSC7ADeqf1OcfC52IX6aaVNqUJQso4ot2XLFOmfnmZaf5W5sGFbFQw/+hPSH
c7CS4z8sChar4aPk28XG0VyswLQ6ofB96shzzHmQ9yIPCyIGC/7mqOPXk2nP
DgQtYY3/Nt3UtkYD3witsppy4mNZr/VWuhmkgUpx8j1LjflZdoWcS/k6NHDG
O2j++UFB1r+nZnu5DTWxf0ZaOFVbmFUXZTUITzUx8cyNeum1K1i0e25H7Hg3
Yrje59tSiiIswwyH+CunNqKw63P9UglR1umlJQ9HX2/EEoP84txVYiw+rtst
g4JaOO9svemwsDjrJNeGe8HHtZBzaV0sfV6cFfzfhpP6qVq4aY/H+70ckqy4
zoFD/GwtnPmV0SMxKskqe1f5QZbFQAOnivB9k5Ks3+HD02f1GBg2264dPCPJ
ynnHIZu6g4ENoYt/ihYkWdev/Ln9y4CBa1ZJ3xznorHWq75sWbeTgbstbhLf
xGgsNwurnAt7GRhVa+8YzqCxJNy9Ljw0Z6BquewA/0Ua68nZooG6swy8cGhr
lL4fjRV7fbWeL+V3HYd0fQNorPDvhw/7OzCQ39O9IyuYxvrkKCR96RwDzbnD
bvfepLFskoqeVDoz8FFkqpb8HRrrUHWqopkLA3vky35ZRtJY6lstjP5S1sxq
DQqPprGW5Iusa3Bl4CXWrHJFHI01zH2mb5M7AyveNjoHF9FY1sK8uf6+DBTd
OyZRjDRWSFq+Us4lBh5vFi4ZL6OxOt49YV7yY2DKWfK08ica65z2zf5nVxk4
PLVT2O4Ltf7zZ+9KBzBQ+8ap3PhaGitireuJA5QDJf1OfPtOY1UGTb1qp/w5
OWaJwA8aq3nHtZz+QAZKMl6/1G+hsfiD0wYNghl4sqz6sG8bjRVwrDVnbQgD
0w72L2R10VgewgNaUTcYONq25FlvH411J/Cg1iHKuh4KpvLDNJZK76vAX9Tz
1zm3T1mO0VjnX51uv3SLgTXhRx6HT1Hvnzulf/oOA1et8dpdMUtjOZi/aNQI
Y+D//x/Gerq6f/lHyv8HHOr1Jw==
          "]]}, Annotation[#, "Charting`Private`Tag$2620620#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmXk0Vd//xpHMyXxQyRznXvN0hRyhDJGU0qikMitR8YkQKioSomSoyJRC
RcJ+l4qigYQo86xkni+//V3r95f1WsvZd9+9n/dznmddGWcf+xNsLCws1aws
LP/7e/xp7L+VFQL+9Oyr0nuvDSKLkooGSwQM6z9SfFmlDe+2ZR46N0dAyON0
U9m32qDY/urjnzEC5uXfsfIhbRjm63n4s4sA3yjZqdpSbTjtruNYXEVArvhG
e/t8bQhWaIWTVwhI7D5SRN7Whrv35OI+8xPQtmj8V/eoNqR1XPXZxS0G5zZy
/ykY1QKxb7t3KouKghkqUkYhWlBjt9usVkEEWE5RUdKCWmChrOAnJysMuyLk
96fd1oTNBYeyvqoJAd+sAN1SUhMWok4KayoLgk9HrP7WOA2Ynn2UcGSTAPxV
IWKcuDTgnWycdqUXPzh1dOkcDlcHg9WXimkufPBoKF+a2asG8ZSenkkQD/js
sA+50qAKx1Mc+4bTuGBok5bpWLUKfH0sxc16lwOeyCRLcxfSQYrvmQZ6yQ6P
xWsSe4AG3r1Kv2IK2GETt2SmQAUNKsszIo9mscOn08xN1CsaHPa63caaiNl9
Ni2rkAYpX85FmPmzg/OP8pFbD2ggccvo50ctdrC1dEzrD6eBiFhtSOOzVVCe
77T3qTUNXEZNaZnZq+CVV+AVHQsaPP9Q/sM/fRUIni7rrDSjwe7zBSQRuwou
qxHybUY0iGu51bjfBz+f+uvuZnUarL3nqNShsgrkb22puStKAx7p/q9DuWxg
1cf+bU0PCb9SuGo7H7BBxqriFOFOEp5I0D4032UDnuVE4w2/SbATPl3+PooN
IlVk5AybSUjkWMjOcGcD04Fh6ZxaEmT/rgnbT7LBt+oNIttekDDlph5kJ8sG
VVXR4deLSHjfb39huyQbNLvXGzQ/JcG18463Dg8baK+xTwnIJaHgu8xBwWFW
GPrkMj2RRoJBmY72xxxWqPYuzauMJoFPz1ENMlgh9kG7oM01EtqLA8mSZFZo
2b9LvzOShLAnSDrzGisEuPL/EQkjoSbdck2oGyugwF3vSi+QsOfK4X6GMiuU
jcuHjJ8kQZE9pEtNhhUispp+fHUhYTbkwS9FCVY4qZ/qW+xMwt3AgQYRbla4
Y571KOoICZ1eZ9DYIAtwcyn3BuwlwXNPRFJ2Ngu8aSA+H99OQsZymRaZwQI+
Jvt9XpmT0JQ99iUvmQWKuM4piZiRQDEPrn4axQJyQn+WWygSRLI0fV94ssAx
M50NGZtJsLRzXaN3ggXO+vntldYnIXjhfnbpYRZQitUfeKRHwqAtd8drWxb4
2YDUK7VJqJjtsH6rzgI6BTF2mmokTGSIDpgqs4A8x23N3yokbNphHfZehgXs
H7k9u0En4Vb6y9IaIRZofzfyYEWZhNo4SevUoRUUSDc4oqRAgu5ARGhG6wpq
cAiQYJUnId1gvORR7Qqa2DpX2iFLgl9vtXzekxVUX2X+qUCahPW6/sslZ1YQ
y5i1ScJ6EiKjOrVfO6+gf9f1lVPXkTDWbu1RuRuv9z166xNJEt5dkW15p7OC
5s9c1GgXJ0H11w3+GsUVNCDsso4Fc5L6vFktsYKQj4mTEkGC18+vhfXzyygs
xUPquigJLSoGg43Dy+hHUkVBtQgJW8OypFralpHyBr4qbsxitKDo9opl5GJV
+SBDiISQS4NvugqWkfjL8cuzgiQMf98915u2jNZmvxXZg7nyInliJHQZHdNg
85URIEGpPuHeqO8yKuBc7xC3loQ4BdaG8ePLqPABKcqDeSnAk2t6zzJS2lhX
cZWfhJNfmrfMmS+j339fH+DH/E3W1H9RdxlFMVpn764hYfP5grzlTcvId0Im
QxXzWukI8dU8y8jSqczCg4+EQL8xW65FJgrIzHMSwdxbczCC9w8TcUatFL/j
JcF2Q/Vr/t9MdMjXyf4i5tIzmhOCX5jI8/Dt7QaYZT/cVxJFTJRteSWdFfN1
SW4n8WdMZDe4y/0rDwkz3n4J6zKYSJOpXvQI89GqjlqpOCZayxsaEYp5u9Hc
id+hTNTUpj1zHLNqiQBLyhkm2rvBx3UnZlEN5bsHjjHR+muDf00xL+WaaEvs
YqLRuYQkE8w98ge+NFNMNN2fE2iB+VOqr2uiOhOdMLuT5Yi5UDyazUGaiWwd
+NV8MSfFPUwRFmAiL8bqTQmYL/GV6zasLKF6r+cZbzCfjGz8FvtvCUmX3y2a
xWzD8td9Z8cSGrsR7KWHv5924OrV/F+X0Pdjvv0hmNdNbUirq1xCu7K/aTRi
ZvPW1Y8uWELFVaYuGvg8hwZsv1umLqFQm6q4JMzfjp3y4rq5hEKyUhq48X2U
tF3irA5aQuN/fPQjMKc6JGVEeC0hX36t3zz4PiO+PjMwO7yEHq3RbryL2dPy
4w82myVkKLZBRwfrYXdVl88bwyV0o3pWrBXzZqMF7hD6EjrIoN+6hvXEpUHb
wuRdQtnW+gVcWI//ck1bXi8uotDKztAWzE3yh3wDRxYR4XR5Z7EwCY/Eb2TN
flpEudJ8xlFY79FxmdTLskXE6a6fEClGgi9fZatf7iJy6FmwuYnnw4TlH//E
tUV0Y1TEASSwfgM5c54FLCJ547S2YTxvAlMbTX3cFlERQdORwfPZPmB3/o/F
IloTnNJcKIX9+JibYB5jETnu2HCYD89zfltonpvSItr1pkP1rAzW59eijn7O
RfS6QVzvJPaDY5a1AZmzC6j6uNLTCewXFlU9wi4DC0hR8MVM9CY8fyUiFl0f
FlBcgMSlPpKEotRzz9oiFtAaByEPhiYJyeIxVnf9F1Aj2mOnhv0rJO5xr+OJ
BeR0RFZNWxfrPbJFvMlsAQ09LA12xX447LU59NuqBfRCJUk2xJSE+gH7dTGT
84g+/y1qBPtr6TGPFzY98yhcc439SQvsPw4pQ5/eziOT9e3vo2zwfBgt73of
Oo9egBtHgiO+f0EjerLvPJr5faDK9iD21/7/OLyOz6Nz5qsPE9jfW2Pmy0TM
59H838+jP46TcLt7Ss6Fax4t7nDdxX8a+02J1rLe/Byqvry20Ows9rdo3xbe
4Tl0JjT6QfQ5EnbojF0vrp1DHbJKWjuCSGC/OjLNFjOHZpytN6fh91fRIfJb
06U5dPkE7DgWg+dRwy039/QcojWQwrq3SShv7T9ibz+HrmomT4vfI8Ffpbs6
Q3QOZWhs0/qcR0J/Q0sylTKL3u0t27a1noT4x4SfyI1ZlLkgaHqgCe/v4l7b
waBZxJZhZhjdhvWs0MgW6zSLxPyvU5v7Sdh34atHh+wsSvgaGfRriQQOG/5t
xcKzaIs2v2odG84TMjbSV9hn0f2TOo9/ctFAoPZTo2r/DApzsmq2w3mhZsMH
o+CcGWTnoWDwQY0G5ybYxe3vzqDogf41Zbo0kK82nVCInkFTiUzHBpw/Qk6/
yfrsOYO4D/md99tBA0ZV+doN6jNIJHR3ZqoHDfrvLA6NSc8gZDmIfpylQbzn
5nfvBGfQtnhzfoOLNBgTLb3gOTmNZs8N+CbeoEGOa3HX65fTSM/qdQkU0aDR
OW2jddY0Cr0d+Nwb5y2Ww9GHWxOmkVNZMXKpocHeXcd/zvlNo/vN3rk6HTQI
td5JXHWZRpu+X/UlRmiQb27gQOyZRpwHNRV3ztKAbbNwvY7WNHqT5KxbL0AH
Fe0V/vey06is2KBLXooOjqojO/YITaPaew2bumh0KJCtqvEdn0L3Ptyqy7Wg
wwHes/D06RSq7G20Mr9Kh4jVTstb0qbQ0Q5129RkOjxbsTL8cnMKpfv8+5KW
RweOKdnSP15TyN+0ftuXejpojPLP/Hd4CtH5E5lEPx0ODS5o8dpMId0eDw2z
RToU/Wp4qkyfQkpn5aTjlVTgd1Pl39J1U8h5KIlngFIBrvpcmgXvFGoTcJv9
74AKaNUmujUvTCLzyIVLfv4qcOR92OOTw5OIs1K5d/aWClxD3n3TPyeRj+D4
Me1nKvD81QG5iI+T6M2xkvmj31SAp0Az7WH2JPr2TMA6g1AFnWyp35pJk+jx
r/FKV2NVOPqAZ93bK5PIQ28pIc5dFaJTZhx3nZ9EMawnSyqSVeFlYndi58lJ
xEvaRL/6rApdsV8affZOohy9gIV7nGrAF10mtGI+iaJ/Hw/vs1ADvYgsu5s6
kyjrs3oruq0Gzpfibm5QmET23voXfUfU4EZAcF2+yCTSsc+7nU2qQ+lZdx5D
9knUGqwlfNZLHXq89lrUTk4g2RIll9U16sDvujXyQM8E2niE5eF+Bw3Qd1Z9
N9QwgZ7w5bhm5mqCyyFJtoC3E+hyvuBVf1FNiNnLQXEVTaAKyejXUgoaUGY3
EXQnYwKNbikMDshThz6r9teKtyZQUCQHj/d+dRAw/zT/ImQCHc++8vXcOtwn
jF/qmZ+eQBKbCp33f1fDOfKBf6PTBAp99eOgbIga3NK6WXx85wRq3ZHNVsBQ
g3KVwPGJLfj/mwe/iy2owsCmk2phqhMoppf1u8dbVRCStfcSlJpAAytFd3bG
qoLR+i156WsmUO/9EokqZ1VwFSOH1JjjiOPJQBCHvircFhDbhP6Mo68VNp8j
hFShkofthO2vcRQron+5blQFhthHH/yuHUd1Dzk3B31WAZGVn52er8eRdMuL
v9YFKuA+WXgo+u44SnL42m2P9ZKsO25wKmociZbyn844qAI1AerrTAPHUbHb
/BkjUxVQYHn6c2H/OFrqmwkdEFWBPaajpU2W46j0+cvhKhYVCItUSSrSH0fW
vdFG1/7QoZMvf6+7xDjyGzjCfe0DHfjtRnS2cY8j7vZ7FzOf08HoNikqOz+G
gm7GmXk/pMNdiZzvP1vG0LaA3PMtYXRwUMyys0waQxIu4TQBPG/hbn1qClfH
UGx7cGXkZjwf+fJrWS+MoX9BOc6nVOggoPXwc+m+MbS2mjVzlwgdao3TrZSI
McSIud5o1U+DhbAOZXbOMZT80NEqpo0Gu64bCcHff6iiot5kfT0N+JI3x6g9
+YeCo6UmVmF/CS3SvsZP/4c8zjzve3OHBu2M4u0feP+hfVkD3iwxNDBEGhzB
I6Nof/esvF8kDWZqVS//zR1FQp5BfZP+NPDsUwqqUx5FDLPq65v20eCTx2OD
cO5RVPAf7VrXThpsmlBYMBj6i3h3PLv2Dve77mXZ83nZf9GI+4HfLAY0cBTf
cCZq01/kHnWgVFuGBi9T76lt5fyLptYJ24qvo4GwguTofP8fxNnDCuuxX3/R
IDzcsv4g4XPKE+HcNDC1FjxhofAHtb7gD6yYxHkvePV+DrkRdL9p4Z7RZxIk
y77dGWQfQXaZRvcUP5KweuZe06f+YcTj+zBG7j3uh16ae2Jyh5GlEdW/r4KE
qMNOO8U1h1HavPzn9AISziWTNxeEh5FmLnRtxO+rYz+m635NDyHJZk7bZ49J
YNhct8p4NYR4ZU7wsWeQMGCIW5LJEBpUSMz2iSeh4UJ4OJ/cELp8VXLyzC2c
z5/vrBplH0JxbFPhl2/ivknvp4prBpFYu/ed71dJMFsvbGhoN4g86hbPywST
oO7YHiilOYgi49dP3PkP58P4nFcsIoNo6T3Bsz4A9yNeSu998wBqlrbZt8MP
95tFT01bpwGkwKpwycID52c9xhl1kwGUn9E4q+hGwvmzq54JyQ0g4/TUQsFT
OJ+MJKs09/ejRL/SHbw4HzBbPygd9e5HXNTgmmicJwbF4k5ttetHxRk9/tX7
SWi0P5wlr9mPTM4+WeLH+SP/06Tc0HQfcj3c0VO5h4QDZdIbfYP60LP05ZxU
WxK2zYwc3uPUh66slMSr4/yioVmSomvShyRVTHLqrHGezLWRXGTvQ0Gjfp2y
lrhf94nv/93fizhZvtX9wv2zQ6b3DqrpRWMT+86lbyPhZXKgaPj1XiRyrD7Z
DPfPBz/M95z07kXv73t0yeM8dUNQ8LaFXS8yee0fyr+VBJdrjwXWiPSi6GpF
D6YxCcIBjbyJ93pQsKvOke2GJMytzAv+C+xBYfdtNx4xwHkycqO4xYEeZNK6
iuMSzmvZ8e7yC+I9iD3odGs7g4Sb62LJ3XPdaNsz7/gNmM8+eKGe39yNHE/d
5DuJ++yWZyxGRxK7UY5XaaMwzn/yeoqmJf7d6HFz7NQFHRK4K60tBRy60V4V
Jd8BnBdHzc7sdNPuRn/entJ1wtxYm+jwVrgbrTmSQXZqkfDKvvzguskutDYw
guGOOfVn1zG/hi40f0vKionzZ/hRTtfPhV3IV/SnZTJmtwG6t+KtLpTH9Jfd
gtnW297v0ukuVHdXGI1o4L4xfT6wZWcX2q24nvcBZomL90M01LrQXPieiaOY
l9mqIqP4u5Bc99ejSph7rw1e7/nbifLbxrbOqZPwUYD/tuHnTlS/83jEN8wF
d7SSE/I70XfXTaKFmOOl9qeNRneiVUMBHcmYAzODM7d7dKLnMX/qozA70R/l
pVvh9ZJsWi9jNiv+WDiv3ImSiKL+cMzk5n8l9tydiN3Yv+8GZqkw5Yv76jtQ
nJbq+1TMQzF+V7ljO5DIo1d+JZif30fxr207kPxJlZ5mzMF5PBleazqQ9tLv
lRXMlq8cnmysa0duSUfK1PD3EalOf1Uf1Y5Ytp5jO4W5vXHk/WXLdrRhF60m
E3NOt26DDlc7MskvXfzfefmNhbYPfPiN4pxibujj89yyXDecHPEbmSjv9b6J
uVHi+Kpltt9o9MTBTht8P2mbCtY+e/MLvQnp3V2K2V1nfp1zyC80E7zYqozv
d8UuRvsDsw2NNV0elsF6+HSklbpQ3oYSTrzbm4053lPBhvyvDXlPK6fqYP2Q
V1+fuDnXiuz/m7nigvU1ncDhS5W0oonUqLUcWH/wcFfwhH8rsv3w0LAAswMa
SNw7+RNVPIjcLYT1GzIjXCM12oL8ZRIElYxIsGZ3avyW34JY0guPMTGLCeV2
hnm0oIsKFydbtuB5VqHm+webkcTRvvwHFAnNLp7k054m5Ov5TusSnrfK33Z6
L7OaUIKN+euzuK9k7dUxq3BrQgV/tFy98Hz6WSwfrv33AynkKK09jfuLAD32
1sBiI/q9+X5a4Q58H5PFcxtFviOf0SOhUnuxv3kmrd7U3IDOGjHdj+0jQbzv
opDq3QbEXnBjJhv7S3+TOd1QugE5yZn9MMd+FFbW7ORIr0eSzJXOF0dxn1g1
e0Pm2hd0fyc54OqJ9TSNHqut/YJeWiZGTniRIDRw9Y1Rwme00dFmb4gP1usn
yen9GXVI7oqRZ7YvXv/WlkNxrz4hRl9puTL2U0fpSHLV8AdU2CzoMxKJ/TKQ
vPkxoRK9Vyy6bpKJ52l0rOlpVgWKFC/VMcD+r+hcsjGxpBx9+iSpwcgh4Yel
WaHzzzJ0QCKM1/AJCVoSRxoX15cg1dPONe4vsN585HQOWTxFDv/FWx79gPtb
vlTHHvuTqPRotO71YRJyYxjUI/UKYxupWVd2/H5kf5dWzqldaRyTtiAzgvuH
0xyHvoceMi74KpnQSNEg6tmwuEQaGIfrTSQ93UaDLRKvBDsz3xpfnOJ/GGFP
g6xhh1XexR+MDeK9dQvcaXDhRkz/tS9fjIvaTA2aUmhw0y206WhYs/FILjpS
xkmHNVM7DPJ39RiDXHfx+m6cb/w+aJ8LHzGmMzo/PO9WgdFXNm/P14wbK9lG
vjkzogpZVzKOulybNpbcNRw0N6gGCjN5whfuzRtvSfwWlXBJHdqLNlYYuDKN
nSNSLtxl1QCHO51XR2JZqAvHq5bNQzQgNfN6xY5ENsrgnCvPWi5NYD/o9Xd1
ADvlHPov5XG4Jnw5mvPYPpyD+pb9oI2dWwterJE8POvJRQ07EqfqQ7VA8a7M
IOcOHur5XFn8hWktWDgXzszbzUdV86ZPvvDRhpGFdfzZDH7KbJmjpKJdG9JP
XWlcJydACeVattfs1oFYk7rrEgqClHp9g7RvlQ7w++RtrRIVomgX2Za8lXSh
0qy04qWkMNXzvPPl7du6wPRy0t3LL0Idzuy7lDKlC6ycDck0pgi1mFl3iMte
D3QtfN9asYhR3vZhX4+90IOFX/mDohNiVGFdVJAhLwPMPGtibWbEqOp8ssaZ
YMCNxR5GxIIYNbfI6fRMlAFNUSud5ctilPvNmoqz3AyQllx3bYqNoDRaHr1u
EWKAe46uBp2ToJ6Gm99+Ks2A5wz7n8d5CUq1YNzlpgQDlqu9Qu+tJahPOqJS
3gIM2L7vmvJ3YYLKq17NU7GOAbH9j+p5xAlqxx+u1TOyDGj1h4Ct6wmq6L6x
oexGBsiv/iUTKE1QFo+GfM7g9bzjZz8WyhPUhb5ea0qOAaVywr5DSgRlJeWl
a6LIANZiVUkZFYJatXjmvC9mq61Wbx01CCre8VagnTwD4utPuMfqENRJp55/
f/Hz7UdDhWr0CerXf9WhT0gGbBpLKVsxIijvT6cfHlNjwOlLpc56Wwlq1rLj
+ifMZfyNPD7b8H6WPW4IKjCAPfVfUZYVQZ09sTpfQZ0Btiq8B9ttCSqSeaLi
sT4DksoVV4ntJqhsaduHitoM6LLemmezj6DuPDF6lY/3R7Yd3h1xkKD4ffm+
ntJlgJ97wGK5E0EdmqZ9+WnGgMr5+IdTxwlqYJIz/wZej+vaM2u6Kz4fX1bX
w3i/9uJ1k8c9CWq72GikuBED7j0euHfvNEGx3doX4WvJgF7dVWbf/QjKc+dU
JivFANUPUn94AghqqnxZIwfv54LD5vitQQTVxBM58caUAW96HQwDQwlq2D8A
3lozgMfvTG9hBEHVys+5O2xnwJ5VN64PXSOoE/WWsefwev9Ri/Sau/i84lwK
/rNhwLuvYj9WUgmK2bz5kus2BvA7aQbpPSSoy2cMd+bvZIDjqI2Cz2OCGoUN
Dwz3MeBBkNvnrDyCal/wOm95kAF/+CL8258SVMKlxatJeP86KekbxJ4T1PlO
r4t5dgwIppW/tyklqPdFDcY1RxhQU9bsFVFOUPkzJ/ZYujFAyGpStAIIapu/
1NzN3Qw49JO/cuodQTnJsRxKxM9nuZIn6R8JSu+laKrGCQb8mzXnd/lMUC9v
6xgKnGYA48qxl/fqCapySlFXAq8fJhZ05PsPgjJhdvPQ8f7rMpM4eFsJSrko
vK8Of56YzvOCre0EFaWro7XdjwFH333dG9hNUK5X91kluDIgZ/fIcmE/QRU+
3eHTdoABE90cj4eGsX6LmF6rPBlg6Cu7U+YfQfnk8H387xwDIlm3zDpOEhSL
1br1Kr4M+Ba7Py12lqD8rxxKD3FngKS0//aaRXy/qZWlwR4M+P/fF6k1sEVS
AD//f6I0RVc=
          "]]}, Annotation[#, "Charting`Private`Tag$2620620#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        MachinePrecision, RotateLabel -> 0]}, 
     AxesOrigin -> {0, -24.4628263145363}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         MachinePrecision, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "ClippingRange" -> {{{-5.999999755102041, 
        5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}, \
{{-5.999999755102041, 
        5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}}}, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\
FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \
\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
         TraditionalForm], 
       FormBox[
        TagBox[
        "\"| \\!\\(\\*SubscriptBox[\\(\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\
\\*SuperscriptBox[\\\"'\\\", StyleBox[RowBox[{\\\"[\\\", \\\"n\\\", \
\\\"]\\\"}],FontSlant->\\\"Italic\\\"]]\\) - \\!\\(\\*SubscriptBox[\\(\
\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\\*SuperscriptBox[\\('\\), \
\\([6]\\)]\\) |\"", HoldForm], TraditionalForm]}, 
     AxesOrigin -> {0, -24.462826314536354`}, 
     CoordinatesToolOptions -> {"DisplayFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& )}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 12}, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, PlotRange -> {{-6, 
       6}, {-24.462826314536354`, -8.136370804376675}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.02], 
        Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{"2", "3", "4", "5"}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.038000000000000006`] -> 
                    Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "12"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, 
   3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, {
   3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, 
   3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, {
   3.87637134045012*^9, 3.8763713522979193`*^9}, 3.8763718090898647`*^9, 
   3.887183948573832*^9},
 CellLabel->"Out[60]=",ExpressionUUID->"2782289e-0500-4f20-8ce9-6bd7b1629e9c"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Plotting as functions of scaling invariants", "Section",
 CellChangeTimes->{{3.887175601990197*^9, 3.887175605174004*^9}, {
  3.887175638310907*^9, 
  3.887175648462943*^9}},ExpressionUUID->"af69f70f-b3b9-4794-8398-\
01134650a149"],

Cell[BoxData[{
 RowBox[{
  RowBox[{"\[Eta]2", "=", 
   RowBox[{"\[Eta]", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", 
     RowBox[{
      RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"\[Xi]2", "=", 
   RowBox[{"\[Xi]", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", 
     RowBox[{
      RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"DScriptF0D\[Eta]2", "=", 
   RowBox[{"DScriptF0D\[Eta]", "@@", 
    RowBox[{"PrepareArgument", "[", 
     RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"\[Eta]6", "=", 
   RowBox[{"\[Eta]", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", 
     RowBox[{
      RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"\[Xi]6", "=", 
   RowBox[{"\[Xi]", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", 
     RowBox[{
      RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], 
  ";"}], "\[IndentingNewLine]", 
 RowBox[{
  RowBox[{"DScriptF0D\[Eta]6", "=", 
   RowBox[{"DScriptF0D\[Eta]", "@@", 
    RowBox[{"PrepareArgument", "[", 
     RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.887184974652775*^9, 3.8871849902010813`*^9}, {
  3.8871853260317287`*^9, 3.887185348663872*^9}, {3.887185471338563*^9, 
  3.887185487738577*^9}},
 CellLabel->
  "In[103]:=",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]2", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"DScriptF0D\[Eta]2", "[", 
         RowBox[{"0", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]6", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"DScriptF0D\[Eta]6", "[", 
         RowBox[{"0", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", 
   
   RowBox[{"{", 
    RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{"\[Eta]", ",", 
      RowBox[{
       SubscriptBox["\[ScriptCapitalF]", "0"], "[", "\[Eta]", "]"}]}], 
     "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"2", ",", "6"}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.876369742606814*^9, 3.876369749518669*^9}, {
  3.88717511572079*^9, 3.887175133863171*^9}, {3.88718492600924*^9, 
  3.887184941792713*^9}, {3.8871849972905684`*^9, 3.88718515068447*^9}, {
  3.8871852002698402`*^9, 3.887185200333082*^9}, {3.8871852346862307`*^9, 
  3.887185259919454*^9}, {3.8871853538970222`*^9, 3.887185366488626*^9}},
 CellLabel->"In[96]:=",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJwVlnc81d8fx+2tjOwtZctexTkhKyJCviolQiKjkhClhZKVPRpSMoqshs4n
UYokREb2uNbljs+1+d3fX+fxPH+9x+v1fr/lvC46+TAxMDAIMjIw/P/l7Uoi
iyjcxPoSxerV/7AcdOq6byV+6iT2myvPpz2kGg7PtKlW2B7D7E77cfQwPoUW
3xYvxBx3xNLUzI+YG2ZAif7r1AwuO0zo/ECbYMxD6CbEuUNh0hobPNbAdVrk
HrT/V1eTnWGJOZxLCuFwi4OvyWbHddstsEFg6F/HGwtJKVZRgqfNsXaLFm9B
x0jYBwX0BLXNsINXxhbzy8KhaLiqQoLOQUw2JbSitOsSnDoo7bGpD7C3Bxip
lWXBsMMzTZttxgT72VtREmASBFv/e3raEjuAsbKYRLbkB8A730f57b8aY702
0VyyIb7QM7I6VW/eCBsVDUmkfvaBya2xrSQFI+y1k0S/p5U3PNMhr6PRbIDp
Rt2VfdR+Bsp6ttubpehhpfdYFCUDTsCqd3O8LuJ62JP+EonnzB5Q9bNsUuQr
XSxiLMWx6r07PPUxICPgnw42K1sWHHrFDbrXtU82xWhjQvurzFMGnaGx3n3t
Em1t7KdBy2qupDNs6iHX8M5oYSYdoetK/k6wXkMy9binFubWyDThtvsoXAiK
IJhc0MR0E//e6WU7Ai8GhoivtaljMnyVzzgHrKBk+5ZfdIQ6ZuSQIFxuYgXf
CbMOpCqpY67zf02cX1jCguA8ZsoDNayhK859/sEh+M3+bnlYqCp2KYfTh7nA
HFZ+ZSxlfqiMmW7ckYlLhFAw8NSTrGPKWNVqLO2qFoQl/DYexRLKmJHHkxNX
agAs12pQXyxXwhhtlcKXLpjCtEczuu9GFTHhZ2+N/KUOwNKoh5z+UXsxqZ4k
FRNHQzh52nl3gJUCFumcouc1pw3D2u9JaigrYEZ4f0x/sTY8C4+XBXMrYO8H
Tv1ZO6sNC4OCps793o155eyaWR3TgrOUdAbktRtrLHnIH0vWhNPW0slvsuSx
i12+hOJcDRjw13841EwOc1Bzvj9+WRnWVjI9faQphx14Lx7bpKsMl7Mel85L
y2ELb1rff6IqQemGzBKdDVls5U277ES4EtQfDbXjfieLjakN9x5MUIRtm3/+
7d4vi9WO/dfr3r8HrrtdesdXL41pfNHNl+HYDb9aiNUKEySwKzH8R8f6pOAv
sM0+1i2B/XjSZJH9XAp2Njv5dn6WwMZ18i5PhUjBHKdnl2TzJLDf1lVLRjxS
8HREvZWPkwTWdIrw/paVJNzubJzXaRbHuBRfKrb2iEOZfu0Zu89iGLpf265z
WBSePep/fo5JFFM/d9+VdmAXPH/qAOd+XAQrvi7rUye9C4oGGRk9nhbBCNO+
C4hhF0xMV/J/1SaCyQ07PH3WLAhHlHZu1mWKYKBcni3PSRCaU3GBBC0RLF9r
IC35qgB08ZBJ/xQqjJlIScUZLfLBrg6d2iF5IYyNfYilrJUHapM8GNWVBbEX
54SzW0iskPCo1DHjOj9msU8y6ugwA1w1ddqVpc6HcUjx2jjkrAEJ4ZtMKvY7
MHuxk7dexOMgOxaPnfbmwbQ9+j64GJDAFNt6RHMvF1a27VZ+eHYO+EcGNTlE
c2ITtm5Z0hlTwFGoqeaRKgfmenviHl45CsKPPdIO4GXH8g3eiwcmDoDPjXrt
U0usmI77jyNtMt1AJ3THOJnIgs0WWsoP+7WC5ik5qsYOFqx7VCgVL8VAhp96
8jclZuzvBrPU0/CXoCIwLXzzJBMmG7fxemZvJlK0JZen3GfErEucOg/9qkN3
54wuvfrGgHVMzNryyDShhomrOQHCDFht26tzOUdbUXiAWQVH/Raqjvyjaen+
G1UQu5XqvTeRWmwun9/jbrQulFV9W3oD2VS1Pqmq6UWFyyq5OxrX0CeVN3CN
2I++RO/45Ba7ioaHIucO9P1DMqcmiqr3rKB9w9FJ6VdGUMLK5nL9bxoq6PS9
JkkaRXURc/wuaThyiXv7t8ZuHCnbSTON6FNRTn2jY/7nCRRdMJA6ME9GQXVF
DekSU0i65vCm+DMSuilr0WIaNI06G/eH8uouoTQORZv+IQLqRzFHlosW0M/A
ZRZfo1lUM+iZ8/ruLLLY36/3vWYObbL9rReJnEZ21kY1qjILKM+9h/+K8wTi
X0/34o4novFMsYCu0hHEmC0sIrRjCfkWc0RyLfch80IhzLhjCVUUGw6ma/xG
dyw5t31fkdDX4qHKvysN6D+VaZ60eDI66ZEzpDlaDFwi6qu1vCiI6HzwbqL3
S8BFIPgQfSjIaEiNDyeUgJCC7oJSfwr6e/92zTq1DHgfLC5SDKEgrlzuAJYH
lWB3cSBhTywFnc467zDUVgfm/W5fNy6goLubiirOno0gq46D+KGfgkoC5oaz
VTqAyMuIc1+OUZHZ0WnukjMdYNBc76fLcSr6PtjpMZXVAewUvc0IHlR0tLyh
YZ79N/CWy7DjPUtFFy3mRbQJv8EOJ7f7biFUdEqM5yWxsguQtbknZx5Qkfq3
2vGRC73AS8yqcO4rFZ14KzR+4VUvuBpcvnb1BxXBVNNSHUIvePg0b5K1nYpC
urSvhXn/BYTxo8ek/1ARyede4XfPPrCT+wbNepyKMmv2Hz7oNQCKDiviMdtU
xD9USDbJGQapHaeIZgY4KvSEkT+GhoGzSNTCM2McuUc33+rgHwHJjgbZzKY4
MoosDBBxGwHzz51+fbLA0cXP9ziCx0cAZ5p21m4nHDUf/1mUyzwGwsb9qXkX
cOTw1P+nh9IYsLQ8XzV+EUeMQyufLO3HACn74DmlMBwR497kFGSOgfv4/NXS
CBxltml2n9EYB2HhrB8z7tDZhNc4y3sCqFYbmlALceRduxxjeH8CjGycdBB8
hiP9vaCWq3oCcN/85ravGEcHH3uuWLJMggLe8q2TZTi6IOp6Qv3FJIjySwpL
q8fR92PUeLXlKRDnfYBwuANHKYE1V9Xkp0F3LClQswtHR+wfuvraTwPKvvEY
vh4c7RWMCEoumgbNRuT+xgG6T8p07jW6EEC42ZjtwhSOKvfzGJo3zQDWO1i5
yQaOqmx3ThxangEvSuJ4WLZxNDLLnZSrMgtIDMZNjYw0xEq7I2yROgv0GIND
ldhpdJ23lr30mQPkCT1CEj8N8bvbDJzJnQMipAQ9gV00dFlAhTn89xxIKIqQ
vi9MQ2UMgXvem84D2RPzX70kaKjmvarLN6kF4FvfpJyuQENntTJb4lwXAG90
mXDzXhpyY9woKn64AJJbxcJnlWjI4k63wx5mIpAYSjjOr05D42lKPLdMiEBb
dENfYB8N7b2WxetwlQhq/7wwZ9OiIfkVOz7NRSKw43G991WXhq5mypraqC6C
x2ePcKXq09CIfj7XH99FYNECjzgY0tCxvT/1D48tAqdoodT8/TTkYOB+S5Jv
CRwKqmxWN6Ghonz+fY77lkA0+135ClMa0ojyDw4JWgLXHwjkRx+kod8vZ6ZO
Jy2Bluecf1rN6Pm4GQ0nVyyBOJXY8xwWNLRYFOfK9GsJ1Lx9O6p9iIZmqXEO
tYtLAPaLfrC1pKHNtxWd5XwkwG5vGOZgRUNXEj2IM1okoBOYcBNa09CRXaTa
AGcSiPA8elLKhob0xQWsdC+TQGpMSNgknRdj2pBFJgnkyVprZtnSkELPd+uC
dyTw8Xbsmu5hevz1N/jMBklAdWNK5wOddVmC7LS2ScBqy8hIxY6GNNehUaA8
GaRbrp65Qee6QCmJ5UNkMF2nzYDROWWjw6TDnwwObNmdnqQz10M+fPUBGTz9
8atlic68QnV5l6vI4Fe88rVROme+Zsu26CUDpUuhFbV0Fjwx7+q3QQbRXWrZ
F+ksBC3txuQoYK87ky83nf2q1VbeWlFAocd1k3h6fGKapuNDgRQQ29lkTKDn
o6dPLPROp4Dc0UOXFekcfr73h+UHCnj6NXD9ED3/Mgof990xCkikOHaZ0esV
73xXQJGLCgrkjq1J0uu5b+R4gZI2FQju7vDuote/kks//MF/VCBlULnpTe8P
S1FziFscFWAF/MUd9P6RjvJevFdGBZXqv3SF6P395Wulr8iAg8vzbKoKdD08
tGOjfFLEAcOghLcgXS9cAdGwzgEHE285jAfpevJ6F5bU8RgHl6oIOjQdGjq3
J1wN/44Dzm27NQu6PoWiWDJvUHAwNpv6xE+DhlT7fR71WdGAYRfxlDJd78y+
9moloTSQamnR8IXuD0/FrgxCPg2QQiiJ6nJ0PVR4xyOcBuZNdKP8xWjIbHkN
4y1dBoTsibsudH/COfbg3L5lIP7q8mNTJhr6cE13uJRjBZAWzApn6H7XEpT/
7um3ApyYe8yiSTja53NtkCN7BQRlDFScmcNRvHvVGPixAspINQ+2J3CUOPRk
9qzGKqhfSQOneul8RNHI7cwqaFhr3C1On0eaxjzCk+mrwOIkyrndQp9n4vUa
Q5urwP2ftulp+vyaSOxkLOtdA2+03Z530Pf2o/iL+/t2rgP/T0elauNxdDZr
/BKyXgdVF7r+acXgSKpAKK/l4zpQDkrqGfTDEW3Q56xTxQZoSXrImqiPo7E9
O51b5zdAj7iXcoUSjjRYyhcV1DZB9w3bCXNxHM01zCeklG8CcluEeOU6FV0/
5GnL8HELqOxJWSPU0vfbI70j6kzboELx8eDKMyr69EB18KLNNnj+u7bAKpmK
dGyt97oMbINP4ozON85R0TtR8eVvdxhgp69gkT8HFd0y4PUtrWCAHTmDSuFE
CnKJb/ts0ssAay1vm13poiAddrLybRVGmCVf+Fkkh4IcHG6XWfYzwuux5zS8
RSko3cta7g0vEzQTkZ4xXCKj3HYzY10zJlj/bF+EwlcyMhUabaivYIJKRhH+
vwPISE+p0XtHJjMsTbKSYssloWuXiB1F3cyw6g53icxpErKhXDP+LMgC26q1
pvTkSWipqNOuM4MF8pXadqfmLaEAy+ATt6pYYe2T7NLz34iItdj2ZtgWK4wS
m3Ab3kVEgbeDSzLt2OB/Xq0ThscXUNg1QXvaIhv8hJfq5DbMob8lipKhh9hh
S/R+A9q/WWQc+4S1OJ8dfhWRM+hZmkHJk6qLPa4c8ErgjYXWmWmk2NZXoVbP
AWWJF3dc+DmFXP3nv8xLcsIM0Y/uBQWTyPDSYnUCiRPyqYpl6zCPI82hlLH4
dm5omGqQ8c+gD3FgDjK+TjzwquPdOU/fP+jMTNwPgUEeyFH6Y1vyMP2+pOjo
VjHtgB31wyuvJTDUTQllr3u8A2JDuTxJLcXIz8YTvbHcCWM7o+peRRYDwWiG
6/WufDBZMlT6xIVfYEByAaPV8cHYexCvEekFKc6EjRlpfiirMnOoXncYuKyM
1p5jEIAKjpOEafYZcCnla9D5KAEY62SPrsQTQepTsrk8oyAUz0+/l+VGBiX/
0guMlXdBC9WtHs6KVdDh6CIT9GsXrH5sJFclsgVeB/acFrslBN/46N6cSWaE
L0hzLtdthKEhW/wiTzgLPLEZFe0jLwJDI5ZX1rrYYVhV8Iq1gChUwc21lJu4
oc7WmcYUKTFY/Pz4ixZ9Pmh74ErIRIEElK3tvPLBVxh2jbfcuLNXCn7yExge
zxWH2dGs0b1EafjHdOvR8TkZ+Cy5Jxi/LQs7+CW2rp3bDXfKfW8Y/SkH7zz/
eYbIoAS/9SS49ND/GTKCB7QuaMBIc868xqt74JaTWaw3SQfWt+xNaLdXgk07
SY8lru+HVttf3OEtNUhw4VcKu28B/wctisaw
          "]]}, Annotation[#, "Charting`Private`Tag$2622892#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJwV13c4lt8bAHB7Zovs1yZ7l9Q59kwh3xQlI1pWKSqySyQaopBKRpGokJHz
kJCkrOw9sl/eZWT8nt9fz/W5nnE99zn3fe5zpD0DHM8y0NHRnaOno/v/tbSh
6U3Z+VuY+Ffhta5rmzDknbsSNcsFY9l8dKf0bSHMv+R++QyDA1boWuEvbZMO
+3o03+n62mLdoQXN2jNJsCDRJ9gtyhK7nJc7qaEcB/f7JxXrDJthZYunbBqU
I2F3vGOnBtEEaxEZ1POcvw6HRwk9WYHG2Mizt/3E8KsQZLw9VH4QYjQLv28d
ppdh8VTfAamoQ1jOxwq7168CoPCKhfTZP0bY+9NcLz+0XYSWccaT9nsNsfO5
R/SWDH2gW9OGjRv/fkyTWFj3S84bcswodGSI7MPMSOKYi6cnfH559WFokD52
Sr+eV1XVHVoKlmznVelho+oS4PGcG6wTLgnKEtDDtP4Jk3OIJ2ECi9/DLws6
mNkxkdamF8ehs0+ZD6OgNrakGHw1qN0R3o9OMXQo0cJy+p88dRtzgKVA4WOS
oxamjcRfVzE7QBfPxdbcPE3shcC/djLTERhRVqXCxaiBnSj96hdkYAONu1Vm
vkapYxdPhwk/M7CGN+El3hMs6liK+au1cCsryKqDQq5IqWF7rW7vRD2xgPRM
Gt867qhgDQbKDyPqTeFd4gV10w0l7FuKfmnpUQAZcxl/mHxSwiY6eQbfRRyC
tgdS2S4EKmFaXUIExs8H4b/kQPmvS4pYg1yh+zkTI0gXS/3GQa+IBRbPsrqU
7IddEiT3VxflsWD7I9Wvs/RgQdqTo68N5bGHqYUvXBX0YM60Gss4hzwWdPNi
0dWPuvCnT+D7oWI5jMfykeRinw4k5wUmPGGUw75/eyR+3lEbUn5znx3qkcGu
eH2UycrSgLmU+MnOMhnsOENIBDe/BhQTjx4PeSyD7VNxt3mcoA5ZKFPbpU4y
mEJmP7f2HTVIb340z71PGvt0yd8h+q0KLLuVN/J7i4AV6nKrvw1XgtFKTOGB
kwRsK42+01BWCWpLhjPe/EHAyFNxGlstitBg/rTLt2cEjHOs2rWFoAgHh45X
Tx4kYAb36QMzJuShxZOAs4lKUtivSKv7TJWysCbMpqB6Vhy7NVZVKeFMgE5X
U659/iGOLR1kGQR7CfCDlHn/rmJxjC89pVSMjgAzHnS0l10Rx3KVum2HXKXg
0ciiqUEGcWzhmaisiKwkzGJStzXREMOO+QmKNs+JwbHJRFPCZxHMdG0n/Y/u
Hnir+yWr6UlhbJpnaU9PGz8UjI3yF7IRxiSrqiyuF/FDeC2tl81QGGv2jlG7
lcAPB0oilK1FhbHMEs62N5b8UGe1xURtUAi7zMj37VQjH7wYzJyne1YIY4t0
5Njq5IU9tKw4gYTdWHBnwqj6EW54MoH5kBGfILZY3dbKt84GtwRX/7xlFsSw
vpoPh9rZYLBsZojKhgB2I59X6/sbNti425XPc0IAc9PS21pxZYMnKn6lZpcL
YEGvC9SDGlihqSQlUO+MAHazhHpROZcFsrLONpfX8mP8Ke+d7zxngjr0Xsdn
XvJh6dH5ChVm9JB0IdxiZpoHM//ht3sjaB0c0s9n1d7Fha15l75hKSCBQp+E
yaJGDmxbW53j3et5ILny7o3iFhvWfP103cfSSTD03PZq7lFWzND3sO+myxBI
Ya0Ie77MjDXPlUS5i3cBf0hqOVLFhJm4yh8c6WkG/S4R553iGbGjjM/zYic/
gY3MF+ztUQxYpMC89mpsHDr8p1Tc+To9NhqbFz4bVolKPfOi2W/TYUe5C/cc
/9OIoh7tVe06tYMcfzj5MF//hfYnRH8fyt5CkWTnz+aCXeiMbxRQ49lExMju
h0UjPehsSfoV0wsbyMWZR76rbgDV9TlVafWsoReCTUE0jxEkUZzzuvTsKqoY
fCaWdnQMJe+uZM/voyL6tnP664wTyJ3jImH7PAWxBCbWMCRPoilTjc2H9GRE
eBjY1sI+jUS83hgGh64gxgFf4eNZf9Ef5sKTT5iX0Zq9g3QV7yySTaCz7etb
QB23zvQZZM+hwJqkh/2vZ5FJReNinewCSv3NXvXmwTQqzr7o2XhvEZWb8Hxu
kpxAj2lmlDQBIprZcyppX8IIeqVmmyEBl5F0m28fKupFmrlhDD9Jy+hpFNoX
3PkbVfE9TvP/tIJs/cTDpkXr0QeBgV1Hz5GQR6abfYkBQKxup+Vslcno6PDe
wij5ejDsVl5Y2UdGQS8M9zs3dQBJv++GVpEUhBkv2p4ld4Dmc7qbLDEUxMOy
anZHqhNYV78jN8RRUBk/UZU+tBOcOJ8XfiiRgrzuiL5rU+4CbycGWhSfUJB1
QOz1kZRuoJ4hmd9eSEHCyZZKzn69IKs6KTT4DwXtn2JnbsjoBbfPaB8Q6qOg
vTdPsVu29IKLj5nJ5QMUxD8u0nNXsQ+kspL2UUcpyHGXfinTRB8QD/s74D1P
QcGhC2xjpwaAow12ipuOitaWorSbvIbB+qSqTqgSFWWl+rVlPBgGYMfJ6/te
KuIUU7WMRcNgc7HCQ0SNinaVB4g+EBsBy9ueqEyLinpTE9wyu0bAHxffzyOG
VJRqd1rGPHcUZFi7edDsqIhlNfmYkuw4YL21cEUskIrcSt9neR0YB7y7r5kb
X6aiu95GYm+dxsHTosP3zgZTEe8bllGX2HFwnsvQ700oFRU8TWs5ND0Ovuwe
kJaMoqL69yFK+kUT4E/RTf/PD6gIDK1FKxhPAZUs1cG0Uvx/V6KjWU5NAea8
ypnij1TUnx8URA2dAjxWcs+/llGRmWb3GbrSKaB6/9HSVCUV3SRPe7ZKT4OI
Va0Urnoq0rXu1Ldj+QtUsZCdiXYqytjqtpKV/QtKvKfYOzupqFH2nxcHxF12
zgt14/E+padjv/EXWOCjm4znvUH136HvS39BfjX1Jc8YFZ2WH+a6ODADhqws
uWOJVCSf8Dzfdn0GSF07xW++QkUzkotRB4VnAXNZ5BYDGY//bLSNs9MsyO2v
vnSVRkUOknpXjrfOAhrLyJTOFhVVvpDr+lw3B8yRBuLloKFw4Y/eFaNzYFE3
pS6Tk4aME5WSm3fmgDHi1ZbnoqGSPwZcsofmAWNippEKLw35C2ToV1fPg1zm
e1ycQjS0M/6IPalqAez2u8rCL01D/93j7VXuXwC5idLdJ2VoqObXRZb+9QXg
80ipMFuWhp7TaU0E718EYesbVhIKNESZP22dVrkIyK1ZVn/30tCh93vq2/sW
gRZjwREeVRriohLdCRuLQKpXTEBHjYYY+3oCNwyXAMGVscBPA/+ed0HV6y9L
oNqndOWdDg0lvtVRjxleAlPtKQ0fdGno5SWbtGs7S0DzQhvDRz0aOuPaXpZp
TAQGpKUnuQY01JG0SZhtJAK9lNQlhwM09FDI3ujyDBGU2hIXNY1oqF7u92M2
5mXQJrlAx3mQht4PyVxrVlgGQKhDp+QQDd0/fi/r54VloJ/XGfvFmIau2Vmw
zt9cBl0iqX1XTGhokqOsTSBpGQjEz4zLmdLQ0yH+j3feL4Pced+xa2Y0FJt3
fakDWwY1Vk5fhM1piEEtrkG5Yxl8y7MX+4g7bbb81gZlGYwfj1Hus6Ch4i6j
6GCWFeBT64e8LGmoO1TRfUN4BYiGfn81g9v6p86U8oEVsMLzSWzMioacbPOK
O+1WgIhHb+oxaxryLZd6ePf0CsjlSFeox11yXmpWJHoFXFW45ZRoQ0NN0ivh
lEcr4OVJ3s5p3PUWHgEDuSuAFiaoaWRLQ8fcfdraKlbAdNmIayJu0Ctc1PZ9
BXi+zLbswj1zvFhkYAB/v/3EpJAdDbXyxypRFlfAuaPzMk64dwi750ToSIAs
wUaJx13etRNgx08CfsWGVp9xb/IxtybKkUD22QmeMdze+Wy8vfokIM277wDj
YTz+fD57LWsS2D5pWiWJe77BJj3NlQS8rSfDdHAfL2Kg5/QnAaWCn5eNced4
FT1LjCQBvoi4RCvcxvkjISKPSMA+0rv8//5rfaLwUy4J9F9NHf//87t5l9nE
K0ggym9IQQ/318AA6eRmEvDxVN0ng3tJw4eJu58E3IrOs7HjnrWIrEufJ4EW
GZe7s/j/MqveOaexRQJJ71KLvuJWFfNk7+AmA7muZ15puHXchT5FEsiA07Yq
2xu3RmZT6AFtMmiOIDiq4LYV/ezLYEYGzrKdF+fx8dzDb/2g25kMPn0oGXqN
23l9g7nMlwyWtwLSj+Nu+u3358V1MnB8l32PETf9FQ+Bp4lkYPAt920BPn8M
k2U/s7LIIF4RjVvgdljN2W6tI4P+XHsPf3z+5e1epq12kgG7w6U7q3i+yN1s
IqlPk8Eb1/nb13FbszfpNXBQgEhaxC9fPL9m/uM3lpGggNbXw7ROPB+lOS46
J2lQwK8PWp/24e7ILBhLOEYBkfGOhfN4fh9M3nNLwpcClhc26vbjdmgouvTl
OgU0e9gqReL1wD7wN0E+mwIMPRIzqHj99BS5DqfPUQDjAUvhKLy+KP45Eulb
FPDzhVF+Ml5/J5c0rXJ5qSAmkWclFa/POPnk4ll9KmBtuO911xBfn0wdqOKx
VOBn+TWFXZ+Gtva/q09KowI1k6kvnfh6ALjdJLkKqSB0+it9Kr5e/NA90W3Q
QQUhdRMhm5o0NOFBlwmkaaBUK7/CTYWGVqXXdBX1aOCHONAfUqYhU+puDklr
GsiuLBY5pkRDhU8Evu4PooEhwvlSOXk8P7/UkFTqaWBHYCrOXpKGXNjC6Xh9
V4FQ3PfZYm4aYsuNlqsKXwXVE1Qf1114flPaV0MerwJn6kzFBjsNlTUza2rU
rwLmWmYLPma8/kN4HiZLrgG/n1y8zzao6EtiRl+/3ho4yOKr0reK75NWGUYN
D6+BsCj3ZXYqFRENjlbsD1sDn5LY+gDeLxLPeMXqD6yB4Ij6srVxKtqkbH9S
IeP3Y+g/YCNUVPTA/Ls+5zoYGpTlvj5IRcPN9PrJB9bBSfN1/Sq8P/nFhp89
nLUO+KyFPK43UVHkS8NkmbMboOo8e1tdPhWNSRhVx9/aAETKXdYbOVQUsOh1
ijV9A+ib/c6Sysb750pyhf2PDRBjXcqm/YSKPnLyfePQ+QfAq4RGvxgq+rXr
77QH6ybgER3+wXWSikworqFnZTZBv9L2XOQxKkoK34yLPbgJmmOrC4fsqUhk
5u7s7uBNIDFkwOxkSkUbnudrEsc3wWvzzHh5FTx+T+ogpWELCBaV0e2lURDt
hRFhZGQLfGLw67pPpKDcLaXgyY0tkIZ6xAdnKMhCdFjUWGsblNw6sK6O73/M
a0vFrbK3Qan3T6XiWgryn3mfVhO5A7Tl7Y634/uzCNl0gaCsHdAozbI/I5SC
ZDXDhcyqdkDRdEWbVSAFEQfDXltQdoDu3+Law+4UFNYgcHxclw6KTfuwUg9Q
UFVn6zP/d3QwSu95qi+RjKqnTHa11tDBx249DcZTZPTt9/V2w1Y6WG47V7ze
T0YFrIMzdvN0kDs7n56+kYz4VnzdLffSQ5mNeB+PZ2S0tb18u6KQHt4xNUmg
NyKjlgudDe+/MMAgn4+VIu4kpLwqYqz2iwGekLY9xXiUhIIb0DtslAE6CmLe
1ZCEvB29ZfcyMcL7n96sP5ImIUWHWh0uO0b42st9d9foCuJV7fptOsoIwx7Y
kReOraCbS8UP9pMZIQtnzyFfkxVU9Lu7zoqFCWoPuJBzNFbQ1RPDFz6pMsFa
j9sED/YV1CTjv9B0gwnGn+kMaK9cRoJHxPaIiTNDVn0h1Y9cyyi+a1ywSZMZ
im7dZW5aJCIf3se9KebMsLY/duEeIqLDzRlLtwKY4dlmLU3gQUTc1BaVtgZm
qPb2XcZG5hK6xjRbHHOVBX6ts2a5T17A+yN73NwKK/R/Nmh9jG0WDUeuU2W5
2GB/yxuOmeoZFHzqgW6yEht8CCHN3n8GWTKJlGy5s8Hnt7kVIn/9RXE1OV6H
8XPfpOWlkJ/R02gjl7nDpZYdhj4mn76TP4H+IwoHMA6xQ7YcZqcL5hNInauj
av4fO3y2z622fGwc2Tm8Hg415IB/wuTvXNw9jv7FyA8+r+KAx5zBqvO5UfSq
wRzSmjih0tEW4Rn8KJGfsoeeOMcJWzdPczuc60XVuov1ety7YI3zZwVH7x7k
dmVY9YPzLgjFd1lW2Xcjd3P+0wkzu+BRrie/red+I24HbI4oyQ1H/2wRje/V
IMeXd75K+vHCSBh2WcarHey7+oDOM4YXlpRrjhrydQKaUbXI6FNeSLjy2+NW
Uxe4shyj+6CJF8Zr1HCeONwLSuvNaNPyfBCLGqqMaBgBciKyvDeJfNAsxHpI
2G4G3L3h+HSbnR8+3qcu3nF5FmgHjCp0yPHDAvEFrtrsOaBwrHInwBW31U2W
kV2LgLG72/lzKz9sDiTIN4uvgO3yD0H76wSgxdXcf7Usq0BpXK0qZ0wATj4l
1Wr0roJQUuOHCAZBGF8pLplevAZiU36WpZkLQp+e0UTqhQ0QzFkS8axdEDbq
6Fe0K2wDhyctT4YYhSA1V9m/5RIjrP3ovTqtKgRj2aOUpdjxvCTS52T8JwSN
bfr9at8wwW/+hvGiRUKw3MHsRNwaM9xXgyYYzwhDUd49+/4/7/rzPAd2lvdA
EieQ8nzJA1lGH7NS1ESgWww29cCNF6YJz1pZXhKBXoUfG58u8sLx27nFcFEE
ugg7R+oS+OHWiWdpWgxicJFnKsTmtyAMenRYp9lWDPZE5cVtJ+2Gx8yNMk3T
xOD55iexaU5CMOJa2TDUFYeUr+HPT68Jw4mqvgy+uxJw8bCDyY8KMdgYoOsT
MykBX73jH9j5Kg6Nvaa9y0wkodhORy7/kAR0udpYQWSVgpbScXSfxQmQwTiy
HJwiQFqztdmHQRmoElIs6JROgN1tgSdgriz8UHahMb6bAO1Pu0XrXZeDtf/J
K/79TxraW5M/q1sqQMayqhiWGzKw3kZHaylzL0zZUvb/1CIDg3/4eXSPqUBV
+iNFzFKy0LqFphN1UA2Ol9+3r+2UhSx8/yZ8pDXhtxhQ2K4rB4WmhTl51jWh
eoYU08QzOVhvN8PdN6YFL/1Sd+4NkYc2q5RRRaIOfO497P6bKA9vhToEfdij
B21lyCYUfwV4R47eNfmUPtzDlT87EKcIjf50D/dY7YdF4oeDunT2wm3XfAOF
VxDKSf4Ie8SgAm3+PfJWIxvD61UMA0kTKrCPUFkTGGQKS9Xqv1jOqMHzMU90
bCQsodFp6allAQ24fDE7wdTHGv5q9HYR0tKEjg9fuFfstoP79hxSrKjXgkXH
3s97P3CAl45IKrh+1oaX5MOUPIlOsFWSb2L4jw40q63oa5j+D0ZqNIuu7tWD
JjemWNLLT0JvP12LnCZ9yM3KhWoa3KEfX8Ht7pZ9MNzPj2h2xgtyGzrZyPoe
gFrtpstjoefgfxujhMiNQ/BGlUJOlXEgpG+ckkYKJjDmRuIt0fMh8H+wBV26

          "]]}, Annotation[#, "Charting`Private`Tag$2622892#2"]& ]}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{
        Scaled[0.05], 
        Scaled[0.05]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["\[Eta]", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
         RowBox[{
           SubscriptBox["\[ScriptCapitalF]", "0"], "(", "\[Eta]", ")"}], 
         HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, 
     PlotRange -> {{-9.122028587832348, 
      5.702485161797756}, {-1.3938681721411004`, 4.730885255577823}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {
       Scaled[0.02], 
       Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.887174570806945*^9, {3.8871751231427803`*^9, 3.8871751344236307`*^9}, {
   3.887184932693384*^9, 3.887184942173463*^9}, 3.887185280438054*^9, 
   3.887185367237939*^9},
 CellLabel->"Out[96]=",ExpressionUUID->"0be94975-8aee-49b5-8880-e4fd79f9f11e"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]2", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"DScriptF0D\[Eta]2", "[", 
         RowBox[{"1", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]6", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"DScriptF0D\[Eta]6", "[", 
         RowBox[{"1", ",", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
            "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", 
   
   RowBox[{"{", 
    RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{"\[Eta]", ",", 
      RowBox[{
       RowBox[{
        SubscriptBox["\[ScriptCapitalF]", "0"], "'"}], "[", "\[Eta]", "]"}]}],
      "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"2", ",", "6"}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.87595272795855*^9, 3.8759527743037024`*^9}, {
  3.875953429388359*^9, 3.875953486484068*^9}, {3.875953717122241*^9, 
  3.875953824002554*^9}, {3.887174580406206*^9, 3.887174580749688*^9}, {
  3.887174986510387*^9, 3.88717510283072*^9}, {3.887184947721171*^9, 
  3.887184948225855*^9}, {3.887185289392242*^9, 3.8871852985195312`*^9}, {
  3.887185371553924*^9, 3.887185377032762*^9}},
 CellLabel->"In[97]:=",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJwV0Hk8FOgfwPExRY6MhhyVlFhGIhlXbJ6n6WAtEVFWGNHB0OmVWgZJKis3
uaJTiaaLaKPnm0Q6NNK60jDuo8YRQ4P2t78/Pq/3/x/tfUdc91MpFErof/1f
xabECXXdGMid8dZzazwLrk0Jdst9vOEKt9TY6soe6Bx6Z8hz2AVTw2Eo7Koz
bK0bDY7a4wI3atf7TXraw4r2yMlMeUdwjfPKHGduhd2qcjTdPnv4lCsuE53c
DE5fysuyM7dDoqeRyO2nLYyn2EWosLdAfqGeT8yNjdCGlc1VTFkwOSrvT55Y
gkaYoW48czOw8csplqYF9G/W8pq3QPCXJXVEM50JcfVCulOtNUzfVBrn65iA
b3hpqvnXjXASuypw5owh+W3023HdjUBf75Pz5oMR+PHXMI1fWYLrEFVb9MIQ
Vvs2OLFSzMFRdJSXG8sAz/KGvpooUwi9MLo5abUuWJsnmBaZmsIdkbOsV6kO
1DRPlCkObYBbSQVNx5x0oMJYM3WP7wbwT4xdNnppDXw7fHpwU7AJrAuwcjND
2nAk5NhyyTsjuLhHOL+GrQUPa6WKFyQZgMWDa55PGzRAJcTnWtYuA1DN+1CV
d1YDiui/eRWuMIDpdb5hidYacG9DldHoPQbc5XR1beGpQ1rGkNlToT7EmdXn
vr2rBsURSXKBEXoQ4a79fO3wUuhju+lw7HRBur+wAZjKwGkN7DzO0gbX2sdf
PG0VoXbrsidqgytAfLv/+KdGafDfGRg0QtWA9aToiEapFDTxmU8Ea1Qht2WX
RHRznpiOe0kZGajAwjPGtbldP8hgRrFLZiQdtjmFMnzaxOSHrevSLKMlcCxm
bHVJ6iRZoRZDXetEA57IyoAjnCDZ0VPRAwGLIag1MO7TvnHSLzN7+lWLPGis
FJ4MthkjgeGHa5y5clDuuJm55ZKIuKjWlGUYyoLf0dCvUfVfSdiuDFOO4iLI
eqQ3IM0eIS+qzRv6x6TB77dikz2Kw4R5nNYzIVoI19MD3ejfBsmrfu1JY9pC
yF4bdHWGMkgyDxkl1zEWgFncteS3WgOEF5IWNu9NBVvrgku+/v1E32HiXkqC
FNyf/GOlLK+PnB/ZGHq3jgIhngZBSbQ+UtV7KoejRoGSu7S82vO9JIzD4slW
/CTDfMqGMGov4Yk+MSoC5olg0+8fVZN7yKxqVuk5rTlSuTHlRp1+DymYXptL
q5aQlVzmC6jqJi+5tOe7o3+QBPy3rQa7m6zy6b1Z+ssM4R0SmXf+FJL4mfnp
ikYxCTP1b/W4LiTlp0fo7mlTRFImWH7ASUgMHLWoXRaT5HRrmnfIeBfh5n9O
/fx1gjzLrZsJzukiWmW/zy+/MU6ENPvvb1hd5GO1zXFFszGi/q7pxGLSSdpJ
1I7pm9/I8Jt0yUOJgJR1+ObcPz9M2NPcqmBVAZmXaa1QDx8gqWJpFYbhF5Ln
2Uw/6dZLRlvzbRYZdZCey8s4TcVdxOGwbaSsuJ0cLJQNl59uI5vs1U/dudNG
eIVWHenGjST12PvnrymtpLZQ8LB1popkJsxnKMo3E2+vHIGJsBBJFPrGbtc1
kSLOSGf2Wj5SuPzAZdd1PqELCiY25XSiik1DbKZzPXlos9hqS80Q0kh7m3RW
rZJ8OGhnoU+ZQs46mF8iLEJJjjLfn+tPIQsLh7xD8cVInsPF5c5TqLvvQjTd
6h7a9/REIv/qFBqNLUzdvvMBMmzfn9FmJ0YbmkssYj4/RqxpCSgWT6Puvf/E
FoQ/Q71/fZQqaZEgObnHT2+V1qKMi0ds2pRmUYpzSBbbow75Z/WEEvtZpNyo
NJQhqUMr81XzXlfOIpOJGeZDh3ok7tjv78qbQ80tj5IyFN6hyG2+DpTKn8g7
iMEWLGlEzs7nSra3S2Ha7Vfb2++3ovR99toPFKl49cBFkcfONpTbwLI2Y1Fx
Al/IEojbkK2qsKqCR8WnZtM8nu34jMwZ1QG0ywuwb2Xhv/KWAsTZfnRv7CNp
3FRzqE43uRtJFzrEnPgpjT9ULZ8Q0npQyLmjRZcdZfAfbF+fjpQedOJPFSfx
qAy2co0OjrzVi5L7DEebPWTxxPuP910UBpCJIKX7YoMCPqiTfZzJ+IZkwXnV
QdfF2Gf3E4tFaiLkN3T2jXLHYtwyFRVAlEYR7zvT7BGVhtu2tWueyhhDKlxK
ZIXHEhzBWHSGpfwdfdb8BuLyJdjVb1/4lTffUYrb4NyQFh0rvagON0yaRO4z
wicHKMq4yG4uIpolRkVf0vOtDZbiHS6lyf4XJIjv4r7q8Iel+EAKgl9bZ9H9
kGb2slhVLPxqv+O9/TzaOx/B3b9GHRvxE6MSd1Kww68nj/Xmr8BL/cxttHX+
+9Lz+kyc3ko8F6+iY/OPDM7mSnNbRFr4VrZpwVizLFbSrq8SvtfGs3I39CsR
Ddc1x7s3H9DBhkus/S0X0XH4Frm86lO/YN+BHePrE1VwxWu9+AYnBnZn6VtO
a6pju39feuLYdThIFHB78LIm/h+D2LN3
          "]]}, Annotation[#, "Charting`Private`Tag$2622973#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJwVxXk81OkfAPAxjsG2mYlyD3IkFjlWSL4PU1RabLJF2XJHjiaKIhpCtCps
pCTlLBJpqEk9H/exiAhTznEksSYUEe3v98f79VZxDzrgRSaRSMz/+f9ldY0P
2L6RsK9604Kj3kUIfXRM88udw5AkOpPB5ztCgf+x08fJv0NO3glr/at7gdu7
7ZGRjy1cJ3lWxuUyoPCKd8hRlg1MiVmsHrRGYBqYVGI4uAtsS763HZE3h7eX
D3TpzVqB6JH0O7enTIC4/dCiYieCP/wz+hh/G0HJOHeHEssCQhOCtYOEDUH6
s7WKV485XFc5Nuj0XB9sYi3H7LTMwIoTeDbKRQ+yTi+mhDGNITj+bPfO1q1g
I1W6ls/5FRy8/9QfAU2oli5l3pH8FZR2qQXtbt8CiSIBKS+nDUFhJaV+nYYG
OHmzvQWlDGDjSo7S2QRViGJztH8W1AMXoccMW5IyWL7Vnqxl6cJ+77ZzoQeU
IBz5U51FdGEpRLlptJgOFEMcGqykA02ttOS3YYogIKRX/yZeG+qoGj/l/SkP
CbN+uoxlTchfl9feKiED3Ypzx+6fVIfwI+6NsTcloTA9zSHXTB22c3ldh45K
Qs6EjghPXB2iTfknOlUkoc371OOBEjUY1cM+wWUbYD7/VGKaoBqM3TweVj5C
g4WO9V4DvZuhTWSbLj5PBXZk/lDHqjKkLUIZ3F0HVRH7Cl98VIBu5Z7Lr6ZE
IPLtPQrDRRpExlKUMUUAXBKFLcxpUpC8YBecemMFGwp4HJq8R4NMeVqTnMwi
nvO7YD05IQGOiYq9lvoL2MK4gGKw7mcIt2HmNo1+xkXeiWPFDeLwUCSve48e
H9M/P3qwZVUUVsUjb3kOzeCBLNszeQ4U8Cqnli6Vf8LXKZURWXxhUJV40iC3
fgoHorkWe44QTCe4n+lkT+J3h6N8HS8LgkPXtZKqiA94OTNbrJNFBgdGqIF/
7AT+radMwemcAITVj19buzuOy9zzo8XiSKBn7/tobGAMs1K1ful2/YHfzMTH
U4gxbJoY3TxwdxWPzOJvC3mj+LgPi9CR+I5dg93bPdVHsVfpzWCG3zL2bHJa
1czn4WquI0e/dwkXb3JvCTLgYcWSnNwyr0XcVrJX0bl1BF/b+FysgPsFi9tB
ULvbCD4mflJ5zXcBv9p7tOkgaQSPM/S+pwjM45avsz2r2cNY1uOBWUjYZ6xg
Hl8objKMe4SLXNKE+bhfvyV2Y/4QVk0k2XK50ziVK6oAMIhPVSWlvMv9iNPL
m/tVOgfwjQ4xzoPkCczbxrw5M9yPK6wknjXSRzHzU8F4bv17PCnjmmSSOIR3
tL3ZL5TzDqu0+3BxcR++71N4z+0EF2ewsElIVwe27TueVTfVi20DFCIm5Gqw
b22NpoZzD3bLPGpXup3ANX+Zq9B9u7HDoFYRS72G8PswsCh78A1mZpuZOjW+
IVjJz7aM81/jpX9ZBo0eg4QPu2hFdrYZEwNL0RqW44SE5kBGrmUt/sFLFUvi
TBPSAc4y9fNP8Ye9zkVP8+aIrbX3hzTr3YjDohdIVJ9FYuZFqUYthUPMun/p
X6hbJWJZj9Y1Wb0mWvy66h6/JCOacfaV55HviZJusdipzxR06fzkw3zXCeLA
vfhaegAVVRWcT842nydMziST3GOoqPSf8jvN3vPEV/MXssMZVFSWQE4JTp4n
gvkxRsmNVJT9l+eeg5PzRFnNrq8T6jT0Q8nqVGrmAqEmq0oNn6UhYvvhjiyV
r8RaxROmabUkSl3hd3ZXfiM0eTqcnBFJ9O8lz8DypW9E2FzDkyiyFIoOk3a4
YbZMXLrexk7fLYVm9CdjL1QvEyE/lUbd6pRCQu1NkwX9K8TvaS1pA4Kb0PH5
vlM37NcI408SO37wZVDO4/CeNTMyEhn+m7KgI4u+3SEPWkaQUbr0xz02/rLI
dXOcsRYmI15cXgmakUWZHhsi9fcJolXnW+n6ZHlUZUhm7w4VQqMc7m1agiLa
FLly5SyDghqCjLxjxhRR2+CGebmHFGTpMeHJtqIjM+d+Nz0pUXT4TEPlLEUJ
SapLkAPnRRHZ8mIF4aqMLguVC6SOiSNBNidG5PxmVJphfe9IrwS6vro18GnL
ZqTJpIcP2VLRLwL2xcJKqkjHrurku1Iq4lVctXvVpYpOP1BJaE2kIf/Xuk59
oeqom3rUbn2SJCpW+I3ZbaiFUg0tUOxVWaRG/ycilayN2NU2SDhTDp3jkN8n
jWojwbg8fKFWHpXp1Ly0mdRBPGmjwpDTdGQiY7GlskYfRfV1XPOkqiJ/e7rG
kWcGyNE1b7+QrxpqpdNGB3sM0TSTd4hE0kCeAUbWOY3GaGfmlNfiLi0UQCuM
e9tigprv778iyNBB680c96n67EC6JRtctDO3oT+Wh5UvLlugW2EFRa7uhkig
YVwFa1ghfm1xTOj97eg/eLmEcg==
          "]]}, Annotation[#, "Charting`Private`Tag$2622973#2"]& ]}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{
        Scaled[0.05], 
        Scaled[0.05]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["\[Eta]", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
         RowBox[{
           SuperscriptBox[
            SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]", 
            MultilineFunction -> None], "(", "\[Eta]", ")"}], HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, 
     PlotRange -> {{-8.985689911395795, 
      5.4752540344034974`}, {-2.2687538849550464`, 0.8696374890668941}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {
       Scaled[0.02], 
       Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.875952731520175*^9, 3.87595277495057*^9}, {
   3.875953449526909*^9, 3.87595348700035*^9}, {3.875953781918692*^9, 
   3.8759538242573233`*^9}, 3.875956884814212*^9, 3.884691471720155*^9, {
   3.887174577531348*^9, 3.887174584665642*^9}, {3.887175035431831*^9, 
   3.8871750787266607`*^9}, 3.887184948578662*^9, {3.887185295337936*^9, 
   3.887185299115622*^9}, 3.887185377502866*^9},
 CellLabel->"Out[97]=",ExpressionUUID->"8c8e78f0-682f-4cb9-bf83-9197b2c8a8c5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]2", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"-", 
         RowBox[{"DScriptF0D\[Eta]2", "[", 
          RowBox[{"2", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Eta]6", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{"-", 
         RowBox[{"DScriptF0D\[Eta]6", "[", 
          RowBox[{"2", ",", 
           RowBox[{"\[Gamma]", " ", 
            RowBox[{
             RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
             "]"}]}]}], "]"}]}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], 
   "\[IndentingNewLine]", ",", 
   RowBox[{"{", 
    RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{"\[Eta]", ",", 
      RowBox[{"-", 
       RowBox[{
        RowBox[{
         SubscriptBox["\[ScriptCapitalF]", "0"], "''"}], "[", "\[Eta]", 
        "]"}]}]}], "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"2", ",", "6"}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.875953835258749*^9, 3.8759538464750853`*^9}, {
  3.887174587589929*^9, 3.887174689823798*^9}, {3.887174745816722*^9, 
  3.887174892235113*^9}, {3.887174930671193*^9, 3.8871749732205553`*^9}, {
  3.887175095902635*^9, 3.887175104950508*^9}, {3.8871849509534283`*^9, 
  3.8871849518418016`*^9}, {3.887185308184392*^9, 3.8871853124795923`*^9}, {
  3.8871853818416777`*^9, 3.887185394801072*^9}},
 CellLabel->
  "In[100]:=",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJwV1nc8Vf8fB3AjipCZvUo2lUgo9xrhV0RGlMyMpIQUZSSphKzISCpKMu+9
mYX3ITPrmtmjjGzusvmd71/n8Xycx7nnfD73/X6/PpLOd81dGejo6G7T09H9
d2XvjiHxS4UhFF+3qQDmSTDvjjYUsrdDHHHHmnpnx2BstlWh8IIl4jjL5ti/
fxT0G5dvP7YxQ9bt5XmnFodBeDCE8obVGGmdsxv+fWwYrPlYOKSmjJBPhv/i
cyOHwGSkrCT1jQGiwvDMeezgEBSRdG1U2/UR7JMpndwPg7AabxjE46iH2DDf
nPulNwgDWG41HhVdZNCvzWB0dQAE/BWkIk/pIK28ZiaJOQMwrSNmu3Mag6iG
MVZUyQ0A0eG1CvPsOWRJ8mUUG6kfWq5lOhogZ5GQP1jJwOp+eN48wWXSoIn4
sjzARjv1g0NgcYLaggZSp09Hs1Hvh7iW0JZVKQ0kp/M+fcyhfnAiHjmlXK+O
BIzFXDvR8BskHNpNdOPVEMs2RE3R8DcQKubZrYTUkFqr4cfl8r9BoUYiJjBX
FYk5fuOY06HfYF/p+cZz5BTCLf2u4dtQH1wta5+qe6yCbNdENj0P6QNNtWiV
ryoqSGmudSarRx/U9ZFK2GdPInHsr61OWvZBubJIgo3DSXQFgTK6in2w6PXw
37nbJxCi7r6hpD+9cPeOj9BmqxJSXOmSPeTcCyLtuzeDHyohfibvKm5Y9kLF
YaahBFklJFq/Rl/NoBcyvNMZya8UEUdmzuNf5Xuh0eRFwT1fBUQR56IYTesB
fAN9HmOsHLJ0j6zuntIDPHfsP6ZYyiEhabNjEdE98JXrf7bZwnLIlcfPxIdC
e6DgZJXScoEs0r9zm/3grR54nTSrWjEhg2h+KDb01u6BvKBYFo8gaYT1fokX
ZqkbphwtjnoaSiFdI/XK2Te64V57hIiynBRy+klS5E/bbriBtcn3PiiFiHRm
ilEtuuG9l9e0W+dRxNFUS+a1fjfMkRPpwPkoYnZ8dV+RdDfMGInF4VKOICLq
yvbcS13g2e8x5qsriYT/WUu59aILSvEMmUknJJHW+BGR1iddsJbyIW9BTBIZ
Ny9lVQ/qArGq5K+ntiUQ5S/uUbI+XXB6wtf4YIUEEjlvKfnAtgtad3pHjmpJ
IJZ+teIZJ7tgy9qvgrNcDFlYD9u+8rcTpCrlQm5kiCF+TWrLOaOd0FS9XUEK
F0O82ZTq6AY7wZGva6HWXAyR6lioqyF2QsS29heuVVHktn0W04vqTnC3DjYi
qIsiXRwFZRxvO6FBX7D08D9hhNXnxdMs607owOzt/9MjjPjOrGp9tuiErnpz
964aYSRdGanKNe2ENPMsP4l0YWRh2WUVMUTf97Dc0NVcGJH6Tl4QONMJe121
C6fqhRDNzPIrXoKdID6oMmtcI4hon5iQvTtKhBuXPW7NMwggrS6yedLeRLhl
f5ZFi8qPNKV0ZMXdJoKAl4bGhxl+ZFOmZHL7JhGiEmU9clv5kZxxWZlhJyKM
yx7aKUvmR/xCb7KWWBBBj0LljjzJjwTpcrq0qBPBylY8sdr3MOLtH5ruRk+E
buKp0tEjfEg14zBnm0oHzOwZm4wI8iG3a78yTCt2gHJpudE0Jx/ibaV6mF6m
A/Lfswjz7/EiUunjseeEO+BGuPDe6hAvQrzWatLB2AHPKyN3ApN5EVZoFTLv
bYdI9YanLny8yG6/wLXyh+2gsmpLryTHg7Qe98jDNrZBpTxtPV+SB2FmyZO8
VNMGok63vqkK8SAiVjtcdj/aYLHFV8P2IA8iy7Jp8bioDVjCPdkZl7iRCG05
pt7kNiCGydgSirmRcdtav9qbbSDldpWsYciNHNBhbI8/2Ab/kvLM3oRwIQfs
bGYeWrbCrjPL08YALmR9fdlz/lIr5N1Qy97x5UJGbVSa7f7XCj1Oth8D3LmQ
a9kG+89rt4Jr1UxGjhkXIvb5oauobCu0XHd9MXeUCwkK0bGibLWAj7GvS2Mb
JxLwvFvs5KcW2NA2501R4kRumliczqT9AuHDYQzyJhyIy5EYkdDyZkgNpYbO
uLAhhcMXWfjdmmCaeeth/W9WRMXf70fY8UbwCPSqMw1mQdis9h4K7WsAM766
kiSFA4hU+7Gnr+vrwN8yScWTfT8i/cFd2CjrJ9TUqrVPrzAhfTjQCvWphVO+
HH9JS/sQScV5qVbTGqiflqQoc+xD7vq0S1w1RuDNTaW4RllGxPJqhg42tBoK
77z237FjQHx97lqPZ1eCzAVSQXw0PXLlZC+3V8N3eDGv4ZfbSIfoVmr+4uau
gKrJgDTPw3TIcbrYxrD0MvD31C08UL4LVh11piNKpVC41CNb7rIDPaed+Le3
i2GLL6X4mdg2LLk+vqxP+wa83Z4rLILb0O6i90aC9A18JcOfx/Bsw7amzqu9
xW9QoJ4CKQe2QQrfllA/9Q2WORat8aQtmHa7zODb+w3SB9NLSQ1bYDNhl2Vc
8g1CtPWGCXe3IKzQ2JnV/xu8X5N/y1G7CWeRgHcEhm+weGdWjaFqEz4QOwQC
9ghwnsuQiVa2CbvvO9Yw2wQ4J+KCHS3YhAv5xhN9VAIIFdaL4lM3YTG2yVVy
lgDuvZePOPpsQoprrJkckQDLdOrV4xKbwPVFIYzpAwGOWderDQpvwsusykL+
dwS4Yynf1314ExYw5bqKaQQoa6aPa2TbBJsu24/XEwmA580bwa1vAFlC9+xg
BAHmYqViI4kb0CDpuWfkS4CfwRzV1qEb4Mp504NqQIAwJqL03KMNSGL97SWi
T4CD3zvxQfc3wPfJrwsGOgSoXa5UzLy1AQbMhc8ztQigW2DwdclyA/4ddeUK
PkEAB7t+q1dyG1Aa3fryuxABzQdNvdGudfDWUS6xXsUDF+nKIb+2dXhjvlE5
sISH/kPUJZamdbiBu5Zhv4CHspWRabWqdfj+W3XJewYPhJXg/Jgv65ATElVX
NoIHvEiHjF7QOjDr6Nu1/8KDuP3kp+Jj62AssYmIf8FDXkSznqvEOpx6SOXd
/xkPgYbnZ/iE18F+xUJ+NRMPCvFYTX/OdfD7ei+1LQMPdmeZ9mlurUGWbmPk
lzd48An/XAfENWhoCK0fe44H9Tt3ZpoC16BGX3zVyQMP05CAefhgDUYdrkR+
dMdDZLp2jJzPGlzl8Z7+64oH/6Ou7JFua1B0zmfG2xkPVf0Rzy9cXgPLj/ns
+bZ4SDUcoGuWXgNMWRYp+xL6/PrOWnknDeoE7loWncbD8GXNP7WtNEhZfhvo
oIaHbI7fZa2NNChajWXlVsXD8s8fR8eraOj+jDqEnMTD+BUqmSmXBg/6ov/d
U8TD6AdOKZMwGtxOfXa/6wgeDn93SrEKpsHM7p7QV0k8sD1WJdkF0ODwdpBs
mAQeTktPWXp50aAzOzJQSwz9vX7B1lfXaMD3Vo+hRRAPmbttyo0qNGgpcUy0
48KDmk1re5sSDX7NY35c48TDw4Lrl3pkaVCpZ3Th2iE8RBOL58bF0O+/MvTB
kR3d/4vNr9ZZafBpWf1EJAsemHnuyUn+pUKlwVq/GQP6fSxJScdGqVA8z/vU
jx4P0HV+SG6ACj/i7ial0eEhRpm4erKDCqVBo6TFXRwk6M5isT+oYIHg4/Bb
OCh7OM9l9ZoKO5U+NvlUHEylFlDnXlHh9I9+wxkKDt6Z7fscGkGF27Stg8dQ
Xwp86JIXTIWjmfe5v5JwgOwgNrvuVLgkLCPQvYyDU+tuUQnOVODodyqQQu21
gH8mbUcF3IwF/8MlHKxePNthYk6FWJVrHvKLOMhO1clJPUuFMOFOpqI5HDhy
HWdVVKfCg7gcLD9qo46m49UnqaCwX9ksbBYHrmT6uglpKvQLn1t0/IeDRfkI
BmkuKnzyx4hjp3GQr9R3r/QgFcr3ru1VT+Gg+Uj7JwNmKgwY8BdjUZshZXpu
WxSg2d16azyJA+vGi+6ZUxRo79dxev4HB9UP6hpPjFPg/R/5aWHUhOTBv9WD
FLiylIUpnsCBTXOv8WAHBSKqz3ovjuNA/kdJivsvCvwEa8MY1NrjshmUOgo4
nN0gnfzPWZXd7N8p0PW5vvHJGA5u1/QxpBVToP7B/IoS6hZu/9ljRRTgiX61
NDyK7reD1tDZTxTQHdJy10Mt4mM91ZhBAWKO7p/NERyYTsx+Mk+lAPbP95Ml
qCfYHHXdYyhge41iooL6/S1N8dUICgz+LRKiDuPguGdA0aOnFDC72/njO2qr
WNZ/0QEU8G7UDLyEmq7fIpbvHvr+jKBUEdQH2edn3t2hgEaUQPTiEA4WvOZz
C5zR9dwxX0pG3a5hxKtmR4GEU3N2PqhjFQcVK60pcOxbx0cT1AmpQhRdcwqs
1e1VKKKu/xDm0WxMAaWz/tkcqO2PR0WbGlKAbVrFnTyIg5i9/Ou9OhQoijy+
PYhaNMVx4NpZCiguerjWo5YzFmMYP00BXMtoJgH1dfdkpdqTFJjStijIQj1c
Tn/okyIF/E8MKCejNri59PmZDAVGlu/IvELNf39p1e0I+v82cyQ/Q21VmkAy
FKXA8QMVwaGobw96fpEVoMBTksdQMOpZN1ZOFh4KjLeJ4f4zpnxXYZYdrZfh
nq3HqGPpBzabDlCA3ulldThqD2O5oBxGCiykaKxHoU4KeFz0YpcM1rV/cpJQ
d2t5JrptkMFcMIz4EXWGZJD8eQoZKP28d3GoSZE6PkeXyTCgmRJeg5qn8MJN
+jkyKAewcPWiNnkjfWhskgwCza6886jxR11cK8fIUOKaG8OI7uc/1oRbqYNk
cHjW81gM9XiPttiDXjLkO0zMaKHOGl1/bE4kg4Zie4Mtararl2KVW8hQeyRF
JAR1hFHbRdYGMvQFnp3NRM1REfIL+UGGWQ2WGTLqSufWqLelZFjiURSQQOvD
rOvh+n08Gdw1xZD/6kfdUbZL7gsZpl1c/b6hFtDU02bMJIP4bHHoLOpws1WL
4XQyMP5oYjyC1uff3DOPXiWQ4aODilca6utqcy9dX5HBrS7MahD1aISDzrkI
MiS+jf4mgtZ/PXvd5/lgMuhM1XTnoH6dWqSu70GGjic3P42i/ZNc+yNA0IUM
/AyaOipov9m3/7VbsidD71CRZQRqLLWIO9mSDPH2IWNaaP/yWBoJTmLIIHvI
MRxB+1uwRt+rVJMMx3LZ+2T+4qCqMudGhBoZ9AsuZsSjbnBvVlJQIEOd092E
2+i8uHrJTOX2YTJMnuBl+W/eBGcMJQwtkCDw37iSHTqvEo2yV2tmSOC4NcI1
i9o512zxyx8SvHhBsPCfR/s3+n6Fbz8JNiiDK2kL6Dxhv5jCWEcC+viNuF10
PpZsdbBwvyVBRhmXuzo6b3N3JvdWk0jgs1EvM4v6jemzqM44EgT80zB4h85r
U/0op9jnJFB1vJ7OtobW/5fkLSZfEpT63C3Yv4mDy06XQkaNSJB1hN/5LpoH
tJiGxDI9ElD1ru8aoHmRdvGcRpw2CcydrNYl0DwJEtOSx6qi60l3ZhpmxEP6
7a2MNHESLP2deuq1Hw9emUNuGrRV8IjJ52ZC80qs5OKOUNYq3H/dHrgujgfp
/+ma33u3Cq/Kj5aqonkZSLvA0ZK8ChN5DRX30DwVcKGUB0SvQhsPveimFJr3
CtoNrfdXQSk+3UJWHg+yuXyK1karcKk5NJwVze9u27RbKwsrcEhpjHfaGA8H
nF9bqc6swBX2gdBANP9dlKbi/SdW4JFSVSmPGR5+kaq3tnpXIIHfOdTYAg/t
MS6h29UroJC/ETV2FQ/yTRX5Q3Er8CCgPSoKPX901Wr5squuQLzvzXtb4XjY
DBg+mKG8Anc/faQ0oecX3+zddSW5FXh1wm8yJQIPivWGLRfFVuACPzcnNhoP
Fmk22o8PrEA1nV9K3ms8sDBPfnhZsQxnzgQGrKHnpdLlbK1olmVoH0/rcf6J
h0F4fGnt0yIoOxtlRB0kgKB6NFKfsghuUa/15DgIIGxTcTohehEi3uY0N3MS
wIA2InPMbxGqCUUBPIcJML2vZ0ZFbxGYRWpcmyUIsGVrq7QwvgA5Z76kwmkC
eLQyrzQKLUD22M9bfS4EKBl2SCt6MQcu1sfky5oJsMPcX84fOANmea8Fwz6j
5/OrfVwPLCbBbMgwIO5zMfxNFvTszhsH5iNWfS/nSsA9+0Ag69oAtH7kX+k1
KoPC7DPDicqdwPlskmq6XQ4N2aP4/vUq+ECru4TMfAc727TRExPZmAmLY4Sv
1Er46jk/lipPxGgbeu6aRgNwjb4nnUsbwwhdvBS0q1YDeC22M3p1s5hh72ph
zEotEC4cmjy/NovBWIVX4ddrYXzuYMxb+TnM9fIUQWX6n8BEe35YP2EOc2TD
wk2f+yfQp7bk57jOY2ZYR0/Mqf6Eku8KVo2iixhOge9UlaCfoBzk4e3jtYL5
rNThmcxTB505s9OOMSsYXc0PuYGidXDDWmMsrnAFo28GLXdk6mCO8tS0dBm9
Xz3lGqRVB6eFuA1V769iJsQN6Y1c6oA1lpO68YqEefsjU7quvA463A1Py9BR
MVc/n74y5VUPscbM5GoZKqZBJNpf4lE9sHoGY8tMqRjkSt81r2f14FxxL4b4
gYoheAk/0UuvB4VB16QBQxqmWtTcduhXPeiubSLseWuYN09X4vYrNsBkVBd9
/u9NzKfKdRcaXSMkvbyrNXBoC1P08jjXmUONcCPlrx8YbWGe8T15miraCKIZ
fOlNlVuY7x5xytWajWhuud4wL9zGNLH1dn940Agh5x0u0FXuYqoFx/K9qI1g
avos32CQHkvAbz/6ztcMic5Gkjh2Buw+bFnlqkIzvG3X1VTVZcAy2t/CPdJt
Bm2+iaryQgbsk5k5cpR3M6jJ1rpwJDNi501oTFvEZvA08L4eTmDCUn4bb7Jk
/wKm7Ath93aZsBdfenybqP0Fd555f002ZsaKj57ZMBz/Bfce8ZjQlpmxFwp+
i/eLtEDclMJy35UDWIGl7Ov171rgxGj8n5ftB7EPGFUeJDa0wgHEVNzdnA0b
yuP+/sxKKzjNPv3FPcyG3T7z9C+XcBsUkk+pEhg4sF0maqt4vzbgCaYLKb/C
iU0/4+OF1WyHIZFFhFbGic1PPZct6t0O8Rb/tmfFuLBB57uL2HLawWp9otSN
jhvbnsme1i3WAV9HEjM05Xix0wmRWSf5iUA0sxL36uDFStZ/14s5R4SiO32O
guF82Isil+f53IhwfSco2PUIP/aja7F9bTUR7hG81424BbD7Iz4OpC4T4dSu
U228qCBW6P24F6tUJ1w4+8BnMkMYuzT4/suJtE7o/tv05Lm0KDYzU/9I4kgn
pAYzBf9eEsPeLr+Zzi3bBVlxfd7UZxLYYf/WdrvALjgk2Vw10SaJPdF3puX3
QBc09kVa9bkdxV4ykm2lN+yGQD2W9NqAY9ji6Tvx5k3dUN4kHdluIost/MhX
zOjeA4Z7P69iwxWxjvhPSKJqL/wfXweqsg==
          "]]}, Annotation[#, "Charting`Private`Tag$2623267#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJwV1nc8Vf8fB3B7z+xCZvYIRRHHiNCQBopkloyIQl+7CFFIJCqSFdU9F2XV
+5DsuPbWkFLJ5Q7jon7n99d5PB/ncc7j/Vmvz1ve87KjDwsTE1MUMxPT/59o
a3tFrV8MVud62Cbk3iyEv3BXpT9yxiLslI3bWD9BWYD7lfMsxzGl+3yf2+Wn
YXxU94XBBXusgEPj3wDnFJTf9g1zjbfBVj54ZLw3m4R9Qekv9WessG0e1IB7
zyZgONlxUIdsgYm/fdTSqjwBM5/lRh8Fm2NVsmKJtxvGwSz/uenrAwiWod4Y
VOY2Di/nxo13xptiTVUnL9XyjoPEsrW8z4gJdvKsXJBPyxjYJJp/O6q+H3NW
q1+MsxwD13aGneu2fdhY5vexdt4x4JnfNZAvZYTpsV75pjU2Co+vrGZFhOzF
Dv1e5Nb8bxRsRAl/Sxv2YNmjm8cWHUahWYIQ8khkD9Zram4nqTYKqRyBWW8X
9LGea3/zn34agVO+tb6sonpYVTRx2Pf8CNxJyNh/nLAbs7JvL561HAHUbFd1
uuNurIrrl0aU6gg4e/7pKSnVxVoMI19W0YYhtrZBg59VBzPQ3DGnnzsM5sMa
8+/jtTHHnqR9xfHD8B8SIOTCoY0dVo1qqwkYBk59CA/dqYWNvAn2y7MaBmY2
nQ8DtzSwozcjDNMZQ5BCvqRtyVDFjsb6aNAjh4C1hLXbokYVmzDaX3POfwjs
je9zXQpWxTw/+4kJuw3Bxt1g5feLKhipIPGjlfkQMN2kf+BhVsEwG6OlJ3xD
MCRDcX/qr4yVxlQmHXkxCOW5OQ7P9itjkkZTtpZFg1D8XYvjK48ytqB1+vfF
+4Pw0Tf41fRLJUzBJDPkQMwgUEuDU3NYlbBz6qA/e3wQaCQBn+lRBcyucmxJ
iGkQamNKP5G25LBnO1DvqpABSFBliw7+JoeJLv0SuuU3AHqy0az/dcthFy81
Wlz1GADD3+ecPzyUwyiL85dTjw/A1LRT47cDcljPvIVFmt4AWOdc9rmtuhNr
CCQFPVzth6You/LGn9KYw/FDGx9u98OJqxnX6rqlMYVioR9Dif1A3Hlwgu+l
NCZQoFGxENsP+ZkD/bWh0ljw1H3JvWH94BBXNTfFIo1xyEZWabr1wyM2bXsL
nR2Y3J21C7d1++HLt9uWcnVS2EkL+qD1FAnY9k0dTn4qhfE4VdgajJJA5ND6
qkK6FBbESJNQGSDBE44z8n88pbABbE+gdAcJst1NlTAhKYz0x+yPZQ0JJMJ1
LDvCJDGWHa5wLZ0EMcNFnJZnJLAHAm3Nfy1IIHozPkjcTgJ71zOJppuSALmW
O8a1XwJLDQxY3rmfBJOEWDXb7RIYh4ONwdHdJNBf7bLQmhLHrikLl5F2ksA/
jL3UwEccm3r95UInow9GVx4liqSKYXdS0sMlr/bB+eI92xWjxTDZu5+cvwf0
geaDoTWbYDGsjppVW+fdByyWkeWk02LYQDZP1aWTfXD1nmvGqJIYxhBkUmIx
6IMoRyONtFZRrKE4OplG7YUzqeymJsKiWEzJAiHvWi9sia6OPGcXxQZehDCM
gnohTLEgXIMhgrFpiy5P+vRCm9hZYc9ZEcyxlFaveaoXXN703X/yWgRb6kjP
WNPvBUtZWvCe8yLYTOCnGF3KR+Dk/Nnx+t02rOqBb+uX4I+gz+zlNF8kjLE9
87d+frUHKCyEjxYPhbErgZ6514J6YHlq+1JJljBmkhyQaHWhB6R62OiJN4Qx
IRs59TnnHljqPKZR6SOMPdsK0ttn0gPqoRbGURrCWE/bho0aaw8YZT1vJTUJ
YWOl+lyiWd1AuRRtPf9dEAu6Gd+dVN0FVgpfP0lNCGInI3/fEarqAt1NHV/n
j4JYW4BqTP6zLii7UjG1US2IBXTnjtXc74IUz8vU8XhBLIE9xo4e3gW/qbZ3
Pu0UxJ5+nympNOmCpkxVgXhvAUzaV2Jitq0TTPeWcerx8WPJri/9rGY6YHhV
//UeFn5sJDvUT3e0AzQXyh+Yr/Fh1xpSD8mQOkBZ5GV7yDc+7MFLw+L15g7o
DfOJ0HvLhyVn7mxuKukAGbJiu3owH7apOOoeENgB2goHf5VP8mIJ/2pmL2+1
Q6Vv6reqNh7M1DpqmFOuHWSXX1SobHFhuh+cUhPTPsD0Y/urJQ6cGCH+RELj
9/eQwfkm6vESO/aXNYjFOagFghBK17EGNqw75HGXvVAzTDjH+p1IZsW8y/e+
kHUBYBQUcvfHs2BMZj8u7aY2wZERVPpUJDPm6nXxc0Z2A6CepQncSUxYFv/N
mIXYOoi/p6455PYPGHHiZac7X8O+1ITO6Sdb8MOStdBKuxb+KhuOxuZtQYHo
5/EPqrVwpDR8QOHeFpxLutdsp1gLcz62d/yTtiBf6PhDd8lakCNwsnEFbsHI
ZuvlWpZaUOE/rhuwfwtkvrk8Eh6rgQ/Oz+YnhzdBDFLCbyfWwPkL8WZagpsw
q09ujPldDWF7HhDjuDaBw5n+Jfl7Nfg5ObMMM2/CcFyNQ+6XavAYVTeIo21A
VZorZ/NoNVzkymr/PL4BDrY7B2xaq4E2/f1r57MNSLY9VqTwuBrOj3IQ9xhv
ADX+kCzvqWpwfFi79dRgA/69eUB65FANRu213MLaG9C2oNFicLgayiPM3Mly
G3A3pMnjsmU1XNcrma/h2ADMoD1ZQq8a3CZz3ngOMIDh57hLX6gafAgPQi0v
MeB9dTsju48ISUGaXnNeDLjjHcbc3E2Eizz3KbfcGPCk2F10uZ0IOcTJP70O
+Pedp93cMCL8rdpm7m3IAJtPl4J9UdyGi2glGwNuPw4w3Z9NhKNx0enlT9bB
N1YvfM6VCJshHexueevw46iKQZYL7uaDHNvurYOqbzjZ4jQRLGbWCqKT8Pcz
tu6EY0QwqTXmPxu4DqL6seKNFkQYsmc7o228DnxqHeF31YjQPH6iYffoGjjm
5WbqMlAoSBn7db5/Ddqp9OK0VRTkDINjMrrXoJhuq7BAQ8FvX1HPEqyB+C4Z
j1oyCpTITHpt+RowzvtMBs+h4MWV/Pf49TV4aCDhcbsfhRfSvjIfZdag4Ijj
ffsqFLZFcxdxSq6BScrJw6LPUai77n7NYtsaLFWweXwuQyFjmUW0nmMNwrIy
ixKKUYi8cJTvOXkV0qgWV8gPUXAvJF5/2LwKdmvm836pKMi8LH6G+qzCucSI
rhl/FIrIj+si3VdhL+Pe899+KAgvkiUtXFbh15tLgZsXUOCZoDcOHl4Frm3w
QM0bBcXJo5EM/VUYnFQMI7qioGNcb3aKZRVmtAZeRB9F4cItlm75zRUQYaoK
6DiMj8fL/MEifQXYUTKrhD0KCSP8K8k/V2DeQ6webFAI1fpThZFWIFwmSMPM
HAXlSxURxk9WYODQv3y6AQrGv5JGePNWYKNQJytaH4XK90oBU1kr4FSnfppb
D4VbeVImMUkr4H+9z0pTB4VPBUZurYH4/9LmK56o4fNfYytxxmQFeJyVN4x3
oiBufrtEa+8KKKkXRzHJovD2R7QHs+4KqBRwNHdIoyARuOpeobgCmqZNd723
o3BiqsNng2cFgsWSdneKoXBXrJ67bJwOfwt//zrIjwL5++zA3CAdbokd3unE
h4/nplWjUi8dgjO9Mv15UchSK/nxtIUOgiKBmo+5USj7MVFYWEmHcy6jWuoc
KKwffn7qcwkd9h+ZMTvFjsKeyhfKcoV02MfOevsGG75efxzECrPpkKZ0uusn
CwqGPNuUi6LpwHTyz9TUPwJoa6WUfAmnwzrxRZk87uqrhgcUrtDBizhf6veX
AEahJoRiXzpYGVxHWLcIcIPClFt2jA63G2r6XBkE+Jdp+37elg6/c2lajesE
8JPuZ1G3okPvK5YmadxfdzytrzLC63+n6/NzlQA/40LXiPJ0UNJxnyynE+BY
0wSBtoMOcy8LyuRw906kRewVp0OUK/VxPo0ATt/H9Bt46MBhf5cvn0qAa9cP
Hm6h0gDpJQ/AMgGelhiFsC3S4M66zw8H3PTIpCLreRrMGxkpzC0RIJTPWKF7
igaNihlcErjzrWxzhj7QIDHL41bhIgHa3jtySWA0WJDif2eHe3NHV7xLAw1k
lB3E1/7g45nmS5l5SYP6C0Zqrrjly6bF5Cto8EWj8us23Ck8KuVexTR4lO7Q
2LNAgIBp7cn5XBo47fzYbot7Gxf1ukYWDZa4Qhh8uL0tjGWD0miwzPrFdvA3
Ad7fTG0lJNEgXutGbQHuxX6vQGocDb6mvDXxwz2x105y7380uMy2MmOEO6IL
a424io8/OCufF7c7j7/cXz8ajJHTPRp+EYDJb0+FmzcNHhB+iufiPv3j6e63
52jQ+vfqh2u4U/8dqJd2wevfVRTggntNP9Ms6gRe//lxXjPc6wIqrZNHaFDd
m/ZUBTemkGptfIgGUbFquiK41bkPtj20oAFboEwNM+4Mr68WDBMa+EePaFF/
EuDxxEKjiyEN/iW0FPzArS5L1q3fTYMUk2NMn3CzzIUWSWrS4PmpX07juN8t
sPNH7MLn35e5eAR30bpO6KgcDQRWmL/83+dGogb37qDB7WsuwhO4106Ea+WI
0eCA7VX9z7gzbZ/H0QVpYPS2xfon7v3ZhT0neWjQI/jKjo57QHxOqIaNBqUB
ZaZseL0D9SxHRP5RQXdRUkEct4L/zbgr61ToexRMU8e9JEN/3k+lgnrYjloL
3Eldn7p1F6lg4JLk5YZbMqjv6915KjQqyf67jvsxzzHy4lcqBDw+disfd0Xp
z6Uj01TYGXNr4x1u3SPqP6pGqcAWoHd2Dncgf0E/7wAVOJnflgjg61fF6Hx1
qYcKTO33JvbjVtE0i+9sw+sxUlz///p/bEo6qNpMhfKWUab/74/tkfXP5mqp
EJns0cmF76eh3w2mVgQqDJ8STLHEnWLf2Pn0ORXWzt3Tice9HjdHcH9ChSBi
rzY7vl8Xa5T53uVRoUrhXJI97p+Zmaels6mgsyOsJRv3rLTUm7FkKpz2nZ3T
wc9D3377nr03qDB1XbQnHrfRl+He7Ggq2BX8lz2CO7Ze/qHDFSr84MrvTCYT
wCqi16T9LBUO7Z6rEcTPY+/Lf6+UTlPhbll6QQTuVv9ZvgQHfH4lOj2+4fZM
IMebHKRCTk5pQiuFAHVnTx0maFPBb6Oevww//ymbp5j41ajw4EJd/y48HzK1
vB76KVJh0+5ZUAVupr2kGAVJKghKLOu+WSHAnKXOZhYzFY5Hi7XT1ghgE299
KGyDAvv6HVUf4HnUMP1fyCk6BeRf/5g2xfPL4uSCs8RPCpD+yFrmbBBAnJHl
n0eiwGr00ucAPP8Eue0yIrsoMPlPgqSO5yNX8tV0l1YKrLUX8y/gfvNkSECq
jgLK3IvBEcwoVF1wk8l5QgE9i6vv6/D8PXrEkx6WR4HzIj+EMvF8LsnULTpx
jwKESx2lAXh+R6sOhgjdooA+06dyLS4ULC4Ofb8VRIEzKXHLI3j+X/zYURB4
gAJp87V/Pojg9/eqsb+tIQVErJsuDoii4KItzaa8mwKqU9ZyX/H7xcqsO2tS
iQJt83/MeSVREHh7VcSajwKFyeX7b+L3U8Gyu6zQ5DJ0aLCeFdqFgpRXxf6w
iGXoebMpn2aMwp/m0Bb0yjLUPTr+Zc4EheooHV5ywDKIxEa5WZiiYJ2aNn3R
YxnchH+nsOL3rZTZyQgXu2V4dv3I01JrFG5yPZHSll4GfT0nu8uOKMh6QXER
LMFFYyNLjgAU9j2lO4/UL4GbhkLo60AUupKTgadmCTLLXhz2u4zCdGXP4yvl
SxAkZc0YuYLCbi22B6aZS9DO36U9EInCq9M5HO2eSyD5rjHcJhmFEfbKMzns
S/C3hOihhvczC8FZgkl/ybCg3cnsUoFCYG727ZllMiz+2lN1uxLvn651zKaN
kSH8qogM4xXeb71bXpopIUNmBtllow6FIOvzbk4IGRSmRfPudKPg6ObgmxG2
CE7jswwKBe9fUpnsx8cXQPmnhnaqHREKD12X1vq4APe3XGYvHiGCNjdrWyy2
AEdlM1zsHIjg0M1TIF+2AAmxnklieL/Y8eKsjlPYAuTMdvX2eBChXXKwJ1lg
AW4VZtx8F0mEAkZu3qb5b3AwRaYqKokQ3JSeNfHsJ4wHHsr7T6Ia7pO4Gyoy
v8POv2dcd2xWw2sLwbp22VkwUPnFyNteC/OSbulGqZ/gi+H9bJdDr0G+98I4
VI3hORhf0HnnDeTFg1HYIAmojXUFFOF6sA+Ujvq+vQV4bn3M0M5rAI8C16ME
QzMQnecWjPdoAocZ9cp45RYz36Yroctq7yCkcP++U+0DZqZkjwPHWDFYW4zX
a/eaMetesb4oLNEMZtNrCbvM58zs+EMMBdRb4N/Xe9zpDQtm7D++aY35vYcf
ti6VNSUUM6Kn0zXa21Zw5opmErqwauap0YsdkmwDsid9ita6ZXap1t+loL4d
ui4Ntr56y4Jc3spPvnCtE9RWpcy1+lgQ7Zb0+eboTghrhRfYZxbkTKm+tHxi
J3g7eiuqs7Ei3wyDFBbvdYLK8Xf6/IdZEau1bZXv0U4Q0hwiWX5mRei54Tw+
i50gemyH5A5pduTgQqpkl38XvBziTvy1zIlU6Tg4forshpm4dboiPxdS/jbm
aNqNbghzyzS4q8qF6L/XIlukd4MNmxRhy50LMZHRTfxY2A2JTcVeR/q5kBs+
PH/OdHQDo4R9wPkdN/LJvz/gslQPPG09iKy08yKvdgjJnG/tgbIMSWbyL15k
Js3wbVRfDzQa/GnZI8CHjLuW7y2b6AHX0BlN4ik+pKdU8eKu5R5wP7jtXOo8
H+J6xWl8QPYjCBzHfpFlBZAhWmKVYPRHcCy69V42UAh5lmmfh1r3gtHVTCbP
G0LI9svbWIVO9MKKSaPU5zwhZGkx3iDevRdCl24YZLYLIRZhm9yPInoBbbFa
+a4sjGze1M5vqewFJSlFof/IwghP7Agvn3gf/H1NDNnXLIJUuZopIVt9oPpV
q6H4iwjSff6Y1wkOEkRQ2oixLKKIyvDMU3EBEtzM+Fibe1AU0YsIUe2VIUEY
LyH2Yb8osonYhfCYkuB4TlfONKs4cqtwgcydQIK9vwWN/y1JIi7sUlZBO/qB
43M2J01LClGM5erWUemHXImfh2wCpJCqPjXb7fr98DWp5CXyRwrB2NmPX7bv
hy2Xh7m7WXYghJWa3eYx/TDbMJ4vnCKDvDUNM2db7Ie2ywa+N77JIFtbb2wk
t/rB3Ou7d62FLPJ0xggL5RsA56ttb8icO5HrMqkc/JoDwGIe99rMTQ5JelRw
SPXyALDWNtzguK6AEOuSZWe5BiFjSy2opksBwWS5S8/LDoIm87Eq9p2KCIV9
mBFhMAhfX985+m5QEVHi/aVZ5DkIAX3ap8bClRFCGzendMcgPPaecSeRlZHe
aCeLutlBsFegWtCCdiEPFzhr3JiGQJK/7OdkogqymGFIlTkwBFXSR0KG9NWR
gfd05+L2IVCS7Y66x6KBeLJJmhIWhyCygWUyfVYDwRLPpsxLDAOq1fLWZl4L
YVo5cGk1ZBhMzsnPLYnoIBej1Wviioehr83bWXy3LvL8eVx88dgwGEmaqrxp
2Y20zHGE6DiMQMAx2V1n6/SQiBLzYOvsEeiRFZ6dGdFHDhO/zEZ8GoE4nY7t
q+p7kODSqVsR+qPgHWhgXdy+F2HzPhJSljUKgcLlScNdRkjSMdmZJKYxENh/
wk7xgjFiN41mpieMwWnGZ7k4hinybdRkG11+HJjb5uRhlwXyTDL2RfvyOPwP
XQ72hQ==
          "]]}, Annotation[#, "Charting`Private`Tag$2623267#2"]& ]}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{
        Scaled[0.05], 
        Scaled[0.05]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["\[Eta]", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
         RowBox[{"-", 
           RowBox[{
             SuperscriptBox[
              SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]\[Prime]", 
              MultilineFunction -> None], "(", "\[Eta]", ")"}]}], HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, -0.4306807289133189}, 
     DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, 
     PlotRange -> {{-8.955815089046379, 
      5.4573291409938625`}, {-0.4306807289133189, -0.06583390760243146}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {
       Scaled[0.02], 
       Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.887174806703617*^9, 3.887174840687421*^9, {3.887174885053684*^9, 
   3.887174892708169*^9}, {3.8871749475866947`*^9, 3.887174977753584*^9}, 
   3.887184952567544*^9, {3.8871853867115717`*^9, 3.8871853957260027`*^9}},
 CellLabel->
  "Out[100]=",ExpressionUUID->"2310df91-f2f6-4cb0-8fa7-e0535e8bac25"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]2", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "1", 
            "]"}], "[", 
           RowBox[{"3", ",", 
            RowBox[{"\[Gamma]", " ", 
             RowBox[{
              RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}]}]}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"3", ",", 
             RowBox[{"\[Gamma]", " ", 
              RowBox[{
               RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
               "]"}]}]}], "]"}], "]"}], 
          RowBox[{
           RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", 
      "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]6", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "1", 
            "]"}], "[", 
           RowBox[{"3", ",", 
            RowBox[{"\[Gamma]", " ", 
             RowBox[{
              RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}]}]}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"3", ",", 
             RowBox[{"\[Gamma]", " ", 
              RowBox[{
               RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
               "]"}]}]}], "]"}], "]"}], 
          RowBox[{
           RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", 
      "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{
         RowBox[{"\[Xi]", "[", 
          RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", 
         RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", 
        RowBox[{
         RowBox[{"DScriptMCasD\[Xi]List", "[", 
          RowBox[{"0", ",", 
           RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", 
         RowBox[{"[", 
          RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", 
     "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"0", ",", "3.3"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"0", ",", "1.6"}], "}"}]}], "}"}]}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"PlotPoints", "->", "50"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\
StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\
SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \
\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", 
      "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)|\!\(\*StyleBox[\" \",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"|\",\
FontSlant->\"Italic\"], RowBox[{\"-\", \"\[Beta]\"}]]\)\>\""}], "}"}]}], ",", 
   
   RowBox[{"LabelStyle", "->", 
    RowBox[{"{", 
     RowBox[{"Black", ",", 
      RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "2", ",", "6", ",", 
        "\"\<Caselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.875952981547227*^9, 3.875953205695381*^9}, {
  3.875953297097693*^9, 3.875953297193099*^9}, {3.875957011270492*^9, 
  3.875957047134419*^9}, {3.875957125424335*^9, 3.875957151767858*^9}, {
  3.8759571836897497`*^9, 3.87595718748908*^9}, {3.875957237810454*^9, 
  3.8759572647954397`*^9}, {3.8759573310521803`*^9, 3.875957359900523*^9}, {
  3.876209125582448*^9, 3.876209130718493*^9}, {3.876209246657913*^9, 
  3.876209255553268*^9}, {3.884690546688959*^9, 3.884690577225401*^9}, {
  3.8846907201244907`*^9, 3.884690753852927*^9}, {3.884690875959548*^9, 
  3.884690937551785*^9}, {3.88717520576867*^9, 3.8871752589375753`*^9}, {
  3.887175361564186*^9, 3.8871753678913107`*^9}, {3.88717542408533*^9, 
  3.887175425325357*^9}, {3.887185406738522*^9, 3.887185422722349*^9}, {
  3.8871854939327173`*^9, 3.8871854996999493`*^9}, {3.887186514007268*^9, 
  3.887186516174284*^9}},
 CellLabel->
  "In[142]:=",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJxdlnk0FVzXwK8pZB5SkjEkMkTIQ/aJVHhKxmRIZCjKEJIImWeSylAhlSYZ
HuWaQsbkypWpaFBEiju6E5f3fv9+Z62zzvrttfc6e5199qDsE+Lgx43BYIic
/X/n/18CgUqibFNlCBCYqlHEAWhGTMSzTfdCvNT5VEWcHfye+u/whulBiDtZ
8V0B5wVGwbt9NpnZw9vPSdY7cCEgvGQ+rGLmDZN71JYkcPFgEZCeXWgWBhId
CtcWBvMgy4PQ6m5+HZqsjo5aDJZBo+ceG1tMAXClbFh/yKuF6WeSAwx8CfR6
yAg/uoOFrR5TQfjeCihSEZovM+mA80jxNRQ+BlN1i/+Gorvh1qySf9fO51AT
5/lZIrgfdCs9J0S21QKXx83xyfpBYFHuli4/qIchCZma8yHDYDejYRQr9QoO
DRoclfMagb3DGB3iUCOEdYWJ9kaOgs+Tw1ZCEc3gYz/kJO0/DqNeh85OqrWB
5R5P20nrSUiQt2mekO0A+bM2PumOn+FuwfsPGUWd0OXoP2RpPA0nktRcR451
wa7tG8626CtsWrXFG27pAbZ9ejUofAdfkZTyhsle2FCdCR8SnAGXmK47W2f7
4XOlZ/AY/w+IzhBckyYNQAHwvKum/IDtP9/1arvioFtvBPGTf8L5SIl7bYsf
IGN9f3jr4iwolIypm1nhQU632WTLyBx4EETSPcZHwM77ZOXVwV+AvWVLVLg8
Ch/SNnr2vp6Hf91EklZNx0HGVr+5vHQBfEq30in+k3BZXyfN69ZvaL1zb9ft
hs9gfFX49Lv4RXjeKH2DVfgFtpU9+iWd8AfOb6KTtS99B7xNf9tc3F8ovmks
9vLQD7CnG4hHhi4B/6uHyzEPZ8HiZdWQeOwyFDx7FW77chY+9pqf4UtYBmHn
kBoV7Cykn230ZCUtQ2K2fcjCew67St2fy1qGt4dlpEYos/Cmm4U6S5dBh867
R91qDh4r6kTmtHD0m316ZZbnIC7P+kvs6jI0KzkoR7vPc94jKv1jLAE8GO8l
bQPmoXzhrf1IAgGU45Jld4XPQ7RPfwU+mQD7PRaK2Znz0GOuN4nPJsDlbWV4
tZZ5sAjGV0/eJQBm/4m2YPkFmLh2KBrTRoCLpbymhxYXILBet7iVTQC36Ijy
008WYbM6uzkZEWHyMKX6AnYR9i1VXe22IIKICBzN6l8EFuNgBa8VEeReraWx
FhaBR1teLdWaCMJ6ZpiHmn+gfy1ROteBCP96e301qfsDYxbP1up8idA6J/F9
3+BfsDu++/yxDCLsVbxZbYcIkPxNAEv8SIQIkas/ME4EOCg581JtnAjuH6SK
+wIIMErrl3ef5NzfOiV9O48AWIU5v75pIsj8ebfN9DsBQgIPvXw0RwRnheTA
Hxw/ZbOxxdF0IjjQel6EkYjgcfzXaKIcCfCaTxN614iQZGD0o0+eBN6fTqRq
CJAguJAZLaJEAofhpARpRRJEWHvZlqiSYHLk3MvcYySI2xWd1qzNkW8aTFOq
JkGKSi5tCyJB5YGrGoFRZDjszh12wI8EGcPxN2pTyDCsyk7pCyBBMtcHy82F
ZJA8d++kQyAJ6myxcoxaMkglPt8XGEIC35fz+M4/ZM7/8SU9iCYBzbUqSM+P
AnI0hrNJLgl+sXwtnp6jgujWOG0uLAmqO7cvP42mglBj/fjDZhK4KhIvdmVS
4X7n8GnrNhJcefil5WA1FbIcborfeksC/+mii2EUKvQv6u8wxpGA4hbPxiWv
QM3Anj+Pf5Cg9aexgGobDeI74u+bi5JhC/8ptXUOi4bfn3PnsHl+aklgJw1u
siuz8BwWtHRWdhymwecAq0m8OBm22xc9vP+TBsz3VUw/KTLsKN07nbWZDs1r
Woz8bWQg72eN95yiQ/+/YvxkFTJUKH2PJLLpgLnemDljTAa1+BAfIS8m2Oed
vRfvQ4aE9DNTNpeZsEXvpqu+Hxmu4MQ7anKYMChwYtevADJEnWpR/9PKhAPD
D/nsL5Lh9KOIbfryLNBGOJLBFTI82jGUbD/HArsWDEU3lwyzE43epbfX4FG3
V7lwCxnKe2TeNNSvQTSXZOd4Gxk+XHp1Z31oDTBcgUoPOjhxqMdWqAmw4WZp
/gOzXjKwc+XjhmLZQOX5ZzEBT4babzsJqyHrUGB7AR1dIENqxuqHEYRBvZLS
Td9lKLCYJy0S5IBBXU6bK8dlKWDBDq1W9cUg/2pV8aEdFFDWjbrOTsMgw1Nl
1zpVKKBU9+m+HR6Dvl+Z/tOsQ4HK64Fm7wO50M5OHTfWYQqEgjhhWys3En/Q
RnhzhaPfHLOnYJQbGXVaW+vGUkA85La95RI3irXMG6uIp4D62bu7TyjyoJuZ
BndyUimgkn60SCOVB1UnzRsnFFLgVS9OM8mLF70x2vZtrJYCruElt8ZjeNGJ
zOUrQQ0U8DV43RJcxIueFnbl8mApkK9+Zil0hBdppWRZmLZT4ER9bOOENR/i
rqh3e4ejgKxUPpf0kU1oNKIH4/eHAp/0TpponduEWlyIY6oEClzFveErytiE
mnmfxc2TKcBVO2kZhduEPJNWfSJZFIg0e0MMOcWP9vpnqjYIUsH3r1NOTJIA
OhqUYdylQQXDAi48n5YQyun9GnXqPBW2K7e35rkIobOff1BNLlLhwvwF/4JE
IXTxS2aDfBjH/kLRScFpIfRqSl+WcIUKKfMusZRCYWSxW9W2OZ0KT8MF0tKV
RFHfvVRgPqHC81tHWvOdRJF2Sk+OBCdvOk4HEA0yRFH+a+ly7ToqlGS4JTpT
RZHwfmXDsCYq+IdcvWk3Iobive6p7Rqgwk78uWL8hDja7fi8weUvFfa/Vnvu
TBdHP6Xc+2uIVMiv2iwNWyWQQWEZElmhgqWK+1ZrVwkUZWGcPcamQsLAi3PB
3yTQjlzz8btiK1DWqW/bzyOFrAW4uCT2rcDZmlDHmVdbUOU1sSZiwgrc6Z/C
3lrcgs5qJFu6p67ArZhQc1UlGeT0e+9WXNYKdEloXP+ZI4PqvN8we2+vwKX2
JwJxEVtRYm+Ht0z1CgiK3TA/Ei6LPs4cEDGdWoHuOlLoYawsiq8kearPrEC6
aO/3xHVZdGrcsXb7/ArsNtCL/5i7HaWfip5WoKyA/7JG49t2ObSl3lCwWIgG
jdZJuGNBCmjAGTMXYU4D+rO/47H9Cqj0YaAClxUNNhU7Hc7ZpYgOhO9rLbKl
Qaqeznz6H0XkncD9ZdGVBpvfX+u36FVC5sVRTMUIGmCpW7O12EooGDtTKBxD
gwLaeqqFoTKS6D6psimRBlWRG/cVnyqjn4wnJKV8GlB2JPE/K1dBQs/tu1df
0IBmaLdZ5ocKGph5be3SQINH5bL6PGo7EUv+QWV7Cw2eZvs/L6jZiQTLK2bb
Bzh1rIuHG/NJFX3MNgqJ+83xv1xVYjlzFxpcbRcw0aRD06nr2Mbfu5C8Qq/7
NX06WGXPf1qz0UDDhs/WRv+hQ4uGF9Nly25ExKVi223p4Hz0vvu2QU1kF/wA
mxtMB3qFNzP5oBbSu9HGHx1Fh4MPLhYcadZC0v91yF5NoEOViBTL5fUeFD+e
l/K2gA5BQecL2qZ10PPbWn4xWDpEBdXilkN1UcFGdInmWzrYVk1lTfPqIcWa
Cb6V93SY3u4pRnmoh8xKKrZ9/UaHPVZErnA+feTa/AUrLciAxTufqwT99NHv
wv9466QY8KUfpzvbp49SmjA+wQoM6ChtL+ArMkD5o/sH7PYxwGQ79QDB3xCp
YN4V9Xlz+EJ1Y/acIWoedktKvciAZqMiPuY5I/TXMjwwOJoBjkZmN6zijdFj
pciVthsMsFozefqXZIIYx/sjE7oZoBoYn69e9g+6K11x4TmeAZJKDZ96HU3R
LyNq8OZvDFhwMcfzjJkhsoN5QBCLAYnlp6PXVRBqvWbRtmTAhM5SsQnf+wh1
hqlrLVkwYcUv8eiw4kFU+Y9Gk54DE6oKJB6dMbJAGfZHfHPDmNDAKHK7NGiB
jimoU6uvM6GJX3PAN9AS1Y5q5u0oYIKEeF2YVcch1NE+fpfyHxO0hZrSkqOt
UOFq4pxPDxOQkUCs9YHDaN9dnyWdCSZcSshmDM4fQVmXF04vrXL60sXoUNKc
LXKbbPFLtmFBzmDO/ezVf5El/3rpsicLlLzPhb1QOY4uZXDG/zAWYHEKBr+c
T6CVORs9RgkLPJ4RX78SsEdNekYPHGpZIKxbbbzUZ4+Ci6cI+3tZoBjl/D0l
1BGZkIifeyksqD5p2Nbj4YSGMuLH4oRW4eVb7w1jd2dk5BWV9nPnKlC1dEUH
b59EgQX/zE65rAL9SXt1w6QrUtE8aZEatgpqLdMSV4zcUNFIN31zzipMRMjp
FDp6Iied0fgvvatQxYOzPy3nhRYxl4X/nVsFSXF1mnj6GRRjNj84zrsGkdOe
8iJ3vZEIjdxXoLYGEZJaXfY4H2Tw8+vZO0fWQPSAk4+5ki+aKXPrXg9cg/PV
/S9FSvxQhLKe6a+8NUhLYxpM7TiPxvOfzLd9XQOtTu/Mj0ZByNaoXGid02fx
GLGm6JKL6AN31YKXIRvkEqm6Ulqh6GOaeaqcLxvO/Uq4SmkLQyUDa/iwW2wQ
vaDNdLsRjkJGmLdfvmPDi1kDPdmGSBRR78KvxbUOWsdtuLNMrqAfEcUi9mbr
YH+l71GAaQyqNhdvKItZB6b2mN+l6TikTY6SqWtfh+qrCrXHH19Hmg9Gcy0E
N2CFyNB7F5CMZsWU9dGpDdBy5K2r+ZmGan/j3cZqN+DZgdV0m7PZ6P1fSuFb
AQwn7z6clt9zA13nF+N/Yo5Bu8oKx+wP3EIrbuZ9UTEYlJwkfKibuxSV5LLl
5DsxSN6dxIgcqkD5PIt+gZJcqM2Y8iL18RMk2TN3+W04F9LYjb5et6lHFy4v
csf95UKZ2Z+d6ozfoHH07cWxTG7UQZf9prZjCL2uiJR2COJBLSIH37u0/0KX
Q8e/Zf3mRQanv6rr5xLQ4ZndMXxn+ND/AI4HVkY=
          "]], 
         LineBox[CompressedData["
1:eJwVj3k0lYsaxrddZMhWpkKReRNRZg7va0chVA5CXYkkkp2ciogGYylkFx2R
kg5xVBIdhYrM0iAU0VEuShK+79uD4bp/POtZv7V+61nrUfVnuwXSaTRa+mL+
343qNhkfDv7EhO3aai7+wjhW6V0zq9OAydIVojcn6ajO3LgwmlSJmZHyVJkF
HY1Swlv7v5SiWpvMD+GHQigfrHQhm3kbN7KNI5iOQkiTTfDZ3JaLM1Gimzyn
aGg6cXW//fRV/Hrx2gFaMQ0z+D71sjaXMcCmIv9BMA1XufbnyP5zEdk5jGzl
TTQ8fYQnUVGejHl3+o+X0Wg45iJR8bMvHvNfndGPKFqAo32jHx/0ncGVab8E
jbsWoPI4U3FwIhbNbFpWLGMswI6H1fiMEY2fUwL+Xd86D1khDKv9gycw6KjY
04AL86DVF8scNz+G9mWNmsI756FzgCiweHsUlSr/yJSXX/RPDqxufXUEWScT
96kPzgE98qVGuHEYBtgKyz0smYPmxgJrdDqEgyF9wvui5+BgBjER1HQQQ9te
bO11mYMBxZPrM64dQM0HPZdfq83B6Vcze9VEAvDSmE2R+7tZ2OPzknp3YR+m
vqzaHFM2Cz13/2ANW/mh9bXeSe8Ls9CrLGobss4Xz5JXXrcEL7JwdWTIsj1o
12GxvtRxFooivMz2a/jgd5mKd191Z6FbtE15xxEv9LTKveMjOQsNsy63rGI9
sP6o/3zhewGkOiWXzJi64yMTowX3JwIY1xJRbJb4HUn/ldnTNwXwstqdkzu3
A92NfHobwgXgu9c5I01uB6qW2nl+8hFAieWM5uNYVxRrnOm8byeAgf6RL1rn
tqHiKr+svYoCeG495Sa7wQmTQku9mSICKD42Hd086YCbOOY9iVN8kFtXwVN8
tAXvnU7RGmnnw41tN375iW/GcSxjnU7iQ73kfE0ki4UhHd+yrU/wwSFHzNs1
0RYLH003+wXxIb/OVuxvfUTZmAhOkwMfoso2RLmqACZvcLZbYsmHKg2T/qgZ
azRRDBjnrOfDmo50dlGHFcpl5j0pleKDj84j+aROS1zJVr2jR+cDL5Ht4Dpg
gccLCkXJGR4Y3J22slAxR6cThxJ8+niw86zl6RRFE0wvC5LSLuHBbc/29eps
Y1R6znQuu8GD2vKuseA2I2Q8zegP5fAg5qA9aXFtE9b5hHxOjuWBv3pRsGGc
Iaqo6JtLefBAcqzQ+jcRQ0zLMjVU38aDV4SPOkvDABfeBpr52/Jgxn+I+Bam
j0r7Y87t2cCD4ZKlTXb7dXE8595WNXEefC+sixqp1cH08Fp/IToPujumIrVV
dFAL7iXM87iwM7fF8dxPbRzdOszd/o0LbceNv59q0UQyQy/9t3YuRCdq7q93
0sT3xNGH3AYuXDc3ujrXqYHlvUN3Omq40C55ubN0WB1PPJ1vqrvHhYAJob0/
LNSwNrmZXcnhgoiYtX1dtyoSHWphupe4oOydyGAfV8WobC2bh0lc6F/DquDX
rMPlTj05QtFciLuolynVrYy3p6XmEvy5UG/glrfcQxGXMAOl+425cMpBIt/s
vQKe25H/mG3AhRTHXU05XgrY9ljoirQuF9yL1Zi3D67GEC/hD/EqXNBtnQmi
lchjuXSyq6wEFypcFMpN78jgVoYH8+5XCmLOv83cuV0GCyPNPsp8piA2ZlOb
L18a4x4+UUzpo8BlyYFqeU9pPFvZeuHKWwrYn36XT1RbiYHTvfYbn1NwbNKz
1EqcgWnp32e351Nw/jS9LylDEpf1pvgevU7B/K7UTjMlSdwutSUiN5uCv4tv
tcabLEfru3EWkhkUBErkyVnGi+ODI+bT289SsO7XGo97scvwWciKFscDFHCS
Owe6NJfhezFpYsyfgi/hpwqvvBLB0YvZahl7KVhxzPLNCw0RXNs7oDXjRcFl
Gmekc2gpKueOHRJ3pkBH/1e04NBSDNsT5j2/hYLVJj8i8vPoyPJv+BJoREGp
361LCbvpaBjqbBtqSEHx9Q/9yQp0dBE97xupT0HZh4vVb7KFsGrQOfOmNgVd
LNE3rQU0pE72ypiuWWRTj7+TO+ZgPIdf4y1CwY+wQe37S7mgYcR21h0goZDd
VH2ulIK2z4w72X0ksKbYcv94UFBztfu5xAcSnMzzVuiXkvBxbaY4rYsE45/R
K+IOElCeK3lCpZUEleGrdyMUpuGaiiLDoIqEkdQPf3qHT8C7Y+55dhwSbn2k
4/UlE9AesuG18WUSwvp19/pn/QBGutphZjoJauE8lm/9OFg/aW1USCXBp+U1
10/vOxgl75bViCfh9oic7T7rURC79Nrx9R8k2Jybrc0x+wLerqYZHl4kiCt7
nQyYGQLPP9NuPPckoahY2GHqwRBYl2T918CDhIq4zfe9DYZgWXDAchk3EhSS
azLoRv/CM/Mwi+ltJGg9O3x/pnIAHMyOu6/Cxf/CJRI6rF7I9c66+VaHhCg3
8SMyX3uAoxpWc4pJQtquR+VziT1Q1ePI0dUmgbM2I76hsxvMol8FpmiQUP2p
eN3z0PfQVUH+tluFhAL7usKON28h5dZ5gbMcCQGnrFdEhbQD96Ojsjt9cd/q
VHP0uzYocdg1yhAiITlH2oxp0wbik3igbYEAkeHca0GrW+GLUBHbcY6AcDsl
w5HBJigL2uflzSVAr6Sr8kBlPdi5Jl55OUFAIxk9nvbiMejZOvz1Tz8BY1JP
p1THqyBfZOjm7T4CcmVc9UZXVcFhpZ3j6R8JcExMrCWOPQLLhajAw70EmEZf
v+6zrRwgC3NMuggopSq2pJQUgYpQwX1aOwFJa/QKmPAXMD7d9V1oJeAFe7dL
SHchGBTOGy60EOAySdCKpQrAK+GnGb2ZgEPp/9ncsysHWHGT8XINBDQ9SJQb
rcwGW7utEmvrCRiPr1bKWnMVQn825mu+IMBtwUFwRpAOHEb5hMUzAhwaVM0N
xlLBPrjrpn0dAc1JNMHcSBJwqFRvt9pFPyfUfdv0WUgMMJbxqyFgyUBa5bBc
DGx+qtoe9pSA/wG+jFnf
          "]]}, Annotation[#, "Charting`Private`Tag$2642333#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJxdVXc4Fvz7NXrMbLJHMovMyHrvT2ZpWqFsopfMl4ykVHorpYxesiIricgK
GVFWiwhJVmY8PHsYz/Pz/fd3X9e57r/OH+e+r3POXp9Q+wtsLCws1B38b///
qQoIHlNlqMK4h9m5EUVrKFIzHFNjGIJNKYb8XfEsEDk8RzUYNiBmquo1rOgP
2mq7h00ZzhAtWr/7i+JleKmV0xPPCADxJL/2OsXb4Kh7vSieGQ0/Kp+lnlb8
DwYKB7Hx7Hdg99UE+xaFUnA5KveiWuIJcJhelq3kbARN3MjcjeZnYFPC8txA
5B20HbRtI80+B+GS4tyzV7vB3yw1v6DxFVBSLyhGnP4E26Pn/cT31UJMCLdb
2OgA+O1/EuA10AD2onP9Oo1DsKDbdqw9vRnkSqpNfiWMQLkolvs/1Aao9fiB
K7t/wOpJjM200TuI+nC5L/XDT5BRky87dqoLqglLp+WtJiGoKWSZM+4DOAXX
veg6Ow3Jgb8b6lh7IepAOMHh6Qy4sK69yXvYD3Gp7JD5aRZ+nt4v+SvjM1hR
r9wo5puDyuMvnmCCByD2NcakxGIebnzujjov+w2yHVTT07wW4PstlqZe9WG4
ahIcmZ+6CBf+fKn7bD8CuCkBKeOKJZg3G82YZY5BHEcq3+cfy3DnuIzeTb4J
KA59YfoX6wrc322/cs9nCtZn7s6EiK7CA/Wf7/UjpuC6NpVXUnIVGqM3J5YT
p2AOT7bokl2FDD/PjajCKcjW0p0UV10FD3MhG/GZKVAcTuh+Z7QKnOn5pZY6
04C7dbBNwnMVTtytZ7FsnIa5BBuJkfJVyFz4sL57dAbcPIW2SwALKc8/Zk5N
zYDrorAcpyUW8mtPdL5ZmoGkYxk+F49iISc6vyVhYwY6BvOdD9hhYZtrkPec
3CwoRuRtvfbBgjI+qMwxYBaaH2bd7UvCQpVcje4jxizcK6HH7fmEBciv59+0
mINT4fJ6Nq5rUKO8HBZzag7OvTc9kO++BmJ2l9QZLnPwlHzPk+y9Bo5xZe8V
Q+bAizsxoThwDfrNpJsHs+bgsdr5Z5j4NdBTNr71dX0OfPHHFofy1+ACvy8x
o3geJAx9y4rm1kB04Na1oQOLcIbRvvPideCJnTw+arQIJptOcuSodZDJU7i0
ZLMIiwRjvfa4dfgznE/Q9VsE5u+PxY631mFM9KFKUN4iRJ/Z33Ircx1iny8I
xwovQe95L5eN1nXokZZ+8YRzGU68czhZgMHBul1T/KLiCjgifYVaBxzc0WUv
q9dbgepI4+sMJxwUqP64lWG5Aq/UVFVsXXCQe+NEyy3/FchpNLGadcPBaCKm
TadiBQJW5H6K+ePAtayeY9hwFQIwZa33YnDgE/SCQPDAwt+CJ/Sr8nCQ1KmR
wx2Bhc9fTMXZC3DwlOs/R/2du6/yHDzp8gwH7b5v/umuwIJ75fda9jIcODEi
uqbpWChvq47xqMZBsw4ugjt7Dbo4BK2VunBwmm+oYs/KOlxYvnaYtIQDwcLF
iz6sOOBcprv/u4KDq5fr+234cBCoNEyRWsOBFwMzaaaMgyYhmyQLIg6uZdzi
GN/RqeZYrpq9jYPWtxl6y004SImLlvQQxsOVPfKHVVLw4L+anGtliofnvwWf
bubgoUrY6tbSX3h4WoH/PVuOh3NuipTkI3hIa/s7efEDHhQnA64MW+PhX7P2
7U8MPIzF6ytessOD4HGNKZVIAvQoeD1u8MdD8u5OinQIEaJkfKmtqXh4KeJf
oZJAhMJP4UIBGXjoULHSsUkhgp0yqV8wEw8p7nmu/VVEELadk/fPxcMfQdlv
v3BE8DtaGyhRhoe1At9Ir1gShCa32ee+xYNFSM9h5TwydLROaast4cGSK+Gk
ZTUZdJY4BBb/4EEzyev8tS4yTJ5kfVmKxUObaLut7R8y3P7Rp6JGxEOqhT/B
yIgCkdG3/9Lf0fHBwux4wwQFTIKaieGiBIhYOKJDMaHB44WGD8lHCGBdZKN1
w44GFvnMCj1LAqgTduE0A2hQ2PnRdcKaAGkYpc75NBqstpwS1D5BgF9jaryT
KzTww3JzzZwlQEdSxtODxXTAKywpBF7a4XNUnfHT3gRZt/yze7MIYKBvybhs
uwnmGTLhc9kEqNmL1ar124T3LrTY53kEwIZ+Si9/sgmvKg676RUR4NvHn91Z
mC0wy42561hFAMt22bej81swqwfvP7wnQPFcT+PnfgZoBerphxAIMBNjGJ2G
ZcCV1jeRj8gEcJJ+GZklyITNCVbOOhoBRG6n/Ah0ZkKu1HN1JoMA5m+Csk2X
mODyp6+khJcIqpPa+3OSWdDYfPnVQ8pEiC8JKBAcY0UiUyK/w12JkKMQcN1q
jRXxttRvd7oRIUIy7djzXWxI7WFos5gXEdR5rSroOmxI/2y3coc/EQxca4rG
U9hQa3fHHvVIIggmDE2L2LMjjouRAqceEiHdbX7yKxsGiWzVeG52E0ErM5a5
IYtBK4034m37idCkIu7nZYRByiQT35zPRPA0ia2dCMMgGR7THPNhIij0xIm+
mt3ha9EFy2aI8C+XtYP3Nw7E8zKd5+MWEWbJ5XNDi1wIDPBdWfqknZwfmh7k
5UaJs1SK6mESjJ5eXlPW5kYzrclBTSYkUFiXejscy43EuVgP/DYnweNn/P8G
C/GgSCG7RHu7Hf45IbkCe15U9SuptDiEtNPrKHhShR8JP6LcMK4ggVnr4MBh
Z370hMV+nPMVCcJ0ViVE7vCjk1U126OvSVAu5VB9aoUf+W2adFxvJgETuTqL
vxFAaet5k6Q+EshIpwu4NQii1fuFAsHLJPjzpFObZUgQfWox2BOIJYHT8Ft5
8rogwu8LPxOIJ8E7Jue5kf1CKJf5OD6SToJSvLdFdrEQunmEnFjNTYavW5K6
HuXCqPwZy64v+8ngbCwXVPNRGAW/TfzOqkUGT92B85fWhFHvuVkXIz0y5AaU
aSscEkFMWlJWrQkZ6sw3zGt6RFAldpz2/QQZroV3v1JhF0OPZl6nj4eSgZzS
JWv4WxxFYt1PaTbt+NDchHuXtASSXzx5zb6NDNwammqlDhLoiCdX+dUdnwqc
0Ki40iOBFj2YmgufyfCUYLVnrUkSKfGssrD9JoOyJb00/Is0MmuikKL4KfDQ
yZ1vSUwGRTzjrWUXpYAYVX77rocM+ubFXpklSYGRs5o1QUQZ1JaR/HpMiQKM
SwmGYRpyyNXAqKrWhAJXIh3LLMMV0OTdONvVQArws/ypP1iggOy/Wbyjh+3k
wFHnQMJXBRTfLqgkGE2Brdb45zK6e1HseWNNl5sU6GkJa3vKqoiuzCSuu+RS
IOTBYSfloX1IUkes0HSAAiWTLBFFwkoo0OvVkeURCozbbu8NclBCoS4iioW/
KGAcJe64NaaEkthMnfRWKBAjd/eDKVkZpbhHFy9wUAEXNCljEK+GpHF3yuoR
FfZcHrf0/6qGqGpS/JU2VAixaGjyUFJHReoyijWnqDCnOdwzOaSOyM6FKtNu
VHDaGK+ssz2AArC0xqlYKoh847dtrTyALIblsswTqeCpb63GLaKBDvJZ42vv
UEGhcY9C3ZwGOuoTIdiVSYXS9lfEm6UHkbwwLji7gQrNkd18X2W1kFnfoeiY
NioQ/pS4Y7K0UIDoxv6AbipEmD5O/2SrjW4GRn+NHqHCw83Ofh03HdR577lh
KJUKjTNRqo8m9JD+4v59XGY0+POFQ+WngT7qnqDISlvT4Mzw1+o36fqoI9R9
wfI0DRwEv35OdzqEsG0xY5PeNGA7LxOB3zJAF/W/kY3v0MD9pbI3LsQQrYmr
0IR3cjfcYXQuZs4Q/ZDL2c+RSwOJr5mGXeOHUeOB4CpUTQPmLvM6Nroxun5s
0EtynAa8i5DEed8EDewTwf2ao0GX99RxfiVTNIHVCelap8HN3kV/MT8zhO8s
ziVh6MCpzSR+EENookv2Erc+HTz/CRzniEboZabz8hrQIZOoa0P8iZBhdSf/
9nE6RGpeZGbUHEHyYVLUTD86tEhYl2ukWSD7gKr8lUw6rDwLmzqjaImeBEvz
nSulA3aiaECsyRL5jK+yYerp8PBk/bfDW1aI/bYYSWKIDmKsgyJ3y63Rb6k7
wbdn6WAeo3/My9MGxQvdCzEi0AGF5SqxLh5FI0cF/OOEN4DawG0i3XwM2d34
vMS3bwOK5Al7vLJskcRrNSGC3gb0USUZHbEnEM8hVoumsxugMXAtjevyGWTW
KH+ovGADrH2bS9Wl7BDrusykSt0GzEQ+K0zstUPbhapY0d4N8Jxci4y0cUDD
5ItXnfEbcKRA1l1ByhFZ0ARTGzk2Yd6X2aix6YjG+LzMn8psQqjpaibb2lnk
GvWteO9Oz+WUt/7hYXdBD7DY/o/em/CiccCFqeGKJiNb/5OJ24T69JG+d73n
kejNZ7FjL//Xk2f8FsAd+Sl5f3fp2YRc4v1XHSMeyIjGkf5idhP2SWXJPjDy
Rh0+0xY06S24OCj+goB8UAKHZqqw8RZUctEx+d6+KJv067SJ6xYUlecVEvP9
UPY/HuNJsVsw5dXBidu6gFSjrMs4c7bgo5e71rHrAaguifhkrHULOP1SKrMO
/o1EvYt8RGa34HpYF91KLRg90rdiN9fahgrMnYOJSaHI316096rLNpSdXvOR
lwxHYhFcDXU3t+HZf1t2xfkRSDF2112Jmm0IMBbYddstEmUhxs3Z6W3wfd9q
6OFxGdmZf8c4iTCgfzjDm/g6Bhn8uPug9SgDZg01GhyDryCpsXuO0YkMUHbV
ehNemoCMFC82rLUy4OeR5rhGSESXGZENJQwGRF0YXEhNu4m4LqlLG1sygYGN
m28JvI2+H+79HvyQCQOj/mnrxLtIYB4/pDvDBHMpGb784BR07m+RXR6yLGh/
4wEBD+k05JPPdPp4igURC2L9vfCPkdaxqKtLSSxI7Qzt5T3tHPRLsIQh/Z4F
bcZ4p/A5FKKCAvcET15WdGJx4H7ifCm6mdv0MseDFSU5D2ar9b9CPD6bl106
WVFR8T2bvspG1N6ZcF73Lza03+XCI8mKLlSv9Ho1YJoNsR/VquzrG0IsPHKe
yb3s6EyqguaXvDVUeP+0j+NZDPLq9RSEp1T0pMVgk5OKQf8Hv++MCg==
          "]], 
         LineBox[CompressedData["
1:eJwV1nk41AsXB/AxtqIkRiZL1lwqSciSnINsuTLShkJCKWvpVVFETZcspVDS
kOVeZc8WkVDhcgtRoXSzpBKhd36zGu+8f5znPJ/n+zznnD+Phl/YngAyiUTK
Fdb/+6zhpau5N1jYeK1v71mOOC784sf3qfyDh60cIw2CRDHkB8fDaP8zDNSM
wq5yMrqd/lb7nVyLtwf4f/mtJ6P3tB810L8MnXPn5ewbRDBfMKjT0F6El3z5
ZWm+Iuj68L5VQXceijXXPrujIIJ3ZcwaHj7NRlUpUe9PAyQ0iv99MLw/AwN8
FXylckgo304/NaebjsETTJnzQSTc0dOZIqhPxQf0vM8kSxI6MRpnKfuTsDhY
bLRZjoTJewwcDN/R0TKu4PHy4SUoVby1JkXkMm5mON9m3FqCiMNSdY2ll9C/
ZkbHf+8SHHuxkHM2KhYvhiiZl1GXwDdJueDB1hjkDS1OTP8rgEeqmgXuJ89h
kAU/6mGpAMTkKWGBy6Pwsf3DXfRoAUQkzlE8uJH4Mm1obKOLAA5siemvNjiN
e9c9Et2rIQCOYi1vm2U4Rht2S0HvInRoBN9oFw/Fb7FtDxgPFyHPLmRY4f1J
fFX+tLWevgiHzGcPp04GYXC01b1A/0VwLDogK6VzHO0S3uRcs12ErVezmlrT
A5HR3syQ0l6EF+fEvSV0ArB4zcZLf4svwo8eikZbmR8empUR1PTwoXb07bKK
7COYlXeA+7iKDxbpMzDE8EWHtRLylVl8eB2gqcZ9cRjTmr+mWgbywab3iXzB
jkMY7Lf5Xv1uPgjKlN2W+j2xd92dwTlTPryyKnY55nwQUxejd0Wu4MNbB9KV
DL0D2J6081UJiweM2VxegfJ+DF2I+hw9zoMKZUe7EOO92LTBJr6jiQdXavb8
/WS1G6pLj+XsO8ODMa8tQ7RAGkZXRitk+vOAU1VUlJXoig6S1xlWe3mg7Hxd
V9LcBa3TlS7UGfMgqkztwKSzExL1l+4Mcrjwx4pPj0zDHbGkpjr/6zQXZCdN
fGJzHTCgz3jcfpQLnhUeb5RV7FFCRVF3uJ0L9gbWSS0xtvjE0MtAMZ0L1trp
ifu/26BFwdH15+hcOCqwq7f0tsGLA2tKVkdzoddNOinlgDU63L9+/ZM/Fyi7
BbmHVwG6xRFK7RZcyORPU37tsEIlbr1T2RYu/HCJkbkXuQNvx9Tpt+lw4WYr
LSKNvR0j5Nx2HZPnwontNzfM0szRcrnLt9hZDoTQVsf/qjVD+cuukXmTHNht
8nXVUXUzfKYzv3P8Awdys+IDL4uZIudVmkVPNwc2vj/BKhY1wfnnbT2UEg78
PrDjh2etIZpWsco+h3Igh25yMNHDEIe7VFp6jnFgcsJT5iTJEM/u+bz5tS8H
RpofqY3u24Lx2xz0qO7C/Tcbn7eYb0Z1moxXmRkHvOV06fryG5CfNBtMl+SA
XWEUO+GeHvrWRGY+EuHAztKhqXcb9LC7YmXuTx4bbIOkz8jt1sWEANmVd+fY
kBxxmmdTo4PO0z0yFcNskLc6mMSc0cKMarWAtCo25BiW/udklhbmU9SNrUrZ
UJN0MZtro4WdHoU/eX+yQdJgdYh6niamfyxSLchhwwq/MdH+cA0sPMl3ufMH
GybbOsU7WtZh2uqDLfN+bGi7yVaiOa7DsTixj6e82XCkY6TuxBtVzP8c7Lnk
wQa9pZ4MqXkVrOgMaDZ3Y4OzVkmTnKMythw74mWAbMjuMRgmH6Ti8CazRq4a
G0olpXv1yFRcM5S+b50KG3psQy5wyhQRE1eN7qKyQSauWeG4lCIqVv5m8lSW
DYYOT12PDyqggci3TCkyG7alUK2VS+XRwStlQf0LC9JrP3q+05PFEsFdzq1q
FuxccSVairMKnRkfNg5UskA+ws2vPXcVbna9EkMtZ8GaVm1Nw3kZPFykD5XF
LKCvJ1LsClbim07bViUGC6ifi53WgjQm913W7k0U5rTkbMetkqjtw0wN8mfB
u+RI/l22BI7MVuw09mNB+OifyypbJLA27GMR2ZcFvs5UiZU0CWR3xdg/9GJB
6YftVTbnxNGtRFxa250Fa0P0Y+SmRVGr3cC90YYFTt31m7osRNAuv/+dpTYL
Qm1/bG+UFcFMMe0Ze00W6Iu0fzKcImFd2AvzveosOLRxWK80g4Tjz7I9z6qw
oCMqWVd7fgmUwyKmJynC3Ku3YbR4Eb4H266jSbCgPnuZhWMVB7I3PO42miZg
2/SztOdRHLC6Pdac9Y2A+mbm+wkrDvTsPq8qmCKA8s+WQcnXbCh8GynbP0HA
udKEmiyCBQ+DwswzRwkYlnhZLnKEAJPNY/7X+gmYGY8/8injF0gbi5tKNREQ
H69vXRfyC9oOVuk2NBLg28R5tGD3C/QKL0wHNRBw+0isZhZrAZYor9/21hHQ
m2Ome9JnAb6cL/lSXUWAO3Ug1BTn4Whm5tqevwhYb8AoIl+cBZx78NYgg4CQ
hm7/EtGvwLkf/GNrJAE3KV60j0NT8IfRJgPaaQLKc2PK/Sqn4IZuX1ToKQIi
bj2O8PeeAo/ZMkp5OAEVSkFh+k+/wPizG3vMQ4TzVh4y1U2ehLyYxqyLgQR8
by0ffHVoHPxOi+Q1ehCgLqIkpuTzCTrIhqnVNsL7cc/ZCJ1PsIqeHMuxJmB5
fHG/8ewoGBUqO6HQP+P/NeBdHIXYEJ5PLxBQbeQ8c6LoIyRM0qK5lgQEBY+1
ksU/QNR6Nf8zpgQod6//LFg2BPobZnYJNhGQOKMh6OC+gQjmCFdbiQDpvJU7
js53wcS2ba06i0zw43WN/K76EjLbdxVb/pcJcz2J/kN+z2BO5wblyxcmVNEo
IpUqj2CfqC6TPMCEtzWTzcMpeTB5lckyfsmE3xIUjCRs82DXmatHBS+YMLDU
sFZ/PhekEjcv6xS61mT32o4uBvz06eN5CR28oMWwvJwDfAUZOv05E5ab9v2t
r3obBsWC/zvZxoSxd28rtCvSgAUjdT0tTLD43prIrEoFz8qw9zlCk5O2hSvU
pcC0585NIUJnUms6LdquwUjwRJCM0PeSvm+c+nYVVP6lm7o/ZYK5x6Fo/TNx
0LfWdX6yiQm3tkjd16LGwnl+rVqD0MYZUnE0xwuQf9/1QrLQPAWN7V0V54R/
gs8LI6F9XyrS32efApNlHxIuP2HCfafIZP+RcNCobdXxELr6qrFZpGUovHY6
ztIXWnzKZaHk5QlQPZ/PJAvdVB4zHLTvGIzo22q8b2TCejlS2l9fj8JYnOr5
MqHvBbEfe8f5QnqbGClBaLX0fKqcuSeEqi2vPCh04d0DaXjeHfJ/Y/O9hf4f
PjPanQ==
          "]]}, Annotation[#, "Charting`Private`Tag$2642333#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.560181, 0.691569, 0.194885]], 
         LineBox[CompressedData["
1:eJxdVWk0FfzXRVxDRcicZKqoVIRS7B8NlDJ7CpVHCEWkMiQJCRUyJdIkFSrx
CClJEjIkFBqIhEzXnV1TXv+v71nrrLP2l70/7L32UT7ia+POx8PD0ze//7v/
f0a3pZRdKpKBVOFloZkuXTzLFFKJLlqFa84PZGa6dmLLnm/vYor0oa64xG6m
yx5lg6rmCUWmWG3xaudslzsq2oI8c4v2Y/3r44t4u8/gzFRRj/hzDxhpeq5a
0h2FoJuKtKLiQNA3C6Tt7U6F6uxd/ZTyGGSo2ud11j/ECZdbQpJeSTjHSR58
MV4A+k/IFTvfQFHDy8pc5xKsdUk8umzwNgzvpC6uNS3Hz/Dih1kxWQifdWj5
MFCJZwVHSgRHH0AmYeu6GwPvcPVzYr+fRS5WXEnICfhWA63acoGNl55A+avP
zSe3PmC726VviQsL0Hlr1HnznUbk12oM2VYWws2fuTDYrxkqFnZRXwKLoK2Z
+NREoQX5yw27l7kWY/jhIXPb261YdJwt17qtFNrM434+wp/B6+FVtdm6DHHF
EUyn1C+wtc9+l3TyFZZa/Yh5vKwDSuEKGmsiX4MTfNR6w9VOBBQ7xBf8eAOT
txT7AcVv2OHVvylU6i3y1XP4F974jmsf5Bw3e1TBZ/p75l3dLnzRKU6JrX0H
naMCJzjN3djV654YqP4efyJXzIRq9KD3QEF70qsaHNcX+9A+2wOvsJ57L2zr
8Obrbvfyml4M3t844LGgHtTylcHe8b9wTkd2TIC3ESQrm3X6WB/cw6J+G4l8
RCPliZDD1t8obdytssfwE4K4QvfkVPpxLkBVRyClBbNWhlqZwgPgcXHu15xu
Rfq5XP+UgQHYVB572l78GdbPCr3O/RjEGe+cq76J7WhKC7/cVPcHzpJqA61P
O7HiyOCCT6VDSMheolbs+h1hqnIijdXDSJPTcb3v141lyqHGIfUjeM04ELY5
rBsCG13LFzSPYCLE7/i3uG4Maa5XjmsbQXFSz+SOx924+CDkcdaPEcRKveor
GejGtIJWZyd1BHP0jROK//7Ed2lL+EuOolTXxqpSqwcBCmO/Dh8ahf5+P+m8
7b3wfhzCsWSNgiT4LNm+txcXjNfsqeOOwjnCWvS3XS8e/OZmGM+OwmRH/3aj
o704K2Olr08ZQ2/Wky672F4UWnb4a8mO4ceMibVUSy8O1G56sW/bGNaf9TTf
5vELEf56n+yjxmDtV+C/vbAPfsk7uVXyVBw/UJm8pLwPCbcyVh9TouJJdjj7
T00fDkWmxUqoUaGeFlX16kcfSp//7T26jooh/YrzI0K/IeAruWg5oeL3Dqme
SNffUE1WNa11p0LAXbhM9X8+2Ve8WfwfFU+/5Z87r9WP1ffN9nWVUKGlOCgy
aNCPinXO2vmvqLAxtPnda9sPj/fRQnbvqQiwM1ENv9SPvnPXRQo65/WN0reH
UPsxZf0zI2+OCkXrez5S9QOIZtRTnluMQ1z4qmDi1wEcZf2IVLQbx+U8/6YV
QwNQ7HNpjHEYRwIjISRUaBBG2ZQ6N7dxUAxnG9abDUKXYputfXYcQo6GzMyG
QQTTPrSsejiOaFOJova+P0hJe9gWPTeOrH2KZWs5f9BwKiAyjY+GViP5l5lC
Q0g/kbzKW4AGt5MesQ3rhsCv65oiu5AGzAVeOhY8nyv3abXz0jQ0r2mx7ZUa
hvxXY8vQdTR8Wb2K4+c+gvGc1HL7gzSUVnQt5T87Ar4KVpa8Mw1brkmynseP
IH9NfnqPCw3yW6RYfi9GoJcc+drXgwZ3nxoVh8WjKJ+I47/pT4PZHGVE/fUo
LPWtalfG0mAneHf2hd68r3a8xxRLaQhgR/+Mt6Si+p/PKoIvabggELroqicV
7bt7FRjlNJzUuFM6m0GFnuipLw1VNPgW6N+r4x3HT9k31+M/0jBTvpvftmMc
An5iPTYDNKTP1F9Ma6WhfIVdXZ80HUUh9wXV+mjIv9Kss1WeDjsLsdZmJg2/
U9jOKYp0GJnNpV+SosOr9qLAXjU68iXvVZ11pEMzVKD900Y6eLV3rvs0TIeO
/82VOvvo+M5Xe0FiNRMue6NH/KLo4NkhqmduyER89nkfSiwd7GDFwQIbJqRC
GLK3r9IhMGt2XOA8E3715dNtyXTUn4l/86udCbN7y50ds+hQNKgMZSWykCbf
q/3lDR2uHqrJG7Q5+FfRf13WDB1WkR/r3u3jgH+LmOApHgaqeCWUbnhx4PZ+
OGIXPwNhielPBbM4kKRJB7AXMhB9qLFQQXoCXKfS7lMKDLy5G7eFtpALy7+9
iRMGDHT166oJruXiucc/y9lGDMgb/lX13ctFU8TBR2wTBtycTgvrx3PhsVCl
bm4PA5yYIp06qUm4cwW4m50Y2NyYKSGhN4VkByf6jnMMUD0rlrc6TSE4adW/
Zy4w8NHfMYsbPgWlSM0tuRcZ0NBmOIU1T0Hj2VEzhTgGbnf9PHXPdxpaNi6l
GrcZkHktz3r3fgZOIvGiE5UMPAsPEfnbMYeCjT8fJAszoXM3ydZGgIdwSyLz
6IuZ2JPu8pi2nIc8CVn8zFaCCWXN40GStjzkqk1It6oCE6yIQhnpNzyEnbty
jL2WiaApR9beR7yEUmnC9bJmIm5FUAjnPS8ZrplsXvQPE79ib6fx9fMSiysX
bZ87MnFlpvvJbjU+cj+mI17cjQmfmOqg2kd8ZB326VECmWiLE+veXb2AtE4p
0vpuMfH6xpVtIsMLiI/Xx+yOLCa6Q16oWi7hJ2IdlJ5Pj5gIX+bL9TvMT4Qa
Xqz+XMjEBLUuwIVXgISvCalTqmHCqUBiQ4YbhcjpJjl8G5/X+2PixZdCIWEx
4y5abCY+3EOJcjWF3Cr/sCh2iokCU0WH1JWCRCzXPNNGgIVmL27Oe5YgeX5S
jrtZgQVjuU1dji+FSfAvz0dHzVjwT9VPOj8jTBr/iF58YsHC12VhvO0QIYOD
AaPTdizkDGwSIvUiZNFsJrXUhYUKg5K+cepCsqS6pCYnhAWXv28CcUGU3O3e
I5ZYyIKJDTV17qsomf0QIhrxgoVrKW2MG7piZPap9uawNyxQU8sEExhixLfV
oON2Ewumn1OVr1ctITNl/ygFD7Nwc/3Z/WvjJYjCV4ODTSvZMHbWOPyySYJo
WzxouKnFxpmrj1AvKknSHfONzuqxkeToX3I/VZLs2CPt6rmLDfET/hsaSpcS
VXXNWAkPNvp9fh9m8EsRHdGGES9fNqZjrPsk7aTI25wJVlsgG/d2OnxN4EqR
Xk/mud4YNko1bAzuH5Qhy0Uo6WOP2XCO4slvfiVDihbDtv/5PPaYsbqvKEse
utwRZr5mQyUod+zxkCwRdzU4YPOJDZMlyn8vPpQnZWmn+rQ4bJiHF9xc07ac
+AXtzfm1iwNzCAdePaJEqk22O9ZZcRC97X2rD0eJaK91//bBkQPfWeEuXF9B
+lA8p+LLwSWKnL70qDLxvPzsmEk6B7KZT60HzFRIJBllyGdz4O608ed4jgpp
dis5LfWMgy3Mt542p1TJ+i0ikqffc6BwV+D7ET11gsHOh0wmB22dch2zhepE
den6/Ik5znyfFtHctVeSvzituHLRBD6ZROx7arKKxFVcsxVUnwDvwJmv2bka
xCTn1kE+hwnknZKVUbDTJNSqkMsXjk6Akue9R5yyhuTdsBbTPT0BYZFf3s4R
a4nYgPhls2sTuFzy7x3GyHoS5x34waZhArLxYRfb/DaQPYn6ueXfJsDeqqwy
SN9AZq2rL50YnkBrQFpkjJA2UTbLii0W4SLtqpOB7B1tEkBZ89ZKgQs94czy
QUMd0rqwWpnM95SuELnVdX0TuTK29ZGGJRet9pI1wTa6pDKaP3KNCxeOkkpR
O+X0yIlNLXPXTnFhY5QRYtyoT8TmhE3S07k4axpmJD+0ldDrnV9oj3ChYVq/
X0zJkBSaH6nq45nEfwmzP72PG5EouTKVVTKTWNn4wuJIDiGHMrY/ido5iSaL
3Ta3A41J5wpTzn+HJjHVdGllxn4TYm8cypsWMInOpf16xdY7yBm7c6sK8+b5
lPZ/i/bbSWrES/p4aiaRHF334HbuLjI1Njhq8GsSFBth9UM8ZuTI8eFQ37lJ
OLSoGZUF7SbLVHRiChSnAJ4SKUcZc1K9Q5UpbjgFZsXSnoreveT6kPxg7qEp
fFI7LHDnshXZIvonpC9rCjvNX3ZseGtNHqdlP+WrnYKs6ZGeJEVbcqB8aGfF
6BRi6M2hlg/tiOH9W6u2LZ0GmzHT4uv6D7ELn0l8ZDgNnh7ptOHDB4jpIeN1
2l7TqF9aF2rwwJHofx93kkqbhkh4ovK6XYdIy2TTQHLtNJTOLtLmW/MveRhn
rTIzNY3RKP5FsRMuJCF1RVnexhkEMk/GUeTdyJ/L9xxFvWdwOIKt+i73KCkY
9M57kjeDJLXDy1NqvAj/xpiZ1dQZREjf2M/K9CEpMVUl+/RnYfFXLt1C7yS5
z0x5Jhc9i66D+o/f7z5N0j7ibVv3LNQf+5TesAoid1c7Oq6eT7Uc9QeltTyU
FLr/atn/9C+eS5VtjXwYQUR3ZJtFaMwhPSy9XUQzhthM7urSLJuDf+W53vT9
18h/5oXGqRt5SJ1G+w/xoDQiInf4wr70+T/iqb6vwDuLbAjxW3FTkZc0/bda
3LKqgMQz3a0zWnnJNYm/q3Vdq0nr7uCpJaN85JKpfZaYdwe5IG2fIcnHT/4P
ohvibg==
          "]], 
         LineBox[CompressedData["
1:eJwVkHk41Psex8foaoo2e7bIUkN6JjWZiM+3HKayjlu2Ials6Roq4yhqKluy
RIe599JF6rR4GBdDIbJk63BslRnFsUQkW+Y3G+O6f7yf91+v5/163gbnGe6B
eBwOx1jP/3umSs3zrOUndHdg0/D5v21AD4qiCPRDlSiEsYFzeScefVgLrNZp
fILqbhPda93lUIua1+V9fv9CFcuWJvhWHNoySRv1M8lE+Zx65WlvHDpopeWZ
1J6Mekvc9j/G41BDWMBFn5Y7KCRxlX3z6hrUEH5h5YTHoUjqYYsGTAZby+rU
B7nRqK5Z0XHtngyGFGbr9eKvIpJ3I6+bKAO55FCOkncEyrlce6mmfxUsbTm3
9nSGIc1Pxld+JqzCJefEp1eng1GZad0dbVgFewcKfaHzImKv0OQMZSsQf0SB
NWJ7HqX0u7kebFoBFtvqg7/hOTQ/cBRXkLICmgojuMoGX9SnbZ762WMF9MOe
91u0eKNr462CayYr0MwPlnVRPFEJqz6cIJbC+dz+R8mEM4ha/NzPvlsKoV98
pqpv0BCribTIuSWFjVfGqiwJbuhRYWxNOF0K5edeMkdZzohVc04Fo0ghfume
U6q1I+qY/7mgpymFY88uxRWQTyJGyICsVSSBV+zmD+QgKjqTrDP5J18CAh6p
YeqdPQox8qjSq5fA0Bv1K5OS40j1YMkNUrIEKCd05fNaj6FJnIjdGS4BIt/l
5GwJQvrWbGcvDwlcM3D13Jpog9rvaPO275XABzM2KeSTNTI/PuOmryyBYofp
UWtHK7RcQjg9uyIGlZ+ZH6NTLZGXxiOnjAExHDp6ZH+q1WFUuI/7vrpBDDHZ
ZBsleTIqzWra/KBYDObW1SVLgxYIfzUAR0wQw/Rd3bTF0QNIPWyb9eAVMVww
ra1grpCQxCpUXTVADH89+bijqGE/mmNy7quBGPLaNlhPOZqj10sfz3TvF4NG
uLvUfcEMyfsEbZLoieHem6FgbgwROYr1jLJxYsigkvLYAcbrvoX23u0iOLl5
ZsKFZYRCkncUGNeK4Guv9OTDYkM06d2ZfbxUBOq1C4eOGO1GT0uJ1QHZIjhA
zH4RrbwL0XDOSpNBIgh9UgbzP3TRw7gCpSm6CESaAV//+0kHERiutw1pIiDd
CvNM79NCu7/dfe5wdJ3f8M44wk0DRR4LuoZXEwE3hzoam6yOnO6u9b5UFIG/
BUeAOtRQ9puxVyy8CFZd/k7HX1BFgSZNeZwFIZx+a1db+n0HiljY5IV1CyFq
oNSG6bcDKfXcMphqFcLy7XHx4MB2hHPqGJDWC0ElPqSi6Pdt6Lq3ztY0jhDI
fyxOuG1XQmXcrmhylhBoLT9mroMiIpE15s3uC2EoMvGFGXMzOtBDD4R4IRgx
d1c2iQgoUbiHUcMUgm3UdxrllAJKV5DAnK8Q+nJV1b0m5dBaiAelw1wI+WnP
LI9EySFV/RStor1CYLN6xs5ulENvjQcvpBuu79X1XJQdwiHZg0vd7J1CUFiW
42wOXAVl88DVywpCKD6XI2/wiwgK7Nofj4xh8CxLSugqF8KJ1F35xcMYnJZu
eW5hLASKSd+deD4G36TyA2WqGLQFv9L17cOg76Vf2UXtZRiT/VaX14SBTMF9
kVa+AFOZ2imUpxhoOGyqjHZbgAScq0ptIQaSjEpc8+g8oPDbSdT/YHAjr6op
LmIOzPS358SxMcDhj5n+Vf8d/kmYtfVJwcBn0mMtbeMU/Mh05ldHYiCyJcvm
bk5CU1lUWns4BjX7QmiHxV/BR7FeYzQMA7XqNnkzbAKSzjDtiEEYGI0xj1Zs
G4dRCUFZhY7B6KmtameDRuC0QfLaYQcMMoi/mWbeH4bqpYh4hh0GTJ0gbib3
C5gN181yEAb+lv3UGI3PkOGuKaRaY5Di8l4nfRsPOpm6a70kDGIDqbD7dT/Y
hfBmLHUxyP1R9XpUtx8Y7pA+poUBnrpL2pXQB4Oa/LSHmhgsUN1Nhs/2wmyj
gyth/UfGv19MFAd3w81CXqmVIgYUh4BII24rGHSU55dLBJDW6sZf6n8HvJgY
jRqRAIg3S7iawhawfq/X0YoJwCYl22njqWZozJrOnV8SQFkSj/V511twqFKk
x30XQNOirU3sYiXI5++ZiP0igH+0xI7ZPK0AFTPywd4hAfB+5YVq+ZfDjKHi
CJEvAOetho/tOjig37ZX99tHAWjQxm23BP8O+/oU5nJ6BOApDG0IIz4BFzL/
s9KfAuCLxqV6WCEU1Tl0JXYJgC2jZvnSc0H2a1JyYqcAGIUFjfYkNqhDuq1S
hwBMb1D8rTQfQtCbzD+y2wRgydfdWW6cDjHk1L2GrQLg0q/HJEAirPo+OlHZ
IoD/AZPoZSQ=
          "]]}, 
        Annotation[#, "Charting`Private`Tag$2642333#3"]& ], {}}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, 
     PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> 
     Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\
Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\
\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\
StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \
\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], 
        TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)|\\!\\(\\*StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"\
Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"|\\\",FontSlant->\\\"\
Italic\\\"], RowBox[{\\\"-\\\", \\\"\[Beta]\\\"}]]\\)\"", HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 14}, 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, PlotRange -> {{0, 3.3}, {0, 1.6}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic}, 
     Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "2", "6", 
       "\"Caselle \
\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #3}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.875957126514063*^9, 3.875957152540943*^9}, {
   3.8759571847549353`*^9, 3.875957188180087*^9}, {3.875957249738762*^9, 
   3.875957266071168*^9}, {3.8759573346853323`*^9, 3.875957362091642*^9}, {
   3.8762091314286547`*^9, 3.876209168479266*^9}, 3.876210214519513*^9, 
   3.884690547837318*^9, {3.8846907344980288`*^9, 3.884690754914673*^9}, {
   3.884690931703446*^9, 3.884690938018208*^9}, 3.884691475790214*^9, {
   3.88717524120253*^9, 3.887175259408231*^9}, 3.887175368358357*^9, 
   3.887175480779523*^9, 3.887185424676525*^9, 3.887185504545484*^9, 
   3.887186516665186*^9},
 CellLabel->
  "Out[142]=",ExpressionUUID->"c5da7894-3e02-4b45-9ef2-8e0b3fea9304"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"pMag", "=", 
  RowBox[{"Show", "[", 
   RowBox[{"ParametricPlot", "[", 
    RowBox[{
     RowBox[{"Evaluate", "@", 
      RowBox[{"{", "\[IndentingNewLine]", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{
           RowBox[{"\[Xi]", "[", 
            RowBox[{
             RowBox[{
              RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}], ",", 
             RowBox[{
              RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
            "]"}], "[", "\[Theta]", "]"}], ",", 
          RowBox[{
           RowBox[{"-", 
            RowBox[{
             RowBox[{
              RowBox[{"(", 
               RowBox[{"DufDuh", "@@", 
                RowBox[{"PrepareArgument", "[", 
                 RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "1", 
              "]"}], "[", 
             RowBox[{"1", ",", "\[Theta]"}], "]"}]}], 
           SuperscriptBox[
            RowBox[{"Abs", "[", 
             RowBox[{"ut", "[", 
              RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}], 
            RowBox[{
             RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", 
        "\[IndentingNewLine]", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{
           RowBox[{"\[Xi]", "[", 
            RowBox[{
             RowBox[{
              RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}], ",", 
             RowBox[{
              RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
            "]"}], "[", "\[Theta]", "]"}], ",", 
          RowBox[{
           RowBox[{"-", 
            RowBox[{
             RowBox[{
              RowBox[{"(", 
               RowBox[{"DufDuh", "@@", 
                RowBox[{"PrepareArgument", "[", 
                 RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "1", 
              "]"}], "[", 
             RowBox[{"1", ",", "\[Theta]"}], "]"}]}], 
           SuperscriptBox[
            RowBox[{"Abs", "[", 
             RowBox[{"ut", "[", 
              RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}], 
            RowBox[{
             RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", 
        "\[IndentingNewLine]", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{
           RowBox[{"\[Xi]", "[", 
            RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", "\[Theta]", 
           "]"}], ",", 
          RowBox[{
           RowBox[{"DScriptMCasD\[Xi]List", "[", 
            RowBox[{"0", ",", "\[Theta]"}], "]"}], "[", 
           RowBox[{"[", 
            RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], 
       "\[IndentingNewLine]", "}"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"\[Theta]", ",", "0", ",", "1.4"}], "}"}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"AspectRatio", "->", "1"}], ",", 
     RowBox[{"PlotPoints", "->", "50"}], ",", 
     RowBox[{"AxesLabel", "->", 
      RowBox[{"{", 
       RowBox[{
       "\"\<h | t\!\(\*SuperscriptBox[\(|\), \(\(-\[Beta]\)\\\ \
\[Delta]\)]\)\>\"", ",", 
        "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)|\!\(\*StyleBox[\" \",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"|\",\
FontSlant->\"Italic\"], RowBox[{\"-\", \"\[Beta]\"}]]\)\>\""}], "}"}]}], ",", 
     
     RowBox[{"LabelStyle", "->", 
      RowBox[{"{", 
       RowBox[{"Black", ",", 
        RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", 
     RowBox[{"PlotRange", "->", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{"0", ",", "2.3"}], "}"}], ",", 
        RowBox[{"{", 
         RowBox[{"1.35", ",", "1.45"}], "}"}]}], "}"}]}], ",", 
     RowBox[{"PlotLegends", "->", 
      RowBox[{"LineLegend", "[", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
         "2", ",", "6", ",", 
          "\"\<Caselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", 
        RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
    "\[IndentingNewLine]", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.875952981547227*^9, 3.875953205695381*^9}, {
  3.875953297097693*^9, 3.875953297193099*^9}, {3.875957011270492*^9, 
  3.875957047134419*^9}, {3.875957125424335*^9, 3.875957151767858*^9}, {
  3.8759571836897497`*^9, 3.87595718748908*^9}, {3.875957237810454*^9, 
  3.8759572647954397`*^9}, {3.8759573310521803`*^9, 3.875957359900523*^9}, {
  3.876209125582448*^9, 3.876209130718493*^9}, {3.876209246657913*^9, 
  3.876209255553268*^9}, {3.884690546688959*^9, 3.884690577225401*^9}, {
  3.8846907201244907`*^9, 3.884690753852927*^9}, {3.884690875959548*^9, 
  3.884690937551785*^9}, {3.8846910297536173`*^9, 3.884691039714095*^9}, {
  3.8846916487180977`*^9, 3.884691709606249*^9}, {3.887185434179426*^9, 
  3.887185434707024*^9}, {3.887186470269915*^9, 3.887186475894417*^9}, {
  3.887186507374937*^9, 3.887186509750082*^9}},
 CellLabel->
  "In[141]:=",ExpressionUUID->"7bc98e14-1631-4fc3-aed1-367c66e81e01"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJxdlXc0F/z7xvUxk2TvXaRS9h7X2yqJEhElEkVDFBnlKRKekJ6iQsqopKSs
xlNGJAkNeRINW9k++2P37ffv7zrnPte5znmdc9//3OdS3Rfiup/CxcU1/Gf+
z/+/6gqpGXR+dZyOTqI5B9oi5L8Mfwa/IViePS3OgW5YY6Rxk81vDxbbytA5
0B91wRF/cwu4o/JA7VfHwDAoeO3TMxbYj9j83lDrwHhYHHw1yLv0BHqs9rTI
B6YjK/Osl7VQAvaPv9mRcOAWTmW3nKEuXEF24vWnJQaV6FGkJo4E5uHTNaP2
1sVqdLY9S1VqvgPKBjEvn6ZXWJGjHerwshjd8kJ/L2U24V6vWpXoi1I4e/K0
JNW9w14NIlQ7XoE8/+wnmyLbILnaSkpc+yk6dMNfJiy04+bhaX7z3c9hK/Vb
0G5HB8QqUoVnONWwvM3/7FNnJ9LVR3tlGl5i3C4tfnH9N6wI0K+zvVmPbuXQ
f2XCfiDzM5/a4YYGWDKORX4c7EGs8OV3myYaEUwbc1sn0Qd9Q5re98i38PCp
/STi1I/VJ33e5Rm0otPsXMSmmAGUNh90+8LzAckihBV/dRBx9j4PJA3b0BQb
qRfyZgjp46851guf8PVB7Mz+gZ+4dLTD7KP2ZyzkSp8Xlx6GkNPlwoWHXzAz
KiWxaD8CjkLVCacDXyHTIj+xed8oisxT5i8N/gCT2ya/LGsMHzokokboP0Bn
Mkbtbo7hkAjrry1LujF4pPlkZ8EYRAvpntpK3UhyTznK9WAMRmr++ZGe3Uj9
yVXuVjMG7urUAMkP3WAWm/ELDIyBac471tvQA0ONItZ9rXHwFomcHRvtRUCT
YDXj5TjuZAqdO87oRQ3XfPG51+Nw1RveyTXfi55PGnOSzePIvfHwqs7yPrCf
aFWZto9jsCZyz6B2H1yua39JGBpHuePC7byIPsjeTB3UEZzAYMDi0+Kl/Wi8
IiPV4TYBhViLBQuHAWSJVeTEDE+Aoy3WUeQ2gP6R5tSLExMoFNharew7gAdP
C2Rv0SfA5VbD2RAxgCZbtlDr/ASWbHk8/N/tAaSnqB9XF53ET4HQBGeeQbQl
cM2yTSchUtMyebR1EKKUaA/51Ekwgu2auxJ+wmU2eXme3hT8x3LEC9J/IlBE
8VGS8RSyrp2Lj8r/iQuVL0VCLabg5vduvUv1T0jXisnYbpxCeNluyRLWT3wK
5nale03hTsFWId2Dv8CZ2+cSETeFLSnaVoLewxgZO1Yk3zaFDY8qPjQcHsa1
NipR7JiCBYue+c+pYSjvev1c+dsUNLRybbyvDyPt6IzH6qEpZP57bcWbb8Ow
syjZbj0zBS99LmuevSPI2ehY/FGECh3rtzOciFE468pLXjClInQujzs7eRSq
LKK2w4KKtQUPZ3bcHIVm9rIWeVAxP/nXfqnGUXxJ5WE8sKNif1LC8VapMWQS
vscd26gI+jJ0Q6d6DKuaeZodDlCx6KMc6Kw8ATF+sXcl6VRkGC6vCjWawKfY
ndLJV6lIsPZtrnCeQFpis3xgFhW+IxTx7JgJXNKJ3rkyl4oHoyORk98msKtR
+dnt+1Ts4Zsap+VNgha3INlaR8XRErNSvZVUCNnGBz2mUrFSJ2LglQ4V/Enj
O24wqLikf2U4yIqKMrq+bCKbCtn8X6JTXlRwGe/bsGueioNVuTnUS1Sc/9zz
UEiAhitJZrxUXhqUj5H1Oco06FObrY1/03B2TW3z0W00zIXKOt5cQYcFf/q2
cFca+KOKQ5RV6HiUZdJ10p0Go9lKnmPWdNSfd12SspsG88vrFD0T6LieNdT2
NJAGMfmkiqNiDBxocx+2i6Xhycfb9BJbJl7qboBpOQ3haXoSsR5MWL2S0dN6
TMNwwqWvoQf/5Kw6U5VnNEyJdEU8usiEnzLjwrIaGvIDmnjv/WAiVl8ieuot
DbEKfuZtZ1hIzM7pmeijYe97hUCHHjbyuG2/tonRIap+2+YCm42MiTu9o5J0
XC25XTG3nINR3TljXlk6slo7KTstORgxle23VKYj13Sbj/hNDiRVwvxq19GR
+Oj+aoGgaXjUG/Dz2tOh3AdhP9VZ7Cg+3VkcRccHwxOCdtazsGjfm2gWQ0ec
9+aQw36zUC24o9hyho6LvwpqkgtmMXeCJkVPpGNw+w2yUnMOrdL9OTuv0PHk
jcCbBOt5KI3FeJ0rp4N7SOVf3cpFmKhtnYibpKMsS+17XPciuDST89zpdAT6
Zu83WfoblA/vG9ex6fiCVqNu39/gSZ6N7Vmg40d/6mm5pVxk6s6g1f7lDIx3
jZnqN3KRiG1OJZNaDLzY5CCdcYxChMsNnFYeZSDUKCmzJZVCusY9PJYeZ0A/
NjxgcxGFvPcv2kA/wcCazbSf8r0UYljmtq/1Lwbc5Xmopm7cRDdge8KtCwyo
lRrOujvwEObIWGR/CQOH/66iRATxkHVTIUemyxh4cxK/Jv/mIXxaJFv0CQNP
nPc+pzbzkF9D6bXONQyA4+nk7cZLKu7K8k++ZyDm6yHRtZF8pMhk+T+fqQzo
tVyVS7nBR1hbRd6psRhwC8/38GngIwZmOY1hM3/u6Wml7hPnJ1ssZSRUKUxQ
fLc+ln/KT8TfuajeF2fCeY1xk6b0UnJkMqjqtDETBi23rLy2CJHvnkMvzpxl
QkdfgxESL0Su+a65TpKYEB21mN9YJUTOStmG86UyUV4TmWuns5zs2uyzJf8K
E7vP1FuOqAoTriQ/Rcl7f3il5OE6aRGSM3kjk9LGRKD3YccGMxFyNa5UWK7j
zz4BTu9mHxGysFo4yvgbE6uMPyeMFIqQj5YRR84NMfEqT6em2UqUrLLlGQya
/fMXXUZNXSlihFx/GBSszkJZ8z9rzzwTI7U7YrUm1rLAvZy76/uQGOlTCFsb
rsPCRYmvP9psxIk9hdsg05yF2oaCH0p8EmRphpmeuSsL6zXaeW48kST2XWqK
PHEsFArSYvlokqQn3fshdxILCmoLwjFaUuRlmr6u0AUWSj7dDi8s/JNF2y+Y
ZLGQq/f2dH2RNInxXutJKWehI8rkoNWYLDm9rNz95BALKwONd/UROcLy/n7l
/jgLd/VV/gnIlCMpkmk6wwwWApXuy21ylicGmb5+qRQ2ktclF1t+VCDxDJfo
MypsbNcaWZdnpEiej1c4qWqysTTDVedQriJJq6k89UmbDQ+vkxaJUUpk4xkH
4QCwcc2/zeaOugqh+2Tsc/Jlw7PmBl+RvwoxaTXzPxbIhnbKEjeLWyrkwbds
06IQNlxYuvWuq1VJ5fOHH51i2ThxJThqwk6NxPhXKMcUsDGqwe9i/HMVESrL
EW8bZSP27/S9hfbqhGrfzbRl/uH/KZqcvKtOFGul6j4ssLFfwd496YQGcbT0
PWQgyoH7uN2FSyaaZMvtTHdbUw6CuD8YninXJK1sv4Y0Ww7eaa+JOqKzhtQI
8m6dduZgNc8JA27TtSTmlFKdpj8HzXKPXzHOapFN3XKWUhc52B4Qn56ntp7s
fKFy5GA2B49u3OWWb1pPDE753O27w4GEwaq2e+raJG1M+Yh9NQf9Bwu+ecjp
EnrZrc6ZCQ5E5U86SibqkkmzvI8ZsxyoyMhJGrN1SXL2soM+/NOIOydReXdQ
j5jnffeIV52GomWiUTDFkGgkOmlae05D0jHguOBFQ8JUuPcyaf80GpIWyx6r
GhGuMxvqKWHTaDNvFCndZUwa45bQc9KmsSdZMOP9EhPi38L3sTZnGu0T+Vuv
l5oQXo/0aKXiaVxbUVCL1WbkRqVYwbWmafBcfRmsRzUjYe6/8598mYaYAE/k
slfmpLLgZJjcr2mI0L98NDxvSU51S7Of883gpbvfLfsvhPwSi5Qo2zyD79oi
D+qOWpNeUh20afcMIvMLqhnCNuTyeO0H8+AZZGQdEvY4Yksa9K+Ebbs8A9eN
qFq1zo7ktS8tjbwzA+uaLXvGWHakMcdwmci/MyhXH/YuqdhI8rfkPivsm0Gp
rQ1T6d4mcv7+8/ZS9gxumh2RPP3IgTgPSFbYCM1CRfC1ZRXLkVivS02UM52F
Z3VnTaypEzHoX+YS6jILxpKLNiuuOhMU1xUFB83iUay/po2rC9m7VzouMXsW
Iu0L9GMbtpN/NVTpTytnManxtf6SoiupzzUWqv4wi2Vz0RUjqm4kSUA59tbY
LKJzLFIVrXaQ8q5+j5MCcyh53lZmdcKdhNoxlV015pCpy+XV3+xBbjmarLa0
n0Ms7SH3xgEv8oJwe+YlzqFofOPzvtLd5BNTzcbh3hwmfU6tl6/YQ8gbyzL/
d3PI+E/G+DDdl/RvvXNcjDGHJz0dCikWfsTB+HtslNw8Kiyio9rv7SOXZTe8
rrGdh1v27/omhwCyeXUnn0TIPIIHKgL4Vx4gO17rST7MmYdZqu3xW3ZBhOm3
Ci2t81j8FqzFqTpEBNWldSt/z2PyeI7269xg8ir3rXeN4QIeKRa/PxwfSg5t
9VLcFrIAuX2F3NrJx8kV+we9PQ8WoPj5eZfZXDiRVy+r555awNSMZ5UDO5Ks
4lFEiNEiZAyiji3ePUUO8brMUs4twtvoamiwZixREC+1/Na5CM3NLePhmvFE
bpvW5wNGv3HU1tLcRCmJ6JnK0s7f/A1mztt1xnGphL7k/YvRP73Jun22yk74
Molebx9Nc+Ii/Zd19BJLr5GUNHmDuWwuspg/3WPomEeOvKOckJnmIuGTLpWP
6XdJo6N0H//hJWRDy12z6L8qSNXKLmltLgrZ63/PwMusgayxcS10HaaQMJEZ
oQHpPnJ9kKtF/RwPCa393uZcNUTW54U5bOziIf8DJgvwnQ==
          "]], 
         LineBox[CompressedData["
1:eJwVz3k81PkfwHHHIEeOKMfmGEm5a8NQ074/zeRqWRm5jw5hlKNI6CBHkdqc
ZVhWRWJJyc+ZciWFEJGbcsQ4Cn2/c6Hd3x+vx/PvF/FUEM1bgI+P7/p//d/3
otdaFrOn0WpaJ//6MAFJlGQ9TX3ciqYDMjfUNATR0F2buLqzFajcibtbS1sA
mYSlOC/eLkTdYG3ZHsOPnoulVYst5yKNPCUNDWF+FPRFSH9z1D3kfWEwNjiP
D3VTNM+Lv0hGmWpV8kQaH6pPlKsKn7qJjFVslU028yHnkEzyyYI4xC2nzunn
/YQz7rtTT45eQ6fJivpH9/+EGl0J8T/lrqDDYXJ+MyMboJyT9GOuPgzJ/n6t
pTthA5Ze3wgecb2AqGpPrMLIG3BKlbyzMP88mlfo772Pr4Nt3Kky0y+BqHiP
kIBz5TrIDVNPBFDOommPLwqDl9ZBtJbuTjtIR+kyQknXqetwyyrQVfu5N/pf
7x+HhqXWIUZJ+G54ghdyXBVQDBxfgx7az9zcJyeRiMh5z8myNTihMpJLlT2B
3m56Q1q6sQbqQSIxTu4eyJphvmHtuQajJK+t35muyPVsoEEraQ1WUp8lq712
RpRD+z/oyK6Bn+/JnAsjjmhOvVH36HceFPqRyjO0HVCjv2ObZBcPQnTIxIkC
e1SiKnLf/CkPip/m1KXI2KFArVnpZyE86DkiMXF9wRb9KehDe+bEAy8hRGMw
bRDj2yGzN2QexPdRz9r7H0Fe7Xdb5kR5ICCpnMuctkSfzcam+5e5MKZmptkS
ZYHqAlRDGENc+B51XXZE2AzdZFd2+JRy4S15BzV0iYpelSgbemRyobMyqoHJ
pCB/zhiBF8eF2SzaUqrSIRTeTncV9eTC0CbfImRPRoU1eUV/beOCSc1kWtPW
A6h1zfH6ihAXKrBgLnfeFGHuGsnVGAcY73Imjr0nIf8Z5auR/RyQOebEV9tn
jBL7g6xDWzmQ2eTEs18wQrTLmxTeVXPAP3nCcAMM0QLHjR6ezQGDMnlj48v7
kPNfdmMddzhQPLwtcrHhVxRziaZ9LpoDU1qmbuv0vaimQZia4cuB7b/JRd82
0keCwpT920kcQDZyK1IUPVT+o1TcXZcDbVmrSuCiixJ6JmW7iBwwxm8xTR9p
o0ounLDczIE9ZsfbxB/tQsEurqueM2ywtE45/pOliSzOT65KjrJhhuDh02Sn
iVLoJImvvWyoDo1UclTYiSK9/AniTWwwJ0jRjefUEWrsFhO6z4YJLcGtPD91
1K2Z5zOQwYYNwgT2+zciImY/WGpPYsMT8TTHOmEiktr1mSx9jQ21iaYSlFYV
1MbPjWefZMOdH2Vyor6K6HjVYvpzbTYoUbQlHHoUkNuax1FDDTbQD/gCkaKA
BufyOO3KbLggR90ery+PInkh+w7IsGElfkf8NuOtqGWpfVyCw4L4AMKyzxcZ
pBC3EqbRwQIHhb/pkXEyaHqAQO99wwIz1+lUSS0ZdPTeC63URhZc7JbIoEZI
o69TlT8OVrGgubq0scJXEhkPRQya57FguiiYvCEkhtpFf+hMX2WBB1HPdjxR
FAVFWE3ER7CAbT/3MWWLKCrT7CEYh7IgI9Wzfpv2JhR0uPBzuT8LxHJ3ul0K
E0YWFO+1Pe4seK9uZZh9RRD1D42HShxkgd/LOCFZTUE0sWKwnWbKgmH+Biv7
DwLoJSGg9L4RC6oCE4X59ATQpK3NFmd9FmTFNhd3sviQ+Z0sT101FmTnTBE2
8tdBijlubifEgpari79Qd62D8enqi/ICLPBtOs+cKV6DX/febp3awEE+fzhf
uo4H7mWLZ9PZOPjvuV0bgHOgRLfH2GwBB+mQNL3UtzisDz6cGfyIQ8GRfQMF
2cuAOHp9R/7BYUHnGt8222XodvtJYDzGwcu5MWtCYBl4vcxhZj4O4Y/E8/0C
v4Ov3mOTB7k4PHBaTuUvWgJOl+WHP+7ioBdreVmulAljJtHRudE4YK8Oz/KZ
MOG4tNlFiMLhTId0y2DzHGzWH5afuoJDksXZrt2fZ0GY4qRzIByHaIbQ6N69
X0H1spyGahAO43zWDs6qU3Ah7EZsuQcOwnpaJR+bJ0HnkJkDw+2/H+O6qUq/
SRjCQmSiXXCA3sfMlJov8JpzS8XTAYeB/PXgRfpnGAxd8jOzwaHz0XZzOYEx
UHVK1ms4iENj+ttTh7/2gYD5rOFuIg6zNcX6olf6wKrdYildFQdSBp6lu6UP
DqSrqxBUcEg0Cr0WQfkIWwWj2+aUcHCxy/VhPO+BF9l9NR/kcKDrWJhSM7uA
pOhFlRLFoZyrVzWf1gJks0mKyioGdnOHNB0EWyDXdL6jaxmDv23zu89deA22
nzr3xH7HoIquHFzg1gwQezH02yIGTc45E94HG+Hj2m9Ro7MYLHfOTL9IrQWG
kcI2iXEMxFt0N914WAOrS4Eug6MY2HzakSBSUQ20BXtS4QgGJwLFnMW/VIJs
42j5kSEMVu8R0xTdyqHq6z+WD/sw0Nm9+XpTbBFwn/+sYHRgEDgbtaWi+zEY
uLyw92nHwN3SfLVTvQDeRsQnGbVhEFXd52PQ/xAMyPFdA60YSJLrFWmkB5C2
Y7it5A0Gmgyr2sL9ueCmH0WLacGg22RD0+cbA/gThLC9zRgsOiJs+NNdYB2T
EpFowmBS9cbTxHepUEeqSvvagIGoI8U2PyEJclST7r2ux6B0pdl/Z/JN+IW8
SzzvFQbEWvZ516JYaD2+eTHmJQYM/3lTicLL4OHaQTpdh8GtnQIOA6rnoMNy
fsb8BQZnigj0dRdv6MRN/OtrMfgX0UsIUw==
          "]], 
         LineBox[CompressedData["
1:eJwV1nk0ld0XB3ANFCUqypyiMiSVMalzpSJKJeGSKZRfUfKmvJlnEspQNEii
NBgLZWiLzPfeg0giyVh6aXKumd/pj7vu+qz1rOfeZz9nf/dee+KcqfN8Hh6e
Pvr5+929NWTd1XxnKG/a0ffgJUEOMUIjKdnnYe5z+NqxIoKGnsiGxOT5QKsV
v8bnQoKY99UK5OqD4dPLHTdqCwhK5dXyu60cCUda/BjPXxCkPbPO1ck3BgSu
Kajee07QzxZBpu2/CdBqx6m+nEfQEe+WV8wlN2HBuu0nT+cStHJViER/YjKk
DPRpWucQFF8d2LksMQUOPlG2ZGQRNDxnw7txTTrcvzMrIPaYoD2Szb8KjDPg
n7cWGcKZBJm13Fzw/cJDGLGo2yfwiKC17aWG/5RlQtBls3CeDIL8bOSm5BWy
wGZ+5YHxVIL2lnx7dqowHzyIC1qWTFDJfvv82fFXsDw6sP96JEESOXt0hu2L
waE6Xi81gqCbYgaRVTXF0OkwWJQdTpAHi9eeEVcCPx+OcBtCCTKem8krlCgD
W7+yRYuDCHJs3NDHmAY4nrJeMeoyQfN3GDCOXqmATWplg5NnCPKpVOdk5FSA
pg/TVpzaw+eE982WCkh+Gvxb+zRBngs+Oh+XrgTJiLIkbxeCxMPWSEc+qYTO
YvdWIWeChH2O+Rm+eAu3W84t97YlyH2vZ8GNqGrI6UjijTAlSKR213VWejWY
dljf7T1C0OAljkV1WTU8VNDFDOpW8/U/Fv2ohuYBGX6ewwTtllf61WxSA0o9
+bxxBwlyDhvy5llYC5bjrw/z7qf13/B1wRbDOhgJV7mxWY+gsGfylT1WdZAf
IhkNDILWFV2bdHGrg9aLQxqm1EV5/Od+Xa8DpprEXR9EkPl/Cb4zH+pg8E1U
ef9OgiwctXZb2NWDaPf5A/w7CDp09Mibc+fqYcMVfusCHYJK9e0LHPzrwb3z
poQjtfblSua7lHq4oRn6rHI7QU26uT+4HfXw7g+PVLI2QYuCL58IP9QAN8YH
diZq0vPr0+sbbtsAu+IXZVlQp9gYGNi7NcDTPy2SUtTOV/pt7l5pgG8t/pNP
NAiqcwt1np/cAEcHg894UneTX7F6jxrAdTCoS4/aasniokOVDTA3bMPuVifo
xozqyTVNDWDR/N7oOfXB6I1367saINMplB1OrR6xeubFRANsa/AY0KR+KCXQ
NMrHghGxVr/l1F2XqoOWi7DAQrhAdkSNoI8Fjxp6VFhwXWVeWBZ15/g9viQd
FsjwKxy4Rr3YYNkpZQMWxAjqr/WkTj9bqHv3KAsM1/XyHac+KRP6ftiOBbms
7Nk91JtC44KkXVnAU35CYAt13Vf5mE1eLHByb1aWpl6h9nyvZAgLPB9/dVpK
LXFxcPRbLAu65DOLZrYR5HTq/kDSbRas37hpwy9q++ZxJ4VHLPCXepw/QL1i
PuNVUj4LJHa42XVRH1/Ht2mojAVfNn7Z/IH6WpI4r3QdC46mRMi1UGuYXYna
2sKCMpkFjGZqs9XPeBU+s2Dp3aXhf32rUOwVzxALAjT9pv5er2yaP1QyyoLo
7yap7X9/LyyjiznHghc2CV7d1Fviz3z4yM+Gorjg8G/UywNZEkiEDV1l5xtH
qTO0vgyGybDhnWCr+Xz6fHvjRAPzFdjwJ2CvzIq/9TmjtLFiGxtswFdJnnrs
npZEoS4bEqas/bWp1YWyk2P2sWG2vUf2EPW8WGaf8WE2TNnqrHShnu48oT3C
ZENhX65VMLV5+JF3no5sKBUrnUqlbseCv3tc2XBy3uRkOXVeeE+jxkU25Aps
s+mltj42XhodwYYjlcG2qvQ8LNJjofjrbEjby7uYSZ3W8sXN/xYbVnw3VQyl
3lISFWD6gA1jW0Rq/563Q+8jc5c+Y8NrkbVDfdT9PwQ0s1+wgXsyOFGMnlfi
nG2oVcaGWBWvRhPqFemrfvFw2NBeIypUSZ1aZ/1H7z0bskv3ys6j/ZCpVWN9
povWI1i8U49axUFjm9cIGwI+ap5voNbR8118nMuGpyVdTBEtmtfFXqKKs2xY
nTm0xJ56+rF3ir8gB+RfvRieoy45rbzoiggHfKOD/U1of3qonkWBkhzoEJ66
c4867VJKmaYiB+ItXiTvp/18yEnalKhy4MfYz4g0am0xs6P3NTkQeBbLzVJX
bdygUaHPgVihlf5lNA9e7Qty0DLiwJY0tyNraX5MXhWPu3WYA8bNln/CqVfe
eB2vbMMBxWIWy0aX2vutsI8nB3TTlcc27SIoUHEX09mbA2Vpm5wzqbcnzb3d
GciBL9Mx4xtoXp072BZbepUDMuZF5So0z24Eft3mGEfvX7lEqJC67bt24MRN
DmQW9xXo0TxsTWekkzQOCH9L3eO4m6Cp5GvF1pkcYMab7p+grks2ncvL4kCS
jEp3nD6dfxZqCaovObDLeGJ+0x6CBF36rD1YHOjOEvpx2YCgT9n7LG2aOFBo
JmSmakjr6zrqvf09B6wbv7cOUluW++dWfebAnjnXAGcjgrZl2Ex79nHA5UVt
s5IxrTeJ6F/9jQOvyr0TR6llYybnb/3NgUaH2epEmu9Xjum4Z3I5ECyg4+xm
QvOnoeS/5VMcSFV/0bz/EO2fxVVBJQsw7J1eH7yczovw3TayriIYrive2v3Z
jKBlipjvkhiGmMkem+5jBOlv7W25IIVhPtN1y6A5Qd9vvo3dL4/BokAnmI9J
UG7YcI6sAgYf8VCjNVYELWhxl/mujCGjSsNilzVB+7a1G1mpYWj9bPEp1oag
5+vtdOY0MaRnPM6soPPt8oGgjps6GIyi9G2m7Wje8CbGp+thkGk31wo9QedN
otrFzYcwJLZq8P4+RVAlltVyNMXQwsgTs/ofQS4fNNuvHsMgPyBuVU/na8Ak
YxVYYzgs0XjwrRtBkjkXO2psMdxhu/9rco4gKQbzfZUDhpCIz1Vf3Ak64VUJ
909h6FpZjOUvEHTVZHOb/2kMl3U8JFs96TxXEbx41A2DsVZHeuwlOm+iJW51
eGDwyHTNkfcm6ECtYNp5XwwHDMXWfqD7wb6iTqlZfwybyObK3hA6D5M/FQcE
YbA8XRg0HUbQ9YnjT13CMQQPaUtbRNH/WziyjhOJwZDDO5gcTRDPrfZFSlcx
gFP4s++xBD17g05UXcOwZ3Xa/tcJBNUyU6cWxmN4mndWj3GToOyz6412JGKa
T8oX39F9x1i39cDVZAxLzPMVt9wjyG5Phdyj2xiqS9wWTd2n/SfEJC/v0utL
V31pTycoODKE9eY+hpEo+9z3TwjijlX8efkAg+zG1GNcup8FGsxZPsrA4P8j
xkKF7neVAyZrTj/GoBA0YtVP98cDrjOpu55i4P3fek+XErrffei+L5CFIex0
3ppFQPNtnohDZC4Gg6kswTvVBD3gn9ylm0/fPx8PSagnqF5+d8fAcwwBfg5F
2Ry6/8nVXZUrwtDTcJffuI0ghYy08oKXGO61XRpv7KD1WyjyExVjuDb8MMSv
m+ZR6wNf3TIMJXXzAi2HaH+Jnp7Ifo0hNvDB4cgfBPlbij0TL8dg1dUWNDRK
kG+NdrrPGwynrt3P8ZskaGGY9s+2Clqf6mf3DHm4SPX3qRTltxi0nn44bMzH
RZIDk6WXqjAoo71TkUu56EJJdPBEDQbRB4on6sS5KGnGxUC1DoOd/vGvTbJc
5M5n99ymHsMHdSOBDQpcdLZVrDWkAUOm1sewelUuarKVL05n0fd7Ujv0rRYX
/Vs7eq6MjaHssn6qOIOLijN6FmAOhlTr4D/YkIu8r5HJzkbaX6l3YrytuehT
v3TySBOGeN3i13YnuWht9ojweDOGtCE9v47zXPTqXZ3HxDsMWDfTZMqXi6Zs
Rzi/WzDEJVhJsa9wkVK9l0ZfKwbxgKx/7JO4KNXMsZD9HoP07WNQ/ZCLeI+F
OeS0Ychx94lbWchFKVeS9kV+wPDvMYF5NtVcVOOm6mndjsHxqxt/aRv9v/4w
vf4jhlojIZGDQ/T+yXf++0otKcqK3jLLRUe0J4+md1AfP5MetXIMSXG+61l2
0vcdLLo5UmkM2Qs4Vy38RM+XyssaK/0xdHajzvBj6pZ2JR0d2zHUpi5ba9CF
wTrVcscZ7zG02yHLqYu6mWmeufP2GHqiz2xy+4wBNSnYC78eQ8/lfKW41F1y
WVyzvjFkrmdmdqkbQ9Ba0ZiEZeOoXHI67Be1wMNig4s7x5FX0YUKpy8YApV0
f9WcH0elvakiTdSfhD/2Rj4bR0f990Vp9mCI3lp1dW5kHJmVLlNPpBb4p2ug
WmcC3XUMkxqmjso4FjN5fQLtWy1juquXPu+Bg15OYxMoPEGpJ4LaO+laasPZ
STQ72tfOoh6EdXznZiaR0I/T+wT6MHgtPy/d+GQK/REFdT1q9X6tNqGgaVQk
Vpd3ntr5oNrSMwkzaJjHvP429ev+xwdXzc6iaHexKKB2aRB4auLFw5D7nMnz
ifqpxJ1bvf3zGA/eh2qNUmNLpSCydSFjh6qILm8/hgE1+V8nAxYzuozuSQhT
LxllI93y5Qyv3Qv2r6C2Ftyua90vyvg/Uri+SA==
          "]], 
         LineBox[CompressedData["
1:eJwV1Hs4ldkeB3BKSbYTFbkNRsolzA6FcvqJOi4bnV0y5DSpk6Oi2F2NwkGm
jJTkOm5jzpgSk+tUcrJsorZsi+2yyzWJcsvee72i49Ks88f7vM/nedaznud3
Wd+vj4XuD1wmJycXSr////VMCz3WjmDEubSlkqOlWPfLcCGHRW3ceud15QYp
yswzUP7yDiP2yuUDHQcFaJdK9psJ6qhn6u23VJthPKFFLKL+saf7UFJHL/Re
816opNabumh48fFb0Gp+4neLWtjLdzivOQpRWaHzx6mbDf2cAzI/QOT/Xk7a
UF87VuQYED8OBm/V7L8MY+TjWrWiizUJv54KmWigrr7/h6IlZwpSFCV/iaNe
XNz42ujARzCo/umBA3XBj7bdN7dOgzt4d0neYpQyKFKJm54GZ4+PSfnUuSzD
GewmgSsPjYZdqb3cDRxP3ZbAmvu5g5NDGAnSY1rC2iTAfz2WlEi9ti8w7ttV
UogrvTpnRO3y96pWpx1SiLjSaVr9BqP/ZIzX6wRJ4fI9M3NX6mhWFS/vlhR0
hhqURIMYuT3juhyvkkKw64sWH+rr9uuLJ7qk0PMLJ7p7AKO/xuLyXEYKmvGe
W7jUDT/YnRGpysBi1s6prR8jtdQhJ2NTGXBFaUoc6keFhSWNIAONRe8Efh9G
yz6I3Xu8ZVCW4iuwpt5s0zOUeEIGSP58e0EvRmntJm4LETKYMgspUqa+EXzG
wu2GDBSjZ315PRh9YreX3siRgeZXte9FrzGaPXF9rL9YBvISv8Ns6lETKz/u
ExnIXvrwE15h1PvFYtfn5zKISrTSGRRjxOzyHRnplMEd88Nn2dQ6Za1jm4Zk
wJqya43sxsi8qj+4aVIGa4K0tz/vwkghUgAdszLQ/9fi37w6MdLOTcvxZxHI
/3B8KbEDo6X5u3lj6gTO+eQNNIow2vOdg66SPoHqRzUf59sxWvMg4CjfmEC5
ev02S+p/DnynpcUm4JFW9OQfbRglpt8/omFHoPT24avXMEZ3Ux+21gIBjmaW
vEiI0ZwoyneTF4F93Mf10haM9oUMJ096E2jO6BhWoe4+ctmR50+guK0wYGcz
7U93YwU/iICOUYrAQ0Dv8x8yTD1N4PvwkZJDL+j+7pXjbT1H4LHXvYXgJozk
/QvuiCMJ1M1NXQhtxOj9Kf6JkVgC8Rtd4kKfYbRpdtToxTUCsW0B5wLrMQro
XZm3/jaBTzuyj/nzMZrItbeITSMQbtS/5FmHUb3nOs+WLHqeP+1jWotR+G+X
7y0UEKiaf6O39ilGWcVqfSOFBG5+1C6ZraH9MJ+4U15EYMLfyrK6ms7f6UzW
TBkBfxXdCxp/0Pt2WPP21RKovxplH1iFkdlowu/6dQRe6rYoj1Zi5KxTKgzh
E6hY2pNeUUHPh2brX3hGIAqxcp3KMHKKKh1waybw1c5/G60sxciidA/eICRw
e3zFw6bfMfK9FPa0AxPI2GikAsUYpdpxbTS7CLgEp/R/KsIosvnh5wIxgesJ
tcLiexjtnl1lq9tDIEwvxVDlN4ysaiad3w0QkIS9Yz/4GaOakxHhbe8J/DdF
mrs5H6OdQyvmTccJaFaw7mfnYsTlXOk7P0lgXeyhmss/YdTkWY/fSAhMJh1t
Hc3E6NLPo73LCIGnCfo5Xhk0j7gHHTRnCCjJd8auT8Voeq9Ghd5nAqrK1kVn
UzBi2VhmqM4TGPbXLhQm0/rCC8NmFwgEjdTbRiRhxBtcFlYox0C5ysXIBz9g
ZAJccaIiA813T69grtL3mimuslRiIH5uU/r2OJpfELpKsJqB9JMJ4xXRGFU4
FmwYUWEgfIarlBBO3ztfcJa/jgG/5N6YRxdpXiQllm9WZ+CE3AHr4fN0H2K+
t4nXYOBW5V5fKx5G7U+Cmiy1GNgiPOJedhKjTnf7OTs9BgSNQjNBEEaxzdHO
p/UZKJFE8gYDaT8+rDbJMWCgTiHGReEY3b8ZR49xQwbM81tKvjmE0f6yziKO
MQP8Bq6PjS9G6k67eb4m1PkNydt9aH7e0OkIMGXg6Ji80Ho/RqGlwR3HtzCQ
HCmSqLljlL1ZOdXhGwamTk2VLnel+Zuvu9yUzcCS+9cmZC9GNi3rRGpbGYg8
ue3bl7tpPUYx715ZMXDA59G2o/YYSc21V8N2BpIm45x329J590uKVW0ZqOkH
tv42Wq+43mWQ+lLb88edbIxC+nTLztkz8Iqdf7jEks5/TJxjv4OBIOEVEmOO
0a/8hYYF6gsK7VEHzTCayrxu83QnA7KW5QrGJhjdlKksRjgw8CeKM+UK
          "]]}, Annotation[#, "Charting`Private`Tag$2642239#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJxdlXk0FPz3x2fsKUtkyZIla9lKyRL3o+zKHiWyPBKlyINoUcqS6iGRUpJk
qxCKiiKZZC1rlqQZwxQGM2M2Y0Zfv39/95x77rnn3Nf7j/s+51614EiP43wY
DIa3lv9X/3/4CiRx+Cp14DS3JkwXZwed862SApWm4F1zl6OD84bFjN5wkUoH
UJXQ3KeNCwXHTqmvmysPwx+dU4GquDgAbbnAgMow0K4XGxPApQJKwL+JrYoH
3SKzjtzWXBhnvZfqrb0O6qRRiV8tpfDf+YjLIn15QNc9GEqvegMCy553Q2yf
gmvBkG5zRguoHTi/7/ejZ/D59izVUOULKJRz+bccqgYFuurhxs09sO1U8IPr
b18Bly8wZsilD9o6VUR80t7AoybZ6cfWg/D8gltuQmQjcBNkKw0Vh+HHlE3f
1L5mMK0YNv38dhSOvHK0H+lvga/ZTh2hV8fB2nmf/wgGB88OJiXXS/6CxzNV
9RmObVAnZHnmSisexk12i4oz2+F5ta6zm/QkfIzSnXlc0QVKzTnPVeyJ8F1B
TKyQ9BX6HIzuKWROQe245K2Q3X2gco2s29c1DcndOPOUdQPQHi55H7NIgh6a
5FOi7RB4p9ZfpGj9gb++G8amSofBpYSvz9B+BhJ1qg4pPhkD3N+SFK9Ls/C0
pGfGZuME+K6OmOEq5uDHzflkK5UJ8KrJsjSqmQPxYQlva/0JGHkoapdfNwcn
XRqagx0n4FxofGhM0xyEyU6/lbk6ARTlxXmN3jkw0VCrtGFMQBT7qH/a0hw0
nTW+u4H4C3bNPOZ4mpPhZ8h6stsiHlSkx0a3tJPB9/3FAjc2HqZ06m0WusmQ
G+Du64MlQFNb6tcPfWQwMY6SOC9NgIj0P8j/Bxn4p48clTElgNoPduWjBTIE
Wgrwv7hKgO0Y+iZNmXm4vSxclKU8CcpVPunuwfMgajUXFhtBhE1dRXJWvHmw
X7pJ/RxHhPKtfJ/asAswVBbZuyWJCKeci4pdhRbgRpPyu5m7RKifz9gULLEA
U0cdPaabiZDsmFuRrrYAaYIl7y7KTIHO3efbpmwXwNFkW0z8lymY+i8R35Gx
AN+EPvoiRxLI7qzvilVbhMt3XVU+HiKB6j5GxLLmIhh6vx92CiaB7SHj45e2
LYL43B2/pAskkMPQ/FKNF0FFTs4upooE3YmJCfm2izB5xyA0UfY3eDH6/oyG
L0IPY+Js5uJvwKa//PqodhEemqrj/TpmIPbKr7x6dQrwb6qviRybAVviDGGP
JgUUIki3cuZm4Kfdidh32hSwfkn8ukl8Fgw0Hlz5oEeB0aimHJrnLNysl9/d
YUKBip3lF/cSZ6HnjtzVRScKiF4Ye4GXJMOdaY72hX8pcDmztfSMxpqPrn59
QnEUKA0sz5YyJUPHA4fvd+IpsPdjd19+ABlszRbpLy5RwJ+dP9j0kgzVsyM5
k2kUqF/vk3fEa82XjMzxoHwKjGBIGzDVC7BhtPpRxWcKrLxftyT9eQEOBQad
lW+nwM6X7b4wtgCpMRolyZ0U0PQm2P4UWIQTOUyDY98okMkVbDQ7uggZxZfG
ZEbX9IyTvjsLUSBMfFLkPpkCkQW0ztQWCiwPapfOSVOBHqB/urpnjfPn3AiR
pUJyfsfFP2scrnuY8FOeCsouunbJNAoYbND806dMhZY8D4vTGlR4QfYIa9am
AuinGCvepMLAEwlctQUVnA5OF5SF0IA4LnqF+g8VmlvDovljaJAoKmtTHUoF
10DskZhrNFA1VCyLDKdCfVa0QG4RDQJIbQcpZ6hwcYfSmZ8EGjgyfu5ZTqBC
m9qdD0UhS8BPe39o220qyMa3NbtdpEMWw/Wj5AcqdPfzGZdl0CHyeKrzdDMV
9ufXNss/oQM7yz234RMVJAax61za6NBC04s80U4Fvk3q9cJSDFDvlnLpHKBC
F3H8GLmKAXGvZr/UzVKhITWt0RbDAtfLfzz1NtNA8YY/caMsC1zcjkSLKdGA
Gj66D6PHgkE17ajFLTRYzhkasTnMgukiPYl6DRr0YP7iY2tZgA14hnExokFh
z9iBptNskBUe+f3MngZCr/a+9uDjQHX0MQGlczSI23T2pagyB+6nDPQrnqeB
Fd7PgrKHA2oEy2qlSzQoZ39otD3DgefU8gK1tb1pd1SWaP3kQLB4RoJpJg2C
w4dIWrgVuPPkRPXDMhrk4LzTyxp4QL1wUdt2lAZ5LwStWkZ5MDJjrLZrnAa8
wq3Yjcs8wOOtLTR+0cCCN/bJy3QVTKaDh4Wn1/gsX8zFd6vw4580wjiFBjcd
HH0/t/0FfVrZcLPIEtTWb234JIJFaUXZf+LMlqCEVOptrYRFpWPF9//buwQR
J2QFpg2xSEc3rrwEloDW36f0yAeLisfDKKO2SxD4Mt3/RzkWWXlLBXt6LMGv
k25n5j340JGCMMLNU0sgQFPMfdrOjy7NH92s+XgJdOLfaTYR+VGRedjVV0VL
0B7m4Sv7lx9d4G6Y21+6BHVWfz5dNRFA3K3xnScrl0A+rf91ULkACrGIMuxr
XAL7/e6G9PuC6FyCsprA6BJED6f2Or8VRLPMy8dfjy/BdyfByYVhQfTTq3Qu
FL8EBMPkA4ryQqiP7POt//daT5pd0M0XQkbJjbFtzCWoYHkypF4Lo5Q9pBg1
GTp8xLfin4wIo721bhJseTp8flttnMETRgdwk2Z9SnTgK+TtT3YQQe1O6w/d
1KBDUH9ex3qiCDJS+GSpsosOsQ3xHl3bRdG76XFCpycdss9WapfJiaHdEo6J
/nfpEIKD35fsxdBJn14tpzw61FRvTfp+Tgy9W/VrNntEhwLC+PymMTG0Nct4
TK2EDtGD+/1Wi8VRYfjiGdk6OlAwLet3bJdEjlPHFe4N0aFyXCe63F4SuXAz
KHWjdNgoLX4qOkQSBe/fpD3ykw4p/wY68D9em/eMHdQi0eFrk26elfxGVBmy
YeMCkw6BiWbEYCUpJDsRHLl9MwNcXefiqqykUEOJkn6yMgNO9rz4FhIkhQrc
vg3i1RjgVZwivLlcCg08qxEp3caAAwW99oPm0uh+24Jc0F4GSB883RFwbhMK
Py3KLgpkQOFk9imcvxw6xiA7lFUw4PCJK4q423JIb3fKckINA0KF9AgJODl0
Yu9nvHs9A8QvG3+WMZBH8RFu/238yICsIqnUONHNyMhAhq9/gAEc60b3k3MK
SObwLbvjXAb4EbvyircropQNrjV3sExIzdk+ORKhiOL7zQ+3CTFhh2lUug1N
EVmk95agjUzAx14fb12njOyMFIOuaTHh4Zt7aW1RKsgCa5fu6cGEkqvqoRGt
Ksg1UQkt+DAhpfi/4XfrVZGSQUP6bX8mXFfNKyAGqaJ/ffXMyGFMCPQxKzSX
U0M1Od0TfFeYcO8TL83kuToKCm4u/fySCTby0ie/4NXR7Gu8M6mOCRn7zbFH
5beiofokN8n3TGBZ6ROKb2xFnUOlmKR2Jrjkl/5Iv6iB1Lze/BohMCH/U8G3
wnwtFJP+r3Py2t26ErnyJnheCzGoLV14ZRb4C2wxYYE2okRTnJw1WdCX6hTb
P6uNJs/ssHTexYLICl8TsSO66OdOttiqBwvee2+OUmzQRb3y5Ht9viz4KGbZ
l6S8Dfn71ZrXBbMgawevoGxuG/J0O8+pjGaBe3mtzYcyPXTVvVT7TDYLvuhf
859X1ke5Qm8Nux6yYENSpp/hPX00sZgwY17MAqeooQe+2QbIXeED2bOOBeW5
tz3HfI0QX+3c9nMjLHjR2lt1mbATmS+ELkyps4Gmt8HztKUxEvGboz7WY0N4
6l3DbfnGyLXkyqZYEzaMC1nL3wrehWSrn2yNcmKDAPum5wtZE0R5oHqv8V82
pJff/9J6ywS1Td54fCSRDe+ldSz6hPYgXub9PXLpbOBN7yi6LmyK4hRlDtAL
2CBkUHfe0toc0dOPWbp0s+HNuMRqy7g54kREdGJG2OAjPeIjmmiB5r13G44R
2ZC9v7BIfmAvUj1W9FOQy4bzbeW7X/cCqpL5zR9ssAwDIK0x6Y7Q1PUBqwiL
ZZh4nxbR2YzQk7AM/zKHZdBRP+758Zk1ulB76VT9P8vwRzTxxJWm/Ujz6ba/
ofnL0Hj+2gV+Rxukmh9qqfN8GXzJ58xzR22QSoX3WdW3y9CVSBEJE7dDqL6Z
78PgMnANyRfjX9mhQiETq+PEZXDzu/R9b6A9CvOJNDhAW4YsX62/pH4HdFlD
XvSXJAfwdsPTs3mOSKBR9mWmKgdihNepEk46IS+y5ZXrRhw4QSixj9Y/gNbx
WDn+7hxoItzf5ajlhjTdeBpzuRywKlkZVv/ghmoDFOd2POOASEqoy2c/d9SR
d9DvRyMHDjn4PHZ+54Ei/XuqTkxyINBJ0WLwnCd60KaA9WJyQOF+j1fMPi90
sHdgvk50Bd4U3mg9gvFG3ZgBa+quFRCPKBpQYXqjii13hIadVqD/6wUjEZ4P
Msg5t9s5aAU8bXZFy9j6Iv0bRAFe5gr4H6NO7LhxFOH3Pd/nXL4CN5Ozcs7+
8UOOreN2ji0rYLJTJv7GSgB6xAkWT2Ss6ak5pSX+CETWXcdGuiS54HrTyT62
OwilPBx4ydLjAltzNJnXH4xSDB7QJJy4UEVSkuqg/oOsViZOaIRxoeGj6sLy
9uNoxOBGlF0aF34NqgiZpYQifnUupJdxYV5M69FoaThKXzzV0D7HhSzTKbVD
508hc3L6VZYED1Q4g0cSrp1GnVxpxYrdPLB0jq+idkais193Twn7r/1tw8pj
hfpnESPQvdAolQcp1jpmjwujkY67MbjX8MCCMNQSYBeDehMURx9M8CBkSN+z
UScOLQjW/bYVX4WlYutGaa94ND5t0JuNVmHKLSJOe+Q8Qi6LI72xq3DsdOGq
RcclVIa4L72rVkHho4bPVOEVxJVfrs+cXYWGkyxmdO1VZFuYFLSy7S8khb9/
xzJKQY1Pm+R2Rf2FOuNoJVHL68jWdIMTq+EvSBczym4J3EId+zKD5IUwiN6o
wiWF3EZbnjTGpOzEIKIYC9d5LhuRangB1/7BoJPHGwL2pN1D37UY1pIPMMj/
kOyqrvgjJHbg0K/kYQwKYEUqTJwpQhYGO4g4ZSzC3cZiyablCCsj258diUVo
WPltVVU1CjDAU3f3YZGUji/D6fZb9OiSQ3uzIx8S6/Dp/yqIQ1YnF4Z3kfjQ
smXYxr+9g+ia2OYjuFF+NLOjYedyARWJ3DEKoacLok9Z2S+CwpnI4U2H2EGi
IPofSMLC8w==
          "]], 
         LineBox[CompressedData["
1:eJwVlHk01YsWx4/hlHmOQxKVaFBKocjeejIPlZBOwnmhDInMpG4IlSfTVSpC
bh45xrrhSgOKJiQz0YniItzO73fOwfG8P/ba67O+37U+a/+zNRiBR70EKRRK
8sr8f+d1RD5XPElgtcWb6XdjVNTgJ/qaxPVihHapBEtJGCM0pQdKjVtwo8Jv
Xo6yQtgctLpxJrEWbVUOZ8R4CuIAN/SRW2EFppWtsYodFkAHni76RT3EC5Or
fF6ECWCxYfszwdh8tHxfQPmXhgAuP16SrFa7g5dSeofe9lLwQ76ol3BpFo5e
a56Rz6Fg5vMY5sW6NDSIPBo2waBgkrTdpsT0FHxs4Tf1chcFS79qb3kulYxB
8p3WV6gULPb6XLcUl4Dy7o4tBXXLMLzVS16m/ApK9hgWKAUtw67XBSKKjMu4
e/LyFU+dZTC3b1au5MZgbWnTaNUMH04FH3nv0h6JXYG7Lb1q+HBC53i24uZw
7Mq/LD17kQ+rX+YfCxsNweLonj9HrfmguVXGSvlnMOYYVvL7VfjQO97xVBKD
cHHfoO716SXQC6CzLdMC0evfOW5lL5dgpLRf2WTZH79vPqezKmcJMjS83+2q
98WY3Z27GBeWIPn1MRO92jOY+CE1NdN+Cerq5+ISf3qjyd+s6dBtS3C7dUpA
19kLT7jH5bBElyB/sr9t3R0GMvUzzabaFuFBb1+3caAnUrxEzjmWLcL0nRtR
gu4eWKTPch++uQjDiz9U/UXd0IqmHyxHXwSpEqW5Rl86kr0Qf9t0EaidX3lC
M674czC2c1l7EZ6/Ucs/auuCmk1x2Xt5CyD4SWtrqIYzSqYMJ02zFmDsybGW
LAkn/BTJPuf0YQEuEhuPZ6s6osHXA6+lixYg5pd3bMyUA9I0bj2zd10A1n6N
xapse/zbqSfivsUCrFKdv93qYodtx1VpPvoL4OtN+orK2CB/k+oRkzUruda0
/hGqNXLEnjAOURdgVGyzeJmoFSYk2Box2TxILbP+x8TIAst8azCrhwchYp6U
OG9zNOacE5Jo5YHa7vaKubuHML6sp/xzHQ/kLklmWGmbYe6Bdm2nPB4Id852
yz00Rcr18tTHfjyI6At1/W2DKebX6KmYevAgS1bau7AQ8XWW+1VBJx5oM5kb
Iv0AtyprWqoDD75mvGLIbDTG631HztxdwwOH9eZhjl5G2Ns34VYqzoPEY05Z
Y8z9OEl7nfBNgAerPC33Xnbeh3lRAlXtM1wg3kRFJ87oo6h6JS+ojQsxEtZb
JBj6WO1jll/9YoV5i8zw/r2Yax6hpVTLhYCw8C3r+/agZsSQJxZzIbrziYG6
iB767OndQU3iguzsR1ahiC6m3rWxrbflwt8tUdRa351IT9c0eXmICyDF0pVu
3YGXodFmxIQL3ac2ipVk6GDJwZON7ru40MTNH/1E34YMBzFBdyUusKyGGgez
tbC7OeetwHcOKL/5Va2qo4W1LVwL81EO2FEz++WaN2PhTumQOwMcmAj6J6l5
URPzYm/lhrVzQPwd89F80ibsXspY/aOOAwHh3Kow4Q04c8grLTqdAyWiRQVn
GjQwfp/P9IsUDtBEUpYnwjUwV+i9m0IyB479Ia4SMKeOZkzrx4OXOJBw3aw5
Y3I9HujMlSECOKBX137a5bwqPlyYPqVpy4GdNvyWcTFVpJ55N6FkyYGmjXEn
Qh+uxauuUyx5Mw5EtFv608dVMOrppxwtYw54iPoz5yKV0egDJaBu+8o9DlOi
ZTOKaOlxMy1YmgPj484ZbwsVcUEibsO0OAdiKbU2eEIRhwJjMVCEA7K0L04S
b9egaU3Ms2SBFb/W3i/0egWMZm9UXvOLhHXBwnum2uUQXBx9gvpJcHbteG93
VBpPUapna0pJ+KtMd6BhXgrVCKf8v4pJ6G8zimzIlMKi0vNObUUkfDA/Trca
ksTyBYwl80gIlLdorrwkgTSW3JffM0nI9pHLdRMSwwzSRX8gloTQOVr8vQEq
juR1O8i5kGDWavyGe5+KB8i+9vpjJERpsD20fajYqOwbf/YoCeK7m/dPs4VR
zfyLc4cdCQ0lYoLlqsKYavIxusNsxbdOFNRvCOING3rfNT0SxB5mJ9g0LMML
Oi05X56E4fXpu7JCl+G1dlTFsCwJF4S/VFbuWAb/C7IJajIkLJU9yHMu5IOR
QoHaHxIkpMXEhy1kLUFVsG9IF5UEtclvGoa5K3+CYzBZzCHgyISswrYtHMiy
+UGTGiFg2bN87SOChK8Hz3f8PkzAsP2bB1VNJLCfnM3RGCIga9J0rRWDBL8/
4+0O9BOwmXnL1a+QAHRObL3RRUDzD3VFFWM2KJ3xaEpqJeBctj9LqmEerK/8
V2WwhoDCu3uG9mXNw627NK+EagJk5keK3wXMQ8jz+Nu6VQTQxwPNN6nPg9n2
S5U3ygkIf7GpJSx5Ds6S9ob0EgJ6hr29MwJmQbyvMd3+PgENQ0zVie9TUBT0
8F14CgHJzK5fn1LHoetmu56BPwGuHtJGU6fH4eO3cIaFHwG1FaJUz/3j4GPU
8Oy4LwED2/k6J8fHwJCSwIk9Q8B2E1rnxYNjEClXZNx3moArfZ8r7ot9g3Jj
xaBXbgTURd+bT+kahXGtrHuMwwRYNNTUOx4ehJxUA9dwQwLq8woqV6sPwhr/
EclOAwJUHFjxMrMDUHOfEqazwmG0kJ51aQMw9GTm5PheAk4eStWS7+kHfn+H
n4feSp+6GP0hqA+8hRjNITtW/KLbZRWGuyEo/OoFmiYBSfwtjjsvdMJT++IE
dQUCJivoJLepBWDMdC2VYMN/JMeC1FPq4axMerXHCBvazgbPHFouA78pJY/n
H9nw7PasjEBfJii/6vRmvmCD8ZPMa66f1sO585k/52rZ8D89RSw3
          "]], 
         LineBox[CompressedData["
1:eJxTTMoPSmViYGAQB2IQrZw4/+FbV9f9k8K3cy7e+dX+UnulLYN3xf6pH0JL
/Ld/tZ94RyV1093K/Tei1xWoA/lz7H4InP9Ts//Gt+o317d9td+RLMcqN7Fx
f6710ddWQH4Gs8F7o7b2/Y583Y85tn61fz1zfplzzMT9GxbNmHp401f73OZt
SZ82Tty/b63lpAVAvuA97ef67JP2b0taurUWyJ84p14pcsOk/ZyaLgUWQP7V
TWd5Sv9O3s/GW7Nh/cav9u1V3DdDmqftf7rb1Wbphq/2H7tfLzS+NG3/4XrW
KS1AfilDruUqhen7HQMcBFKA/JdLdjMm7pm+/8fuGaXKQL7fuRoWlvcz9j88
/+P94vVf7UU6Z4dusJq5n/fL5vQWIJ//+aqdP1pn7g9JusiUCuRbf1lyJl56
1n7DKSsXqQH5vyY1N9Wnztr/4qP8cnYgX+m8baTt+ln7pc7mn3ux7qv9tEvO
l2b+mLXfK6Bc4hSQ//6sed5Ux9n7150SaV0N5AMA/YjLtg==
          "]]}, Annotation[#, "Charting`Private`Tag$2642239#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.560181, 0.691569, 0.194885]], 
         LineBox[CompressedData["
1:eJxdknc0F/73x4UkoySpT2ggI1JKMuL5MkpDWkZDg7IyyopPkZJRUkmDPiIN
FKHMEKXFm2SGbN7IevOeeL+Fr9+/v+c599zzOPeee+7znOda+/OHHPj5+Pga
5+r/+v9XtY97dW7eKlw2Xs82tN6O3zFFWXl5GrD/T3gZrM3xsYqNwjxDOC0I
joW1LaqNen3K8yxAv+ecbGTtBpfWvbvn5Z+Ep4JEx27rADw6HZ7Um++B9v6Q
4nPWkTCucfnkVXQFbo9Ld41aP4Gmjslmb9EoKLG+d3hGpKPhQ6XmwGAM6gPe
qMWwc1GfRgk1zn+KholbvlICxWBkJErOKr/ErUcHzpbafMbrfP+frngF54w3
xXvGvkF4rCHapuINUjKtPiQ3UUDJOq229t1bVPI/mu+cVQU+l8zrrX+yYP5J
RrUlpQbtY7w8EcdcTMqqsx8n1iEPj1aP1OfP/SeSIne5ATPX93roHSqEcxzt
T+3+RgjyB685oV6MZF7HyqYDzWCEl95nznzEbHiHpplWC5wv5ItkPisFfKeO
q+9sw5W+Pt21tl9QuUlJRMaqA+fvDGxPW/kN7mz7E2kKXXj+KCHstFoZeoaj
ucu0u5ErYR+4ei8FUlm7BIr0epB1Qj8soLUSyvUi/T+OUcHe1Zu1L+cnQL5P
awf0YlFBfG10ew10qAcGxe71QdM3UXriSx1EpDtDGd/6kTjYCL3WBjwLDy0U
o/+BoZ/cq737mkBNGVDSWD0I6oWHFZwjTbhft8fNTXEQDeNifa/PNoH3dF9y
muogmu87624KaEKC3sUpda1BSP7jPpiX1oR+WBrp7x7EribWwgKxZhizcsfD
vAdxv8Zx1VRjM14l5Mh2lw/C73fpry1RLdAO2tHecHEI+xeEXOyKb4FDm5Qi
9/IQZOQ94x6ntUD1x0bfVdeG4HLxR6FmWQt+17F13W4NQSzH1HpqpgWfRPKc
pBKHQHOJSxf0bIXTT7ZyLGUI60UdtQJPtUHqJ1POR24YQhYLfWfPdSBb61R0
Qfkwlm++Kjoa2AGPl3by8T+HEb6qhDCjOpDwXMUguGEYsUc3ym/P70DtxsR/
DnYNw3bf8cUtgp2YNhKPnzc5DC+bL4b2LzuxUyFyX6byCI5n+ygNX+pCuwsZ
3H1jBCKHFPz7Qrtw02Snnv2dERgwDB1oUV345eh8IODBCDz8XS8ppXSh/MDq
htzEEXjWTV4mDV14mjfsZVgwgsORpSvVNbvxPvZcf8rQCFJX2Shkj3fD8obS
pmELGmq8z16zFejBzuczRfJWNFxvtU6XluhBy9ZlxrbHaZiQlZ8sVu1Bn/C9
nb+caNDPlddoO9GDB2YlPp1XaWhzr5+9SOmBf2bYA+tsGkw9sv7oZVKRHqJ1
sOefUQRuZTLMSqhouDmy+uSaUeTEmLadq6LirNcjwzalUcRXrVvKGqai1PG3
X+eWUXzfpOAnub4X2rtkN/FbjOLIl8Ouham9WMb363JR8Cgq86hi+h/78CY1
ZkpqdBR8QWfMt9T0oYqvne3KHoXIyke9pt198PaYd+AbbxQ3MzUFcwX6QTsY
qRO0YAxckVCX6t392DtxW11i7RjUvUvs5Vv7UavcHPLacgy6XD8BaakBNEnY
RtQVj2Eka+n2PJUBhJHAUwFfx9C0neXmbzCAFRUTwqqVY6i2er3grNMA5Ius
BiOaxxAtuP1O94cB3N2wxdKTNYaSjC0zXz0GYTjsuKdfio51hpO1f+hD8G5L
Oe9hTkeGeO54mtgwRqpdDYwO0BF85qtxisow8n+GiUtb0rGMwuzYYTeMYK0n
n78dp6P7t8ujrb/m+Jk21cCVDjObRs3L5SNYNJal9SCCjq80Hf5VPaNgXAgc
ZFfQUZ3JfaorNIZWnQGvxdV05H7Nupe8fgy1eWuuqdfTsbigNsPfZwxvbrrB
o5UOXy+e8SIhOlTepPyUGKGjUj7bTiuZjuWHnD83ijMgkxQXqSPOxC/Vtpzb
hxlQWviewlZgwuO6hX2+DQOL04om/+gx8RvKvdTjDPSF3Na96MLE7XKNgB1n
GXBt3HxuF4WJM22+L9R8GdiYFW107QEL/M8q9G/GMDBrmspdnMnCtidWYtQ4
BjqzxeOpFBYOn/KXJokMLFc4UXKCj43//FNZAq8ZWOnlsK3oAhvxSu1x2YUM
bEilPJY5zYFfhuSOgg4GojWEtwYFcTDcWbphD5WBN9Om6XpPOQg37a/s+MNA
Yb1KXUknB2c+Ge9dypjzE0WhKjqM4+pJ1v5UASbajtk0VARPQDkl+XWs6hxb
Bp2/J81D4H5l2kd/JnorA6pdTXhofJsgVxrIBO+T4rumCzyk/cpULwtmInpb
UoZHFQ+/a8tW9kQykStlun7g9hRSU4MzLZ8xYfrel1qgMY1TuTQ93Uomut0T
30o6TsOVe6HvTg0Ttmp6FpsS5ubzzI8O/WLCLFKmmiIxA6rH3a6sLib80zVj
h2ZncOyjlXXkOBNGamqWnBA+ovciZqOnAguXtd2661P4SLGB+7SaKgt+9mnu
+pV8JNeguYymwUJFNSX53dJ55GEHMy1MjwXFTffvPEibY0quvsQhFny3fnO3
4fGTP4oeB2ODWeie7/fYQVmA5J/Psv55gwWlypNaulYCJPewEUfsLgvHZ19t
MM0WIK/OHPN/GcfCnxyl3Zf+FSSJQ0eXkNw55ndF+BYhYqdxJc9siAURr5js
Qh8hoqe9fCiNwcLi5vxA83whQkwvUWW5c/fW0U/lkgUk5dYHQSVhNkYcW7e2
OQiTIn25E61KbLC/DaQiW5gMi3GXvNFgI9bXpsiOfyEJlLvjfkubDQs1x3CZ
5IVEJ/qEit9ONnxe1KbKzRclL2otgkWc2Fi9v0l9vb0ooW35q33kPBtez1V0
LpWKkrQl53rz/Nj4x1iiZWu4GOE6Fl9+dYMNJVfdpDDNReT6WwMXxzQ2dh0p
VdkvtoQsd6RIJrHZmExPLqg5NMdjPh83zrChVh3XfSxuCfGxmZxft4CDF7VP
hDs3SxJrU/2IUzIcFMT0i5leWUq+rX+XlGHCARE9sPBZ01KyPrVAV8iCA1Wn
e/sbtkiRf3zOGF06woEJZVm7EUeKGC/4HV7ozoFF2V1bs0Rp0izbG/ruMQf3
hN6LH5NaTiwvhazlT+JgiZVUVkjkchKbSUv3fcuB7dXPrzg3V5Bgx/wAStlc
7hVS5do+riQmUm5hRpMcfK7UMtA8LkM29NrNfBccxwq5xIL0vzKkyiH1qP+S
ccjcef8l+LAcCaJGbD6rNo7I8a77nA1riPiyZ14RduOQvFByxTt6DXEs3Nyb
5DGO3xtXZ6tOrSExOh73mZfHISzb22/cspbUSV1fpxQzDi6X/a/WQXnS1/fX
XyJpHFqzT30CquRJ0x/Z0c3Zc/vzgyzONymQPm+V1So14/BqHtnZ5qBIqI8z
Fs12jKPn8fwj66YUyat5bRHSo+P43qIVqLldidjpv++SEJ8ALanTWEBFlZxU
LpcNspjAyNOGLtpfVUK5G1OWdGoCZ/ZvyWluX08SJmpuKXpOoO9gwsaHZepk
bKK8XffhBFZcvhUWV7eB6Iw3/GxOmYCVzFsjyVENEvqhMK2rcALF9bGmyzI2
kQ7lnL3omcBebpGT5FFNgo/KIs/GJ7BPSCQxefFmMpTwvPia6CQeel8VV3i5
hfRURza0aE+icXYwLTNEi7hxTSft9k3Cq7CWp3xxK9FsCc0MPTuJ5Waia/fc
30bkjljFlz2YhFyOvqDVFx2iXdJuwkufRNbXqvp14nrkXtzie8yySdCO2ZoP
8raT4xLlJ51nJpE8qWMblWxIBrjlewRkuHjIf2y6yoCQtLiHS57qcCF74sJu
iq0xWcHd9kvJj4ugt4zzd2JNiOfCrzsQy0V5ePj8gQlT4udpvimrkIsz6a/J
jas7SYystkZ8BxcSFUaw0t1Fku/5Fq0V5IHqnLCmaP0eYsZ5OOSgxkOpTv/M
ilPm5EWEnMlDSx5snnudPEy1IGY/qhq7g3h4o+L9s4p6gCiJlSSEpvOgllhe
YRR1iIwlf9n2tZ2HwbfeLiTEkrjW8q+mSUxhtO61gmitNbkfdSn+pNkUOg+8
XHTl9lGyoOtm8s1rUygWv+NwrtmW0NaRRRMfpxDRKCa/wuM04Z8MeWsh8BdR
Lq+KtYbsSYF5sp+d+V8Ied98ECXqSIZzw0q3PfkLm9zqos2S54iNb1GiEvsv
XlXk8lNPnychs9O76FbT0JW72nd6rzf53sT7d+LLNMZYbXoidv6EX32Y/sBo
Btcfey7K6w8iCdMLf6XXz6BA9NohSlcoUXOITqy5NouvLzfvaVsYRaQ+u943
UecjThxpY+GF/xFhIW07j3w+osjVWTJITyWZT8qelN2dR4brmRYVWd/JB+nX
TmsWC5DEz/YqfC0/SPsV45yDJwXI/wCWGKy/
          "]], 
         LineBox[CompressedData["
1:eJwV1Hk4lFsYAHCydesiWyqyRFnK1pUW6j3Zri5RConIVpSdqCy3IlRipJK1
ImSPJCJHGDMjikREQiW0Z75vjLHc7/5xnvP8nvM+Z33Pq+weYOu1hI+Pr4Jq
//eWdQ6Vixc7kKK2a/5pdwE019njck2pAoVvtC4IaedHzJWcS99XZ6Gw8+bj
g2N8SDHk6KYGURr60bSlZe5vPmS0u8Bv36tYVKOyTDulaBF0+lays42i0J7s
j+Eu0wvAbF+jXlN6ChkpH8kNOLIAtWZeHR8eB6KKjgnvy8PzwFu0ti24fgJF
ZllUjATOw2RNhKVlnhfyqxzsoK2YB7sgxz/92G6o/35a1diTObjoHvb7pJkL
0rdMiRnymwPppPAzmYOOSMnqw1kB9TkwVGRcDLG3R+FBueP6EzyozbF5xBd5
AO39unQhsYwHz2Ta87NV9qOPK9Il7cN5cL7ysqDWUWu0JHh0Yc6UB2dlIz/P
yVoiFcF43tKVPFAf3rx4z9oCGbcE18lMzUL2p/xn3V/MkKmmwLKXTbOwwaPz
S/OQCfrmyMv+lj4LSLYhpUfSGKG8pCv6p2bBQ05/LvACQi/tdL0CbGfB1+UB
u9Z0F9K4f7A+UG8WEugiNbv7DNG2EPvvKyRnofOA0pZDZduRR4PBTi02FwLf
OpcINW1F+0fXChS+4UJXXnIE7bQ+6ogZPLgnlwueCtxTXRJ/oRd0przpJS5I
dCvm/e7QQ6sGnoqjIC6kiUk6CG/WQTYKXHuOCWU/GZNBcy2kx2+QeV2bC6Fe
zGrBixtReC5/ArmaC7L0Y9sEfdUR+6YDb+D3DFx0on9JFVVDJcx9TeYjMyDr
ReM0sdYj9SGlU9YvZsAneE/iQLwKuiOh90y0dAbKNx9WH21TRHapUq5xfjMg
ohCeEQ4KKOSJ57tFlxmIKuk+ttglj5wf2Pw1sm8Gjl/nE50yWIM0gy6otmyZ
gcu5hhqdIqvRqrC0Q0/VZ+DemHjBzSlZNKr66JKo/Axkdhw/njQig4zX6jLv
CsxAQed8vPsvaTQS2mj1nsMBet46TXdxaSQser/a6ysH+gMTxyBAEn2+HiNh
3McB8yM8QSlbcRRn9IfzdCkHbjKs1M9oi6E/Sk3ev87jgF4tqK1fJYre9nY9
/pTBAacGlqvZiuXIxE0nIvkSNd/krzDD8yKo2JDv+DtvDvxSWvKRXS2Mhkxf
aki5ccDClc6V/iWE0kLdZvwcORDSL/So85wgWssoTE76hwPXHpR5nZ7mR7/v
33xxVJsDcfWqGy668qPL93e05KlxIN1Ad1S5mw/B0h+BgsocmGH4ly7GL8Id
Rv1POWkOTHkqXLjVwoNTqwpeJ/NIiHXSCqMXENDTWmDM/5IE/LPUyWaRDUZ9
9p3dLBLO6DkJGx9hg7j/9oyaVhJcFa+7xapPg6X6Pzvrn5AgqjC1fgnnJ+x4
mb01v5AEoSfRfg45U5AqtXpjcSwJTV+1byi+mgSaCpcv5RwJk2OWDQ3LJ8Ho
pOmpuEgSVH9MPs9P/gyNdmtUskJJsGTR9nNff4Tk9TdcT3qRUKf5bvdbvREI
l78l5bWHhJr+LpOV7u/hr2vn1DTMSUiK4Y3OHxsGnZ6QlxxjEmobP/mlxgyB
pfVprWojEuToYksrlgyACFM77Z4uCQELN6oz2a9AntvXYLyGhNwomh/b/BVI
x3Rcz5YlYXGkUM4puxvYym4VfDIkNMzLCY7YdcHu6qTN78VJSOjV9X/86Tlc
LmbumhUiwXk/N747uQXWP/u3njZNgFhdg89MTjOonUwtdv9FQJB3Z4THw2dQ
ESVpYPiDABOB6Li5Pgz3ikZYi1MEPFpYezVJsw6IuEja6zECQnJz7RP6i8Fb
WnNLZg8BtRe+yaUUpGKHlRoT6+oI8IjuEvB+kYarpv4RjH1MQHbq/F6d95m4
YbuM19QjAmzx32Lvhu9iK/eN1W1VBGiUBTQk7irC795ava4vJeBcuanHOrmH
OPjz2X1X7hLgeHqzxyWtp9hp45JznkkEfDwTIXTy4VM8vq899MBVAhj2fG8j
DRrxoSK3VeaJBDwg4m766mP84qm9mcFlAjZvG46MTWjCz0Nv6uyOI0AwfYWd
2aZmfCcvPoobTcDWdsOk6JpWHFSt+7k+mAClA9+Gu3pb8ffV3pVylA9uu+oY
xW7Fwu9N+6KCCBDfvsvppw4d78qtkNsTSIBByrxJ4m06zqmdXMbzI0B2rrd6
yKMN2/oUOzB9CNCcVPaPoDFwENa2mHKnztPmPVR/m4G1m/RuJ1LGl6WEssoZ
+HuNC1OX8hUbXsPu5wxs1KQSE+1GwL+tA3VWfExsePvLdp2jlGelL2QcZmIf
crBt7AgB222u9Zf0M/E3sc2TkYcJyGzTFZ8YZuKsxoUfNpT1+mr2jnxk4rje
vPuqlKeSgpz/+MnEwlkp63ocCWjce4B0EmDh5txrIyaUpUddeR8VWFj3Qv1Q
0CEC3A7eeHNEmYVvO5glu1Detn7mbK4KC3tzG1usKK+ITA+6psbCAhK0Qi3K
hld+t6losTB9nCbOT9mlpPqOhDYLW+2zjuM6EFC9TPRWN2VpeZbPNOVf90y8
PXVY2DL99OPvlC1CjrHaKcd6vvX9Qnk+zDFQSJeFvQ4Ex09S3u8zLiZDOeJo
u+D/fiXVcWCWio9ICx7738dtO6ceUWby8yt8pfziGY60oGyWKvHoB2VZ+YyK
Kmr9UFnzfDblD38Onl9B7bf3a2P8Emq/V4PShQTUWTivrEBam/KmVvtUU1kW
3pDNONJMWZare6Odut9GjzHdbuo+tfQTLULeMvGJIr35Wcp0kQ5vwT4mpg/a
vlnvRMDfdw4dHu1g4vPIrzyaMltPJCu5joqXPPvEyJmAmrOGK4WTmbjmybLJ
Ceo9B2hf4OgmJiaO+xpzqPfHTRK6z3YycFIWn1WuLwG8/b61agYM/M2+pX+e
Mpj8GxSnzcC2CZpLD1P5N9tjP75JkYHlPxRZSvsTMKZzb0CJj4EDNkrb0AII
2FBIVNY3tWHVOZv0fCq/eeWDDu4723CUmrIoOkPlk61DfLU6Hf8iC3vEEqj/
lnlXz620GZ+r8vK1LyegaSAn7otFE553CNuj2E/AuvCcoTvD9Vhh8Sg9jKo3
bJG8UwntNdhB0uZu3A4SLmg4lzVLVuEMzqL5tD8JVfq2sbXzlThnUWhkLICq
XzsmwsonKvFEr3LBq0ASes7UFWY0VmK7XF5tVTAJU8HNgqEnKvGT7ePs0DAS
MnJqlmk0P8DLZW7l8UeTIPn7ZuTaD+X4hR3xesdVEnaMyNcsrSvHpYZFbTpJ
JBQ5WBZPJ5Xj9x2MEdVkEippC5XMHeVYrbvuqngKFR8ex/K/VoarLpW0jV8n
4es7mmfh7lL84JxoWlYWNf+GW9aJsqU41N9nMTWbhByqVAZ+K8Flb6SSruSQ
IEgTaNmaXoIHBrrXRtwhYaV8R13jz2IcqH1CwPkeCW0PDw3ntBVj4fQHGQfz
SfBUOWYfnVWMR9xNHfYWkCAiYKxjaFGMI3m9APdJeBeiEb9KoRivEr9xclsR
Ca0vW5SI6SK8b7lqg14xCT4xaZwuVhFe88FDb2MJCSFZ6iKlt6nxoi3PVUtJ
+A+uCats
          "]]}, 
        Annotation[#, "Charting`Private`Tag$2642239#3"]& ], {}}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, 
     PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> 
     Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {
       FormBox[
        TagBox[
        "\"h | t\\!\\(\\*SuperscriptBox[\\(|\\), \\(\\(-\[Beta]\\)\\\\ \
\[Delta]\\)]\\)\"", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)|\\!\\(\\*StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"\
Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"|\\\",FontSlant->\\\"\
Italic\\\"], RowBox[{\\\"-\\\", \\\"\[Beta]\\\"}]]\\)\"", HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, 1.35}, DisplayFunction :> 
     Identity, FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 14}, 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, PlotRange -> {{0, 2.3}, {1.35, 1.45}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic}, 
     Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "2", "6", 
       "\"Caselle \
\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #3}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.875957126514063*^9, 3.875957152540943*^9}, {
   3.8759571847549353`*^9, 3.875957188180087*^9}, {3.875957249738762*^9, 
   3.875957266071168*^9}, {3.8759573346853323`*^9, 3.875957362091642*^9}, {
   3.8762091314286547`*^9, 3.876209168479266*^9}, 3.876210214519513*^9, 
   3.884690547837318*^9, {3.8846907344980288`*^9, 3.884690754914673*^9}, {
   3.884690931703446*^9, 3.884690938018208*^9}, {3.884691030959455*^9, 
   3.8846910405584087`*^9}, 3.8846914788814507`*^9, 3.884691620259225*^9, {
   3.884691704823866*^9, 3.884691710395669*^9}, 3.887175483369059*^9, 
   3.8871849063569183`*^9, 3.887185435272781*^9, {3.887186470900655*^9, 
   3.887186476464538*^9}, 3.88718651032314*^9},
 CellLabel->
  "Out[141]=",ExpressionUUID->"9dbcc449-beef-4593-9962-5e349a2d55a3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]2", "[", "\[Theta]", "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "2", 
            "]"}], "[", 
           RowBox[{"1", ",", "\[Theta]"}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}], 
          RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]6", "[", "\[Theta]", "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "2", 
            "]"}], "[", 
           RowBox[{"1", ",", "\[Theta]"}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}], 
          RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{
         RowBox[{"\[Xi]", "[", 
          RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", "\[Theta]", 
         "]"}], ",", 
        RowBox[{
         RowBox[{"DScriptMCasD\[Xi]List", "[", 
          RowBox[{"1", ",", "\[Theta]"}], "]"}], "[", 
         RowBox[{"[", 
          RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", 
     "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", "1", ",", 
     RowBox[{
      RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], 
    "}"}], ",", 
   RowBox[{"PlotRange", "->", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"0", ",", "2.3"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"0.015", ",", "0.105"}], "}"}]}], "}"}]}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"WorkingPrecision", "->", "20"}], ",", 
   RowBox[{"PlotPoints", "->", "50"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\
StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\
SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \
\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", 
      "\"\<\[Chi] | \
\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[\(|\), \(\
\[Gamma]\)]\)\>\""}], "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", 
    RowBox[{"{", 
     RowBox[{"Black", ",", 
      RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "2", ",", "6", ",", 
        "\"\<Caselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.875952981547227*^9, 3.875953315769273*^9}, {
   3.875957061887289*^9, 3.875957104302837*^9}, {3.875957134472674*^9, 
   3.8759571357521*^9}, {3.8759571703214827`*^9, 3.875957176129848*^9}, {
   3.875957284251436*^9, 3.875957289963092*^9}, {3.875957366732642*^9, 
   3.875957382812718*^9}, {3.8762091878796577`*^9, 3.876209192631675*^9}, {
   3.876209751602669*^9, 3.876209811843375*^9}, {3.876209848116508*^9, 
   3.876209861628406*^9}, {3.876209944462913*^9, 3.8762100154872293`*^9}, {
   3.876210224923583*^9, 3.87621023768332*^9}, {3.876210756477833*^9, 
   3.87621081543836*^9}, {3.876210894360219*^9, 3.876210901623786*^9}, {
   3.884691262125641*^9, 3.88469130343027*^9}, {3.884691369512054*^9, 
   3.8846913697035637`*^9}, {3.887184307286583*^9, 3.887184323958791*^9}, {
   3.887184367655423*^9, 3.887184373974834*^9}, {3.887185458067234*^9, 
   3.887185458627892*^9}, {3.887185513675918*^9, 3.88718559599909*^9}, {
   3.8871857974578238`*^9, 3.887185814434868*^9}, {3.8871858779006987`*^9, 
   3.8871858953562098`*^9}, {3.887186064343815*^9, 3.8871860991185503`*^9}, {
   3.887186398956843*^9, 3.887186404740259*^9}, 3.8871864473345537`*^9, {
   3.887186479790662*^9, 3.887186489958621*^9}, {3.8871865212317467`*^9, 
   3.887186523110434*^9}, {3.887186638529913*^9, 3.887186640216406*^9}},
 CellLabel->
  "In[147]:=",ExpressionUUID->"b1086ee8-7679-4537-81e7-3871b266ebb6"],

Cell[BoxData[
 TemplateBox[{
  "ParametricPlot", "precw", 
   "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
RowBox[{\\\"0.855058956315038`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\" \\\", \
\\\"\[Theta]\\\"}], \\\"-\\\", RowBox[{\\\"0.06068304017165753`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Theta]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.011882621669035656`\\\", \\\" \\\", SuperscriptBox[\\\"\[Theta]\
\\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.004040915431527982`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Theta]\\\", \\\"7\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.001955924222647888`\\\", \\\" \\\", SuperscriptBox[\\\"\[Theta]\
\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", SuperscriptBox[\
\\\"\[Theta]\\\", \\\"2\\\"]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \
\\\"8\\\"}]]], \\\",\\\", RowBox[{RowBox[{\\\"0.`\\\", \\\"\[VeryThinSpace]\\\
\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"0.25175267121411976`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}], \\\")\\\"}]}], \
SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\"]\\\"}], RowBox[{\\\"17\\\", \\\"/\\\", \
\\\"8\\\"}]]]}], \\\"+\\\", FractionBox[\\\"1.007010684856479`\\\", \
SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}], RowBox[{\\\"1\\\", \\\"/\\\", \\\"8\\\"}]]]}], \
RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"15\\\", \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
\\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\
\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\
\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\
\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\
\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], RowBox[{\\\"4\\\", \
\\\" \\\", SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
RowBox[{\\\"31\\\", \\\"/\\\", \\\"8\\\"}]]}]]}], \\\"+\\\", \
FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\
\\\", \\\"\[RightSkeleton]\\\"}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\")\
\\\"}]}], SuperscriptBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\
\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], \
SuperscriptBox[RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\
\\\", \\\"8\\\"}]]]}]]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 147, 129, 31937344891897383576, 
   "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.8871855337728024`*^9, 3.887185596513431*^9}, {
   3.887185797918347*^9, 3.887185826765079*^9}, {3.8871858783091717`*^9, 
   3.887185895966701*^9}, {3.887186065114805*^9, 3.887186099892681*^9}, {
   3.887186394070674*^9, 3.887186405193706*^9}, 3.8871864479183292`*^9, {
   3.8871864808523808`*^9, 3.887186490366315*^9}, 3.887186523517044*^9, 
   3.887186641177333*^9},
 CellLabel->
  "During evaluation of \
In[147]:=",ExpressionUUID->"47c3b277-8c10-4a4a-afd4-bd90c43d9128"],

Cell[BoxData[
 TemplateBox[{
  "ParametricPlot", "precw", 
   "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"15\\\", \\\" \\\", \\\"\[Theta]\\\", \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
RowBox[{\\\"0.855058956315038`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\" \\\", \
\\\"\[Theta]\\\"}], \\\"-\\\", RowBox[{\\\"0.06068304017165753`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Theta]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.011882621669035656`\\\", \\\" \\\", SuperscriptBox[\\\"\[Theta]\
\\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.004040915431527982`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Theta]\\\", \\\"7\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.001955924222647888`\\\", \\\" \\\", SuperscriptBox[\\\"\[Theta]\
\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], RowBox[{\\\"4\\\", \\\" \\\", \
SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
\"]\\\"}], RowBox[{\\\"31\\\", \\\"/\\\", \\\"8\\\"}]]}]]}], \\\"+\\\", \
FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\
\\\"0.855058956315038`\\\", \\\" \\\", SuperscriptBox[\\\"\[Theta]\\\", \\\"2\
\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\"\[VeryThinSpace]\\\"}], \
\\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"20\\\", \\\"\
\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[\\\"\[Theta]\\\", \
\\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"20\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \
\\\"-\\\", RowBox[{\\\"0.01760331800383099`\\\", \\\" \\\", SuperscriptBox[\\\
\"\[Theta]\\\", \\\"8\\\"]}]}], \\\")\\\"}]}], \
SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \
FractionBox[RowBox[{\\\"1.710117912630076`\\\", \\\" \\\", \\\"\[Theta]\\\", \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\
\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \
\\\"/\\\", \\\"8\\\"}]]]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}], \\\")\\\"}], \\\"-\\\", \
\\\"0\\\"}], \\\",\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\
\", SuperscriptBox[\\\"\[Theta]\\\", \\\"2\\\"]}], \\\")\\\"}], \\\"-\\\", \\\
\"0\\\"}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision (\\!\\(\\*RowBox[{\
\\\"20.`\\\"}]\\)).\"", 2, 147, 130, 31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.8871855337728024`*^9, 3.887185596513431*^9}, {
   3.887185797918347*^9, 3.887185826765079*^9}, {3.8871858783091717`*^9, 
   3.887185895966701*^9}, {3.887186065114805*^9, 3.887186099892681*^9}, {
   3.887186394070674*^9, 3.887186405193706*^9}, 3.8871864479183292`*^9, {
   3.8871864808523808`*^9, 3.887186490366315*^9}, 3.887186523517044*^9, 
   3.8871866422018423`*^9},
 CellLabel->
  "During evaluation of \
In[147]:=",ExpressionUUID->"88979e53-fa84-4309-bb1e-7f9206ce0235"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJwVlmc/EIzbQG0Vkk02kZkt+7rsmZlRsrKKzOy9srNLyi5kZW8JKTJCWaGh
krgTQinJ839end/5BOdwX/YydSYiICDwJSQg+H96NVZdTm69r2qWXOSmosSp
QvNC/nKlOY/qRGxuTiBdrsqJvaTut3+IVemxZerQpUllejBmNKX6B75W0vpb
2v5URc32sdD3vmV8yTnb99xoQiWP4BjXv4JF9Dw1cmudZU5lw7+GhclkCoX9
cqq+ZX9Q6bcku5V79SXefkdP5dOyrMJ5WuTi0sNBpBL5MpXj/p8Kqbj7Zbnd
ftQhanFrmNtUKTM5vDHC/ASrqrl/GKruqAxfXt7XO+jA4cP9ruH1XyokhgMy
3dSt+MpMYDZ2cV+li+yCuvTvRnzF6rNFREYAqzL5QjRR9SiePpAcpUwEpscY
3Nt+12CrXgIjTw4JiFV1S+dVVOLM7Mqi9VFyMFsdvta9VI4fq1Ila/OPwtVn
/zIqkx8g06ULvwvPUYLc04po/dRSXNKmvdLPSg2X3n6um5guRqV+ExIrYhoI
7uY09msuREm9297ECbTwy4idto0jHz35w9+3MNMDUXw2mcF8Ht4YszPUaGeA
Tqff3gbzuXiJIoA63pkJLEEmSo/+NtJs0WSe52KBy3WFLQOROfhJ1lok5etJ
KNBoiu5myManivp/yHrYQIaOx8plIhP7R1Zry4s5wOyu4rVvVRk4/Sxcnk+H
CyacLG5EqKXjtRClr1e1uCFq9oH6kt1N5HflHqTV5wFWW94OkYcp2B448ZLG
ghdqZW2UXBiTUb2IIeaC6ymgKPpap12eiNzCLp8XI/ggalw1i/t8Ai6uGfik
5/PDQ7fapn62eKyzfEDv3HsaBAhJLjsdxGEkfzyv6ZoArIiHct3djkUa2QVz
/ZNCMPyQW1bjIAabuoJ7NY2FwZIt5UYccwyKHusfl00VgfNzASot6tGYZlKj
Rv9SFMZCw2gcwqPQu0CRf4pBDHxfxEFwYiSqzZVdaZUQh5LMgLeqZyJw3cjK
221BHJ7WNjhTrYVhx+mJPMJECVDuC8sj6QxFAxsxv8CzkhBJtZBDmhGMbLJl
lN8LpSCHfilHKTsIN0XUgr9YSEMVsS5uPghERR6lrRoaGXhmJRV5ZCAAJSXP
pCqPy4C9k8q5hA1/5BlyCs5Jl4X0RwfzN/j9kU1l9l+t6VkQfaxKKXnFDzUq
JYLimeUg0eBxVNmR62ikHMTmUiMPppcZb7O7+OJnGhdHlxAFcK+51lcy4oOV
gg1TTPqKYBGxZVAt54O0Z4hFAjmUgERTy7mnxhsrOY7KRu8owVfXJ8evnvZG
w7CJcckxZdC4xegdZ+yFjEKiXxIfqoBuNMM2WYAHcra2q6dIIQTXazkbxl/D
M6usrn2PEFhL82mWStyxpn+QMkJYFV5UiLHx711F84cJw7GCasAxIT93R+Iq
/tDf93hRpQZexRR809evYHLsQmWaqDpIj637l51wxaHHGhczz2pA6kTcv3Nu
LlgropE30qMBbZY+WSvDzlioxkEaqa0JGg1CAteKnHBhu0ZT30YL3Ng/JJbT
OmG7zx9WhzUtcJwlqvRKcUT33P+414K0oZP2d25S6mVkPfuX2PiuDkzq0L4w
o7+MQ+80aIVEdYGSaG2osNgB28lFmn36dEHNN+Lf9DN7LE4INtP4rgeDhIfc
F23tsWKC7dFovD6YCxt/Ytu1w+nmNIvHXAYw5Rw6Vhdii+l0vNGvrM4BSAyx
nB20QXfdn/E7P8+B6V768TkWGxQY71wKvm0IS9K3U00mrPFTTsdY5RsjkKZ0
4rUOvYCGToK7KnImMKfIaPFiywpfzE5tjaaaQK03hU7kNSvs3rMiOfLRBOj9
3XepPS1xW+1APTbNFAifcbDl7ligQ96aQ/+yKQzPvcvqibBA9jHZwBplM2CT
89axKTDHY83+oZEbZuCwb38pQ8Ic50xprrjqnodlHpBdGDqPdOQG2nv3z8OM
s6KIKsF57C01W6W1NoedtKKTVummWLXkeIlj0gISflg66sib4hsmBT8Ut4Rw
ihqp2GUT9AoY6yDPsIRrMayR8RomuJrrQhJnYgXsCWPKAr+MkfTjzdNyTVbw
Lqp8+3m1MYZhZXM6wwU4tbRa2HrSGCNNn5qfXrwA1tPDbC8rjVDMiTrTBS8C
YbhdbTm3ETIFv4/TLrsIK9/MuPVZDdFSIWjzm7c16Pks/xcgZYBMG6NJndQ2
MK/YGi0wpI/yk7HlBz420J/Jvypmp49kk08Oh6dsQDTUs2c/Ww8djxYIEufb
wofzWS9eMOqiqM6UizezPZh4z8e5dutgfMzpwlZ9e4g6qrz5wVEHDXRlezDS
Hrxv1DpItWujIsUEL9eKPdgb0AmT+WshfXVdHHmnA6TWkmSLCmhhxKD74ZUN
B3gcw6Y+taiJR4FZlYrvMoS+iRMN0tPEkwPtN9kzLwOv82tZZlkNrI6XSr5w
zRE8vhwmyOyoY6FsYdDYfUcYrx0USGlSxzfEDeyxC46wS6q90iujjj0tvkea
9J0gkvnz8k1tNaycPjPDLeYMnr+5ou8fV0Maoa/rRVecQcaWVbRzRhXV7pV3
2ZY6A6nfx+lXV1Xx5oLwQQGjC3zsrOuiu4fo/Jy7l5PIFZ7pZ7zPuop4VRrP
FCu7glV8WeqKHKKOwqSdfbAr2Exbcx00AR4EL+UWbbmCmYnxvRE9FZQmrBdn
XL4C90pVi/h2lJFmf/NmJs9V6H8zcHG5UBkNXg4N6dtfhXtlx+8E7ikhPdVr
17DFqzAamJrN3qWICRx6uiOzbqDy50lJe5A89pCrMx+ZvwaMfGlnM2TlUXN6
e5j1pAdEBK7E2e7KoWgPgYnbRQ8QF1m3GvWXQzJdiqC2BQ949s3tvmf0WZz8
nlFEveQJ96by5sO0ziLbv9cXfvF4geeYeJct5Vkc/PpIhMXZC1Snrs/cvCuL
CZm6fcfWvODs+M4f8V4ZNPYLvGMS6g0XZ9Itr6fI4MXoH/kiBd4weJP5/DVL
GaQZ9T9/6ok3mAo8EPbfkkbeVycbrhL7wIRrsmaKqDT6745s6930AYUA8ijt
p5JovDjrbFvuC5LHv1Bn3pHErd2h4sMXvrD3ibrJyVMSJb2dVrrXfeH9oDZZ
Caskpg488EqRuQ4dXDoa4mESKPjP1TLw+XUgLOjM+WAmjondQBaz7gdZZ+mC
x8XF8QqRiet7Wn+ICxVsEDgujgIsy/JWcv7wrDvyN3+OGHoR1B/Pj/UHPq3m
V4o3z+BqFkmgO2sA+Ft95/UrFUH7g6Ir3MaB/+uZBo2W4/+8YjwkJiQQjhr+
Sl84JYLrMepixGWBEEpvPa1RJYyenyzNHP8EgnhV5kb3YyF8GfPuQkF5EHiG
x1HNkAiirSuc3CAJgcwk4t7kCQEc2JQx1pQIgduNl57O5gsgeSZ1VKdNCAwI
lNyXOCuAbs9ZygjbQoAep30qfE/jZ5W/3wjdQ4GV2kdwkogfbfOY3vfNhYHE
AsHe8Vk+bPjeQEtMHg4K2sMCz6r5sCLL4sFlmXBI5OpbybbgQ45Im+6wrHB4
GVR1mNpwCmWu8nazGkaArejT17dCedFDmZXkYDgS2vzliAos/uc0gWOc+5HA
EnjuFokkL4qeYZesZ4gCgljOgY1VHnxZW+DOrhUF0l03PelsedBEjWWrsiIK
2vxm1pMsuLFkWDkrwSMaTjaSZ3HKc2OS9Y+9N3HRYF3Gq/OblRuNRt5wyudH
gwn/m3r/j1z4KIi1hH0kGoStF1LCfLmwRJqXMVIwBsR/cO7IKXFihLPCfvHX
GPjJ0XIofpQT5d71Lz0miIWNsOgfeTMceOOLt/kKcyyEe6j6dvhy4EmW77N2
urEwIb3ETFnPjjd8t7e/VMXCiYQizj1lNqQ50vZFzzsOXM1o/Txp2PD1+9fS
YklxoBXRI6G+zIoVJJofOEvjgKtU4hVxGiu+c72nzj8VB3a5a6PPPp1E0neE
357L3QCF7f3moCIWfDlXbmBOEg9VhEzZd0yYMN4oVDj7QQLsOua/UhJhQpN5
owjpvgSg6wjQECdnwvc+YZuf3iYAmYK9GWEPI957ss/nwZQIMzGBL6XFGFGc
SzxMICURTvt8HRfjZEBbBl5G9E+C7JZIO5d/9JgT7v2pLysJVpPE6t+/pcfM
DNFCk/okUDKrnsgtoEev5l/jd/9LgrR5EKPgokfPc9mTry8ng4jB62BPcTp8
9Fev561ZCniEbhTG0NHh6conhMq+KfBfcrn7+E9apGiWIKnKSIHvlXqdJ3po
cVvoi0LtWAr4H2gN8BjRolinBI+VTiqQLC69Ph5Kgz5Nh4HKeBPSlyjcz69T
ozTZuWUphXSo1Sy2TuylxlfDP0nqL6RDkZ+pL2UONSoMmdHLB6dDGG+MIJES
Nf7SZvzt054OHhtps+npx3Hi6ta5J6wZoGX2NuKeBhXyvQiqIcjPgHweja4I
NipkpRht5qvJgLYTQ/YVO5S4cDOI16Q7A/jqjYKel1Eic2mtWNdiBqR2RYkJ
U1DimbL4LwvsmWBG0dd+/OMxvGRrt2ZYkgnL1C5fiXqOIZV69Ns3DZngQGoQ
KXX3GJbILfC792eCSseDGW2zY9irZNte/CkTvnHc5hEbOornXu53WfJngUjT
E9nU7iOY/HTUb6cmC7btptzsR8lw5ucf94892VDIt9q/XU+GIsrXqSjHsyFi
fMW/7hYZQt47FsX32UAy+7qj0I4M26//8q48zIYnaX/Dzu+S4iGpNtkg5gDb
j/uab0+ToraauirpQA7M7V95mlBBjOYuASNJL2+BZKi+fGEGMd5PbMq3e38L
nqcQV00FEyPJrWPPFTZvwePArVvFBsSofGKdg5D2NvxYi776aJsITzEcXRgz
vw2iSMftq02ETdeJKV3f3QaVnsA0SRJCDPu+cZiznQsrWivDqhsE2Kc0SpFO
dgdSo56Ies0TYJhOj2E6yx2YTi9P4G0gQL6kucBSuAP8n/9L+2ZHgNMVyzp0
qXdAR/gd7/0bh6Bj+T2Egz8PbFgbDZjlD8CQ6CLlnO1d2Dz6d/I3wwFc//qG
6Y7vXTDbsnGn2P4LkrS9Brbxd8GJwTDpce1f8P7nKnFQexdUK0YczvP9hQsu
9G/jDu6C2oWPGmTs+0BSSx3SVXAPnrdeqXMT+Q1shtN7Tz/mw/ONwN26E7/h
wPGj93+7+eDPo03BtLsHh2YDyHy0AMhvF7zW7dmDgHeJK9FiBSB78bqwkuke
GAR/PncrrABun2qfPx31C6RKFa90MxXC6bkc3bEfu0An7+xEYVoEo1tbmevz
u8C1aFX/1rkIrEwWnws+3YVbKv6mLcFFMMRBb7ybvQvz2hp5fiVFUNo75DQl
uwvprzUlpbaKQJjFvi49ege+pAoYzekUwwVqhrUtwW1oj/gTY/FfMaROi/rW
MGxD7J1/kQ67xaDyN9wsnHAbjHrpqL0OiyHTsvuBw5sf0Ks89imTrgSwSYJH
IvkHPKg95fZTsQRMf7nITW5sQQvjE0LFmyXQp60fdW54EzzJF+WbJEoh7dmu
w932TShlftNwQqkU7k020P0p34SSs+S93lqlQJGiELMVuwnt3A+L5KxLIZiz
duKxyia8/fLPeyWuFCiN8vs9vDaAX/BafN9cKXgOl7ud8FiHqd5TP6/E3IcF
2u42O/11mF6ctiRKuw8fb5xPmhJcB3N+3bHCvPvg3RSxIrryDZYopnY+1N+H
r4tJS3mO30DolS4mv78Pdk9+hwo5/gdnJxZP+ig/gPFFgr3F0FUY4Kquydp/
AA9irM6E266CJuFDzXTyMkg6Q7arpLoKNWbJh2l0ZXCwypJ0knwVBKR2Z3OF
y6A8PEhKN+cr+Ko4C45bl8GguWONcfMK8FwneTrVXQbUjF6eP49+geu6Q50Q
XQ7JR2iYtreWYURVQmcstRwKG8PIyeeXwTirr9DmTjl8nh0x9KtaBu+ByMr4
unJgkBVwczBYBlP/QY0/b8uB+NLGpkfOZ3C7Q0BzRbECOg59xfOkP4FdvaLU
5b0KkJveYdTn/ATrt7nJ9UgeAqv/ryM0xz6B5r3WNukTD4EfbzTMvf8IalLN
DbQCDyEwVzv5fOpHSCJrYduyfAhyggG+a1+XYP/9cR+59oeQveVh+bPuA1Bm
sXr/DKmEU8y0Ba73PsBnFoXT6omVQEzepLoe/wEOGnKtsm9VwnHeJ+oyth9A
djDpjEp9JQyyEAS0UH0AnncnBx8vV4LN4eHz/g/v/veBf+qdTapA0W5HOjlh
EfwcJukdhKvhSMd4r4DjIlCVL7pxyldDR5WC4ZrKIsRzhjkuaVXDO2Pzwemf
C9C1JKLmfbkaenGpUffKAnhKfH7bkVcN7YmPJGNM5gGPXVw8OFIDtbb98aeV
5uCUEsmB2VoN8Nk3LnqzzUGj0XVa7b0aWK6lNZ/9OwukJazzymS1YBsZLbj/
eBY0SjfiZXlqgXQ9YfKu6iw0ySknnL9YCydCCKQ4DGegtPxTg8ZILXBQMxXY
hk7BTOnxd0T1j8BzWaiR2m4KlOplhr16HkGx6g/2ebUpyPB4VfZh9BH8GcxJ
7jw2BQEiFNIvVx+BuDFVW/m91/Bd9NHqHG8d3NptHqbvfwVPXd7XP7pTB35q
/T5ZXJMgNm3G16pWD+qqQQ0bRybhcNPzvxrdehBiHZew35qAeYlTSWXG9TAv
8KsipH8CCBYHjPJt6+Ggw9Yq23kC/DK4BYtD6mGSQPxYgu043O38REnUVA+s
7MlDasWjQKTefewsXwO4WdY2xPuPAtPKG0p3kQZQmlx7+E1vFPL0B6lKpBqA
0I1FhePnCAwbpNPQqTVAfrafL73hCIjmTGhT2zWAs+bUnjjJMHRaGdddzWsA
gtvvq00SB4HAgW+vnroR7AW6xcxtB+GB52+vF0yNoKEjrBQmPQhJFCkhnzkb
IX6h3EZ66TmYBjQZ84g3wqaawLSO0nMoeVYJj40b4clni7ZPewPQQNwp7JvV
CBsaamTbyf2Q7FRpucrUBP/Cf8aecu6H2Pakp1ZcTaDnmmzqD/2gWjVCMyLQ
BPN9M85+O33wx3zCvl2+Cfi9p0iX7frg4b96llbrJqCm9KjyV+qFIfGxTCxu
AmNX5yRqpm4g/cf9skK4GRpKCVNtZrugoG7/z0epZvDdZptcyO0CIQsyUm6l
ZjjXZ+J3haUL/hX2dpcZNEPGv/uOjzk6YZG18sQrj2a408FYIS7ZDv3XHx7v
qG8GEsfjJ9lCmyEp7tGPWbkWSBPoPcet2gy0h4Ps/qot4H+istyEvBmEht9m
M+i1gGXuEzGpnCbo/9fjbW/dAl2S8uG7dY1Q2ZxowxHRAncecYVYbNRD52xB
qcpAC4xcouJjZamGiT9OM2JmraC+a5CcVl4FCstYS2DTChfWqTsuSVcBXcxZ
yhmXVhDfL+Y8YlIJOolC4WkhrVCwdeFtZloFUO/urMqWtsKOXHGjwMkHsH0u
jvvaj1YYXk0wdPl4FzyaNRoKbrfB924j+QHau6DOl7ZMVdIGF/lS55+q58Ew
d0lBbHUbfAjf3iqryIUutsqeyN42kLix6LsckAPXulYnutbaoMEiz7/CORUi
I6T/6GM7CEyHza18tod1oXoKls12yFzK3hmSswBqiuY3LPvtcO/vULy0khZM
7u5JtZN2wP8BldWZ5Q==
          "]], 
         LineBox[CompressedData["
1:eJwV13c8188fAHBkRMkmkdGQb0mEkLhURssqRUZFQ6FEw0pGGkRWZWREREYI
2a/7GJ+Fz5usKCGECIWMxO/9++fzeTwf97r33b3v7nX3lne4bnGRg42N7RT5
8///b0nDI0X2hkDf0maxR6oMRX0e19H67gJD93cc6jEuQ4+7g16fdQqEwHdi
kRfSypDPz4JL79hiwGsg0FPTvhzFV2tI7suKgYJ5Ecb2q+XoX6PI6FHzZ/Cq
+F2Dwu1y1GrX8uRP8nN4sP6jlnZ4OUq0mroXpBkHLtf62JnV5WgPf1N4p2kS
aBT4/cmTr0CxMq++aoa+gpEto1IXgisQY/L0EQnR19CyUxvtnaxAoXUDtY02
r6GBfTH46d8KZJ7AZWee9hqup2wxm+SpROlSvA/pqumgM1MzwpKrRLdytve7
H8uA3ryqt0InKtGFrYT7J89MKDSgq9aVVaKsMqmQyKpMSL8ymttCrUSN9iui
0hxZkMjHsTjWWoloFp1iGSFZ8GhwoMxoohL9uhWSFxn3Fg6mm2x9tbkKPRZr
3/o9LweEWnPP8EVWoc+2kxtoUznQ1Mez5l9SFfLYPlLsszsXdgq+YWPLrUI7
9VMvnivOhTM3Heo1GVUo5kWSvVRZHshzaavf5qhG5cuu7ntt84GdP/+Gq2c1
okTIURuPFsJ2r8j8ozcBzVgdjEhzKYSw3tHTmg8AFZ/amOUQVgghpm/v748F
ZC9sLRrPKoSTLTFPcioB4fh7PyZN38OgxGfktQoj9aPSW41NioDvltdCgRlG
5X1J9TmuRWCpNmz86gxG6xX/9S8+KQIL9+bGlAsYiW3a2HmioQjMJxQfNXti
VL+HlrNoWAy7/a//+P0Ko00VEwk79paA6J6jPfvmMFr7K8dexaoEbBwaz+/k
oCAZy9JS2dslMBs66bqTn4KaKwzuVBeUAEt142ubzRR0qity8d+2D6Bh2l/r
YkZBGQmNtGjBUjhSeVJJN5eChFNzip58LIMqxTdfxN1q0Hp5/6e7x8vgTEu1
LNWnBlE0GoJoXOXg0ePD8H1Yg2rK7X5Ua5XDzsOFp1aSatCAkfLqocRy4Asp
vWjBqkGsB8f+k7xYAUNago/mdtaigqSQWY/hSviqNhznOlmLPmUNNV+tBij3
Krk54lKPTNbvHqxrBWBKZHvoetajaA8XJ6FRgMfEmdqQoHp0tix3BvNiCHFe
SOSPr0cqw69G+9QwiL57Yv+OWo8G4yPffXuAQUVoZ6uuDBWxq74y5FekwD+N
lF6veio6au+g9UOVAvGbfjeHEFQkytL8jXUooOj91ulpFxV1jsoTNqYUMDnQ
J+nxk4rciw++NrpNgd3P7IJfidJQwkNpx781FIC9Kf/dP0dDFf0YJk/XwFTO
kBD1Jw1Va773bD1fA/oG4xYf/9BQwbKyV75zDaQFMYcaV2iI0eh44dS9GvBL
v/zhiRAdnZfb52KRUQNLu9/La6jTkZ1lzR2B6RooKMk3l7pNR4n/fH4+XqoB
A/ZCLi4/OtqVdXbuH1ctZL1olvwSTEd+HnrdH9fXgujDMHWLZ3S0xyXXTkWv
FoY5ynjs3tPR1iFB6+qHtVC9i2docIyOglT1NdsiaiF9d9ls8m86sriv83sg
rhasXzR3GC3Q0XM1FcFf2bUwLrg4ZcfNQAFpJZdqiFoIc701kCrLQK5veY0M
xOvgcInxvVATBtrpu+vvokwd/Alw3yp0koH+LS01v91WBxo3Fi2CrBnom7/x
73mtOvh7eLf2zgsMpBE4ec/Upg58+LQnn3sykNp8hP1oUh3Iy4U540QGCjW7
6lWUUQfZOoPJda8YSOZJfL53Xh2U3oqnf0hnoFNV3/3nq+rAzuP87NVcBip3
nOYo/1IH930lijgrGejg4Jkz9oN1cGQiKtAfGGhHasbwv7E6CDYsOjhWw0DU
lMB85b91QEvVSApjMNAsz5jFacl6cL0gUMbVwUDp3FsK2uXqYcJml/zCJwZ6
169qb6pYD+FvKHc/f2Yg21HxAnXNeqgQ7RNz7WegsTVhT2kn62Gj92qidoyB
xN05y+Vs6yGZfm9YeYKBOhYyj95yrAf3Fsv5R1Nkewe88gXd60GI/xoX3ywD
afcVtQo+rYewJ4s96B8DPSvdHGrwvB5mXecYm1YYKPlzEOVWYj0EcEm9n2Fj
opRVRAk9ux4co/feu8jJRC5TT33GCuuhn+boyMnNRPjvTyZveT0UyPAbRfEw
0X66qJg2vR46WyUFfPiYKKLgldgRoh5ER5/OtK9honT+kzmnOurhcejbz7L8
TFRhGvfGYbAeeF9W5PsLMNGhnq9CDmP1cJcvPvmFIBNZqrzbaPe7HrIFxyMT
hZhIL1d3qyEbFaiHrgXeFmGiIZ1EBXUeKqw7fSzgsCgTvbNjtm1cR4VrvfP3
14gx0cPrEbtXiVHBbq4orJJ0+LvSA4NSVDDdWZpgK85Ei3p8qymbqOApqvJu
jPTc5iPBcf9RYbId0a9IMJHnUZ0qVxUqbK1d+d5B+khoUqGuJhXKR33XqK1n
ori03U68elSIyCzV8CM9u7+or/kQFTQNMy+WkjZb7pGJOUqF54/UE/pJB1xy
2nrCggrNx7U7Fkgf+cM7x29NBSeFYHF2SSaSl7nzvO4sGT/1yWaOLF886MB9
5xIVWm4Op38hLVHvc3irKxX8VlnO5JMeallSsb9JjqfAwPkaaXmFMM0oHyq0
wbYJCdITopHnKIFUSKcd9s0l+6+08+q7scdU+GkwKLqLtOG+O9uEIqmwIiT5
4SU5/gIz0UbVWCpkt/0+/4d8Xzcq41OOJ1NBK+CC6D7SXyXOZ17IoAJ7s3GT
K/m+lQ9VfL+dS4Wc8vOhoeR88F5btL9fRIVfC6ePPxNmIilBV9GwCipM3y8X
CiXnL2PWni+yhgr8wssdLuT88utKHopgUEExzjdhLzn/Nme+1YU0U8Gn86bd
DLk+TqTmZt74SoWHVw583EGuHznPXcL2Q1SIo60OyOJlom33gDAYp0IJx/at
IquZqDZx/ATPIhVe82089JZcr+zuM3L9bDTgMp0u6+RgoszZXpMSHhp0eStJ
/SLXN5aQ6rYQo0FNlHfM8BIDrW3FuhukaTApHpdRt8hA5r5/1vVsogHqVIoN
m2cgk+ZX3JYqNFA5Y792YJqBiCbb1HVHaWCVo9CWMErmB7l5RoE5DdylhPw6
v5P56CGHp5kVDTaFGY0uDzBQzshrD/+LNCiX+fZL8Cu5H5Wt9bLv0eCvSZGR
fgsDUfI/TGx/QIPbjD7P7iayfhhVN+MJ2V6F9KGzTAYykhqpfRpHg+JzxlE7
ahloNM+qVvk9DVzSTC+z3jPQRe4rlaFlNJitG62tfUfm09wW50Ggga1CwOPX
2Qy0cOrEwqNGGjzp5FNXTGMgoZLtcslDNGiN/aKjGclA9g37ZTgk6GD0Jl7F
9QoDKT+6a7siTYcFB408ZTKf1rhmv57fRIe1qkPtn+0ZiMfd2q5XmQ62ziXL
8yfIfLWDs+yuIR2SZ/Le6uoykKbJ16c2x+jwJbf4mo0mA+mnuwdrWNDB9GxS
+AVVBor2W93ZY0eHIofID1pbGSgzQMWG7RYd2qN5vIfXMFBDh+p18KbDOxeX
H/ZcDJTrr1ni7U+H21xttpRlOvq0YDo8FEoHLb3NEka/6IiwPyr1NJUO2jqK
QSfb6agnenBKmaADFGcmOsfRkch7fbvCNjpYljHFwiLpSCaFvnl3Nx2sjkFJ
7GM6WrH5QlcYokNM32uNa1505HHgRvHgIjm++DWuglZ0JLcku7V4KwOqVfK0
NpPn6fKTcyYr2xnwpTz1eS8PHd0P2ThnoMIAkTWb1gUv05CXwJZm+l4G2J3l
Ww4Zo6FolYze16YM+JNwtsa/joZgG8+VUk8GlEqqSnG405D2+51Hbt5lgGrB
o+NsTjTUtk5Hb2cgA1pLrG6N2tHQJivRS89DGSCNbG18D9NQg1XtkEESA86X
9VxPlaWh1yrb/pOqZcCJlBuhX2lU5NdxgTeLxoADeb0rgZVUFCKxdb16IwN8
E6K2CxVQ0ZukHzT9dgb8NmYe/RFHRWebbibrDDOgWD/NLOwqFcUFiqS+5WPC
7ssOhoE8VOTArb97rQATRo2qvD8s1qN7yufWOIsw4cR6iam2n/VIwG84SU6a
CY7l0Vr01np05/ZqT+edTOj32HI9LKkeBTOdTwWYks/jc9ros6se1bwbzCqN
ZELshz8MKb06NDI8OrrxORMmqj7M0ZXqUJj33G7/eCacnDo/YSlVh/Z1lg7r
pDFBMnR76Lr5WmTe4CAYUcSEv6fPVs2+q0V32AyWczqYIPS5KfimZC161e2f
N9DNBKuAfGte7lrUXnImWKKXCd5U3g0+v2vQeYpM3u1hJiT474ifYdag7cEb
ZETmmbB46IHYXu8a9PCqMhd1fQMMyfNe6G+hoCfh0zOEdAPsK9jwRamSgrJ2
xW3rlGuAxWvx0+YZFBT0+Yptj2IDeNiOSSt6k/fbOHF1hlYDuF3tZluWpaAK
fz0JOasG+CUlkyhF3r+/CB450hHTAEefzFyqjK1CuFeJciy2AZoC1zY4XiK/
Pyx4V1ESGiByb4dMuVoVCoxljaemkuUjW3JvNFWiytWavsfyGyAlU7R1eakC
oTPS6ZoNDfCA4XhZ/lg5sp546BjKaoDAg+KevqLl6KYoL3tPSwNcyT5z3u9L
GeLm2PPV61MDgD8t6qZzGdp2yP1g/FADGBZOcUsFl6LUinD67ZUG0E47KdeS
UYLu8ArxZXE0wr9LMmdOXSlBP0ymdbu4GuHb50Qdrx0laPRNeIDa2kZ4X3Tj
3rO8YoS8Z2OJ9Y0QcU39oXh+EXrQk772jWojxJoXa7xNLkRXqgXYP59vBC31
9to4qxxkGL1rqvpCI4jZTIq61Wej/fXcvK8uN0LvX7dge9VsdLPjd8VZ10Y4
TghR73K/RQHmBw7SPBtBMr9yc0L6G7ShO70MPW0EPuOV77+KUxH/hcwq7qhG
UNZM//xUJBWxJm79bYhpBPtIu2Alt1cot+qconl8I2y+tvc/G4UUVHyty8Ew
vREOiPA+KV+bgNh4PNR6yhvhkYSsTINCBGqndxo/qmqEwymySS7+YUhFwOeN
Km4E3dRsE2ZeCLLuPHToXn0j1BjavF76dx/FtGmLczc3gmHQcAaF6Y7oEmfH
awYbAcCMMmB3Fzy5h+kra5tA0E3r5obMFAiteHAmW6AJfiYC89ezV0CoT/Ja
CjcB8+C3za7BqXBnTyQ1VaIJzHbHVNpeeQ2Chcod2zY1Aa8U7YCPQSbkHF5t
0LWnCfoTXbw7FPPBuCBa87J2E4zceYqyc/MhptLFelqnCYalnz9yVSsAPgfT
Xdz6TfBm8wWJGv1C2Hb8tb740SaYStbQ7LtSBLusXo/32TeBqc7Q/JvRUjj+
/I+FxfkmeG3cmqLrVwYR0w4LFMcm6NaeyugTKQfNxtd8L52a4EVe4rXTByog
nM/BRse9Ce7cjbxtkFMFOStqsduCm+D8imCVoA0FtlVMXa/KaoK5LydjfLuo
UPnOKvJjdhPEpt8tfkWes9lThsbfc5vgYvfaDvtHNIhQoHvxFjZBeI57W7o2
Hf6UARsqb4KqCf6Xj9IYULi0zvgyswn0Kbe8yp41Akf0ovSlxibgGHTt//2n
ETQpd6MdWU3Qmvjp2SerJhDdhZzOfGyCpf4ihzwZFqhuO1iv2d0Ef38wKt4W
ErBt8N5UwWgTOHXKhjzzawHN0dg9CWNN0PuSPfxHUQv53Tf8X9DPJmBNRPm+
GiPL2xY3mP5qgglF7yNaZz6Cx+nmvZ3zTbBL+4Oz3L5WmAk3WZfFw4IFZrnX
C5F2OD3i0nl6CwtUDh5R9JTogoeHwyp1FVgwYHInx/98FySNXdy5SZEFqVVL
GrI5XSBZnlD8fQcLPp7vGNh8sBu0vO/esVdjQYdXz3EPz8/AtLrpzXuABSIu
++Nvsn+FyA8Vfp8OsiD2GJ4MtfwKiHNcKsOABUr6946Yv/0KPNz6W3QPs0Cu
sjdj3LIXrH/sDjpjxoIqecUo5pk+cGzXVDphz4J977kMpBr7wf1glczacyx4
Jly9sPy3H5r8O0pqz7NgWKvkn5HSN5h06elWvsiCjB38A/zh38DYvpln1pmM
x4YWwacGoNTLOEXfiwUJBtfE1y0NwuqDM0ZD3izQ1eJcrtk9BKdWnX310JcF
Gu8VT0xcGYKBI84u9Hss8OMOXsnpGgK/REnPvQ9Y0Ofvpj1e/R22WK/n649i
wQuhEIWwVyOQa+JPsYxhgbmVkqjIlxH4TyzxLOMZC2YC328RlhiF7baHLXJj
WWA2nm7mHz4KO++9kXdKYoHn395l3aAf4PRZZTQriwURuyV9TgSPg+6yoDl/
NguiBpzhH20cOEOIzOs5LJiWvmmkseYndPorbFd9x4LeWHqeefRPOPa7N+hN
EQsOqM08u/x2AjTswwUcgAUFNW+/ZHlPgWva8ocizAKhi1FlOGUKqjk2WXPX
sKBFffHodtoUKM5lP8yoY4EL55vhedFf8PpU3+tuBgsmTFKHEop+wX+Pz50W
bmOBqPOkIIVzGu6uMWg42c6C45X8XS4q05A0e3b/8w4WLJpWD3vZTgON21RF
vIsFIS+PfKsonoYC4wQNvq8s4FMaQ0suM1AqoX24dpgF6UnGcucnZ+FF7Fn+
qREWVAu4z6TJ/YHrIwGDUj9Y8F3+ha6lxR84rZ/c5DZO1i/lIHg+/IGyfvdY
gV8s2HHSZCMreA4YhiZe8ovkfCmu8p3VXgDtjUHp6C8Lng/dMCh0XwAFse3j
tkssSOoboP7KXoD6plRmzDILVufoPluWXQTuvJVPCxwEXMo60H1n3V+oDY9K
iVtDgHs7V/k+7n/AaWXwNmstAe8k74p8MvoHIipJ7aX8BCzZfBhdF/IPdmpw
R7cJEDBZy/hjKbgMH1jLReyiBNj5CB302bICsmm6c7ulCUiv3rLJoYQNN0U1
mGpsJCA1dE+p1xc2HF4x3bxHhoDAfp7DExzs+PBhmommHAHzITj5txk71pq3
O6S8hYDZR8faHvxix+IOsbdmdpD95XRn9RqswjtpsweWlQiQiK6pkbi9Co93
tm/gUSYgugjcWzNW4aBuzXExFQJaXvkTX3g5MQKFLYrqBFR1s9126uDE5uvR
ye0aBByiOohN8nHh5XSu6B17CJiuWC7i2c+Fk1Vy9XZoEcD+uDnpTzYXDrhU
ayu7j4AsteNuHKHcWG8uR3CDLgEXTKR3m9Vx43XWtp0iegQYu7WL7F/mximh
wsmc+wnQOaQysO4mD97/fHbr54MEJP6eOvXm8mpso3I+wPYoAf6dd2I63fjw
TkpFovExAmJ8DYvti/lwgWFLm9pxApyqlOfyFvmwnazcMx5TAgyjr68rebgG
S1r0O7+2ICDp8Lnb77LX4sreLOfHJwjYcHmTbvOftbi6fE2I60kCXL5UU1oO
8OPrAsFb1E4RMMRxkhrUw4+fGqX2vLcmgHKsT4hNRgBfswztjTxDwFd3UUqg
mwBei7tWXbchoETKdRN7nQCeO/OwWMGOAIffTPrKHkH88+teZug5AvSfejnu
GRbEm+Tq5XZeJmDj3RfKRg7CWDaQ/mqStHy087a5CGGMdZScCpwIeFs57qWK
hXHz2TDq7qsEKLkELhyTE8Ffy+ZalVwJ8Him2316WASrP9sfMko675ZCX9QG
Uaz5pf1R+jUCTuzdUeFkIoo7hk+fk3IjoFJrpvvnB1HsfYMVuOxOrofkv+ZJ
UWI47UlEcLEHAULXXM2mmGJ4jaNfq/NNcj3u6VqeXCWOh5QOW3TcIkB8DVsa
h6c4Nq0KGkr1JID2S1sYnCTweJdywQY/Amyp3xH/dUnMljcWQSX9JFauO/i9
JO4MdaXcuEcAjIhmd89L4t/r5MSp/uR+Scj0VniwAdvYt764FESAGpUpnJUt
hQf/HePhv0+AwCqbfRfnpDCvvCGzkPTvgRnrDYeksXCW4LGlYALuPKySvNcn
jQM93YwfPiKguoHT5fVWGYy1zO0UHxMwqm3jHeclgwe2naPTSUdZ/qBmsmRw
s4dtKk8oAfzvlIwUfWUx0Spw/W4YWV+w5P4Ldzmsr9RWdDiKgMfNeqLfF+Rx
V07G93HSe2SD/+zbvQnrf9Y6/TSagIbRCEln5024UkvvT0sMARMbm3/a9m3C
787s1DR5QcBJxUdGfO2b8Wa7s1fHSJ84MSMRLroFJzWE9z6MJfcDu8P6NZZb
8HoT/8jqOAK8M6dureragmV8umQ2vyTgnjnnvjs/t2IR8S2u5aQlEmY9jmso
4GPN8WzmiQR8/LHtpIGfAt7xPHneJ4mA7tnAx/ki27Cg3rImI4Wsf6U9QvK4
Iv44JnBUP50Az5hc1faV7bjQ+cuGJtLsWkHH3tvuwIxQ7j1WGQSoD5xZLVOx
A4tqz5u6vCFgTNBIpNxXCT9oGZR+kkWAY0Ne0ZKIMja/omYh/JYArYZzdGU/
Zay8eqD9BelvOW+t1X8o4wvj3xgp2QRcEXP+0E/bhZX30q+9zSVgpWWY61aT
Ck70DpLfkUeAge+OUFc+VXzG7NnWbNJrHtdz+hir4gO31TZnvSPz35rb23/S
VPGnP0+WXxYQ4DzzNKe/bTf2yFI1XE/egw66hWurS6nh7ZOi36JIt88p1zc7
qOFjOjzrH7wn4FGHRzvXHzVc7Zn84EIxAZsryux1d2rgCH5ny0+kuQpaLffd
1cDBok4BR0vI/R18/EopSwPvDT/2e9cHMr9GD0ocvb0HX9ET0P9VSo7vs2zT
10+a2Lv+A8e5MgKsarabMzS0sDmv9hYW6R62eQ6/GC2c903sUWY5AXqNbxg3
Tmtj0cNnv1hWkvlk7+oq2sxeLOI2mw6kwytuPTA8r4N31a60KFYRYCT/vm2S
0MHnd1ZYLJDu1KsVXni/D3fmM1eigIDvlA+zfrF6eIMM+/c50r/7v/43IoHw
k4c6qraYANcdz07MxiEc2sw2v4lCgIWD9hu5E/uxT3eqaVYNAQnaEuGtbvr4
8ermS7y1BJz9IT4kWamPjyQFDzmRLud3dF9ZfQAf6qdvUKgj4PL4OVbbmwM4
UtneNa6egN3usU6ziwexmK4fY4Z019btvP4nD+GE6eSnplQyvvupMH/+IaxX
JG+zikbuL0VpbidXA6ztmzHnSCfA+uPIu2YOIxzwxzannPSRhrfMDdeMMNel
oCZBBgFia+WERz4b4f8kTp6qIL2jR9fzNBhjtuEX1QJMAszWNw/JaRzGH+h+
MY6k1aqqd1TmHsZ03sshvA1kfv+6Ulb95ghWS2PLtiHNt0Zt14n/juJPNa57
c0mPcG0bFsk7isW1f2WYNBJQKJBRepdyDJtYdleHNBFw+7pnUp+wKdaM3qDU
SvppT9cLzgxTLFvEv1GKRea7Ux8jT8mY4UbZ5ZAs0uF/KoZ9ys2wZI/H6inS
/X3PtlxZY47jHML49hDk/nlZuM7c3hz/tUxIxKT3eT/gNeWzwGF6PLu4mgkY
L657HuxogbsGuQwPk15r0dsxV22Bm/mzuJpJW3Co7+30PYF9Y1daOlsIyDnU
MJEkbold+X2er/9Inm/KvvqNQZZY4tr5b1ak5xkDXZ3TlpiLaSX0iTS7Bmf9
jy+n8PeLX2fEW8n201f93nLqNO5SLj1nSdr8IodK2sfTeMt+s4/NpM+y1kv3
tFth+b2Bn/jbCBAZ6TBus7XGKXWTl4+Qfinfl/xg2BrbZTpuriHtX/XrzavV
NtiFa1o4p52AwxzRAml37XBBruGVIdK1dnNsdgr2uHNL8hGZDgKCdbw3r2qz
x7PT+9+Fk9ZzFEu9JHsOv9D9u5tKOjkzIuA/v3M4XPvlgX+kFc55WNb1nsP3
Jty5r3aS573zY56p7PO4sHB9RTLpAPkXGyvEHXATCl5qI919YKDs430HXBUR
qaD3iYBdJzdoOjs74u3djzau6SJge3LLFfVLF3GY9x09XdI3DR2ij09exBPl
wz+vkT4uHdb/3fcSnr2uuNBM+kfBCzXrjMu43/iSJXs3mW/2c7a+OOCEfUPY
9FVJx8ZmiW0adMI6XzfTnpLm8vwozaF1FV+8LelQTXrk68fc1h9X8aWgQ2Hj
pJuM2D+NpDnj9E/Cz4w+E3Da8Fba4n+uOJ0p736T9LtxNamnc65YMli3L4X0
0VmeEy8ar2ET7xtu86QvXbEbUzFyw3d/Nqts+0LeB3xrZ7fS3XD9t+rrlqQ5
WT9f2JvcwOkSllfzSa+TzHhe6OyOFWzvK/SQpnx71HdhlQeuVDJz4O0hIDK2
Q//xKw+sPsiwPkfaWtEsIez3TTzw5p9YKGn7vClCOeMW9ijosigmXeO81rv+
/G28UBFjuvoreR7dlR9L/n0HB9ycF1AlrZ7+qKiH7on3fuO3sCa9jZ1bhzvL
C9+otLTNJF26q0HT7bEP3lC9ZitB2pZh0j0f4os9kr3dZknvlRg7uxR7F3O2
DOhJ9RIQN2Z/QbfID3slP4rYT9owjt7zpOceLlZ7e/Ei6Xg/4byhEH88FvW4
+jFpR69b6rPKAVhBLHipmTSx9FJzLiIQD0Zs+jZN+kHIwre1ZkF472P/Y+J9
BJz7nLrZRvI+Vrfo1dEijYs6dKJ+3sfZ0vfyrUk7nOFuc2sKxpf/JL/1Jm2f
f9m+vuwBVmQGbE8gTbDvTb3+/iE+YPuwspt0Jefa5PSPj/En/e3EAulooX1r
rBZDsLTbE6f1/WT+L74qW6j2BPNt+floD2nK9Qtuq/3D8EbPUJWTpBfKd9ew
+sKx44WMszdIX3noUNS0IwI/r/YVDye9oh4fIjYdgV2dTklT//+8J87KKllR
OLy0w7n///FfG0zU46Nx1Z21h5ZIjzuAW2BCDN7XopEu/o2APmlv9Xt5z/BN
VsRTFdLth2POFrU9x2tO26w6Qlrn43mPdoFYPKvSyuZIWl2ze6zufBwOY9vz
yIf0tE7dgfjGeJxpTImLJt36frkz0+IlzrpaqJFNOmByfujhn0T8PMPQtoa0
X89cvlRFMlaSquDvIi28wUu0uSUFz9QfOzJJ2rvNP6W76xU+HaQlzDVAwBn9
iIySuVT8fl3FxQ2kA59/H8jb+Rpf4xAy2EV6m/wqH2u/dLzm0+38g6TzOmZ9
08YzsN6IYuZp0oK5+oFffTLx8lVHJWfS/ouF0LzrLU6+46Dr9//nf+yWpq/N
wb2cDp8jSGcf6fiVL5GHl0YSudNI2689nrh+Rz5u6DKHov+3V9WbcuFyAaa7
lHFRSX/dlhR0t64QK0kIdneQ5vB9tlxpWIQfHXn633fS06Oycifai7F5K7f4
LOmutMphr7AP+CUtI3nVINm/u18kq26WYbWtyVQh0t9bd2ZFRlbg9BbZUFnS
EnIL8UFjVdgi3uqnEumEfYcPfTDA2Efd66c26SqiitlfRcGmugWhhv+Pv3DN
2O1CLV7QVqFbkM5TZEZV76/HOS+2ptmTrp22OBJvQ8MF2Vj6Kulr55Ys4oGB
77xX0bhFOlnPhBLu1YiT2l6P3yNt60FXE4ojMNfGYwdDSCf9bTBMiW3BnwIt
tWNIvwmvz/ic04qTBidZiaQdrgnMjkh0YAPeI5xvSLtJe7epjn/CyilRXe9I
n9m06yeH/he8X3/epJS0neDfK4Ib+vCUS9YFTFpW3eLn0q1v2PRJ2wb6//vL
f8fM/vgQlvz15gZB2uhby+dzlBFc025+pYO00ALrsffyOA6wY+PoIf2xLnM4
Ru4XPhvTrzNAmk146HTEtRlscH2zxOj/6wuzKyu9nserG6ejJ/4fr/o+yVR8
GXvc8C+cJr0setFk3SsOyhmBOfd50oHHtwYHu/NQ0vSC25f+P19yq8bvi6yj
nAiw6mYbIoB3T3FJe5kI5eWBpABO0qFyBUuz0RsoPzqCGnhI88V8r9vov4ky
6bOnlI/00fDJRum27ZRCqwEjftJJ1yePv7inTnlx94O3AOlup7QGX+Z+ittg
r5kQ6WExT3M7MxNKqNtjpjBpISxlUJl6llI60TcsQtrjb10Y+8pNir2YSJYo
6WLn2Tu6/s8pavnWE/83R8RzgUS9Ysr/AEeHYTw=
          "]], 
         LineBox[CompressedData["
1:eJwV1mc41e8bAHArftmVQoVCS8umjO5DtkRWIiOVYyS7SGaEU4TMlFH8hVRG
tlM24ZtzUkaJkrJJKCf53714ruf6XPeL+3le3GPnucunLrAwMTHV4fl3h/Q5
zwh8JagcpUtCR/TKSWf8RgT/2cuuyNNoLYDUEv2TdxN61afvgvPqOdLbiqmC
Dej7Rw3Dv900IRltW5rkQ9c/iRhMXtEg/ahUpfGgMwaNzjH3KJLCg6fOcqGt
7OgmHJSDpF4dmbj/0Om7jm+ZUpQk9b5VvLgOvcH6w73uT9tJ9+h7vzCj1dZG
dQotNpO8B2XZ/44S1BOpEqviSvyk75dCiN9ozebq+QXl9ST6kuqxRXTArNAP
QWY2Erkz0XwOvV02vxDEmUjqh59tnETbf++TTXNaAVv9Or+v6CN5BVf/jCzC
Cbmx0E/oCS9vkW6LHyAyYS7fj/Zz/FmRwDULXlZKsTR06+pkyu+wCUi0KI97
jf61bluSMW0MfLJXlJvQxsnT9QntX6BxVCamFm16l+bApDUCw28aisrQJF8H
l6cXh8BNm+1aEboq/6plzNgAHFYTXXyIVkzXktObfA9X0pS33UP/mdNbljzb
C2IHrk3HozPiC+aP76NDZgmPWxR6sGkgLAV6gO+9YEoQut7t+NWZgwSoSL9y
90GHJcoV82h1wiOSzIIzWjVfm9/lRTskXouTtEN/4lWTrfFpBREVVlYz9F5j
hVAm32aQ6SiN1UXfmVuM5CtuhBy7tlZVdFqIcM9RoQaQESMXS6Mlcw8+5Hry
EpKFqzUk0ccSaYoC3fUQa/j1hiBaaMmff2d4LXzO4fflRI+T/OaNPKvB6+e5
TatfCOobV2XjnvhKAHZW+9l/HujM7x56AYExgtYjaJE87rYjpuUQs6OVjY4u
iexZeT5RCnzmymeb0BTpG63k7BJYzY4/X44WHV8nzu3zHFLdf2/N+xf/+kKj
zO4ZRPAlhySj+faVTOQ3FgOt5XZSJFrYsOKJzVwRrDWyn/FD39df2xNLKgQe
yT3dF9BDxrOZtaWPIWRe4IcZ+qr6x95OzXzwlFxq1kTvkQsaZMzkwd2cOT3Z
f+9f97iXXpILpGNSQTvQglkUK/HbjyCspu0cL1rvjaHk3LWHINQyv8z4TFA9
9E8s+1/PgRhGh9o4Wt7N2k3qTjZIjfnLv0OP6WVn3C3JAom/Eh8a0BKi9ktD
LZkQ8nhG/imab6dEgoTmA1D4FbASiWZU3FiWCL8HDjw3nbzQuT9WItQ006E4
TTfyLHr1nc+JlC1pIPZ41EIX/ZX5bk8DIwXoCiH9suhaCvHRcz4Z+PcCrwj6
wUDlMe+lJNCz0FtkR8teXRl+uj4JHjl1DPSPEFQayWx23iIRZh5Q+hvQm8mH
GQpxCZBevZdSiA7/M/H4EC0eUpRbZhPRWZsEBXaLxYNqRBRHILoykJ7r43sH
TjESaY5o0oWch2v5cSA2ym1igLZUmur0vBILdwffk4XR+68wjtiSbkH4Li8W
JrR9Le0yiwoFuk5zGo8NE9SNEYsipqQYEJBr4ihBt/J6cf31iILimINeKejq
gXt9jNSbMHtAMj4QnTDExDvZEQn6izrTWujMHDOqg34EePinv96DpmxXu8ES
dQMmw9pM1qOTuTWzR7rDwXDM1eL1J8yf6bas4BcGsRdUegvR2dwUj2e9obBS
lv6HglaTLFTzUg0FQ55aLQO0y6bPnIdFQ8Au5L2TFHoEOO37pYNhc6qC3Hr0
BibbnknpILCKcW1pHiKo5KKJ/Q4mgXBvc0bsQ/STMSPPHI9rsJb3kikUXc6W
ulMxLQACIPnLUXRn1oHXl9n8wY+UaSaILlAee6ygfRUCjhp6LHzE//Pyv7gV
dwWSuEj5BWhGsKuRj5IfXNo93BSBPvKbL908yRem6ntu2aPff+2ik3/7AH3R
Smwzet7mmAuD5g0h4joTMx+wf1Q/t5/T8QafcTmHNvSaPcsMc4MXeLhVmgag
JaUjIbbJE4ZZ84hT6G4Rck26oScETan/kkLTe8VpY30ewOEjYjwwSFClquMu
MTEug7BaZfBzdKwqpWVc6jI0FubbRKHJRk+VZx3cweiDnJgCOt+lmWn7qBs8
E5JYx4W2KSC3lB5yg+ZZ/rThAYLqw3lqg26wK5h633kdg542+97pJuMCqlO+
LnZo4YU10agEZ+hMZa6UQ5tauDqU/yKDvHKJ3WA/9s9pNl1/uhPo3GYZ241+
1Oy9NaHuArxVevT3Vx/WX29Z2GaNC7B2TKm1A20utLis33EeaM695EvoaQUj
HvjqCKyWshrq6NAQn7i6K47wV1mykxf9oX+oiszjCLIU5x/F7zHft/0H6aRz
wCnGGxeEfvt39oD1sANwzI5/OIFmC0gRzwl1gFu5329NviOojkF7hjg77WE1
0UlDAt1IqS7OZtiCvTatd6GXoLJ6WSTPOduC+vnKXU3olOmA/qHBs1D34wrD
Ea1H0Wbs7rABuUu6YVlvsT94GioGdZ0B/5WNq+7og0pj9n3mZ6Au3EpBDV2a
uuUm+4gVVDztH+qjE9SHv9uqotdOwzZxEWEe9PDEpDGztSW8K1YP76cR1AXy
QYXXyxaw9KuvMBctolG4oyfZAvb8t6isht5Joy4YD5pDdba8tnMPQeW/3WB8
PdAM1DdG/k8OnWxULRyyzwySNPTaVt/gfzu+dxn0mcIT/SzdeHTe9hp2HhVT
cEif1iknCKqv1WjR4qZT8GSjVP51NMcD1mZGlwlwP+hq00LnVs1c84o2AZbw
RoPeboKqo0tbpLCZQJhHtfV8F0Fdbo0+68dpDC97ghsq0NGaUkvcD05C0e/7
E9fRzcW7yBH7ToKek03wevQ3do5PmjpGkCm+q16kE/PL74nzzDAEy8ifsp9f
4/x7yCjsUDSEOTqnSx76bbvzbX66ATTJhokdQtsnp7HJbzAAYiu94GgH9ofR
+frcHD3oMtigsNpOUCOrPgQeMtAD9/9Cw6joPNmhKaNFXVByd3bSRJ+W+dYm
Y6QLkjNRNrptuL+onCuI3qADPjtvZjOjL6snDO6o04bk2i/3qltx/saFGdm6
aINekOXz/ejJKv5XOe1asDAa7MjZQlD/tqwfJaUfhwNZbZavmrFeVdeN/TI5
Dq4GRSxX0ZElBju5uI6D4v6RwNEmgnrp/OrTHaGakJqpxVHdSFD9hT1fKQdq
wEtGQZk7uu+028U5NQ0If/RZWAId6531qpVJA5zYHbkpDQR1693QzJpoEiS2
DyRZvkK/S+vkyge4f37F+ks9QX2mFCMwLK4OE99dUxPRURx5j/ub1CDmJF+c
JrqBOzv5IlkNzH+GFObU4b7XkpwiVKYKXkViuWdrCSqTPms/w0YFRD9KV3Ch
L7J3Kj7hVIF2y4wbVTUE1f3KLt/SqqPQOytwSgBdo/V7PGfbUfgzSKlpqSKo
7ESSrfmMMtQIXC7yQs/wJe39masMidJvrET/xX+eKC6zRftmTPhUEtSpQabD
N+hKEPzW4LtoBe5Lh3RVmtsVYZs+z6u2F7i/TZYJ9Ucrgke4q6UX2oO7MmZU
XxGiTt6qayrH+T8Sb00QCqBYk3T7Enqx9FNybqICxGS0b9uC9nihLOpwWgHm
ZQzI9WUEVU45JHtVRAEi/qfmfRFNa80Y9xuVh/8Ds6JpOA==
          "]]}, Annotation[#, "Charting`Private`Tag$2643796#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJwVV2c0Fg4flT0SWSmyiiQ7Qg9+P3vvvbN3snfZO3tnJUpGhHiUECGVooSm
HYWUSGl4/++ne+4598s955577uV18jN2JSUhIcneR0Lyf2zu0lPVsm1X0tMa
ae/oZVA8QGl5/t43SaV0gSD/p4HJinYbbrrHb7AoOfxlM9LuvKZIIsvIUKhP
phQy+e9TMk27Yk7ckzqzuB/o1rxQcCi3T/E1c/usbMU6GvFHRNFEPlL8nusj
hTRL6BX2k5Rrckzx1ExR7LWYGUyISvthSjepqEZoLS1OmEarphlDpqm3ihvZ
XQuON14iFRllC9eROcVu1mJ15BnD+5/MQuWzFhWz8o4amu08Rp0Pny//1lxR
HB50Lgr8OIThrd7eTWprihac2kl/2wawq58yekXpq+KH7E4um+MPMM1/kUAR
u6nIoqE9Fna0B21e7tRkzmwp+kywhI823sXptPbi77Y7igxsrTxao52oeScP
bv38pRhYcLTmwrk72M6eFK/c+kdRRhEGvQ3asLw4Z1w+dU+xzubH+suU28h0
Mi21WHEf+BvP2fv+a8Yff3Q+vRsihY75tX1HDJuwdqf0AcGOHBQKJI6R/KjH
330fviXvowQrVk6vwfk6vHZdoruwjQpY2I31K+huYKB4cDoE0oCJYUBDt3st
WvymfWCDdLBUxNszv3ENtQ6vpwwdoYf+Q+qhjBXViJa8bbakDOD5UoRD1fcq
Rkm/0bwYyQjWVefFtKyqkN9Cc1056iCMxJ9SO36/Agu8jIZ84pkgdPudgNRW
GdKnr66uZTODVvPdshLjK9gdMUR2p4YFwn/1Cy2/LMG+wSKZzh5W4OtIVdUJ
Kka/KHPhjx/YYGK35WSoeBGS82jtSlGwQ+KBRYc0ikKcvf2Uv0jiMCzHW03v
+5aP8b69xSQuR+DbngFF/dc8FG2PKnMt44DhDi69PNI8fHjGeuLuG04opX3i
Ts2fi8ahxbLbXFwQGM6nm2Seg00Ndw/SenKD99UvzncKstHxztGIUFseMDhQ
Xjrcn4WiPtofdKl4IWWBb5vEPxMnjj1WI7nDC92EVlZRqcuoTB8+l+HKB5Zw
ZvDOZhoyGvUc5H5+DPoJd+L5VlMxfaKmjCPlONjMXq0s30zBr2ltajMq/FD1
RyOYnDoFZ+VdHruSCsBSgLOngVAyFqtVkjQMCIBn6JGvmZZJOFN461V98glA
b7atlZxEnFZX0nPUFwQHcw+Geb4E9MvlL59fOPmfv/5T/OHxOK99f7G2VQhq
+RcuDU/FYQXhaQNjwikoLDYSVFCMQ9ELXFbclsLwNHMvnaIxFl2TWVyfiYpA
YMhTjXqeWGRM+2N5hFoU4oLDZXuuxGBhQ+CzvQVR2MfN2m2ocQm197R+PTQS
B4nX+85m617EIo4ntdKj4kDN3tWbaxeNS4m0ZfzaEiAlMy1MVhWJRg678ZGa
kkBGvvz6+FgEdn7ku/J+RBJ+qxlXnKeJwHpda/VO3dPgUS+5dq4gDElzuvdG
zKVgsn6nmGU5FMOGe4P23ktBorcBJQWGoisniU6tmzQMHDfeoqUMweMoIEeI
OgMtTDadHgHBeNCH9dsJGhlYO73VkLsYhDZZK1oXi2Tg0ovc7iOvA9HH8aeL
I1EWxugS+tasA7HJtOHXZ205+KXURxMwF4AzpRMvpz7IAXdW/G7Db3+0oOWX
f0VLgIqok5pbmf7IQJUyMl9NgGdDbjVsAv64sZBRqicvD2OU5HmSDhew+tGy
gnSgAhxfP6oyRXIB5YQjZJoZFWFf0mKfhY4fFjh+7I9pVoTSZ74P6776otgW
CSP/NwBuSWVtqShv5NlJjxRQVoL86OpFnVUvzJa/+km0UAlmb7wfeW/vhUlr
SlPvPytBmtfquQ5jT4z+YXFbuFAZRvcOfKp94YGl/6ycnqwpg7WxII+juQca
f13lOKCqAp97U8SuebhjN3+OavSWCojVR3+a/+GGDJzliXV6qnCp2GjGIcUN
BfnYA4NvqELDTqRiQbsr5qZ5UW/aqoFxk1v2pKgLlpLIO7k9V4fiNd7k9y+d
kUY4UylLRANCy9ZDdSKdsYmp19YsQwOeBkAn5bgT0msqCXbqaML3Rp6sU5ec
0C4h6qlRoyZkSkjYuIk5oUmPXX4yvRZ4KP9mmSxwxBZ/5YT+cS1Qy3lF8UnH
EWNcRm4OSWkDHf/S+1EyR4w8sLnuXKwNDCIr/WNh59BZNfu1u6MOcLcKWXmt
2ePBD6+bknd1IWa7biE/wh49ZbfinGz0AKRq6k/T2aPaJZuk3m49CFjQM086
bYdU9xOK/sXoQ+85/vtNFTYYeiJfZYDKEJw6ZuaqFW3wbtetM1JnDYHBwiEw
Y9YaoTJgZNHHEOJM6n5TClmjx5tsdvKXhhDL7S0n98ISV7TXws5UG4GeMNOy
b4wllro9jaucNIJzVq/kzohboq/M5RF1OmOo6DtUaZlvgf8o1x0Ngo0hb7iB
YdLXHFs3XTlUdU2Agzv8QNEJc3T4Eu9eGmcCs7sf9a/Om6FIHmeVSJcJUPyL
vOFva4bs4tmnaU+YgsiTuXAxe1NkpidEFlGYAYsnS6Abryk23j30YEzBDD4E
at5tXDLBEzOhbWohZpBxop9P398EDci0SOeXzUBr5OekYr4xyu34s8yOmsNQ
aoWdloMxnrxLl7pJZQFyZI2XpE8ZY5jtzzBQtoAp4ZbmikEj/Datcial0wLe
xuz+Eic3wrUyG77xGktI2iJkDrwyxLjrj73bZi2h+OZnfeY6QzQO6dz/nNMK
ms+E2L/RN8QImfGh2wVWMEXki5DTMsD5+XFl3jRrqH7/0Wz+rS7aGJsKpEXb
wm3e6ISefF0kDxu51XrPFsgSvkhX6esigyOzOuOuLZh6iUmdG9TBtkuh/F6h
dlBAeuemXo82bn0Z1CsIsoePA6zsYxe1MTn46KZTuz2Q3LXmOo3aeKy57LbL
lj1UiT4KTxvUwmz+N7TkwQ5whfDJiPGNJtLWFgVbyJ8Dv0uE24JXNbHN2YKN
3u4cpMws0JN5auLcOL/Bu+hzYPuulPrrrgaeue9oMNx7DkRbjSQNTmhgsery
7qiqI+DvFcfoSjXcPJTWnmPiBOdbTxqDvxoyGtrKvAl2goA6ZsV8FTXMKpwL
IBQ7wczVw5brn1SRs4f/g8Z7J1hsfBDDoaCK1/R8GJI9nCGT85Fs4m9lpIkc
N8+Ld4HXXP2DPq+UsayGStzxhgtcnWJ6MNisjHI3HL6qP3EBf6tNkkFXZRyV
G/puxewKbTwFoSOTSkh3XK62rMYVmKbfvk57gjgV+Wgy9YkbLBFuDh25idg5
zsy/+90NWgdmFJmTESP6DtUncrqDwfY3eRlVRKcZcY4vvu4QVClgrJgEOOfN
842UyQNWuu9Madco4HOOMjMxB0+oVFfVPuitgEfIO8h0Uz0hvePszwhJBeyH
4N24Nk8Izr5lLzogj6vXJFKA2gvUg1FmYpWAP44m531r9YJ6hR/l0pZn8ZMZ
0IjQ+wCzynX144JnMfhidPGyrA/EXxnD/J9y+NdZMOueiw9UcNRvfi2Vw0vr
TFHN3T4QPGyf6rMkixnKE1ODvr4gMpc68S9LBqtNH05VTZyHVY2gMTl3Gey5
M5a+us8PqsVeFr1TlMFrXsHj+mJ+YGF56oDpxhlMj4h7b5/mBx6GsheXTM/g
rVib4XGeC/BMPVsyUkIaX8XQMVu/uQAbrzuYVxmlMeSSzBPxrxfg5uVHvjVf
pfDXP+4PByn9YfKOHufXFikkpv3a25TwhwLBXtIJKSk8umlyQzzNHxb5OaY5
tU7jcv/kqQL5AJiW+nxhQPg0lnyNl2MwCYAR+2COG4yn0d25xzjPMwA4FaRX
+V5L4qmtmPyuwgBY9x2ff+0jicNXg55Ff/uvjD9U8BIrJNA8dmljti4QdqY3
hucTJZAtTCbsV28gLO4nLUdfCdR/wNjHMRUIjW621/LkJfBse29kNEUQjAwb
yKa8F0dH9ijeO05BcKGziOKsoDgWlTAe+8YVDHZrSY6M90SwvuV6QFRFCCzN
y+ChHBF8E8S+9pQYApnXhZ2C3EWQqcNSTPBlCHhYBg2IsIrgBX7tv/+oQqGm
8+BmfJAw8p9/cVQkIBSMCbfs95ROIdlp07YkzTDQKRXyIj16CrmmTyrEOoeB
RuG6lf5PITx85dzZpIthMHI9bO1+sxDyrQ2GN7eHwanr41nLvEK4VLYadpE3
HG736S+PMJ1EKrHwjzR/wyHKxaSXclMQCX0FEjfZI0CuXaAsdlwQbwU+LDOW
igCO/v5t0RxBPDKw2jPgHQEXo9wvWzALYqc3bQ3X2whAll92jnwnMJOcIqX1
XiSs8mjXdLjz48M2/V2xhGhYMfgVwKPPj00l4mNxVdGQG7di2SHFjzrdbGMf
uqMhK2l+yoWUH2MFZgit29GwzX7kw4PK48jK56s25H4R5O+d8jo5fwxvpBvK
Vupdgn9H7x3Wi+fDoNtTy7tZMdBfT3887TwfKpAI1LVWxEAzZ0PeihUflmUa
dJ5vigHVOPUkagk+FAnr6Pr+OAbOUBQdGZ3lxSazUmYJylgQ3n5iK6rOi7KG
0mqh0bFA6X09sUKABw9fruI65hcHJYNxZ1vYeJDyD1pYR8dB+A6b7TQlDzLN
srMVpMfB9ZH8qMln3HjLYZ2btS4OElsukIuacKN70cAZmIuDf6Qe9cPOXNij
eIr6rGk89JdYfC2v5sQfH8tYeuUTIFNq6Mdw8n98bOWXs04CBLq4tbH6cqIV
Q5XkfusE2LQYN+GQ5cTxCt5it9AEOE8d7PfoOQf2z2lTq7QmANmPo53BFBy4
HbNPoEQwEcwPnNTOSzmMX9ayupsPJcFsMk/itN9h5HjFIr9PMAnSmBkLwOIw
TiX2eZvLJgHVfXkIEDiMe59oJuiskoBkNkfIeYgdLe338qpLk6AFvS/ifnas
rX4kfpErGT5uOdV432LDfUtX9mYFU+AR67uoiyVsyP6GcaNGLgVc3xcENiaw
YYsGpamPdgpEUxFIrWzYsOy0fiiFTwrMkS5e36BhQ7PliG/nmlOgt9/bZs2b
FRu7x07cO5MKdJcfq5Mos+BLF3Pbrxpp/+2Rxt/GEiyoFiQk9NsiDepWVt8R
eVgw1+LkE2qPNFA6LNFyf48Zq32OxgqnpMHz6tTQuh5mDG6XLCx4lAZXvj/m
/wzM2KytKrGulQ4bpt1nXQ2YsLLfu7ZOPwOu+lzfXkEmvPmoUZLOIQMWOcdK
oySZsE/8lvsFvwzwyGjReMnKhN/vXRtQzs6AIE7rZsL7g0j6Vo+L6kUGWP7R
sVw6fxBlT7XL0JtfBm81l9/U5Ywo/DTgDcW5TKit03tXmc2IfroZjW4XMoFd
pSlNJYERzaI2F0ZiMoEtiUB725sRz4m9ji66mglMPD/a+AiMqKmSJ2+wkAnj
VBWsNUQGVFBhfSvmngXV1cc05/UPoEp8YJO5bDb4NjBxk8sdwF8UyWqNmA1c
XauVhGMHcOiB719SrWxgrXUVXd2hx51xt8dtVtlwQa7bX6uaHhvffXnEF5kN
BgSvns+7+9HcXHBauicbQk/mZNLeo8MEBWoNYbUcIPzpuElznQ79T4Ty2Onn
wDEb60iuHDrcAXuZLIscEH986GmKOx22vuo9suOZA1VPccuWlQ5jEmlqXmXm
gONnksTPQbT4LgGPjU7nQMdddoP3yjQ4RB27VeWbC7HdjzLtxGnw5/79fD9D
csHAlSDy9SgNXjd5FWIYkwuGqyUCur+o8YqtVx55Xi4s79IHv2uhxvTwqsQI
Yi4obQTpaB+jxhV9ss4ysjzgjhcq7WOhQopyuso7pXngfLpsXzgFFaZmsvy+
fC0P1pvcaeAHJRJulKu5N+aBypjG3e9TlOiewljD2ZMHzKYzy3+vUOKa9rXQ
3Lk8MHiqvZksQIkkooZk9YL5QM98RIZOjQIfLJ4jS+zMhyy7ME9rGQp8yLUh
FNGXD9MVme53TlLg3Tot8Qsj+dBlUpaTeYACp6UtXti/zQdaHyfhp9PkeEk4
0VV9Lx/KlO5KePqR499MUXNFjQJoKRm7/7KGDBe6LaZHpwrgivlgT2QRGZ50
tc6pmisA1++mo2JpZBhP+pcQtFoAs66qb+75kSF1Urkz114B2Ah8F3QikKGm
QcfnaIFC6F1iSX07QYpZEwRdz+BCcBxleHWckRRdunkp15mLYKHU8ZlHLQlm
nS6RTzIphuAaY6r5UhK8yD6Q4GhXDLT95345Z5Og4VmHbAX3Yrjx8OBCbCQJ
kloQN3YiiuHd0Nnh48YkyDMR3RtcXQypuXvP/pGQ4JqRtWDBt2KoL7vjnDHy
Dyj6eg0csktgJ/FuXGviH6iwObpLOlYKrPLOf64F/4EDexxP7F6XgrqVMO9V
1z/gN+0l2DVfCo42X6BH7Q9c7tdL8t8uhXy/pso4yj+w2HpxYOXIFZhZ748W
SvsNd5tKP351vQK8R3hXmkp2oXh3at3lzxWQruKcd5r6CWV/nmkPCpXDePzc
yNNHP0H+8bwOvXQ5cPCqFCrd/Ql619JemkE5lDnmtuqU/wS3iqKgFZNyyPXh
nZh1/gnkRR0bzNHlcMVip4vi+w64av+xjn9eDqE//wsy+w4UfIvJ7wuqAM/2
l4H2sdvAkH48qqSvEqimc/rIQ7ZhbHJjQ+9xJShJOKW3em1DbjRnD+lEJWjK
5MceN92GXSM2D9/lSng0JKXoeGIbfBz/BB6jqgK5cMaLss+3oP1NES+FaBV4
1kyVnD6+BV4ObEvLkVXw4r/dyzm/Cde+S/XxsF8Fg5/WbYNhX4FaXYXDwaca
lKS5DV6dXwe+yjmZ4exrkPJt1JT+89p/v1ZnbffeNfhbmM7F2vgJisdbWIe3
a2DfwRSlpsqPwJf+1ZZJ+zq4654k/j6+CKnlhe+Ukm8AGHn00+ybB/fh7ypi
9+vgW7ptYebnGSAj3Ktsp6sH7duv3kWnvQMBo9y2J0oN8Pw0ecaCzmsI7uUZ
Yc9qBK3CmDetYZOw7nSbg/JlE2TqBW8GHp2AggazvRd/b8FA4IbKpxfjEPGW
1ugTVwuIWW9n0z57Dn48DLOnW1tgkfJXsrXrUyin3laLw9twRtbxHxf9CIRd
mFO8MH0btAaFbnXIDUHIE9sbXc6tQJB1U/EMGACSQwShpZ1WGNt99Vvm0AP4
YifLF3WpDRpf+h5c3r4PnsJNeV372uGt8Tdht0ddUCtCljSf3g5uKlzHHsp2
QMi9pq6XNHcgcvQTY9HtVnB5e5Hve+YdCI/b7yHO2Ay+smQSIgc6QNH58Fzk
9ZvwIl33bltsB/BXW19fU66BtxPWN8N+d8CNTywhYxqVoLPU/WrCsxN+35cx
O79aCC4jfmyzLzrhga/4TCHPZRBtSy/WViJCvOVCy7vFDHD5kd46o0wElbVf
ztI3MyD1fk9xkCoRbnpymHJLZgDQEUfKNYgQYK5TO6GaDsuOM/fX9YiQJy5t
1+ubCtSTp7/EWxPhD/MAeIwmQqfQa4/UQCKIPXrS8zcvEWTO+lGxBxOBM7Te
uNY6ESJUOQOuhxChNJamSmglAe4RiA394US47HT/GD15AmjUzTf/vEQEumuL
XsIQB88/2v22ziACGUVDl3FiNFTrc5X+rCFCukKxJRttNLBIEo1uXSdCB0GY
jyIrCuTEkx851xHBKLj4u3NJJHxXfvB9tIEIEgqWg8dbwmGjIQsrW4mwvD2w
WrMUDP4Sa63SfURg+ECdy+wbDNuVkXbLD4iQyVXi0LgVBE/VpIaLB4iQ9HdY
3JY8CHIzuKZ3h4jQYi76pZU/ACwnH27cGyWC35EHlPazPnD2yLNtibdEyBk9
5eq/5Q2x6bW5M++IwNvKfWSK2hvmU8q+ZHwgwtC7fLoSSU/gol1e+DhHhJIg
94bvqa6wODYzULRCBMtD3raFVS4wpVBrpfKZCMWpWr5pnc6AUkm3vqwSQe2a
lpTbR0e4tVRcoLpBhMiRJPIXWbbg8mXLcn2bCApLhl0C/dYgcSptuXCHCI7t
3hqc25YQECEjjb+IsI/N59+KrRkc6pmmz/1DhHVD0ubeHBMY/vKk+Ow/IliE
aGueGTaCS/Wv5uf3iHDAYDeN3EMXgk1OtUuSdUFS8YLzrUlN0M0MIbwh74Kx
F5bihepq4LwxGRtL2QW0nN7h9zqVYJlPN1mQugvgXn82wVQexKZe6Tyn6QIl
lQt64QRpeNAd+DyYrgu4hZPC7LWFQS+Jn4mTvgv4ck4+9FfjhH8rn5n7D3TB
xQNLTjKlk4qPtX1j9v+n/x9wHGrV
          "]]}, Annotation[#, "Charting`Private`Tag$2643796#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.560181, 0.691569, 0.194885]], 
         LineBox[CompressedData["
1:eJwV1Xc0F94bB3AjQhFZiTIysoqMRHmulRXKJpmJpGxSVERCIREhO9mRPa/9
+XzMDxlJSUZWQ76ZhZ/fX/e8zn3Oc973Ofech9/ezdCRioKC4i0lBcX/z3sz
OwynOSNUou6xvb/2Q05Z7frHkQWgU3E8Kf5bTaZEmbeyoJ/XeQFl+ZVKOih3
KTeXyxBtcj8gais1NuvSMeXsXGfxucputPqXmWdj9ptypJEkW814CzouKaxl
+31JmUnTrVKkoxZt0Im9U9FaU+bR8z2jT1uOxNlyfK0Dt5WP8NnyXxB4i6xm
9D3LVahBSYB1rupHLhLvV1upztsLx1I3+8RuZSP5+SLNDq/9YG/g/2bpQAZS
z8pXz+5lhkLWXGae5RT0IFij6t8zVnhrvTwhPZGIlryOPJ8L5gDrnwnaVKnx
KEuQKT4wnQtU7uXK3lqLRSxzW+Pf5nlAVZDTl0CIQTSsWkNSJ/lAb6Dv97n5
pyjaStb01TY/UApajlEPRaAAKcOtmcljwF6ZkVYn9xjRz9oUNIwJwQ4LX6HM
Sij6Zchq/2lOBDzu+Dw8TxWC3C7bFW3Ti8EZic8xjw2C0WXjWMEZZQn4R2Tl
sRh4gILuem4bhZ2AH49kZl333EeHaoItwz2kIOiAM01QSQBycVr/uJIrDYf9
LairX91BZM8KpuH5UyBlfqF7tOU2ilZeq2eRlYX75DVNtUN+aFY1p+tZmBy4
Xzx+Pz7BB/lm/BNB0/JAsbFC7afkjZ5/fF+6V0cBFv57zuCw44mouBREB6vP
wIcsyongLx4ItJaOxEopgadohl70B3ckklg1caL0LKjxBci497khpcVfPomK
ynDiqW8sH/stJB78KryhG6CsNVv+X6ArWq5ReddRhsBE1/THZdobyOgs7++7
oSpAKzBkeaDgOrJBfOW+l1XBQF9SRfe6M3ozQrr1Vk4NBuY/dSYpOyF6xzf9
R9nU4X1w4fn3x6+hBxSDHQ2r6uDsmzFBL+yI9vZ23gr9rAGREWV/I2SvolcU
fkfciOehRdlucsDQAd0WCjTzrtKEUZri2LD79khLprovKl8LtGO8fLxq7JDq
tZmr1RnakCCWxl550RaVLWee5E/RBXO6u1ZXzW0Qh7HNonHaBbB0ebJkJGCN
Lu/p6H6Qowf+z02lurasUIuurXtaqT682UsoDpi/jCgLMp8XNBmA6eZ80Jlp
S6T4tZGefP0iDL9UX/3x3QKlLQWvKK1chALvBrprguYI6RswfWExhIv5cjSe
l8zQLxv1AJYsQ7BlTBGnCjdFw3zvOSTkjWBt8sq4Y6cJ2hjkSpXoMoKlrMPd
m2wmaNuFYpzZ3hiiJQdixJ2NUXd2R9HwpjGIRrcG3mo1QmwWib/uxptAw/2u
0woxhujzB51HVmRT8PyEvx1auYTuLLYZHbtnBopyjKpmdpeQq8rvZdYT5pCv
sjh8VP8iemocOeccZwEcAX64KNkA7Ts6FUjUsQThKBuVZzn6KOPSnJ0W9WUI
yP2kyPTpAkq5IcyUfscKeMeLSrxoLqBf/aauXmeuwPPFr2GTp3VR7RNPdevN
KyDwjPvIdIU2sgxaXvcItgEfR4WdaAptJPck7XKXoC1kTbGd8DXUQgdrLC0c
w23BOW8HeTFoop55DZVCEzuY8aky+uh2HtXv7T5n1mAHdLPVAtxjGohXxHSL
RtgexC8rr1G3qCOOq2GsNzbt4ZQFQVTwnDoalz6YxHvNAU6UKvcwNqihP9Oy
aoMDDrB0eEbJvFMVHQqbCFJ8exWOGV5q1DdTRd9S0u0WjjpCKRtFwZk5FaTJ
q7T+ItoRHN9Qb5xmV0GnrZ12Jr2ugTm3ndDICUD5/qt7pbSc4dT8GybG+8oo
s3GE+y12Bo8lpvfdg+eQzMBqgqDCdWh+F5VLGXMWWbCQ+3+Ju4BbKtsa/YoS
ytElcKm/cQFaGUAt1kqI08xyPPLYDdANC1oPBUUUryvM8N9RV2jNd2tTqDyD
dGKYGFlSXSEnQ5xiQeoMMiF/aOU9ehNSV6X2FUkroK2ZjKT9/LfA37ry9Scr
eeRRfKqOjssdHhVFjSX/kkMcS0TtS1buMDd+fUE/VA4Nmv1NOJDuDpQ63OrC
NbKolFgg//24B1hBot4hM1l0Kfb7Av0tD8jND416uSaDFmPOC6eUecDsqOe7
JZBBP0WsqY4gT+gdfn0jZfYUOnWFlnFfmCe0dkctBT87hf4LiPd07fWEUPpw
64pFaeSYJSL22NoLtBKyHLurpFD7yVde3CHeIB6SWHXMWwr9eaVJl0fyBj0h
zZxNaSmUNMyt8fKAD5yV3xJddTiJ5vToPqan+MCqMP0f3RBJ9CM/PPB8nS+k
zMf3Fx2URPRdPVZT1H5warJk0z1LAi3Hg9zXC37w56lt2YcucaTYLU2188UP
uGY3jt6VF0PcCQy+DQz+oB45eUNqWBQ5JMaGWpn6g9XTrtI+P1EUf/rqhmWm
P7ibtnq+bDqO2qke6Pgo3QEN/zYuRicRVP/cUv+w510ozK5ybGETQUWNV8+8
bboLEeOqIrRtwshtZogh80AA3CvlHmAREUb8sUq56cUBoGVGnXF6WxBRMj3t
/7cUCOrWXiesqgTRkWGa5buq90A9lOIA0UMQMeS6RpvF7dq9mNls4RiafDb6
7NiZ+1DSYaAXNi+AKH3RVojaAyjSXd7gKhRAHz3HBMpvPgBL2gbKejcBtFl9
YYw58QE4Nu10sW/yowB721LDHw+gr+2H/P3D/MjJdc+7lZdBIP59r/3CNB/6
0S0gGd0eBNPUHvYKJXyozzUzweR3ELj6eDhd1+ZD9H3ai87awWCXsBR0dh8v
Mgw86vTmbzAokljfGqnxIFeexx89nUPA5EH2fqZlbjQR2LQwFx8C4XJv9lFk
ciNDJ3Ha8NYQcPgSXO1Jw42M9Ba5NHlD4fbUtNXvUS60ucAzWv0hFOaODip3
PONCNd+MrwXufQTUwYzLr3W40JGb8X435B/BoEjBoAc+hFwWj0+3xj2CSkcu
ocpyTvS5voP7qlEYRJQfM7jszYkWcr5sez4Mg4pzXme+yXIi8t//pvLLwuBO
z5vqlGoOpJnu7R3P9hjkVWztj3Syo5cp6StGHx6Dyce4T0oH2dBOrPC8s1ME
bPYyfrk9zoquSM6kUCRFABzeN2lfwIo0Yk9ZNXVHwB9xfeVTmqxo+qpwS9Wp
SJDwC99ye3QQJXc9iw6heAIJ75WUO8wOonU1X+rLsk9gbkq2qEz0IEotHmC0
cH4CDQ4a8jp9LCj/QUhhF/kJnNLZSTjGz4I2bs4Hh2c9hedDidFLq8woXV2N
O/nDU2CjDJNV7WFGh0TyPrxnjAIFtQN8N+4yI5OghYja21FwP4/np1zdAbS8
4aRz+WI0/BNK4E9xY0QP/T0F3R7GQN/pEl1eQUY0LelEeJwRA8etWe7Ej+5H
/Qtrv6txDAjtO3lSV3M/kjB1rrf6FwPEyAEbT8l9aORy6rlS32fQZJ2nkMZP
j/JZAlsfucXCZSvhc5lTdOhLYQkVTXQsbIrH5tvl0CFE/+38y+JYuMqrqM1w
gg6FrhU3Uv+MBX0Bon6Fxl7k9vFN9Jebz6G/wW9IOo4GFb0I/F7gEQda2p8l
G21pkAzV4cFHsXFQ8ncUj0vSoN8r3Bp+ZXEgZmTDMEjag17Yn3+duBIH6R0m
r03o9qCoCKWnn+7Eg7qBVDZNKhXikB14ZB/+AkbqqIrnPKnQS8GcyNiCFyBJ
UT+qokWFTtUaZo/0vABxtTqhi38o0SL78z/pBxNA1cNsreQSJXI9YKt98lUC
LBqP9yvxUSAxLUiSrUwEPChi6vFvB34aaT81GkmEkfx4TpaaHbBUyLoTsp4I
N/921SnK7oBJ/ZYkj9JLOMH07uuO9DYICR20Emh+CRUkl7Uy7X/Q6LFOG0pO
ggD/HEOJA//gQHMIffNyEtzZ/5ogOfQXoghtxUzsyRCuapvdbv8Xkn0XusYt
ksH54YOlIyGbsP5Gte7SdDJMY5v54+PrMLiEuwL/pcCyRnjx/YJ1sPnAENDP
+wpazxvHafmvgwVrzB15tVcQar78VpxjHThCYvRkI17B80L6dDaTNfgz8ad2
+1AqOBj2D7l8WwFB6VCFzjNpkEPX/rDW4D8IS9dX2N+WDgUyjDQrQv/BoPmF
FrMP6cAzedou6t8yiPeJcBZ9TwdVdiav0fxl6OxkY/dhzwBL6YLz5fuW4crU
tX13nDKggWPCNPPzEohGjsqYMGbC6B/hS0Y1S/BXSu6vkkAmyCi7jBjFL4FL
fLSVxOlMkDUxEkD6S3D4itJXUbtM4BfYYr4S9gvirBNSEyoygVAiJHP19g+Y
4GIxULLNgrT7ZpxrCj/gSVn4xVqfLJD62GPAvPkdYofC6lUjs+A1eb8COfA7
6DY4EN0qs8BQT1reNnIR9tTRWSsyZkPOkVXZjIZ5cOjxXY+qzwbrBTY+L99v
8Go2bJJfIAf8I51bjM5/Ay/joS5rhRyYmyhzieX4BkNTce7Z+jkwiQvVhatn
wP3t5FftuzkwU5m9HL0zDX4Opw9vDeYA91jKUmnqFAxRNSRSRbwBHgZhbibv
KaDzObFDSn8DvvWgUac9BcouV9ZeVr2BtpgTOTSrkzDe8jrWaOYNuFy19Thv
OAkPeX9ISKrkguCLomufD30FjfK7ZX6budBg42K+sjwBdOuWVASWPDD6OnTN
qGcCKiZ4a4+K5oGlvrvdl+AJmJxElrNmeeA0/bNVd/ILyI2ZcnyuyIMXWnIU
w2WfQayW4YK5Vz7ofZy9LVI6ClttIxoBfwqgdcLJt/n2KHgUbhCl9hWC04gf
bzUahYAIR/Pv/IXAWhoWX93/AQq1T8XdNigE3QE9y+W1EWimvaI1k18IQUX3
t0qMh6Hxj/cCo0MR+ARlF87rvAcFq/0uUR+KIUTTwP89z3s4zRidz7dUDP1C
P5dpfg2AnvZ6dc3et6CkRt2pGjcARRF9pylOv4W8bHlTxsl+OBo6ETYe/xYs
70XKeEeQoWq42N5NrARqRB25XDi6YSAsQnZpsQSyTAc/8LZ1gTtpkVFiowRS
Di2LXfHsgnXelNYbtKUQfnbrugu5E740H8OrfKXwjIOWsSyWBOzB7kOKpqVg
03LGQOAkAeR/DXvfaS6F4P9O/WRvboHO9dYzfUnv4MBPBvmFwBa4a+Z5KST3
HbCJP9UXVWoBGaG3vOcq38Fh7/qx6cpmuFQvNlbT/w540CvJs2VN0HMyrugL
XRnwunVmRwU2QF69ZP2YXxlw0X3z+KdQCW6+zS5Pzcshx0aOYr6/AhqfPGTu
cCyH/Y86167fqIAp7pcDlF7lwLTJclEovRwUivbmBj8thwGdBF0n5jKwNd8I
zGsphzt9pZm6+0rANfA9baRkBcw6a4awkbLB8IXaoQSaSshPVqZK4MmG5WLt
e9KslVDAQd+xzyML9kuLTfXyVcIA4SdfB08mTAS/f33wbCXo/jiXmredCk/1
zq00eFYC22jUkNSXOFBeCFjKnKiE6LeyFpHXrOHvx3/baY1VYGHbMVWlpQ3B
qf2HDburgCukNzSEUxYnabf/pf1YBW9oZN6F01/Fe168pvdfqYIMRh06Ro27
2HE77tw9iWrYdhiW+2URhZOm3mvtT64GW7b9U/MTqVhwrYBW+k4NxCnKbsj1
p2Gdva3HFB/XwI/aPVX8tumYFdMuaryogRXKWrKxXgY2f1Xn7fiuBhxXR+1c
+LKw6bLXlbaFGqBPUXVky8/B+wpFSRRWtZC8fOme4KUirK/EL38L1QH8ynyS
jYuwpZDva+qLdRCk6lMTJlmMiad9DqXY1MH2n9Bjd/e+xdk+CjTD9+pAkhgx
y2lZgh/paH662VAHD19d+9O1Xoo1/t2Ok1CqB13p2CVhygpsydbfP67QANQW
rR/dTlZgrVW/wgGtBjh0daTE70oFluWQvE4yb4CDzlSv2qsr8FFCXAi+3QAe
JN7qq66V+NYMv3BvdQPcWn29h4JYhZUu1It5n2kEC9rak/uNavGYds3y2FkM
y/nJa5p+tdgh5eLrgxcwLDl43zJOrsWFe5IadC9jWP20aj8xWYuf881yt/tj
2Ml8ItLlVoe9hBf8BisxjHw+v8gXVI+nVb/efneoCUZ9mqXsHjbiJMPsx8fi
moBx7zVWocxG/CnI8uZ0chNoKt8kNDU14h2px345WbvmnfN4sNWI29vTNiV3
/33fxmMHYR+Mg8y5SnQGmnb3TYZEyokmPJHCdbeWuRnsxI6bf6VrxqUzQ3nu
Uc1QKt/suZezGdeV+B3fedEMGw0arlxCzdi5XWspKq0ZpOsZrlOqNOMjYG3x
rqQZTvev3pn2a8YFqanBdO+bQWPYn4ppshlLoMG635wtkGFN6Z+a24JfSH47
Up7ZAtPe/LKe5S3Y2Ak1uhS0QHKH1bxsUwtubaRNEChvgc/DnclhIy1YqbL5
V3x7C5Q/i3tylaYVV6ubn4yca4F8F2LMAetW/LLU1vPtiVbw1+4Vq6Nuw6QK
r6tjda3griYqfJ2xDV+aCn8W1dYKRm3e0vScbXi8qXJMtacVzomzNfKKtWEG
V5v24vFWWKG2j881aMO67ooTzynbIGJ5gEshsQ2bLmV0xGq2Af3ejMAm3nZ8
/c757zaDbWASKVhIFmnHFArsnXKf24CT/enPwZPtWLfErmL/tzY4Uvt2vgba
seef4HcNa21wJlbEYM26HR+tMDwjwd0O92oH1S4kt+ME9uz9Svbt4CDVeq5x
Xwdmf/zZied3O/xobf+zztKBg1Q1LW9vtIOdCVeb2KEObDuYLzpE2QFd/K/f
ewl2YCoj8pVnBzvAJoi3K+VsBxbVLWRmk+2AMdnVRMMbHVhG4r62ql8HiPhc
4I1u6cBoZM9F2O6AKDPCRUzowMe1fvBV0hLAa4yidba7A3+xvNYieYAAvjTN
kfwjHVjgzX0fXj4CLDAmJ51Z7MCd46HP9qsSwMI46TvVQQL+4lWnw/iIAMu6
upqnLAl4O+nnwRwmIowfcqgdtiZgXnZi1S9OIgQBj5KXAwErPg9TU+Qnwu/o
zIg4VwJ2LCAyDsgQQWMu1cH/HgH/kCPa7LcgAh25ffJ9OgHrvsp/WpBFBF31
+55b2QTch5avURcRQTD6eBpvHgFbULvwWlUSwXNP2G+9UgJ2zdsRZyYR4YJJ
rpNRMwHnpdrlBP8kAtszsS90EwScYapXEXOGBI9nhcWapgj4iMQVrVVVEqgD
ywv3WQKmZaYss7pAgt7Fs0v1Pwn4trYAo4QNCfIDnj3es0XAgcpphMEQEjQ5
+22ZHCLip9o53/XIJKg+8TZdToeIU503q8ecOoEhe4rt5wUiNqiVuljj3gle
4WzmGQZEPNlu9yLBvxO8pbTt1o2J2GsRTphGdsLnhmyO6zZEXD3TFTRW3AkF
t15VWHgRMfh/c6Jd7YR6xRspzT5EnPQxt/XndifsVJJzBG8TcVtOKXFkbxeI
CJYpfgogYntJmZ4Cri4ozWhYZHlExOEXL1VePtcFwtQchOQEIma3p234GNIF
cgsVZ6tfErHCqFZIz9MuUGGMFiQnE/HlWLdfTS92+8mTryynEXGPG19JXm4X
wNfnGxS5RPz8l/hAcPfufWLLJ50qIubcrDAyYusGyU8k35KB3Xq7Ya0b2d1g
eCHggeMgEcf9Rkdkirvh60DSCPswEXOoZ735W9UNPlELwc6jRKw+hj5HdXVD
YCu79fAXIi6pXm9rWO4G8WnBuA+LRDyYlGR2TqUHav91j6j/IOIwIrUHs24P
+Ndo1RT+JGI2V/tz08Y9oGtLed3tNxGTn1T9fOrcAyd/81A2rxKxfm7Xu/no
HriwaHPiJQUJkzJ5ulrGe+Cvz4vQZkoS3mb14ciY64GhtGPtM1QkTGGmyvFg
uQckbvMdEKAh4blP+bKIthcuB0bruNCTsEamzAZRshdEzj+x9WQg4RVWrz+F
p3uhZvxgsO8+EvathdxnKr0wkPjfuicjCeu1Jp+9YtIL4Ww2kudYSNhv3/FT
WwG9UJYvxil8kIQ1ibL7Zh/1wtt5pxP7WEk4sY/pdX9MLzT96VohsZHwjQIO
/rzsXsi2PH358CESNtvcdLHr7oX56CI6hqO779HWMNrg7oMzbhXR5buemTUk
NQv1gYofen2Zl4SDQzuORZ7sg/PenhFpfCT82tP/JZ9aH+TZWWVuC+zm2/QU
M3PpA2J8KVXUMRKOmPztIOLdByU3VZkOC5IwJ4tK5XpgH4jwC8kdFyLhrYvQ
nfqsDyYJbseOiJCwXELT3s3qPrg6BxC760xFG73Blj4gde7w7zlOwlSMLw6V
dPcB95fP2uO7hqPp8a4TfXBtuib+vCgJf2AsvK230AfmVpSVBbsW/PRAXepP
H/AwCwa5ipEw5U8S0zY1GbiDU08Rd214sqF+mY4M3z+1tPOJk7BBVkDxHCMZ
FM2OphJ3HXPzfs8HTjKUFw7Pc0qQsL68/bn3PGR4bqskeHXXxbP/+fXxk4Gp
ecrjv11T6U2x9YqTYfZsZKS8JAmfchD/TZYiw1ZjTrrvrlfN9sQMy5FhvHyU
9GPXqd/GUxZhN4+IwrTgCRK+cGSG6p86GdJeJ9Ja7Hp+SVeERYcMkn0dbtW7
VrNJ4dIzJoO7Iq6f2vUnhkwZXwsy2CodOLr/JAn/qwzvy7UmQ2Jw6wvpXWuk
PeCedSCDisGMqPGuz7u8opa9TgZ/rzsfvXZ9bogn4vktMpSYhxbE7PoG4aPJ
Pu/dvNQ06fm79u22yszyJ4PX4ZXa5l0rTLvOO98nw7UZvZ2hXSv+tKV1C92d
j+ke99ldi6UtvhqJJMP2fgbm1V0Pa+gkTsTuzsNMb5JSioQdrDTK6JPJgM7W
zDPsegPGKiJfk0Hutpwoy64ldkIKHSvJIE2bfoxt14XOfJ6Hh8jwP0bqDDY=

          "]], 
         LineBox[CompressedData["
1:eJwV0ns0VYkXB/AblYlukWdJQ5GSSrj0K2wl7+Y36YG6lMijq2gSKTeSpJQp
TTQGGd2aUpkaRyGyI9U5QudcN49I1+tI6KFkqNzf+f2x13d9/thr7e9a2ygw
cmOwEo/Hi+Hm/zmTTDDWsqBwrUJ40zSUhtaXbzZrch7fWmKwM5qG3nf702dw
trQ4Wb/6LA0W8UFaKpzd9MaVzHJo8B/5Vf5tOYXbyieyvK7S8CXzyb/vOVv7
O61pv0VDRELLDjlnF/1dV88RNGgWnNVr4Pzlm6jgaRkNUz4QJmWcsxyW/XAb
aTgUVWct4ZznJhLwHtMwujxvJJXzXyuMiOW1NOS2hIj2cb4XHafr8pwGn+fC
jE2ce+t+9nSX0ZBlWhxrzfmQTVeifSsNMwskOpqcf2oJqzPpoCGpTe00tYzC
rsO9dm19NGiUyYPzOYtqpx65OUiD47wpkw9ybgqwdY35SEOtTvt5fc4u9bzS
iXEairpaUt4updD1ddqlBwoaTt4qcyvhrFNemXdoMgMvhBIbD852GbjnLZ+B
vpaeUHXOISoWTN4sBqxPxu2VmVPYXTlxYpMuA3fqJ01s4dy30ujmPUMG9DTC
I2AJhfrXtHoirRg4GrVd/NmMwtiaynlzVzLgZzk/8hpnTFp756kdA0EbLNRU
OKvtR30DFwZs1VK3FC6isPBKVXq1LwO/j6+o9uJcxN+tHu7PwJOOvAWfTSms
/7XYVTOQATciv86Ss1Lt+u+B4dy+bvbQRRMK09TkS3nxDKhs77Ax57xJkGl4
7RgDg0K/45XGFK5zHBv9KYUBKifX6tUCCoX5isDscwzEe77SVZ5PIWHfGS+Q
MBCieqskxYhC6Rnjd23XGHg/WihS5RxR7u177BYDkusSDVVDCtVD55g8v8vA
p2DfzGEDCkusPtWHkQxkpoxMF82mcM/V+IO5Qwxs0H1X9kiP+8dm7xPXhxlY
s8/XWZ9zY1PqVWKUgRnpHrwaHQpnUFp6tZOk8NjvotM3TQoDx/Xlo9pSsJtT
9HraDArntjuF+zhIQRzlHbOWT2HckO+jICcpfO0Q8w9Np/Cku7HVPjcpuH5N
cparUljgU7Dt1EYphD0K176oQuGFqUP1FSFSqNgz8fkaj8JVupP8Fp2Vgq6h
d3KVgkTHywcdbC5I4bZC2aZ1gkSoUV61LksK2/X5POXvJLqUeooDJFKIq+Tv
cRwjMW3HbfM/SqSw2/Kdy66PJPZU5iyfJZfCzG2C+35yEh1Of+BrrWiEyYmR
4xtek8gf6OxpEDTC4uj8WqcOEu20OxtOrWqErbZBhibtJF5oSWpTODWCysDP
T5uaSaxIvNw46N0Ig7GTlo02kCiZ7WtYK24E1/ikA4IKziZgkk42QnmZX9rg
eRLvq1tNdQuQgctH4eWMdBINogx+f7dLBh42Xn/anyORMSy0zNgtgyrlhcLU
NBKN43USu/bL4KKz+I3OSRL70pPjjyTLoNin1+G7mMSI95ubi2/IQL9U6bcp
IVz//sGXpiMymEe2PrQVkDhrfsQb7dQX8GLA53snPkXNM29EyvVNMLPwyfQ6
l6e470CfIHGsGfrVlkYRZU9Q9WVwRqR9K7SbLfQKM32C+YoF7r2xL+FU6jPL
37Ieo55n/zSznDaYvjF6vf3XGkwvOXVBU9YOtQUWf5nvqkF5ciXZM/wKNqYT
sTX1j3CT+pTJ4SqvwW2k9e+8RY9wQCsr6YWOHLxkfCfbtGr89I+u/dxcOfAb
Ll+o6K5C83rdqh+XdMJ/NroqWtdVYUKY0NT0VieUx4V+LL3+EBN67SZpm3aB
/5qxqC0TiFuS+hOtr3dBUzPR9qCqEksT701Nn9sN2uUhw5ToAToO3dAazugG
Ud9m851zKtDhlKh58Q89sN09znhQfh9DqwJyFkb0gNPqob/FaWWouGI4lN/c
A9OP392n4lWKP14O6LcR9IK5wdzjK/RL8Iv513vuZ3pByfN1Z9Szu+h84h/f
6N5e2Jroc+Do+WIkb8x7I7FiQfTfZ3fV0opRSaIxNGLNgvZAzLfMlGLMjjl/
ztWGhdzbflmF4mL0yLUm+leysNeMUG8LKca9f1aELHZgoURb+YPN6mJsyf56
PNONhYGc707D3QSutBWeM/VnobpDxTC+g0C7RTOC9m5nIWv9YZ5qK4FCJQ1Z
0Q4WiExxg1EDgWMLeel2gSzM3rXyklcpgce2bo3xDGWhS3R6atEZAhuvFg15
/8LCAf9uE4cUAs8+LLqSuZ+F1R4C99pEAoO0B8deRLFgNnYjuyuGQMXRKQmb
YliYZ6gXqbmTwNNzij65x7GQGnW4ME9IYPAf23JOiFnoWXTp/RJvAhdMs+qu
PsLds4CfsM6TwKYDkZ6rjrIg0fKoo50JNApg9kQnsnC6comBvyOB/+rsML9z
jIX8oRu/9K8ikH9JN/VtEgvOoodUtIDAI4qxZONkFv4H+VrXkA==
          "]]}, 
        Annotation[#, "Charting`Private`Tag$2643796#3"]& ], {}}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, 
     PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> 
     Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\
Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\
\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\
StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \
\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], 
        TraditionalForm], 
       FormBox[
        TagBox[
        "\"\[Chi] | \\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\
\\!\\(\\*SuperscriptBox[\\(|\\), \\(\[Gamma]\\)]\\)\"", HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, 0.015}, DisplayFunction :> 
     Identity, FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 14}, 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, PlotRange -> {{0, 2.3}, {0.015, 0.105}}, 
     PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic}, 
     Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "2", "6", 
       "\"Caselle \
\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #3}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, 
                 GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.8762098132490873`*^9, 3.876210114932979*^9, {3.876210229455621*^9, 
   3.876210239439103*^9}, 3.8762103425194483`*^9, 3.876210503369525*^9, {
   3.876210758072206*^9, 3.876210817271525*^9}, {3.876210896342799*^9, 
   3.8762109031134443`*^9}, 3.8846914827458572`*^9, 3.884691623712654*^9, 
   3.887175492411874*^9, 3.887184325602675*^9, 3.887184375892168*^9, {
   3.8871855348141947`*^9, 3.887185597667794*^9}, {3.887185799070383*^9, 
   3.887185827915172*^9}, {3.8871858794918337`*^9, 3.8871858971152573`*^9}, {
   3.8871860663050613`*^9, 3.887186101048482*^9}, {3.8871863952497263`*^9, 
   3.887186406346018*^9}, 3.887186449069482*^9, {3.8871864819645844`*^9, 
   3.887186491476892*^9}, 3.887186524625689*^9, 3.8871866422836113`*^9},
 CellLabel->
  "Out[147]=",ExpressionUUID->"655a40ca-05ff-4292-b196-684739c53e3f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ParametricPlot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", "\[IndentingNewLine]", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]2", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "2", 
            "]"}], "[", 
           RowBox[{"1", ",", 
            RowBox[{"\[Gamma]", " ", 
             RowBox[{
              RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}]}]}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"1", ",", 
             RowBox[{"\[Gamma]", " ", 
              RowBox[{
               RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", 
               "]"}]}]}], "]"}], "]"}], 
          RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Xi]6", "[", 
         RowBox[{"\[Gamma]", " ", 
          RowBox[{
           RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
          "]"}], ",", 
        RowBox[{
         RowBox[{"-", 
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"DufDuh", "@@", 
              RowBox[{"PrepareArgument", "[", 
               RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "2", 
            "]"}], "[", 
           RowBox[{"1", ",", 
            RowBox[{"\[Gamma]", " ", 
             RowBox[{
              RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
              "]"}]}]}], "]"}]}], 
         SuperscriptBox[
          RowBox[{"Abs", "[", 
           RowBox[{"ut", "[", 
            RowBox[{"1", ",", 
             RowBox[{"\[Gamma]", " ", 
              RowBox[{
               RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", 
               "]"}]}]}], "]"}], "]"}], 
          RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{
         RowBox[{"\[Xi]", "[", 
          RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", 
         RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", 
        RowBox[{
         RowBox[{"DScriptMCasD\[Xi]List", "[", 
          RowBox[{"1", ",", 
           RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", 
         RowBox[{"[", 
          RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", 
     "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"0", ",", "3.3"}], "}"}], ",", "Automatic"}], "}"}]}], ",", 
   "\[IndentingNewLine]", 
   RowBox[{"AspectRatio", "->", "1"}], ",", 
   RowBox[{"WorkingPrecision", "->", "20"}], ",", 
   RowBox[{"PlotPoints", "->", "50"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\
StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\
SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \
\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", 
      "\"\<\[Chi] | \
\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[\(|\), \(\
\[Gamma]\)]\)\>\""}], "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", 
    RowBox[{"{", 
     RowBox[{"Black", ",", 
      RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "2", ",", "6", ",", 
        "\"\<Caselle \
\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], 
  "\[IndentingNewLine]", "]"}]], "Input",
 CellChangeTimes->{{3.875952981547227*^9, 3.875953315769273*^9}, {
   3.875957061887289*^9, 3.875957104302837*^9}, {3.875957134472674*^9, 
   3.8759571357521*^9}, {3.8759571703214827`*^9, 3.875957176129848*^9}, {
   3.875957284251436*^9, 3.875957289963092*^9}, {3.875957366732642*^9, 
   3.875957382812718*^9}, {3.8762091878796577`*^9, 3.876209192631675*^9}, {
   3.8871754989267273`*^9, 3.887175499101399*^9}, 3.8871842906781693`*^9, {
   3.887186114918988*^9, 3.887186135551132*^9}, {3.887186188946741*^9, 
   3.8871862078981543`*^9}, {3.887186291595374*^9, 3.887186300211134*^9}, {
   3.887186502030856*^9, 3.887186541775611*^9}, {3.887186589650141*^9, 
   3.887186636184795*^9}},
 CellLabel->
  "In[148]:=",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"],

Cell[BoxData[
 TemplateBox[{
  "ParametricPlot", "precw", 
   "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \
\\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\
\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\
\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \
\\\"3\\\"]}], \\\"-\\\", RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Gamma]\\\", \\\"5\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\
\", \\\"2\\\"]}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \
\\\"8\\\"}]]], \\\",\\\", RowBox[{RowBox[{\\\"0.`\\\", \\\"\[VeryThinSpace]\\\
\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"0.29442726651162515`\\\", \\\" \\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
\\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}], \
RowBox[{\\\"17\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \
FractionBox[\\\"1.007010684856479`\\\", SuperscriptBox[RowBox[{RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"7\\\", \\\"\[RightSkeleton]\\\"}], \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}], RowBox[{\\\"1\\\", \\\"/\\\", \\\"8\\\"}]]]}], \
RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\
\" \\\", \\\"\[Gamma]\\\", \\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \
\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \
RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\
\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\
\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"]\\\"}], RowBox[{\\\"31\\\", \\\"/\\\", \
\\\"8\\\"}]]]}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\
\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
\")\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\
\"}], RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
\[RightSkeleton]\\\"}]}]}], \
SuperscriptBox[RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \\\"\
\[RightSkeleton]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\
\\\", \\\"8\\\"}]]], \\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}], SuperscriptBox[RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \
RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]}]]}]}], \\\"}\\\"}]\\)) is less \
than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 148, 131, 
   31937344891897383576, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, {
  3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, 
  3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9}},
 CellLabel->
  "During evaluation of \
In[148]:=",ExpressionUUID->"62fc2290-ec12-4106-8db3-83accba90389"],

Cell[BoxData[
 TemplateBox[{
  "ParametricPlot", "precw", 
   "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\
\", RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \
\\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\
\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
\\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"31\\\", \
\\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"(\\\", \
RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\
\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\")\
\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\
\\\"-\\\", \\\"1\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \
\\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \
FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\
\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"21\\\", \
\\\"\[RightSkeleton]\\\"}], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\
\\\", \\\"\[RightSkeleton]\\\"}]}], \\\"-\\\", RowBox[{RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"22\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \
SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \
\\\"/\\\", \\\"8\\\"}]]]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\
\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]}], \\\")\\\"}], \\\"-\\\", \
\\\"0\\\"}], \\\",\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\
\", RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}]}], \
\\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 148, 132, 31937344891897383576, 
   "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, {
  3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, 
  3.887186542059218*^9}, {3.8871866239697943`*^9, 3.8871866457787333`*^9}},
 CellLabel->
  "During evaluation of \
In[148]:=",ExpressionUUID->"776a18de-180c-4668-970e-1610ceae4ab5"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.368417, 0.506779, 0.709798]], 
         LineBox[CompressedData["
1:eJw113c8l9/7B3CbeL8zM5JNyV4ZGdcxC8nehMieoYQkJCshK2RFklHIB1lJ
RlkZ2ZvsGVmh3/v7x+/+5zyef5z73I/rfj3OuQ7HbQ+9OwR4eHgN+Hh4/xv/
/zGrS5vGhmMRmTP72RNZDqC+o7+PwZnfZ+jRiawoPIh6KEuOc8E4xuJkRAZM
SplKiHFeHqtQ+yerCEdveW/8e4JFF9p6vuBFq4JQYRHjPs6GrJLmhKPqoC6R
R7OOczFR83XSyzeB7SLd1RmcJd0v3yaR0wVM2UlsP87dvDaEUbb6sGxpS/0V
Z3Wx+3lnow2BBnO9qRxn6aujNonlxmC3XZqZhfMY96Ex86gpyKSlF0bhfJtK
+fVrfAtwWqae9f7f+80uWQtevgXXGemvm+OMXVf4wSlnA9/fjWZw46zA7Ci0
on0bfEXzo0lwFshTCCq3tYWxCeq3C2FY1Nb6k18t+g5s5S075eA8M0L6hjrL
HpSTbSgDcZ6C7xqT5Q6QbJY0a4BzrOqvGwGjTsD3WYsGH2d9prJWzQ1nsFud
cR8IxSKnkp3XLASuEH2ic5iP8yxqbWq57A7N2bMpyjgrO0TEJMp5gb/W6LFj
CBZ91w1mDW31gpN69W+COAdHs6ff1bkLLu6zzVuPscjcsd/TwM4bpLjqlb1w
ple2MuSO8YWVVicPi2AsYvi7S8hMfw+EWu6W0uB8t5dvkCb7Hhitk11oe4RF
FLF7+CQf70PEuXOhfDjL56Qq/B17ANw0GiFjD7FI7kp17987/sClaywVivOQ
7MOmk01/QAIuzJdxfjgT1E9MFAiX+5Y9PQKxSBHLGXlJIAgqHPj1F/yxKMpi
s85c4THcrmMhfngfi4KGSMOkIh+Dsn1548k9LPLhfWRON/AYnu1cMQ3EGWPW
rNXrFAIi3/0ve/ti0dlOhUaTpFBoqhZQuuaNmx9S15+z9gRGacAj0h2LCMX3
muOkwkEP7V1ccsMi6tA47OOQcKgkTG5UwXmTWbTxDuNT8O1iSdx3waLoUZkL
SCUCqNK1upWdsKi8SLhRLiMK5N4UvL1ni0Ues23OyotRcL/lWXDFbSxaPMbW
aIpFA92TDtkNGyxiJCfUsWmPhoH0QwtLaywalYel7N0YGI1bvclpiUV/+yra
fbWeA/OTU8ZrRlhUZSmgoYmXAPK1uhknarj85+R0uHMlQMGn7FIynEdyppRf
qCUAFcvRBrUqrn5KauxTMQlAGBp+xKqMRW4+tfUhTC9gikBMiQtw9U7vE/8r
lgimrDoNA5JY1MdQbN5gnwytMxw949xYlCv8y5YoKhkIHBwIS7mwSMqhM0uz
JBkSEoRcH3Li8m+r82liJxm+EV0ap2fHIq3V5fdUj1Pgbj+9nAQzLk9Y0hsV
6anQy1IjzESNRRPvaL4f9KZBybFR0rO/GMSuT0hetZsGk1cJZgWOMOh9GFXJ
PYZ0EBYNCfx+gEGROiNcRxbp8FDiXzreHgbhNWeT0iylA2PUXrTJFgYZ/2xT
eXqaAXafGZyq5jHItWUmMlEgC0xua22LdWIQvcWYS29rDmBtyXZEkjHoVDUj
fWYkB8ZzQsYVEjGIY2R69vdaDjAqhY1rJGBQ+bWhOkbaXDhIauSwjMUgLEPV
Zy+rXBA8Se10Dsegu0v4zGYHuTCjyInPfw+DJKQF6zH8efACT2JO0QCDnBDb
f5D4BsjvKb+ZJcegpHl2+2auIrhIO5c34U6BhF9bDmEZP8DeYaKofxE5+ruT
kb6RWw7Ma6dYq/4zSGeGVzKQthIigzqdbPbIkOgPPKGt7iqoMKUsldolRTZv
1VQpfD4Bh7dflPEuCeq3UrEd5qmHZ8l2MsfrxOgRi8anIabPYETe58HTRoQy
Ejp6IlObIPzmI+fTYkKkE8pj0qfVDAZ6HXYy9wgQ6V/N3ivnWqAECNV7lfCR
HfZJ9sfhVtC/1VeqxY2HjAOaUxjm24G0nrqLfPoE/CLPHNNtf4eLVmwcVIV/
gWHuW6ugSRc4l+m/XdI+BBdf6lf1Kz0Q1b2klEazDxfSfl6UU+0FI16q9izs
H7DYxEZYDPZB8HSMId/Ob6hO0txivTcAtn0i6uy027BM86poMHAAZoUvVe9Q
bMO6pIJKfOgA8BAJxrcTbYOGwstzlPEDoBZdGnJvbwvU0uGuYPEAKFS4us6N
bMEY7+9fe7MDEK5wkI2fswX3DULLO/R+gtGlwfe6Iltwwwwb+ld2EG4xr/3J
frMB4zQq+Gwqg1CIX9owkrIBQ35G0Wo3BmHhwkMS+sgNUFKX/5FjMQika+3n
XrpsQIAWq3/kw0GI4UtS+SayAQ71F5TYPw8CdY69a1/tOiiUt+GHXR8CDb6P
pDEDa3A7nWF/x34Y5OwHiGupVkEk9p9YqscwWIgvuLUQrkLMXlEr8hsGg3Db
f317K7BHZEaYFTkM2zPU2fvjK/CDnOpKXPEwuM1KztoXrsCYzs3M6zu4+Vr5
VRNKK9CAlnz5w0bgy5fZIyG/ZahNeXUp+eMohN/ZbPZcW4SiWos1xcZRSPVs
uq48tQhyV98e7HwbhRjKjDSmvkVw3Vb75zw1CsFzSW96qxbhSumsUz75GHTL
5jh4hC5CGJ3Cns7tMVD7h9dpw7wIWhLbj0vpx4EiNnqZ6+YCPDOhZRDmHAd1
kxsvPBUXICz5fP1/guPAMMxO0ySxAM13mYzHVMYBmzHy3I15AdRfPgr19x6H
MlLJ+N2lX0BY0D5F3zcOpvKDg5/CfkFxFV38UeIEOD9qzr/cOA+p+5bLIjkT
4F0obs1XMQ8Clk077iUT4HPBq1eoYB5YtCjlCVonQH66Z1jp+Txw6dy9H74/
Ad+brYNSrOaBaZTUFGMxCZVilPI7ePOw7KFnrMY/BXk5mwK+anMQsZ5oECI9
BR62Vr/Xrs7BuC2caVOdgoVKRy9H4Tm4Va9f52w9BZ2+gRnOjHPgQ/dV5ULy
FKRuHBSkr8yCv7LOVgr+NCgIkrz68HwWnEj2fwvenYZt+5jLb8ZnQNVdx3Te
bxp+mAYW6/fN4M4ZYqqsR9Pg2B/vRtQ+A8Ic0Y84nk3DvhfHO4+KGThQjp4y
ezsNHfecMW5RM6Cc+PXB66lpyHBl9iKUmQGTtxeOi3RnwODar5DM1GlI+KDE
/MdkBkimEusrYqfBzkiCVdl6Bq7b6V3pDJsGKY/IuXV3nINqx0i8cOu6jx0G
xczAv+LnBK/VpyHAJmv0Be47zvxo0lvfm4KXL6QoS1VmIZFXNu9c8yTE7vjU
qWvNwg/8BIxP6SS81+PeXzWcBXuHZczoy0lgmOIXV3GYhdPh2IE6z0nYc3yd
oRI1C4NI3G+CdRJWuwepY3pnIbCytzcqcAJcz6ZvuN+Zg4JUjjcv5Mfhj4vg
xKr7HDT1LgbMXx4Hhy5eW0+/OXAIT5uSw+XsjDqNWVz0HMSHXdMm2hwD086Z
fYHyOaAvZ21Zzx6DJpkG1Rncf7VuWy/nIxkD0sq8jYC8eXARDyxWHxyBhHeV
3pql89BlymHz/esInDX0eM9ZPQ9r5FezdCtG4HGMrsdSxzxYDMr85x03Ak1q
9LR9O7gccQWqkGiOgOA+kcBF1V/QjrGNsGsahpBPt1vpN37B6/LVJoKKIUh+
+Xtq8+AX1AoRjurnDoF2a8xWL+EC3HSnci+KH4IaEzGuMqYF+FMgSebuOQT3
u1zIJlQXYPl53T4SGoI4apLp3SycmeTNWIoGoYZdj+OB+SLwPK5pKS78CRYH
HTSaDovARkvjjNtLgS0ojOmS9yLwGry4mhD1EyQtll6eRC3Cx1b6W3EuP+Ee
Y1YvT+0iRPJK5wwK/gQ8aZ16d5YlaHrEXhBVMQAu6USyKitLIFouT/esuR8O
zEXUvfeX4FgoFTV97Iex0gXRUqJleEEfEPE3vx9yqTn7rrEtw0BmoWNIRD+E
77CexRgug/05MB/R6gfRUfr+hS/L4DmbH1M00gdmD3yyb71dAZbQlIsTf3ph
SG2nxLV6BZ5+yOXJXegFDBauR7evQNybc8h9qBeYKo+fHi2tgN6rS1+Za3qB
QkQOL49vFRza4nY6AntB08ZqUqZsFYJdw5WCiXuh+hf1tETnGqyaJ7CLX/gB
L2MplCIn18DhMSn5KPYHqNqzNW5vrcETAtVVyn89cIFPMebfuXXQuk+avd3S
AxHaZFgam3UYj57ctTDoAZ+aWDuRv+sgoDU33OvdDYJsL0q00SZgP/1r563v
BF+s/yyewSb0FYfX4ud1gnkP7cs2h034cXOhfCGqE87UjdElP98EAbnYdwMm
nUC5+o1RdnoT1A8Pk9CfDtBnDXOeVdoCjJ4Nm7FIB2jvtRR7bW8BpR7xrs/7
b9DDVxjcerwF0ifMDR0p38B6RCecl2wbHj6mtRIK/gbaP0KD6di24T+pdjYG
3W8w0udYGqu1DSIjl7zv7bSDD0nnU/aSbRjV9GVwudoOufL+vM73f8Nu+7ct
jt5WiPzxKP7Dk9+goz7xkbamFULwe5TJE38DtUYpH21OK5RrVjMffPgNWV7D
XLJerWBXutjbtPobuNPv0AvTtMIfkwIXkTs7QEa8r5lv1AIbfC179T47EJ51
T8ULWsD7cMHIJmwHbuB/69HgbYHarv1rK693wJyNPeXi0Vfwc781d2Z+B0il
WcuDM7/C/JGdUqHjLkglVNjVLzdDcdP5jcIHu6B/Pjvbpr8ZDNm23JqjdiFx
+rIObX0z+OVN1CqW7ELXWUSQFdcMd8ZT3bx2dmHp3ssAY+lm+G326KQr7A+E
dr+g0Iz6AtVzUmTc9XsQMuY7JSTdBLSkpjynOL+esBTUl2oCmbjwNOemPTi9
t2AxLd4ExMqGHPo/9sC9jI53nLsJmHRT8zLn9mDPPnU3kRrndNHxaPJ9wLgt
0Fxe/Qzr0keDLab7oIZtkxrL/AxZ7NO+Wyf7sB98oe4O2WdQNysnI6I9AIeK
FeKk1UZYF4pnl+Y9ACp1CUff1kbYmJfCI9Q/AHeqb6/8AxthMI8pgf/dATRd
feWdvNwAPI88blNYHeL6PQwedXs9PIywHtO4dwgZ/7JM1PLqwbOL6vP7Z4dg
OTiolxCMs2ntxdW6Q6BeeMjmLlMPJvk+jGIsR8DccPhZorgOMi90h+n+OgLD
r1HWf5NqYW6oyiY9+RjUNh9SmvjXQFoLfcPH8mMQuUwygGdWA+13K1NOu4+B
07r/oEGmBgbKq3N4yE7AITjZOOCwGg5jWYK6A09Ajeo24+6Daiib4tr863EK
xPx4bHNBVZCn3hRo8vwUUq14YqatquBX8su69dJT8By14N9BVRBU0Z7xdeMU
Gp6k7BoTVkEJj5a2hNc/kEGRt9ki/4MnkX97+hAe+u7oLvY6tRK3T9JhXfTw
EKGKp+tv/0pQPPEs4bbDQ6++mxYZWVYCi/D9xydP8ZCzebPALc5KYC0bydTu
xUOOA0ZbjiUfIeexs1yHMz76fipK49JWAa/IKGreBOGjcdIP2meKKkD2pHG4
MAEfSStK2NfFVkCnA9tX3lp8pPQuitbGqAKyRb4fnDtLgNKInLjzFsrBE6g2
GesIEMZKrPMsRTmwfgoQSBggQP1pTJj362VA5pGsq7xOgD4XmOc4/CgDHtuM
yzpshCiqtqmBI7kM2COup/KGE6LjBnunGs4yqGzt4gu1IkKRHF8LvdEHMPFO
SxoMIEJDm1k1KdwfwEr8v1r3VCL0ntR2tZ/sAzy7aL3u2UeEEn2MdC6/fg9a
5YFVQ+rEyOr1K2v39lKgpo3Dp7tGghTwc/P+MpfAoIixDL8jCYoLO+BSXSyG
u10NxKmRJOjwWWJ4Q3kxHL8fVr7fRYKYcvwmkUYxuMs1bHmYkqKQwQLp0IAi
sF4zeBYQSoY0ps++P1wohEtL1KfR78iQQx1vvUJlIax92g8n6yNDMoolhhWh
hUBXSP3oBucZVHG4RcXPUQgmeYWiIu1n0Hv3m2wGt96CWAJ+LzE/BRo3nhSL
mHkDNByNdc+NKFBQbWHUdOUbcF90tU8IoUBrZQkkt6PegLFrqvGZcQr032ql
+bT4GwhYNArcwd3bfoRu0n6PyIeuhNe//L5iEJ8EM4/LrXyY7Yv9Eb6LQTFy
0vJXJPIhUkStVwV3b6bvNvNRmc6DbG+ypxHsZ1FJ3FTmzat5kJl0rS7O4Cwq
pNh9KkWdB9W3HLbEI88iXfPzlupLryEt0izEcPcs0uBYbFhMfg23PPxfaPdR
InmnjjOUe7nA0ev4sneICuUfkvER1+WA5H88RYb7VOgJ/7hrQFIOxBSQ0wED
NZob/OZ23iMHFDnNGdRNqFGmL0l2H2cOBHwvdnSfokbicldC+WOyoSzX10eX
gAZd1KjxXrTPBgm8AM1CHhrUu/+ZslMxG0bmBncb3WjQt2jyMNatLEhpEtNs
J6RFial4H446M4FrfuduHB8t4h9pHzkOy4SfHyiOp3Rp0b4LRk5HPhN4faKS
2HJp0dreWMZK6SvwaUoGN3U6RLhG5L+elAHm7z31ZyrPoYneFfPL3mkQ3T5W
nbRyDnX/qGF5y5cGzwM8FbjZ6RHPjae04bMv4RM17+O5Z/QoIm040Ur/Jdg3
viUL8mFAEpkRXREyqaBwpqAg6QMD0j7lx+LvpuDqbUZXsc6AmE2DHwyXpoAV
dbMdowsjOhl6PpzHkwLHZ+MVrnkzIXM68sYKhmRoLNv2VKtmQoYdfl48P5Mg
+GzrdMgpEyqY4DTeS0gCVnGRR/2x59GrnqXmSsokMNzgrfrSyIx0MJEORdhE
sNgSk3hJeQGxCHrv0Xe/gOQjWtFd6wtI/lt990zsC/hYV3TJhowFuRinuiRR
v4A36qFdWi6s6JWt3pAPcwJsv1sbDGxnRWc7NUTGJuNhK9VA7dklNmRt6XeU
nRsPXiJCixGrbOgjDeexBn884HU8bFdqZUdJ3uX+TIpxULzLEMN/wo6I5YU4
Aknj4OneabjSFQ50VNmwHJjxHN76/stkK+RAdx4cx32tiYU/F0JJ32Vzoma7
CRftkxjYu6JNTj/LiUwZqsqo42IgP5tJjJCHC31p0D14wRUDr2PsixLec6GV
NNmV4RvR0B3dzam9z4UONJfb02ejwFhWgbEJcSMnLxZKtgdR0N1MSIA3wo04
1/OVHN5GQv4j+LZ6iQeJ5yc4CyhGAobhTMt3Px6UfR55lI9GgLbk54wC9ovI
fKQoFp8qAjazuak3oi6hFE2vifeh4bhz6nF11fIl9IW0zEiZOxxkYxZHjjV4
UdMZiZb4lidQz2t1aHTuMoozfMxsTf4ErL4kuL0KuowEX3XpTZeEgViNheOX
lcvIKdKN9YJeGMD1THPGTj5EIWvB2pYRCr9ybA7DFPnRzf2IIknlUBDOdUu4
9okftev1B91eCYEkLO2R0X8CqJTAomrzaggYuzgl1I8LoZgrEQe/5oPBx+VD
14anMJLQkZGUjw+GmwVj0eNEIihxlsZSTyEYRs5bUu7kiaD2q64F7lceAcPB
sv7YgQhyLvKXo0wMAtGsA5YgbVEkVXIUK7j7EJhVt/C9icUQ5XmrwF/VgTCU
Mlpw5o4Y4hEX5g1mCYT+9i7h+TYxFH33QUVaaABUpTcmEKeKo2cbzyt0Dfzh
nJDM71xiCbQ20WW82fAA16/+Sxe9L4G6N3KvUvI/AIHzu/Kb9lfQhC6p+jCp
H9C5llTF/LqCyHj5WkP87kOhZCrxoaMkcqXS5ilfuQcSknLxqo+k0AZNpHVu
vy8oiXL3f6SRRpeUkj7aafjCROtUBXWxNJrxnx0t/eIDiscyhWvbMkiavbJ9
osobsM6P4i5mXUUXZd+If5XwBjz2jyOt+rLIrJ+q+krFXRg2Uugl/CmHeul6
kus/ekHhfrtCeq48Uuc93/pTyguoq/Fl4x4ooNkQ5ZrAOk9wyL714JQTIZ40
ueY/iR5QkU45ZJeJ0E1yH/W3Be6wcSfk+g82RTRgJR4XXO8GhDOqjIUFimjo
pkNX8KArvEygzreWVEIf1tmuF/12gfiDVLO7nUpI7DkyJaBxgURSvu92zsrI
bV/GNULCGY4py7xUP6sg3qLlN/yhjiBIUfM07IEqItS+e+bmeweglCQLVJdX
QzT3lH8VTtrDjlDAvCPmGkpj46RUorYHx+CYg87Fa+gzXoc307U78JYUXff7
cR0Z8lAziQfbQZOH91hEmzri06BiS6izBVq3B57bvzTRs7lRE0G4DYadzzJj
/t5AuckuDj3xNnBs7ehVzHkTpRQmtxkuWsP8YrP5qIU2kjafDGgGa4jrYhVf
MNRBY9cPlaQkrUD43dZ/lWS66JVlzNyX35awJFQitd6mi2QOdJ6KVFrAYOZy
ZGOiHlKmiTn/9KE5rm81nH7iqY+aeBw6ujTNoNT4Sn2LhQEiv/ARi2E3hWdf
bP5JmRsiy08EWepHxuASQqze62aEQjqoomNHjaCPX/hsZ7Ixqn+ZJTL32RCa
3zaWfBw2QRbDn9R0Sgzg+NM4tZ+kGerbDZqdzNIHK8vV+74V5kjmr/vD1FQ9
yPFhFkrUt0QJP12Pw1N0QYewS/cWsxWS/u5U9TFDB5YpL+5RRVgj76+9hKY6
2qA0bsmCzbBB44uzjjveWuBOw9+s23UbOcjyu+vkacK2nMFtBXY7RJ3mfj5y
Rh1IStpLsWl3UMWnhy1V/NeBm9MyikLRAQlW40sehKiB8tND8bELTsjNSLbZ
YVEFyj7bRPVLuqC2NtcAHlNl+IRHWfMgzQ0xa/Vo6w0rwtHjXWFafk/kSCh4
jfoOAtGFYP+dei9UVXfiSflPHqZcBA/N4nGdV38aa622LLjNi4swffRFDkuc
0gF10jCmpUEQLeOHav8dLRSpSgK/X1u+g2wAUh4lb/qwKg5Tgj/v3B0PQkQh
0eN/SkUB/Fk/3HzzGOm+YFaeZROG+q0DkW8OYWjFQn7kGis/uOgRlb2fe4qa
8C/JXTW7BKdyfyM0bGOQ9n+igfsDXPD2Zc8tFoF4dBptPjf/nB3aMxN/6son
oWWB3fsiTMzwKhSj8pUgHV2ljVT99vIchJltH/h256BblMI9I/lUoCW5Uxz+
5i1qmjB6fhxGBthLaPKxRjnaDGn6SbCGB3ciRw3KpBoQeyOWsJ/jjwLdLtMU
z4VuNPl6c6zn4oJCJIlih1HjAsJkHK0fBPYomBtMXhSL3USy7TzmciJtCv8H
wEf1Nw==
          "]], 
         LineBox[CompressedData["
1:eJwVlmc8FXwfh41DmYm4rcKRzCIjIn7/Dkpk3giVlU10IllH5qFkl5mdTeVk
RRGqg0LcOmVESEf2lv30vPh+rjfXq+vVV8Tey8SRjoaG5uvf/Z/d0hqJAy4L
6CX71Js2abJGbb3lmx3JdyjJnp+n+vOCBp/46f2pqFr0j5JqNd5kWyPwPr5z
eKICCbhxOCTkY8DUTSAmTeIpYrDeK6HrYoXRI5FWmh+z0BE6VdI8Kxc8mk9x
0F5JQV05qwrFGrxQumXVdkQjCT0QYdhuXj8KGgbDmUdexSLv1vGGcF4ssOM3
WapJ0UjRMd941kcMKvRZqheGItC2Tb/6Hrsk5A9NDVYNhaIAxMSlOykDPXcl
+Efng9FsyA81XKAc7L9sQG/ZA5Gb0zDz21x5EHFnV3MYvYum7nLfeTSuCLFD
wRKzKneQrBtWFyFlUB5dKzjbdxvNikkETC2cBdrAEd7O7lvoRUNJ5Jnmc0Dv
9/44XtETUR9K15ZUAkx+KFBHuu6oiD1gxf76echJXJt3Jrsg/yIsjn0FBziB
AOnEdCeUlso3mJuqBeT8o5/0SQ5Ik2hoNKV7AYK7V22wjDcQU9HOXDWrDuCt
3m/8F2OHfrDO3RwYvgR7ZT64STVb9PtFZ6tUox6Qjh087yZsjYynRn7eK9aH
YYYGP7cD11D0FFdRVZ4h9HhbKDsct0KOj7K0u/qNQJbp4zGjWxYoy/CXacyo
MZRf3vPRnDRHTl2N72iXTGBkRz9fLdgMDacQMMJMptCqG12+esYUqbb+xlLE
zWDkBCN/O8u/KIT3VNsRfXMITU90S9o0RlbXWbi6/K7AWoPpo6xdI/Qnbapl
scwCbGwuJ8ZzGyEO81d/8BOWMK+6KlYfbIDW2bJNNLFX4dTjEAJ++TIieEtS
rjhfg/1h6sSJcD3UpaaykE+6DgwayyZHTumim9F6rrwYGyDdWQlsX9RB7mwy
SpSTtqB47ZwHX8dFhET3a0uHbeGmcPUmf80FVMCSIBwaZwe7KLiY56U20pf7
tWeuaQ/ms5ytES1a6KluI/2JbXso0MtZsmXWRFopw6sZ3g4wzrb3xg+HQ+68
1Nkzio4QlslkaUA8j2i9doXqNxzBcT62b6sfISRgNMrX5ASVzeeZKk8iFO80
mnolyhlan53yNxACBI9Mej3+dYHx40rD/qvqSDN+TMYM6wpGXQleJV1qSDd7
TSeu3Q08JGt4onpUUeOhoVZKjjvIR3npGIycRffZh3vG/D3g/kkqwm6qoC3M
cFi5+U04V7aidlZIBXW8oqeXO+MJGF9y7YChMnJkYY5x5/WC/tfGExYPzqCY
NKKL1a4XGIaphtznV0JcOm6DedRb8M78k7SolyLaO90TI2CNhy5S/2/Xjwro
F/XKEPULHvxctNfPpssjQnZKPr7jNviGxnKsMckjMUPDfmltbzBJCfRvDjmN
krob/5Fv9QZH0RJXuXtyqOrwoVTBtz7A/rtQ/RyjHDr2Pe/9LroDtOtWorjj
ssgld3T6eNsd+OfG+Nq0599gL7214aMvXLBTMh7JlUHYCJZcWeO74C5j3ls2
KI1iw0PUbL/dhZlyDFnLQQoxbgg0B037wVxhsz+1SRL5Zlt9wnr4w0bXsp+4
kCTqIig5DM37g3FWx6XwBXE0+IHIELIRAAssmGxJG3E0MWxP60YIBBua/b7Q
/06gYzYED3tMECz4Ks4QOsTQjaarWQHcBIgkijm06YohtTiz22k5BEhTUUjZ
7TmOBM5T+t9KBcMXtqSeiklRNEMeijypdQ+C5mlt5s5i0WJ7auKzlhBgZ1LX
bqaIoBKRvZlB5lAQsiSye/mKILtzppvRpqEwJ4ir3nojjHCDF+65/A6F1wkt
C/mOwgiblXc8XTEMTKQ6SloOCaPLmOuUSyFhkBUrk3yIcgwFS7uSJfnCYe6Q
ZPFBlWOoZVxDw8IpHLjJ8gc1s4+idYY7cgzV4aApvK/601cQqTEKYQaMIqBb
1iSb1YwfBclJ8FknREKmDkuu8hc+VKz1gdN3LBIiLl0hZ1rwoQy58DwmBSLg
S7EST114EfkXXiT/KxGgc9WZppwHtUzPWMefiIbmdmZ3ZRwP4iegyoDAaCig
qyJND3Ej6WXLlZHP0RDS8EfDj4cbHSq0kjlMuA+d+nykM0VcCLc8tcg19ACi
H/QlGxtyIatM18dNCjGQECT/0XqLE2XdaKeMPowBM3qnBh5zTqRy9wJ3JHoI
Yd//5SFiDyPnZvEtk8pYELRMP/1qgANtKL/aKGOKg1usmxi/JA4kb/re565T
HHg/6E6/eZADDdphFj1E4sFn0bxCjZkdmT3ZSrUzSIDYELqhqEQ2xEAmyboR
EoDZ4mGPsgAbspX7MFhakQCVpfmdEUqsyImxj6abJRGCWLK5VSOYkaavXmPR
p0S4IR7YfuAoM8KiMT7H3USYLi+vbK9jQoS1whbLU0kwWZ9ctLJ8EE0Z0cZP
JiSB+pKg2fPgA6iZU6sowiIZkqJ7RvrFDiCfmYnPyw+SYR1PKHzczYiUfokk
p7xJBpY7qr2txxlROOPow2DRR5BG84jaM45BTHqnZbuXHoHkyaXAbXcMqrfP
eWap8xi2Gzl3X5vRo02LS4n7nCnApTTnnZtNh4okxFWupaXAc9v8uMirdIjo
qMIl0J0CZU8GhqP56JCt1KIbOyYVagdiG3rTaNH1zefmSbdSoQ93sLezgAbl
KXDlsV1Og7MaPOV7LjToM+O1H57habAz931VVJYG3SJR5DGNaTBmVapoHbQP
ZymjE51S6UA9Y1YZ3bULMxc19MmsGWCxeK5/z3EXpqdctsjaGbDolHbwEM0u
1B/95LoTnAEG1Xym31V2IE9M0pNmOQNeWLaaWL3eAnPbNTWfwUxY8RwVf4H5
AxLO9dUMNVlQ7UVuCK/YgMfy2Ac261mgs+zF/cpsA3Z3VqhrytlgqpLNcbJi
HRKEchW/NWaD0kIgxz2XNWh2HNm6/SEHaKmSD5/yr0FlB2fQN0wuqFNOTm10
rcJv8bqmxydyoWN8XfKwyiqEzY1xu7vlgtRkSpk33wr0tUhcDF3JBW4uiR2P
/mXoptDncPLkwZ5Pz1XXhGXg6Txj2KqSB4RioqgFyzIsC2h1BAXnwWWjwrFY
1iVgfKZeYc2SD0sPBzIs8fMwKqNVOCRVAOmDdOgJ/TywmB9QNjMsAP9hKRv7
1DnYTX4bN+ddACfxmzjrtlkw+2T/KuBNAVzt+PzHVmYG8E3digdNnsJiHecr
5s5p8JpulfG/+xSK0aVpBtdpoAw16TBlPQWjoRDMYNlvYMqIOR419RQqqdzn
7dSnoDRxhnU7pBDYVu0ouz+p4PnTqM2puBAUti0ftMRSwemyIP9yVyFMULKF
ysd/gbrdr0VngSKwlji9G5k+CSetla366ooAwneaMpUnoLPH83X1ejGwHrMI
uLE6Dvp5TwY8BUugsJRBZ7lqHOp7tGq0cSXQeE/zhaXsOKi4R9HpxpWAcPSb
RDqFMZiN1ox9Ll4Ksm9vvlitHQH/2DwOBtsyoCIt15kLI9Bd+HUsJaoMxOWs
EoW+fYfZAk7hi8/LYM5F7cepvWEoP7HvSL9fBnzSt/R8LIYAMnp653PKAcdQ
ziKJ+wYIFxxbRa2AABPmW1w/v4JiqOVhtcOVkHWlhrRL/ArPTpxxmVSthOSj
iRHveigwqeB3MSuuEt5+LxVu8fgCId3POHKUn8ET7ebCrt4+YLsQFcmb8Bys
Bb6Lnw/rA35szmFy43M4mO69FKHQB/vViv+lU59DXk/G/u20XiCuEgkUoReQ
a/CblO/+GW7/2Sps93sBNwjqHP5un0CljE7z0qkq8FcjtAf+9xHWr/vq0elU
QXImp7KExkdwCHaa7Lergr2fWenOvJ1QnbDVQ37819cSkKOOkoGQrzQ3s1cF
Hli7iiwzMtgZiP/04yMB+ZXxfN+nD2BUT5stokgCjmnR8cLm98B0qzyF7EqC
0+X9tU61bWD7ubDOk0KC6A7/7RjlNsjMutw/vkSC/uUkNeaGVqBfVXa8w/YS
HmQbi9O0tcDYfoPrhtZLaNvxwte0N8PpL9waATUv4d164Gx8az0QPoRvjjyp
hpVDr5dFZuvgyO3DWM+GasjlMpCZ+qcOTqgvnhP9Vg2GRGLT2p0akLrBUk57
pAZkA588sdIjgWOoHF9ebA1ELxk29UVWAf5LszO+ogb2NejLdFtf/P1t89Me
H2tgZyl7Ahf2DJytM1OnmGqhdaP6wv3yEhAV2ZFiul8LGYIyBRJQDKEbl9Mu
ldZCpddVfTdKIQjWEDcbO2rh38U1mtJDBbDjJ0hUZamDpwnXNb9eyQTTPjHN
1wl1UFxF5J6qTQOhq+cel5LqQDiyQSBVMAWKc+496+2vA8F9ne3Q7QS4J13l
8ZWvHlTeiajI/n4IVllRn+rO1UN+FM32LjUKxP2r3L7Z1ENspoep3koYTOYm
kFXD6yF4JL52kjsI4nFjt38U1cP/APE0WKs=
          "]]}, Annotation[#, "Charting`Private`Tag$2643905#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.880722, 0.611041, 0.142051]], 
         LineBox[CompressedData["
1:eJw113c4F973AHAjK96S7J2VpBChwrnZO1tGoowiPvbOLpRkVfaMjBRl75Gs
7L333kRWbz/fP373n/u8nnue+8e9557z3MuP/9M0x8PBwWnDxcH53/z/I6Qy
bgrzCoO+WtoMXcFeAc/GERayM6fziA7xYEWhLyF+mPDMNIXz08nYe8DmNkmB
fYlBu4SPBvmw8rBFkPNz+8wz8ja/K/6pwpANzt70mX+aeqZkYjXAUn05tePM
9yXtR+yw2nCl6XlbyZkFeMj6xLF68M4s2j7xzJ5vUft5rAHgCVtH+/xvfxt8
wtF/D6Gy7J+Q8ZmTRbgmB7xNoGtHX/32md/tEMTXYU2BWufdMsWZezyTB/K8
nwBD59fTuUAMKu1aL4jHmgF9c2tk0Zlz+eObvLCW0H1DUUDlzPk5f+7ZeT+D
r42DdyjP7Dv/d9QcawVZ1yvq+wIwqH12f0MPawN/N5aU7p95bWP7s7b3f1Ai
ZK1MdOYveUo4vD52IML2vaXCH4N2Nm2Cr5/aw9AGBjGcmZxZKlCwxgFCPS3E
fvphEMmvzQuiPo4weY70m9WZ8yOnaeRPnYDkZSdtni8G6dz0Tfc6dYWoiMpR
Ih8MSjHyngircYP7VNOt770xaJXO9Wq6jzt8jMm8zXbm6nuO/D2nHnBtb+QD
7wsMEqVxqVTG8Ybg3Uwdak8MuvqeU8yu1hvy7gTJB3lgUKU+lcxHXx9wp64o
33M/i2dwynTx9YVRX0ruZjcMKujetB/H8YdQj0BaaRcMyp4J7j4y8Yd912OG
WGcMeqb1ooy+zh8UmvpTV50waCktUcrILwCk2gbvvHLEIPvEEYY93Jeg5mGQ
FmGHQd2p3ete+MHAY/MoDNcKg8YxnFUd1sGQlnO1lewZBvEVN2+z9wVDbc+5
3UtPMWi/mqew51MIqGUPYmgsMGhFT7NKXe4N2KnUOy+bnt1vS/JcZ0gYuBkW
BbQ/wCDe8JQxlZ0wyMAQdnzUw6AQppGJ3wbvwCh2B2Osi0GvNbKpV6nDgUuN
0H5CC4PIjogDiBbDYeyibv9XNQwSd6a0igiJhPrx4cwwaQxqqVHLWKmKBEfa
4w90Uhi0+TGxVHYnEoIXhIKSEAb9uSjrhWsYBSSXO6ySJDAoLieRJJwvGhjI
xbVsRTFo7qSgHdP1HvBx57Tu82LQAwWWnHy6WKC/9V87IwaDpkcnVHsUY+G5
kVSUAikGnXTIs+57xAI7bfCuPQkGbedrGsmMx0LLu4BX5QQYRHdJoPQ4NQ7e
hAqQcWDJ0KiAQe3wtQTov+OjpLlBhuZyB/3s7yVDHEmBO/9vMvRg+p3UtEMy
nPswz73dQob4fspWan1KBr+YoZBvTWSI/4TDJQU/BQrCy53YG8gQ7h+Kh0kW
KVC8e3AwVUaGCvXm9yb4UmFTrCuqLpMMXd8amPMvT4N6YkpaOm8y9NKaL3S9
Jw06BZtLfDzJ0KLo9i/91TSY8SRVm3MjQ+FZyqciTOngXKj96JMjGVLZ2C4+
550OKaxrgjjPyJCG9z+2zXufAOvj6n9FiwxNCchvk7dlwEmDn6k4Fxmqu6FU
/WcmCzr210eqa0lR8LsD4e1/WZDD7G7BWUWKtFhCr23RZYMaXWLhqzJSRADb
6Xtq2eBTxJ187zspurPeQslacbZu0TASnk6K/CK0nDaicmCAYtfww0tSJKs9
3Rsl/wXS0p9IKsqTInOJiKSUkm8gWz+R9q3uPMIOGprRcvwAIxWb3cMcEmTO
G2tp0lUMGe/l1QkfEKO5m9WKNVHl8GdR+U3HOiHKoVon+YCqgWb9CWdZMAFa
UyWQn7pdB/TBBrpkB/iIkYf1s6JaA/g/T6/s8cRDz8tsl4k8GiGuHV+sixAX
hVjNFhfiNoMfjU2l7wYW9HA3ShPftYJLulGNOu0JjN7npR+PbocoHyqCZ6yH
kKecE0tg0wVXRV8sfHuwD1vnDEkcHLsgynyiJFFtH8qn5PCn3btA7DVj2VuZ
fWjfYkn89aoLpJjj1JwE9oEtRDMhP6ULvP57MW5IvA8dhletcPu74EHOiuz7
0j1Qe4qfmQ7dMOdXPVXMsAf+7b+cDZl7IDqFvmJifhd08LwkqLh6QDzbaCd8
dBd6bdfiu/h6gJJOaFe2exeq2HJ4tMV7QP9FpnZp5S780FvtfWXYA0uPC3Kr
o3Yh0HwMkxjXA/IcImqaUrugzqAYlcbYCxfWWyXiUnegPxCnrPlqH5yfTFTs
fLoNrbNPdVYF+8Awe8dr7NE2ONnmt1680wcJJwGwprsNB02XVayU+sCCssPx
kuw2eHEz4CpZ94Hfr5U038vboCx7sP0rrw/MCQstB0a2QPTkTmj7rX4g/0pT
Z39/C8xXOgrbNQeAkH3pxrrvBqALHC2NRgMQro+7vGW7AfjZ+ZYNFgMQy+D4
+8hoA9QupOl1egzAp+FNisu3N+Buh1wEb/oA0MGvuJLtdbDyu72z82cAcon6
sWRm69C2Kjq1lTAIG9e7zhmqrgHtvq39p8+DwDSbE8gpvgZaDztuG38fBNJa
F5E/vGtAMaUTNNc0CD2+dgKZxGvAuiJWLr47CCY6ln7aP1fhihW2gk15CBJ5
SPNGxFdhTmIweuZ0CBYalV3f3lwBDfJzNEKkw6C/d2/xGfsKHB+d6rymGQb1
i33qKpQrsC9IyKd6fRhqG1woOHaWYbTabJ7TcBg0vImA7vsytLuQq7OXDgNJ
Zr7kZaFlONf8vCnQdQTub7xL/XJ7Cfoq9TjLA0aAmooNK8+7BJEX85j+vjvz
hy9qywxL0H5s9y8oawTuPk1rlThZhMWgR5qEIyOQvEDIfaNmERbIWHG9JEeh
iUiUm09uEUKUmYQCMGNAyKgzGfdgAaTq0NAg/Riwk0dEbSotwCrn32Mh7jEo
Obj7XFFiAV4Ju43iwRhs99uEkLEvAB7tvYZjuzFwF9572rU6D4bXZD6YDIzB
I28iSzXfeVCKFee59nkc0lX8/djy5oCgIpHAu3Ac8vCxWLqUOeD3aNQZrhsH
FZMPUTRRc/B3zOm/7LFx6McVwbnsPgdk4Sv2+ZQTUEX1bdhBdg4GW/3YTX0n
4EFCNsv5yVkIJdNcff14EnbJm1XxaWbhzdXRn8IOk1BD+vlbJPEslLgejy37
TULhhYDDK8czEGX26Mg5dRIed0pKmU3NgKHURXna6Ulg5J6J5MidAaKopEwZ
wSmYnr//qvLeDKiEFOHIlEwBufHuNU3HabjpTOE6XDMFDVOkZIkW0/CZtfOJ
c/MUvN+LKl/Xn4YN0r2q2uEpWO3w8UlB0+D5X55s5skURBvYhCuTT8P2kZHq
D+lp+ME6RlySMwUxC42bZIPTwMuws1HWOQlvs9o+Tk5OQ58JQYZu2SQk/lCp
L12ahtC/+fL/0iYhwTWpwvtoGi44+qo8dZmEE+JuUgOWGVgMDr5SxDwJnNvW
n7UtZ+D97egKHtsJyGMpuBmOnYHc9Ohpa5pxwLZHbN3737ngehBI446DekQV
3/HFWTBQk5jmWBuDOOpXUoFcsyCe5FWGVz8GzV8+DG2rzIK7jVelsO0YZKiH
+0glzgJmjP7V0+ZRkEoqIj+WngPl7NRavMAR+M61bOemNgc6mpLF9nZneanx
/Cr2wRyMzij/XjYaAR2Pzz/ZbecgULdVc+/WCPyWYCzvjpmDccP4GPelYRDi
uhPYuTkHL+24fW7dHwYz8ie70Z/moVOAR8WWYwhE5w+VBfPn4VCfZf4fxRA4
JZhrDVbMA9ujCPMP2EFoYlFNQr3zIFiZRD0zPAgLxI7OIXgL4EZIeDobPgiZ
Dkdb2McLMJiiaRCOMwjUXYE+vdcWAb8j45r3Qj+QuE8oD95eBO6Ck+Gvvf3A
lMj2fEl+EfrkEiuXa/thvS9p56bZIjQV4VB7x/fDENU7buvERcA9Ielg0+gH
96wFSnfKJeAXfyGuUt0HvxgZc2KJlsHg9fXaqym9UDfPHmhLuwzxiY5CCWG9
UN40paB1ZRku73e+oXvRCynfCjdV5JdhE7ds+oZBL8Sc71XAD16Gp4w5o91U
vcDlj7WJIFuBnWKK7o03PbClUea1yL4Kff6R6w5+3RByE/9zkdAq0Eb48gg7
dEPyleHAaJlVcM50Kv/3uBuS/FUqAi1WwTWFZDRbphsG/QiqBXNXIdriQp85
cTcYfC4i7BM9q3ty9e1WEV1gZp2zs2O8DlFFCRzCWp3wqp4vnsRhHfBeClz/
KdIJCcQftIVfrsOnXd2HZgydUP+k1PFX7jowzyuw9U93gB7WoWHqcB0K2TnL
XO07oFpwy4EkbgPyxZ+4VUW1w31Mby7N6iYImwVxXZ9rA4rUxaePcbdAjyV3
wr+pDV64FLXKY7ZA1qRqYyWnDUywBBMSXFsgr1b0b9u+DXyjAwlHdLZAUp9a
YhSnDaoqo4WWy7agYCzCnpq9FQKNYpULfm2Bh0IfQRhhK6gKFOmH9G5Brzk2
hm61BTLWTVufrW+ByyVsxpPCFsi/jK5tnvUtKRbV2i75FvCiYRXjDtuGmdVw
djyHZsiapUg+jt+Gv4SBF2L0miEld3t2Jnsb1rLp00GiGaKrn71ZbNwGtQ3q
rAbiZgiRqPn3G7sN1n1fw5JSmoBSmW+S22kHWkVIDuN6f53Vr/p9RttduJ9l
/iFIrhHyLlnkcnvvQs9qXnfpjUao55YVlA/bBf7IUfMjmkYIf5io3/p1FxRz
8AK/Lv6ENQrmnvGtXfAQUyQYCfkJ6ylPnEzc/4DW56DXt7sbAMgdl8Ze/wEZ
nqJpm/IG8BXRwXdI+APRyYqS39Mb4CIf0e5CzR/Q6O/YsXJpgNdeQuK4xHvw
36B1STxTA8jYNolxJe5BYtMo2751PcgSe6vK5O9B2UrKQx7derj+0sTQp2EP
+P+EqFih+rM6XaOktLIHtJm4fMzU9RAhbbFz+/Y+qL8TMJGsqYN6aQnl4rF9
uNdISmVFUwd2C/cE9+8eAFbYdiEwpQbk0+X5/TUOILTGo9zGswZ4d85tXbc8
gNWpT9V2ujUQScBZPx95ALoX/95qJKuB6SEe0onVA4g4L/c306Ma6l9GJ9/4
dAhJhkdecoZVoM70WGqw4hDe4eA+7xCtglQ+cZZPvYcQk85CaEdVBes9q2W5
+EdgofyCAaejEiQHUiU9zY9gLPnSmKZUJVwl/KpuJnAMy8fKwRX8FSAmLIN1
UToGfpNZhRFMxVm+rPP/MDuGpiBfAcq1clj773dUduxZfM+aVntWOfS2jf6K
ITiBpI58AjuOclCoYa4cnD+B6OGfy4+YyyBjrqmkvRULKcxX4vI5SmDCTdQ1
ch0LKueGs5TxSuAB4xenGIpTmGEpoMOfLgbqV2HDVnqnUBJSuPMrqRikSq3j
xJdOISw61i6VsRi4JwR449/gICOjnaQYhiKoVaSWvJmMgxS+O+38OSoEEK4d
3/yOg/4dBuHbjBbCcOXBs6kRHHTy++et/IRCsB7IyU3jw0VCZi3VfmyF4JFh
mUIxhIusm4feKFz/AbFslr6yG7go1CXjyPDCD7Cnj1TMOoeH2JqiXr7e/g5X
SWVzDwXxkKpFa5NY8Xe4o1+QPhKGh3K9RuaH0Hcg8+6duqSJjx6mOPawGBaA
vtbE0DNrfFSiekVvUrIAYpxeHu0H4iMv6q0H5ewF0FBVY1BWio/Yn+t9qVnJ
B7/SWZ9t9nPIk1LAh9ArHyKN5ic68QiQlRF70IHcNxD46H56xEyA9lBikgL1
N6jipjUzuU2Ajn5ndDXOfgXTu+4/xuwI0JClqay831fgbPKg+jZDgAJog8vM
qvMgiFhOy7SHEF0OLWQ8QV8g83G4cPA2IeLmTAqgofwCZbU9IXsURMjd5QbZ
w9lc0M3XJfmsToSIumzv2b7KBS+jEnvvXiLEcfl7aHJHDkzuZc/1LhIjy4hO
MQHLbFif7p3qJiVBT33CXQjuZsPY/eUNLgESlKG/PklwIRvYNxkq+9xJUHP9
+kFQSRZEpZEH2Vw8j14VGCW+O58F2wYXWVI0SRHN/U+hyaWZ0OiqzB3udfbP
yjhwYXuXCaXnxF6vZJKi2WaRxDbzM5PySs+dkKIdYZXHKZcyITo8FpfmKxmq
FOO7KWWfAdKZyGaCmxy5zMvSGgh/gjtV3V1ieuRoUAvP/y75J7ASXKO7FEyO
DMM+pskspUMeg1a+2io5+v2RrLM9IR1Okb4ebekFJM1VZlBOlA7H9WW4mWsX
0CRrzuHgTBo0Z0rSzFBQoJ8F0TNM1WngTt1dPypHgX48mjBick4DZsaoC0bF
FEiX3cx7ay4VlmLrBXB6KZBCG/WBXF0qaPdVsu5tUqDsHXeNn4mp0HBKZDDA
exEVqhTaCumlQua2qXTcp4tobmR5drotBdpO6G8aZ1Oi96ns+UtuyaB7h8W6
oI0S0bJOPDIXSQaTm12Gzzcoke2SoMCNP0mQYPlZgO3WJdRNv/k73S4JiqSO
pAqaLqEBEL3JZJMIIbXVMY7rl9Axb8Plv3yJUHCt7taXS1SouJXqKfN6Aji1
6KgFm1Kh0seq75VtE8DT/tc3bnxqtK4UXHHNKR7MlDq+9PNRIxx+uRxjkXiI
mrEQJNOjRm7jOLxjB3GQOjlkTJ9HjWqXWjyKveMgzQNH5OgRDWrvxZTPv42F
vbAGZtFZWuQllZRHX/4RJqXukpxjpEO5LE82L3h9BGK+6zyZWnTofd64mJHk
R8Co8OV6NtEhbJjo8/2GD5C0I0uzUUaPKp19GG/0vofgD9o3Fg7o0byksGn3
x/cQkJ6KPyLGgJzNz/9sMXoPKZ2hpa0VDMif659N2WI0sMscZtp3MKKj8Emh
CNxoCNN5iFmiZkJCIj+kRpqjgPYv678QYyYUpRr1xjU8CkZ0rxdY7zKh4ThV
o69sUXD63FvUjo8Fuap37ZPIRkJt92tHUm8WRPJXqWebPBIymX4xknezIMaC
DbLrwxGAb6+A99yTFUn/GxZOtI0ANyftzzL2bOitlI21aWI4UOCsFN1IYUNB
XuaG08/CQUJBz2qnkw2tT3wa+iESDrjVXllMNy+jnujOqylp76Ctwq46GZcd
mRssZzRShcG3PX2uQ1F2NOhH1b/0/S1U1FWPGP3HjpD9ftg3jbfQsK7q+Wia
HTnb6k5zR4SCw1sxHa5eDhQ+WN1SQvsGMiZwHNIpOZF6lzP1TvlrmFD6d9la
ixPtp0k4dBi/BnFnWu2TIU70fVo7+3lWCHixhDSK73EhXyIzvjvSwTBS587P
hLjRl+ESJt/VIPibwPojJpQb7QSZVllEB4HLPrjG8V5Bnq62ltRLr2DDeoJJ
xIsHjTmuje9+eAkXXUZkLDp50DnjBP1axZfwVLq4zJjzKlJePkmi/RcIo9f7
miZ6r6InBxrnLcwDz/rb3Wb/G7xIcBxn14ghECRj5zavvOFFv9yHeCc6A0Dn
aCSvUOkacuSYu+gjHgAXesiVqvKuoS+bl4KSdv3hkbAcD8klPlSXbjkon+sP
rCU0bIVzfOhXI3+cKJM/JNV82w3IvIHC/F8UB5/zgyqnX5hOZn5kmXSe4k+N
L+yvZDwkiOFHS57sDkuevmAj/j7qt5IAqhEonBxc8YHb7VMXP4QKIIX39mV7
5j7QP9ddeb5LAGUnKC1zznjD6+P6VkEjQXT5K0tC8fgLuKq2t4+fIXjWn1Rb
6R6+gD/ctHu1m4KIpvh8xptxL5Cg2Lkt/eYmCqa3bEib9oTv085XwseEEK3X
YVLkvjssdxByj4oIo2TpWU4Xb3fQ7evML40SRmn8byWfEbmDBkVne5TOLURf
zlT+gskNnHtnxprLbyFZGqaFpCxXoLvnGn/KLoISr7Ld6bzlCviGTA7bJyIo
co/o1EjLBdS/cJlu2YoiUnklufJZZ3DSGpxzmxNFphyPH3M7OwNF50fRhhEx
NPWVaog33gkICKQK8Q7voKCgAZ3ZXQc4vwgviULvIu3BjL6iUAcYNp1UJucU
Rxxpbf0fuB3ArXnRgtpMAokVURoGPrQHIsfLHTFkkmfvI3wm/MgOdu6Vj3FW
SCLK8ru7uTF2QCZwuttIjVDs17Rkxvz/wMjRaoTQFSGuDaEn2Tu2EL57U353
FKHxvtlwbVFb8Ln+9DS64B5ao+Ivx296DlUlDG1F7FJIbpyZlJjyOXiLVuTo
x0gh420ee95H1lBMJ5fNFymNMP7RFq2nz2A3zW5SnV0GnWe3pJuWeQajY+ld
1GUyaJyAntol9CmUELOTLOrKotiGnl8hA5YQoVrUI3Yii1DZg1QmDku4hNt9
KSRbDqk9fcrO72ABim7CiiaP5NE8IWNPXYM5qNglcOIuKiAHpwtUVrZmQF5C
cpexXBEp36TZ8G16AsGsOzQmMUqI+9/tIAaOJyA+nhKS4q+MbPQOUkX9HkPL
X3psrbsKOrU6xQxPm4Kap3NlhbcqwlDWZ53KmEKJMNuL9Eg1JPmY2vhLjgkI
dvlEEruooz+T96+IHRuD3pPyzKsMGqhzScyxvv8hTDqlpfo1ayDm2wJhpkVG
UKmp8HvbTxPF20vt0cYZgvXEhpOTvBZi34tTXgowgJspzA/ZGLRR7V8vo34H
fRh6clrCd6yNeBYfM89YPIDHL2b79lZ1UDyeQv5FEz1QEF/7iLehi2T82Cws
jXUhJrtq5Tz+A5Qo8rJuwVQH3pR0PTjl00cFUjHuUVba8IjXn5bS1gCx8l59
Ye+mBeVRAy11zYbI6z3rfuAbTRAwUjdbgIdo6lBYtSddA7J2Q7/VDhijvXzC
G8Z16kB2TfPlKwUTpPeHhtaw+T6QMMQwv71tighZdxTf0KnBu27anB30GLWz
atA8cFSBF8SHBEmmT9DmJrVq+5AStGcnpu4mmaHQjADPvwqK0GFSS7R1Yo56
xxcPZxvkIcvkIb+iryUijvxznKIoB7NPwvJibjxDi06YdIkRGUipDI6JILdG
hA+HKVudpcHGruFQlscGNY27BesxScECQfANv5f/Ia/TQaeDdgSv7m88ZqW3
R4X4erf8qAHiP5xofEpyQAkFH01fZ4gD3Z0L514ZOaEo2Y+X7qjcAYGfVaLG
xi5oP702oI5EDKr7ok13v7shqpV/SzoTt4BDjK9Y28YTrWks7gu0CoGIPn+p
faY3ctp46RjRLgiEUuUeJeCHHBsD+l27+WHVvHshIjIA7ekrXfgrygfqGx7z
FVav0JNbXBJynTwwN2gRubkbgtzYOjaZYriAhYEJk2QThjbuY6flo9ihufja
BWPGSGQSXKxmEMAKn1LcLUy236MMe3aNdAUGINc4+PJaIB5pNYydq3Ojho9u
pmEYrVRU1cfqYkVzESYXu0L95jORETHKz1Y8D1V63XE8rd8Q74u/GjX38YEr
47V8S14JmvlHw2UTcSTpoWceTp/bgA6YKsrI/bckCRT481paelGvq7TumyvT
kuqRbNc7EjdQluLNp5WjTZIbvx9RQPJflCKtmcbVVSP5f5rnpPU=
          "]], 
         LineBox[CompressedData["
1:eJwVkGc4FX4Dhm1SUqGMVCKhhDKSeH5ISMMIGclBMhJCUnYph1BGJDkiMju2
kz0qCSVSomgpMgop2/t/P93Xc93X8+UWs3M3Ps3CxMS0lpmJ6f/8IBVynXbr
H1k1zeHHWl+nEfl3IfT1xnay1FRw1u3edw3b8VmLPWb15GxB+7YciymNLO/h
sp8sZcSk+5ZYg9Sihs2InaCjQwF5890iSMGQDfpL3ZKPmzLJA3OXXfe7ueGS
d18jozWN+H506+RcvRYWvHsf59YmkzaFvk9iqwUQF3q426MzgfS8d9RidxJC
ZNO187+lYoklC7/AguAmdLY+j1qqiCar6Dd1jsWIISa1cpzfLIKIPBJtpqhJ
gNlETlfh3TWiKlBXXsm7HU83xK+PYr5KGPtYsrxXyiD0JHd5ZX4ICX97HdWy
suh8Mply0TeIdCamvfm+Tx6+ESIZObv9SepihpLfhAJaRbdmmLj6EU/GuY+o
3ANhPn53xxW+RC5vD/VnvBJkqL/5Lea8CeXQ01DZEBWkyvt3lsh5keWEc1sb
AlVR3fmonCvVk6yO7LenRKnhoGDZvPJ+D8ITHR7Rnq+OOrGzt5rYz5Gr4vmd
zR+AQR23XoEeV2J/0ul2xGpNLO8dPxk96Eyu2MwH1yprwSLTfA23pBNRm4oM
+uaoDdPridUNsY6Es8rF60vqAfT5sdtwSJ4mp8UUFWn9Ouh9qWO7qs+e5J0J
D2CR1MVUG79YY4EdMT9f0v/HWw+V/W+56MkUshTOnH+qVR/HY8fwPtWWvGKi
TuyUNoDk07urKO6nyI8E1TO60Yex2XHr5rmnJ4mu8wrH5LkjEOuo4stQtyZn
QkX71547hu2PRIyWOy1JrdGQ5BFvQ2wyjbUTvWJBnB/WWa9RMoIoso+cMThB
BjKYjfVnjbBajyksQdqcNH8eZP1Vb4y4cdp8hogZuTJFsmciTXA31m76+WZT
MpiWkHvS8jgyRPR03BSPk5x+mxyBnaZIUfz8eNsJE8I3d8NLkNkMcRSLqwVU
Y1IlqsBh894MiaXGL6rWGpGr7KPGsXEn8MlK/r2hoyEpE+Ls8/SxwERRZmYi
9RjJeLHY5GNpCW3+Fq+eE0fJZqs3Xbe1rEAMbkpxqh4hvyroU+2y1jBZiO39
LnWYbGV22MW/8SRcqjkVzLcbEKk4Ibodjw2oBZvNBw30SXHX/pbFmVO4uGqg
WMVDj9hINj1M9bPFn29Kp4JouqSUPc9PacYWFLpFl8jGg0Qw+VVb1SwFK96N
7NrhpEPCqepymf526N937FB69QFioPubMstkj21ymhF1/tpkvOmB/1seBxyS
iKWa/dQijavV5XPiHOC7pFOx30aLCHfo3mkXPo3nRisjosw1idhadxFmWUfY
9T/QMflAiHFw77qVDEe8jA4wFXUkRHnDy8vWB85A+OgS7SQviI7ymupWWyd4
LozwT6lrkN36u0u//XbCzBH/1fe81cn6ibWn1EKdEdVg6Bkzo0boYk8oSdku
8Oy56CGoo0aO+b0USFZ3RZG43Q7lpH1kr0KWYkeXK1zU4mTGDVWJ/67msg5W
NwQarg2dKttLymdzc27fcwNFaYjXfsteMpSHHeF7z6EoMdTxKpsKqVovqDHo
6Q6a4ubB+gBlspqeqifJ5YESr+UI/3klsvvU80sj5h4Q6HH5l82qRDZwUSwk
Zz3AtuaPWXWUIvlyv2ThziFP0BvSyuNEFMnr4wfX303xxAqrq+1jmnuI99hQ
mabWeRx/oz5qWaZA6OEVnuzxXqBdUzpBtVAgPUeag1qGvdD7zXK1K5MCCX8W
fJyPeONLTfHmflN5cohf74HiuDdeT3lR1dnkyYWanCPcB30gqi7h2uMsR1xD
9YTtUn1Aiat8Uqe6i2zMqo2JN7yAI8L+Fv8eyhL2N/cuuOVewN1oJ4qUsCwp
6KhYeMLmi6WfdbWDK3aSjbJTF0YrfWG6TuqaLJ8McQs8dZFd1g8HHvjOXLkn
TQYT59OqIvyglv/+xzsZabJx0ah8eMgPR51X+qw7KkXYpxXdcrMuIc7Ta16r
VJJEDC23PtzujzUvzPvGTCTJwOgJXk6qP/JWLDV9nd5G5hvzJ9/99IcFi3nk
GbKNuC9YRLfSA8CmcSJiekyc/M7QFBrUCEKsQv4F10Rxcr7epN0gPwjFEYHJ
c1ri5DX9QowgTzCY5da6bUnbSnSpp/49vhyMdXZfWDs9xIjm8C6fT1YhuCpa
QY5LixH9u0zxIfEhOO82FOv7dQvRNBx2sWkPgY6Fc5O79RYSp5t2tQWheNf4
nL25bhMpmUp0sdh+BYy4GWFDvU3ktUaBbhvlCtyb+8pdukTJ2VXCvr4pV6C0
3JbAPbGR0PYEbvdZdxV7xfOq1+mJkAq+M24szGGwOvfjE/kqTAzOm/nuVP9v
h3kY+QcLk0yhmjuRfmF4vkJC/mu9ECnewp/4YzIMyW1yvSwnBAkNFbSVQ9eQ
x7myQ5pFkDSkvYzv2nYdHdpuAbMFG8iAg/jNdvvr2BBcI+DEvYE4aFNEzD5d
h4pu7TGnboH/+q6Qp/eF47RRfhgjUoBs9xhdWhCmYu/Skbf22gJkD/vQoJ8l
FUbhAo655fwkYNOWmOX3VKhGCWqK5PORAnqiu3xfBH5JXHdxPMtHLM3SNo6J
RMLysgxbhywfqSHZ/G+tI2Gja4RvJevIo8924TsGIiFOVdxi37aWZDkbr+wb
vIH4so+W76TXEGz9bssyH42Dq8Iuc8/ykh93NB9+UI0Bt6eRXRONlwhahU31
XIzBlgaJrQoTqwn1qW2S8r8YJG37G6WTwUP4OWyC6i7dBIdSlEanMQ8pR92u
ouSbYJF/Y0xl5SG1XKkDxZU3UXXUgN/WaRXhfjbUPDh3EyKfs/WFsJL80dfV
5/C/haxeF2fKP24S1rc12TvlFnazWa/NLeQmSY2mfyaqb8Hl5JCOjCQ3WTtq
bCC0dAt1Xp47nTeuIJ2l8qobQmJxxfBGst5uTrJEOypXTo1D9w3vhbszHKT0
3cctnHlx8OrP4iqs4yCHRTR1TrfFwdRAkIPHkIOcZhwt0+ONR+4HtSItP3bC
trJzS05CPMTdZP3XjbCSgl1jcxUPEuDK8yt0RTUr2ZNykv/VswT0Z5kxxUex
ktNU95yJoQTE9ITNWuxmJdYRDz6ckL2NtE+GdJdQFrIqPj08v/w2DrZW7GzZ
x0zClZitjFsT4aY9qla5hpm0dBlNL/5OxE7mpgGFH0yESSdfsmx9Eix39Ern
JzCRp3NnOnTsktDoe0NKYmIZ0YJLb0Znk2Bn1fG4P3sR2wd5qpR3JENgMOJj
sf0iKibDDkYZJSMyuCfYfPMi1t0TCx7zTcabyC9R7HcWkL+4OvzFk2QUm1zm
piXMQyCw6fGUzV00JHPt0yuaRYTWiivD8SlQGamPeeI7i2OHPR3bq1JQWzPd
801jFgO3teQef0kBf7t8N+erGYjw8rNmy99DSP6V0sS//yC69WLFQNs99HA8
e8RM+QvtPwGvaRw0dDi+WyiX/4s5qRuUaVkaZo43/x5n+guN+cYdRqY0LBmn
5g6kT2P98ENOkQc0jHjl7Y4f/YP7zrzUuS1pGP4aShlImMImjVgVs7o0BITK
apa7TeHVeOORjs402FbPFk/qTKFe/kHG4e9puEsJ2pr4bxLch19+MuC5j9cp
e6VcT03CTz/D3t7qPowE35xTIROQNhtsHv13HzuWzj98KzoBm47x22Er0+F3
iG/6+fxv7BiW+bN5czqOyCg9T2f8xnYKZZfFwXSoFpFJXuXfEFXdffFDfDqk
5FIzWQLHUZbXqCK6OwMBEol7G7TGkZWbMdeik4H0zII5Lq5xPD0nkelrkYHe
92eKZOPHEGLQHt4dnIFXmTaFacWjoMid9Up+lYE+uUNCgxwjCBhQ3k/cHsD5
catDHusQXIZmXzGyM5HIb2X48f0PpLVytW+sykQ+zf+RXeEP3Llx9kZweyYu
xjM8HWz+8ww3Jd3JTJQKO7vL1n6HarKnU4daFjx4rFWkbgyiNspLuu1lFgYb
HnW/tP6K+eFKadU/D0G7dOwK0/6v6DJiYgrnyMae+W3n3UW+wvYWT123YDZ8
G/g6WPq+oIh57qObejbYbi6s+W39BZovWsdirmVDnk971M31M+p3dfcnCOZA
lFmYTfjUAAxNlW4EquUihRhf9JQcQHxtR8a2Y7ngCs3uVBzvxzTLr5gXdrkY
Df0kNx/YDzI7/pwnIhdFewzGXDI/4tKI3t+LPblwPvulgYX9AxzL+4Q+eOdB
qHXb5yWu99C8PD6cmZePk3mbU9d+6MGb1Q4Kc7X5WKXlNuFN78HPjlAfg858
yGrpUmXMe3At52Hvt5l89EsUyGrkvoPlfarLpE4Beg/L9Jy3eYu8pKO6XgMF
iBwTW2qe68LZ6yMxX3jp0HhsLyzwvgv6JyMDqGJ03FY6SE+s6ELVtYfbZffQ
IUlqUtV8urD0J5PmYkZH11blo1OTnTB3YX1Qk0IHxn16X/x7DaIns9GWvxAX
L5dRb0p0oCs9cicPrRC8j8bCOrk6oLIweSz7YSFuFjALBvS+QsZ3+xjNwkLU
hfyalXR7hfXF5ZbnGgrBz2mywej2S4hcGBkr/FoI1q+3S/3/tQFBKg4924vA
mcajbj/Rgm5n798Zj4rAv8fWYt+TFqiomiy/KS+C3qUnrUaJLejfJMHBVlcE
yfdLf6DRgp3GjtNWr4rg6nbImifmOUwDbeSmfhVhW+O3EN79zTAYHK6tkS+G
T3PrdXHfZ9ie/Mvr7IlipIUYe1+seQpLZtfUtwHFEMobI9P1T6D7jkP0cWEx
Ko/VhPLefYLlplyDLEYxck9xNJ/0eQLGXfEDt+r/+5c6L8fLPEF61aEo245i
aDlO/XJIbELlYIfVt1/FMPM0m9W61IiasIQXQbtKMNZGdXhvV4+25WHDxZwS
HEu8dk+c1ONbg4m5bnEJ3tz9+JwmWo/Z1iMJ0ZUl0I4U17QorsN6tsPF/K0l
sBFw1NyUWQuFzxT95ZESyIzxLpxKqYZi94/Kw7KluJPunRDdzsCS6MqkuoJS
FBryMxduLMY5uhejKbMMu/fzGrD81+XrxOXMjvwybOuUJtENRdjdrf+9t6QM
Ttfaeo3OFGE53sz2R0MZCnY1VQWWFeKCyZmtnz6WIVD5RaEh4xEiAjsOGAqU
Y8ufNYaa93PQmL8YIhlajq7SwZreqDQ8W+z1ijSpgNgVgT0c2mkQrE3uybSs
wNvlx0KyEzRcDdlQU02pQJbSUaHmllSMyiiyfnKvgPukeOr+qynoN/rosxBZ
AW6V1y9kRZMQoH8h4kZTBT69e0uXoMdAv1Q8lEOeAa2fDdTpomgY88QwFyoz
ME9V9hAoj8JO/qdTpuoMJAmWPt/XGImv5z3kEg8xEBvxc8eP4evgWjqwMO7A
wEEL68uyPsFoO9xRNpXEQLo8931xwSAY8bRpO9AYWJPAHWyoFwCNTwPkdSYD
iwJiai10P/hy3b+eVsxA2LMN13qSz8OlRlybv42BcH3vGw59HnCWPqfj1MnA
3+uKe733n8MG3bQyRg8DXo/8e51Nz2Av34GBo4MMrF/HFPNwyB7RmoFJ8SMM
BDvPMGyCbTG7SaHu7QQDnrHpgutULbFZSsdEYIaBybvmMeSSCXyoD44bLjHw
P7qJ+yc=
          "]]}, Annotation[#, "Charting`Private`Tag$2643905#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          AbsoluteThickness[1.6], 
          FaceForm[
           Opacity[0.3]], 
          RGBColor[0.560181, 0.691569, 0.194885]], 
         LineBox[CompressedData["
1:eJw11mc4F+7XAHB7f1NkZa+sZFSUdW6rkpFVRCEjVPYmOyuZUfYWIT/Ze+9S
RvYmW3bI6vn+XzznzX19rvPqPudc5zrsxjaaZng4ODjRuDg4/3v/P1RqE2Yw
gRi0JhVTFVhCB5XHs/b/c1ESCUdQCQ8QNFTwUWB9uEc3kd0uAoo0TIRkWEvc
G2sJLhGHRDpKQmKs7QsCXr1Mk4ZbK5F8+Fh7qPAn57bLgl5Fuv1ZAAYtjjbG
MdYpwL0q2ZlDrKuXOJUjSu6AsbCd/Q7Wake23/Hz7gGJhTDfGtZ/S9uk3NJU
4UuZN8E81jsbrCMuyuow7WpIMIb1UZFXekm7BnAw9vL2Yq15JZx4S1YLaM73
27Vhvev/hE6wThvMBs2mq7CuH3C1+FSiA2RHCrxpWNt+mG9ZvvoI/gZG4Udj
bdCvfMqbpweuYI/vj3VwupZMQdoT2D7ZsTXGOoOE2miT0RC2vWOm1LFW7iTu
jlc2gkj+HlsZrBU/+5RMtz8FlafE+HRYG42RR/q/NoaJGjJ8PKwpiocoeeVM
YHcsl2f9NQb9eKVK7VBnClftq6bqsHY6Kpm5UGoOksH3CHSwHtQSDq+xs4Aj
eTk+SayvaV+jfiZkCfEzk/YsWNf+26mry3sO6aREjnP+2P+aWai6plsB+XPZ
q0ZY8/nxWvMZWkPMDW9XaazHoD5hnMkGSn1fLjFgTe3YHceuYgux/I+v9fph
0DxeJFFkhx3Ujzb4i2L9J3GK3eqyPYR4fdolwbrQXWHyXoA9HLWrB0/5YhDl
rpUsibwD6FDPsAZhfT/l16XQekdw8pEg+e6DQa6JzFslZS7wdLy9QdQbg25S
mGrFMblCFn3Et30vDCKLbCry9HeF0uc/hquwVq52e66s4QYWnm0rUljfGdtU
2113h5SKxWMxTwwSuMgQ4MrlBa4z3BNH7hh0XajB2zrUC1a/0fUXYn23xq7C
bMcLmEdr259izRfbuKHT6A1P/goXtLph583k5l/uQh9IOrtp4eWKredHplOJ
e36w1Fec2+SEQXNO0VONnn7AfXMp1AzrrDkunztf/MAzj86aBOvCQFIKHXp/
UPvpI6TsiEEfuBp8vRf94YkAQU6rPXY+G6tqD/wCIHrRwyrIBoM4TtPEY2qD
Qf2vjY+KBQZFcHdLdq8Hw7nuvsgRcwwaDUQcuMwhsM7V3GSCtXnCWZKdZwig
V6YBLs8wiF1RwP2JzBugpFWJiTHFoIY9Wh3jxlCIKCkYzDLCoH+kLk1X2sKB
eZzsAosuBllFC77w+xMOoUmFMuE6GFT3sP3qKHcEPGTIDjt9iEGdfYlkbwIj
QDgsO2L0AbbfdosZJ5yRwJtdxhWkhUFlXrc/BS1EAhhBfKUaBtk8TSahtowG
csXgaUcFbD8Fo2yGfaJBb9gg+5s8Brnl4bolxUXDx0jq95xYG+P/58zbGQ1X
OMQOv8tiEGti0vW7PO/gQdDNRkbAoGJWNuechXeg50j/LOwWBl3l39xcNY6F
OySOcn2CGLQ9DQxlhnFgJ7V/eZIag3y/T3oXucXBxLEt028q7D6Kj1woeBcH
74JrGU4uYJB3cmJxbkccRCX+FaA7j0GXbrHbFwjFA0WMS5EsBQaJuGt4LfyL
h38K5xQtCDBI54lUJHd6Ijx82XJ8vEuBBJ5GPWNaSoGHN2VaUS8FoqRq/pD6
LwWsZi4q8vygQAn/VSxw0qfCc+/VLYrvFOj29n/jQkqpwGTb0TX4lQIJXqW6
9yA/FZIPanyfdFCgSYJI3zXxNCDsvU+rWE+BKMhx5aZO0kDD+ZaoUz4FmvEt
+5gRnAGFcpd0HvtToKIi43Li9Wzgy+LEl2enQGE/oxZs1T4Bd1dBuVYxObra
UUsoElgAIqvCSswy5EjeNHAsirwIDNMWBZKLyVBhB9+KVuMXICRYPcfJRYY4
1LQDBl1KYMOJe8YyjBQVskhPMZmUwbrCOivxFAmiePGHoV+qAhp8q1GXEAnC
M7dsvqlRBdnHp2x4FsRI80FWS7RdDWTFeF4KjSdC7L6MfAL+dbAk8THyRS8h
cil7FF400QBnLfWzRb8JkILlwnVPmia49eWbRz0VAYrqYtC7ad4M+e8Pic1Y
8NHQtbKYkI4WyKn0lZHixUMKs2ZRLtxtQGiuxzMljYtmdIuGomva4Xq2+as4
SRz0wnsmvVKrE/6l3nt7EH4GS5kii+b43cB56U1SbMEJvLpG/5sQ9xsENxhm
CacegYl3wC8Zsu/w8lXO7HHpIZR/U+K4J90LwWlSkbxZ++DhzHmNMKYP9Lb6
pHfS9wDnqeEC/3E/RL0rEsPv2gGNxuefh8p+wj0tD4udvi3ILJDvba39CYXW
1/4r7t6CvTyvqvKWn8BsfSfPoWULyIPb1rP7foIlZ3fDQekWYDA84sW/f4LW
i6uuJHFbwFlpaxVweRCsrSRTVAy2oN9Ka1AocRC4bjv4dAxtgvPL3Lc2UUOQ
8ZyVZpxyA+QDH+YrxA+BZD3vASHeBnw38DVkScfm22LcRfd+Q1/WUPx00RAY
6O1bRo78hk191/743iGwVAwnNUr/DbekjxW3zw9Dr2+P7P1rv8FLKOhMJXYY
visN3XXSXQdDaq7F/s8jQLnBHsKcuwoMtqFz1RUjcNg//DU2fhXw1Tq6PjWN
wNQVc9Xzoaswd3PYJWlwBO5ttFFRWK9C6FTi1aHTEVAMd/jOcn0VCpy7KDPu
jwLNoaVSceMK2L/kcho6HIWXwQqaiePLkDpR1ZyPPwZMJDI3DHqWIY4snTzk
3Bg0886/5mxYBlr9g1J9rjGQK9m2KctYhqitYxtj9TFwemeTvG+5DDxPrcnO
Po0BNWVL3ObhEoRnnecqMxkH0/nBK+30S+DKsFvTaz0OpSzUXJ3kS5BPWWK2
5zYOhd5dht/OFqFHcJ9aO3IcTE50P43/WgTP1Z45p7pxUGUi+0jzZRFKL4aW
KDNMgFe3oNqh0iKIm5aEBQ5PgL0GT7qP5wLcvHHRo2J+Apgyq+x6bBcgWCq1
cXtzArg/ZhYwmS7AOxUVXz+SSXjmDM+a7y2A21kyPa3EJERIT5MK0C/Av9OY
EcrUSXguLM9sX/ILPjBcM8m0nQIVZptv02vzUL+j633TewpGNZ/X2k3Nw4GH
7YuxsClYwyMsIuqbh5Lomb8K+VPwRlM091b5PLymqZkvX5yCVjsu4lafecDZ
ETlgNpoGkssOgy9o56HihqZ649UZ6D53YEGlMAdjmGdXVsVmwNXppJlYfA5I
cDXzGWEGTl4kaODwz4GX7oX62PszsCPTRnVMOQeJRvb2S7YzILI7fZ9uYhYC
x85ukpfNwJXwBsy64yyI69jS5snPAtVV26cXPs2AbITVeXmVWaCVZlO9nTwD
hn4a535pz8LnNmkhr6gZkFNYkJd5Ngs/Bb+O77vNwHRGwaR2yCwcGLj+JVee
gYkTOQ2avllwnbze8nZ8GoTdLZSlzOdgBfedK+mLKYjv0en5bTsHN911f9zQ
noI5a8ftXPc5IN0dNLGQnoKOkEU9qfA52CZkVp+hnAIRhyOt0bI5GE6YfsVY
Ngk1I+Kqf4nmgftxg2ETziRo2BbZy3+Zh5zLHTSTSePwXLfx3fnaeRjc/S9E
IWgc8rJ8/yy3zwPVWwflYrtx4P0Q0FwzMQ/FhbzNabfHYU283muN5Bc0SaY1
dG2NwYICzYy/yS8g/9ZPo3Z7DPDMSKs4ORaA/NwKRmR/BArHCl95XV0AjrGy
pWezIyDEvES2JLEAciH+jzO/jYCGtOavWa0FoNT/ziacOQIu2nKcvoELYHR9
TidefQS4ZeLlPTYWIGbEKqWgYBg4NNKtaLoXwZeNNGjJcggukr4ljhpdhKx7
akqK2kMQmmffw7ayCCWSTVfyZYYgfCfCw5NkCcbtU0wiqIeARPr0q9DdJQjp
lVuuqhsEMj3p3aSvS7ASf4sogXoQAu5QlQzNLwN88DFPahuAdFXmqiv7y+Bq
7aZL8GUAemUuVSeRrIADrd13x6QBMLUzD/kquAICfAsPbBwGAP65BD53W4Fg
wxz+r+wD0C/QpzVLswr8rFF5bD79MMrLs29rtgbDNV9JHsn3QWn95EUC9zVo
lbey5hLpg5uR1Hul4WvgPWb24YClDxhu0ezZVq6B+9Uc6bKjXjC1aud4hFkH
ojV/zvDiXlD4R7TGXbcOD95df1/J2QurtB1xpQPrIBD35hkuVS9sOpEamK2u
w2yBF6cmTi+M+O8ZXaX/DUmlYuO01T9g0Xxq6JnTbxAy0KetEfwB2sRpp5Vi
G2CzkfKUgP47OP8Jmg6/vwHO3VoE7//0gB+hJ8Vbiw2YEns4ID7QA/Z8qRWn
CRuQSsVEXhDeAy+LxNM7cTdBULzSQYeoB05qlQi0hjehyuRjTf3hV4g76X79
oX8L9DG3J3dXuqDEI5OYa34LxBVfZc60d4G2GmX/j90tWDqfKTib2QWyd//F
B9Jsw/K9+lxmgy7Ip05vdtfbBroV9YPXA52AK6oo2Lu6DeUYlnmq5g7IGESF
r063wUfV8iKkdcDFlyz+aud3QKGFy9nbqwN8rdamTMR2oDhNYlFKsgMKUx5X
Pn29A0KkOjfzy9phFK/Dh4p3F6h8FrP0C9sAX+GcmLL0Lsy+d6b+HtYGe27M
S0Wau/C32ZDtgVUbEJzefUHotQuyylvC6VfaoNspvGFuaBdakzU2RQpagUOi
0XMvag/E+h7/lfyvBX6YiCD5vD1YtpaOPI5ogSc80r2dzXsg6n/pRq9tCySW
swh47O3B0JfD1krRFngIU9ej9P7AYQZhS1BFMxibc74TFt0Hid0JK862JlD3
/97ZoroPrNf8M5pzmqAFl4o1znIfCFP/RTi/aQKfqPjPxBn7cLW2vIhJvQkC
nnz7wkh7AOmbKp3GE43QkhZ2a4v8EP7RPsyq3G6AXws3uIivHMIta77YmKoG
YJI+47RROYQiid8DCb4NYKHvSCoefgiGPiwOl6ka4E9wybVOmr9w5GzTKHmj
HsS/JVFRiR1BfazjxnP/WlixqGfp1z+CY1JSnR3VWuix18s49D0Co+a1zSz6
WuAW3dH3/nEEuTRX1kMLayBzctoh3eYYdm7JZBpPVIPVnUdzzXHHoOxczqGY
Ww322WO3dJuPoS7uxW0tx2rg4U4jWqQ9gbrPbGU7FNVAVXdpr6XtBO5qfv4K
qAq85drvVO+cYO+ILhJfTBV84RzSvM52CkcsokYbY5WQsZurWPvqFDwS0+NV
nSvh8HaOnL7UGRglXh5n/a8Cin09yM6G/8HuIPUEG185CKdFa2kS4qDiHG1q
45MyUIl/mr/FgoPC/KW8un+UASP/C1dqLRxk97qA/YJLGWz7faGjbcBBuydf
8V06SiHgVOLi4hgOarnTKrWbWApvyq+PkB/gIH6FEsoPtqXQmLyfayCMi3q8
9CoeXCoF9yO9PZUcXCTlZexRZFMCYWyuHvttuKiS2mD7uWIJLISkfMBbwEVW
pqLPVRmx+ZOpAiUuPOTwIy/+TUcx2Aa3unbk4CGnQn3zJfZiGAijnFJqxUeP
fxVliE0VQVNcqBTZKj7K51tNdikvgnGPSs775wnQnGen82x4EXgz2RzaGhAg
oTjCIyFUBAcbnc5PcQmRoGVMvoPSfxB7RGIZLUCIcCVZEwJPCuFrpWmYwUNC
tDShx7f+XyE8uxgiOviZEJ0uH6X8R1cIukVUwgmmREgz8ISdca0ArJflLPFi
iNB2zh319rQC6EuHcvZWIkRle0rR9rAAvtxhfhR7mRhRpUnm17XkQ6/lYW7b
HjGq9IgYSknPgy+CpCV6/CTIXKiqf+VRHgSfX3HsMiJBM6me2iFUecDIHj9z
p5cExRsEmLe//gTKDNcn9apJUbE7nYqUVS7Yx4pHe52QIt5l+SwjjlzoZ/LG
HQIyRCYZFr4ynAMFi9dJUDcZqigNb+ZTyIEmifL5zQ1y5BjuqWPB/hEWkitX
UyQpkPzn37/LRrNBr83+UlcIBZJyJrO1jM6GkOzbHZX8GCT7pn4FjzAbTM4a
XMDnHNrzNvxIsJkJspobsf9Gz6FzW8ahgXmZkBgzsBN3gxIl5sV12TzLhM3Y
KuKIHUqULoZH6TadAehnLPv75vPofPgKzsuhdPBfjTHIPziPJMWYtwRj0+Hc
v5Q764IX0G08+zpd7XRIKLT9SptyAfkTfq1dGUiDDCF3nSvhVGhOGHf69L9U
UDLkM6juoUK0rtwTl66ngvPbHOztRI2Y3GuHKKpSIFzPvjwzlhoV/3FxsWtL
BoEgjs7gcWpEdWvy7y+VZHh1OF57mfMiOtOQFxUaTAIia3vhrxUXkclsa4jS
ciL8svplsENAg3yU2MMvOSTC32CNeWptGtQRdo669SwB0hUfjUYc0iD9Wz7O
GfQJUMGnKZH5mA6ZCb0fiH8YBw8CcAp/1NAhsYpVfKnlD/DY/EQ9k5keGbve
Dap2/wACrp9+56/Qo6Ilx1C1jPewxsEkdUmbAamqaFGZib8HfhzriIwmBpQP
NoePemLh7nn2s9cfL6EU42Cc2eMYELZY1+NmYUSdXes3HGNiQOShovvLeEaE
C07bS4Ix8Joq3SoqkQm5ivTecDB5Bzq+RYkCAyxo3Cb0lHc0Cu4DqctbY1bk
9r2ZUcg7Ctyk2vqt9lnRR5Wt3RPuKLA9JZ2E92yojvDS6LZTJHA0BMhELLEh
LS2ODQbWSPhVVqoSJsmO0lxyEuiiI8CNiEGcdp0drY9Js6bIhANT0meNxbsc
KHmWm0b+Qxg46ItMb+ZyoMwfxP+8t9/C9d0mC00HTrTNdkGmPS8UVLZsLPGn
OFG/jetiH2kobKgWqKaocKENz0w+9+dv4EIa4bixGDe6Mrn0OFs4BLpHGIZP
v3CjAjzbTv73wWBFWLJlJnoZXQrabtM4DYKvcn6qn+V4UNVDyA/pDYQbPJkR
bAM8SExbUCpZKhCsBK3aQix5EV1m0xedvABYWXAazfrEh4z9nObb37yGGgd6
OkZtfoQbROLpdeoPfz69vHeBSAB1teaWz9n5AzXZ3EtDvytoV+yUpsLQD4QJ
GdMaVQXR2U+vB/yjvtB0LgeVc1xFPFGKluravuBRbpS6syaEmpn1U2vu+wBD
uPfrAVthJP5RX54kzRsOJNk5lraFEVcMuz1FlhdEkdmey3YTQZ94px4H5XtC
nfMH/2ASUZTjPZX3qvwVZL3Vl6BPFUWhfwYZtlo9gIk0qXZJ+hqa0JnwWhhy
BzkSlDz5/jp6Mtl/ZEboBv0PqNvdNG8g3aNmib/sriBPzRqgyCCGGi2l2ljk
XMCKsm5AaF0M3byV8GfMzBk0ZBI8ZL+Jo35LhtuiYU5QXW0eklZ9E4XEPdfg
q3QEbtd/KjGVt1A479OfrYsOYHPHW+bSiiQy6pJYPVGzB/o73TqUrNKI7r5j
cWawHbyKOJ1++UIGGQUbPcVvtwVHXddA115Ao5EFr9iJbYHnW6WacS5C55ZH
7YnjrGFGTUkzxUUWLT0gPTPks4LlnsDLCTpyyJ81+adu8wtYjTNok7onj4Jf
c2ScGT+HbxcXxMo0FFCiblioAbklpLPqjAXZKqLdd/7igTXm8CmoMzvl0230
iNtr2N/hGWxpkHI/wbmLTEfGRZ5dMwOFPi6ZKlclpMtJ8lnq2ARMccpp9OiU
UW7FpD7dV2MYrL84Uz+rgvgJHcmJM5+CzEUectspNaSyGaHJ7G8EA1wGhKlv
1BGF1L7i6JABsClXDws3aSBJ/hLRd82P4fod45loZi30RNFp61m9HoRv//C8
/1EbiRumHrzq1gWO3ZM+G5OHiGP1AB9n6SH0TdN+WDXQRS/2vNWZLz6AjYud
nhLZeujNk9gJAk0tWPaJYhe8/QTpvtCvXUnTADp3ClE8ASPU7rftjIerDoKB
BBQhB0+Rx6D7GtWCCrzdtQsjumSKeB5xUXmsKUGE3x/Olk/PkErIN8o2mjtQ
wWXAEtNuicyO47lemyqAOm2czl6SFdKjScZ7NCILKmcM8WpidmgsiE9leV4G
Fh6L57cpOaKYn28zREwlYDTPqiJO3RXdSLw5LHtNDEg3Joj6az3R0RVaZQIt
UWijqZL0/+iH2uXctrVCBUHRO36IjD8Yla2T+rkz8kBQ46vZeJ1I9OAojtHr
MTsc8Q1NXHD9gF4j5tvq+fSALLhVi15moIT8d9KybOdBtYT3wv3mIuRDUuhI
a4QHq9RnvDdMWhFOT5lRwvqmzCFRbpKR/0+07vZ+QPj9jMz/AVUvtp4=
          "]], 
         LineBox[CompressedData["
1:eJwVxXc8FXoDB2CblF3kRKE0qHtFCPH9GSHK7IasrChl1ItIRoODIisJOXFC
lHUcrpDqFN1KGZVxE8dKREYIpfd9/3g+j7y7v40XFwcHR+7//P9Pa6S1e171
kMncrKZVd7r1hO4GCTjuqSJerF3L3ftW9Fp/e9XIPKETYxavv5/gGrhJ2Z/a
6ZxJni6b6brJSKJzyJrtvDWZlOiv5X5cuwkl2hS72BdU4iktX0rzVMT0STfP
o88uktjZCf+YHGVU8BtF3fC7QHw+C+hTyW5Qy+slu5ghRLIpYbifRx0OfF8f
bbx8loRpt970l9ZCbuyJsjUOAUR6WP6FfLguCvXKIre99CW+ejx7rq/Th5hF
zN2zX7zJ6NC4k3uKIZ7s3+s49dKTTMRHzTSrGeO2Fl9Un547qWEdNhRfNEVt
hvZ7183HSLCE7Dsa2xy+fH0cVY1ORJcV4dL31QKcvkUdqs8cSL3ITmkFIWuM
9HivtOy1I8suEoGFVTYIyOrIoQr8RVxufEhjnToMFltqN2WzLXkhqsGpp34E
Dr1HP9ectyanGq382EL2+Bo4UK0pYEUeLHwMOz/vgIVjxcHsqEPkvO0xj4+T
jtg5E3fwqo45kcvez/ow74y4wpMXaOoHSIGuWNkm/mMoyWC9Vz9uQmQGx0KC
KW7g6VFp/Px8P7myWp3TSd0dnjnP86kWRqRlu59ng50HhB5JnhlZMiCZu/kj
qdGeEDWV5c5u0ieTroWDJZVemOm2OPD1ASHPfZZfS44fR0OeFKeZI4hi9r9i
tUo+CJa3tBOO0SXv67MplwJPgKmcoeLTqUMuqh3v9Go8iVfGX9g65trEpvd0
jc3aUzjva6g337uXjNqv0HQCTkNkNvlDyFVNwohXGRPv8IP5Pq0/rmprkLme
UsnxXQHISFfXXcOtTqKVMwSs5wPgwjFSYT6oRmaL048wngZil07Ng5kuVfJs
gu+AYOoZsC7JXptm7yZywUfdLLzPwlKpjhH8U4WcLP5w5Bz+A0e36F/DW1VI
lMttiegNQailfxDLb/yDLFhOV7gtB4HVzKPz2XwXaX98J1SiLxiCfjbLNlPK
pFvoYW9SUwgSU+YWeouVSEndobDWinPIbvjXmxm6g9TNBYq/pYXici3thrrj
dmI64ZB4JTUMnUWvDw0d2kbcJ1MXJ+LOg2Gikp3hpkimWnTONkRfQJDg2JBF
1BZy8KGxjvSlCDxpWz6QWrKZ1IZLeIhSI3HD0FbuwoAC2c257YWFaRR+P5za
o7VFgQR6ND9xfhOFvj0TxXwB8sT8a06C6pFo7D3SRFF/Lkdc9XRzX/ZF4+iO
9Hsh4pvIT/FVz7V/XIQzvRzfJmQJ8+9+buHYS+CUdhuu6JQhsnJLQ7ekLkMz
0tcusZ1C6iWZDl26V3Be7JCq8IA0CXht7Hu54wrUTJPk8n6uJ2wZUwr7ZAxE
eZ4rBlhJkX1BK6X5t2ORfMOEHU6VJF8eVNnz6lDhpFo2R/5ZR2ZWm28T6aZi
o6WtI5fHWnLUtVBUghIPBc4C5Y11EuTJgv3OVQ3xmLL1XN5JkSDdbgf8ct0S
YPLYsK50XIy4q2ZU0MuuIvBdqW6wsxgZddD+IuJwDVPRg4td70TJOyFDhgRP
ItQu+zDyC0SIV/fP+70uSTDRXKQ1M4RJyY4VOSv+6yiNkl0l+lKIXEx8J73k
eh2ar6eHrETXENsy/ky6RDLwbGIsDKuJ59zw8Xy/ZPwbGHNPOViQdL5dDPR+
mYw/gxWqnv4QICqyL0Z1Lqeg7Obbb7xGAiQx8lap2UAKAs3iZOPS+UmHHcNr
g34q5IPGrfea8ZHBuD/P/uZIQ8Tph38M3OclPbpWe8Tc07DheqNK81peMuck
Vc9mpUEx7NdZ91luEv/m96r6uHS0Za2VtB/hJJWCV33JxgwUXSvU1AriJOvD
FqbNIjJwOap1wIWfkwTH2PjMf8qAR32r58oeDtIVONqyK+8mOJfMXlyg/caw
WXja3zyZYHQJqeV9XIET791Ftncm+L5zlgl6/UKCvsFRYZVbWP2bMjRZ/hPm
49fVRdNvISJePa2a8yeGL8j6ly7dQtlYko1xxRIMWBebG5qzUHzsBre80Q+o
pLx5tf5EDu6lLAu0VC4g1OKU1WR7Dg4uCxWpKi5gcWJLv6Pubcwuc78rXzsP
akMd/y+JXNgbDvsmJc9hnsGb/mdULlLXKGUwxOYwt6S1/sfXXPQXO5d7bvgO
akJP6BZPGrYp81Me02eh/q1xs08WDbbWbQu/VGZxikV5NtdOQ6Pzt5lm6xnc
rKN9njC4gwU+m2nryinQi368MNuaB1HjVVUhVlPoXxRX63TNg8j1Kg4W+xsc
ohWySjLzEJ1d/fRCwCQWVPv8lIXzIcSlr9T/aBwHUuxDo5bysTahbQ2XzDhy
uCIVjTXosFRRqn4UPoYfGlfGrM/Qcbj+w2q66Rek9rW3aY/TcXTkyO9r/J9B
3SpQYN5/F9/01FcmI0bw6vBwoc7GAjB3+lhrLA5DXNdu0t+pAL+qm7mV54dg
8sXag95dgJ0DwfsYIoMQGnKr1OgsROA2nhHT7AGMiPBlG0gVIel2zyst5QFs
mb3Kk2xXhLBrbbHTlmyMBf119ntXETrMhNe5HO9Doy/l4dtP9xC/I00pOeET
nBUuvc7ZXoxzMseZycxeGG21TKw/Uww7zQ6TUKmPWF/vMDPGX4Ioi1cyiSLd
MNnYIcitcR92Am/LW+26sCzC42Vx8T5yyT7T+fxOVHG1So++uY/UY7u4Ykw+
wN8v5DTviQcI8TKBQm0H4vtOPemjlSJuorqWLduBBVu12fRvpZgz3rTccqUd
I0PdWjf1yvDLxGbrJ5c2CAvOjkT2lsHm1r2hEu83aK1tWTyRVI46U0/9ftcW
NB6nRE7XlEPu0lO6pfNrTLdTZ3L6yyGdysPh4f0SbgbeUl6qFdhh7Ba4hdmE
xC9msUWdFbjZZNUz0/Eco0abS2w5K7E14gFz/cIz0GSvFigoV0IjPv0gvxkL
svU2t5QjK1Ec2x31cdNj/BPwljm8nQGnWpEfWQ2PUJX/9/sSWwakF6VGHxs0
oG2xuC4tgoG+GVUnFfeHsBA3snnzjoH2aT3d8Okq1DO1lj5erELEs/AB3bsM
VE31ZTJLq9BwrvsExbUS96LPzZT1VMFCeHOe4T9loBvuOLBKjYlD1oN6Qt4F
aE0KHTMbZkJz4USj7w46nBPUynaJV0NgcXB54/wdvPzO3Lwb1TBaMUlxcswC
t9L1m5mZ1Th2h/Zkv0oGvNaZ2q00VYP7/F5X7fWpeGhKNbj0vRq3e2SlKxUT
cZg3T2u7Qg1EnMJCryAGyuGzGyYsa/BfpZar9Q==
          "]]}, 
        Annotation[#, "Charting`Private`Tag$2643905#3"]& ], {}}}, {}}, {
    DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
StyleBox[\\\" \
\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\
Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\
\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\
StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \
\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], 
        TraditionalForm], 
       FormBox[
        TagBox[
        "\"\[Chi] | \\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\
\\!\\(\\*SuperscriptBox[\\(|\\), \\(\[Gamma]\\)]\\)\"", HoldForm], 
        TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> {
       GrayLevel[0], FontSize -> 14}, 
     Method -> {
      "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "ScalingFunctions" -> None}, 
     PlotRange -> {{0, 3.3}, {0., 3.690456156465704}}, PlotRangeClipping -> 
     True, PlotRangePadding -> {Automatic, 
       Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "2", "6", 
       "\"Caselle \
\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
"}, "LineLegend", DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["\"n\"", {
                 GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, 
                Background -> Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.368417, 0.506779, 0.709798]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.880722, 0.611041, 0.142051]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    PointSize[0.5], 
                    EdgeForm[None], 
                    Opacity[1.], 
                    AbsoluteThickness[1.6], 
                    FaceForm[
                    Opacity[0.3]], 
                    RGBColor[0.560181, 0.691569, 0.194885]], {}}}, 
                    AspectRatio -> Full, ImageSize -> {20, 10}, 
                    PlotRangePadding -> None, ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[-0.023999999999999994`] -> 
                    Baseline)], #3}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> 
         Automatic, StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}], ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"EdgeForm", "[", "None", "]"}], ",", 
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", 
                   RowBox[{"FaceForm", "[", 
                    RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             RowBox[{"{", 
               RowBox[{
                 
                 TemplateBox[<|"color" -> GrayLevel[0]|>, 
                  "GrayLevelColorSwatchTemplate"], ",", 
                 RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{
  3.875957140679967*^9, {3.875957171901413*^9, 3.875957177389202*^9}, {
   3.875957286074856*^9, 3.8759572915772743`*^9}, {3.875957370668831*^9, 
   3.875957390170678*^9}, 3.8762092922172947`*^9, {3.8871754958604937`*^9, 
   3.887175500271595*^9}, {3.8871861172995453`*^9, 3.8871861368256903`*^9}, {
   3.8871861982272577`*^9, 3.887186209328771*^9}, {3.887186531197132*^9, 
   3.887186543092368*^9}, {3.887186624995718*^9, 3.887186645867601*^9}},
 CellLabel->
  "Out[148]=",ExpressionUUID->"a8fc096e-6fad-42c0-aa7a-790bd2df6a0a"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Plotting as functions of control variables", "Section",
 CellChangeTimes->{{3.887175666126995*^9, 3.887175672719225*^9}, 
   3.8871757098402243`*^9},ExpressionUUID->"7bcdac80-37e1-4f66-bc64-\
b0d2db5bf4c3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", "All"}], ",", 
   RowBox[{"Exclusions", "->", "None"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "t", ",", "\"\<\!\(\*StyleBox[\"S\",FontSlant->\"Italic\"]\)\>\""}], 
     "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.88718849775531*^9, 3.8871885088435698`*^9}},
 CellLabel->
  "In[201]:=",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2Hk01P/3B3ClQpZkSRuhQpKQD1Fca6lsaUOyVCiiKEpJokWUSpQkKSqE
Ybb3WOradyk0iLLMWEKWREjm9/6e8/trzuO85px5zes+732/ZhSOn7VzX8jH
xxe8gI/vf6/qsGKQx+PhAaWNVbaJrXB2Zn3EzCwP9Zj5yr5xrZBD01SamOSh
bZrkmrvRraClYnW8b4iH1Ogn76tDW0F3+Y2vdS083Ob0anKfeysYccZrnlJ4
OFzVYnNGvRXsbte/2+bCQx0t7ZeyxS1wseGGj+eHeXxVO52wd4ANzc3Cg8Vu
/1C3yOJL9uovIFt0Vkp37Ry60+8W1Ac2AcO7bPGyb7OoLnjr9Mm+z+B6V3Os
LWwGy/vbJNONP8F0zJUIhGmUnH2pM3ivHlLEvq+K757Cvg3bidzLNZC4V9O/
6c4kAm/jbPmzSgg743Zp057f2LTxj8tlqXK4wp9x0f/nL+RtLzDdcqsE3EIb
NrDTxnHJtxKVusNFEPe+Nz7Rawxv62ccL20uBOdLCSG67mM415Slta68EFS2
2ZxsdBnDRmmNKzcYhZCfxtoqeGgM8+10o70fF8L3R1EV52EM7WqqTmXaF4Ky
l+bvvVJjOOOxy2X+ewH4b5lN+nVlFKVXh1xdNpEP+Z0qIpmKI0iTiSzbr58H
wTsXZCWsHMFOiagsWfU8MHjaZnVHbAS3nT8IEwp5UGQXed9j9ic63rA+XyCU
B5XlQxIKjT+xaqU/UdTGguZ32aseX/+JWUIHbqdcYcHIRW3l0K5hXDm8fPl4
BQE5zSJVvuxhZP+TqpsrIMBPs/fUsbphVHaQ6JbIJeD3YFyGPmsYi3au2Or8
jIC/x/5smbw/jFMOVZN+5wgQNMvX9oJhjNSyn49ZS8B6cSOTg0lDKLHOS707
mAnRGt2XvR4N4fgVyfAL/kyYtg2jhUYMocmc9kepU0yoe1i2Ict/CPefLD4e
fIAJFyT3CCzZPYQO69YZDagyoWKFXR0xOohhmvyx2zsY4CV78vAa40H8LRuW
MmDBgGaDxfc1dQbxTPxXN2UjBhg6v6ncvXkQNwlo9pzXZYDki4HtF6QHcdE5
cyMdJQYUyvusqf/xA1WShiXdFjFAbENgV0jMD9xqErTkYCkdqKoRXj2cATSf
dFRt3keHdZ9d8za3DeBXUwPbKTM63L2oJxjwcQArraTtlQzp4F42+FogbwBH
O37I5mjQYaWzVbda9ABaX/8w5rWCDlcfSthf3D6AlAUwGcqlwaDu0JuiLQPY
9Sp/Yfh3Ghz+XjoptH4A2W5qao9aaaCxOeBRougA3u5Q6/xWR4OespaPxT39
GOxmJSPLpIHFdKK5yL1+tLprIW8eRQNGUkDsobB+NMot/0/1Fg0Uza05SRf7
cVVwyn3Z6zT4+5AXqnm8Hw+1cWW2XqRB9ubjhYd1+zHk2KP0fydoIOWivO1l
dx/WTrss3GtEg+uL+cIG2X2YduahmNROGoy8a/20ra4PHVyY/sO6NKicvuNb
wezDqfY4s6qtNLgcM5w+FNWH1pPe0mryNOgsz5XX0enDiwvHrFP5aRB8YMZs
u1of9k1NxN7lo8HKbqPT+op9WGr50fb6PyrYzjXkGor14ZHV+koP/lChSGvE
ZHdfL1qbV6uYDlPBqeg/zz0dvRifMTgf/YMK01ZXo/Y19qJfvbJxfx8VNE6L
NNt86EXWj+v877upkPxC1d3+cS9KXCi1+tdChZ1b/O843u3FlX6eBzK/UKE1
Py/LKawXTx/mZ3o2UUGcbTHl6tuL3F/9EfwNVLgu4nn79K5eTJyrXNdQQQW5
hOx33jt70fWkWlVXGRXylacafLR6UW39e9Z8CRV+mdxc6S/Xi7/sTD1ckArH
g1LSL09x8SrrYzyNRYX5JUP1wcNcNF2jtEmZoEJCrNavkB4u7myd63vDoEIj
pVg//CMXuT4CHTVUKvgaCLncLOOiUJKP8NlcKiyttQ2/nc9F3TTCfl0OFUz7
Omuj3nDRrM5yZ2oWFbrOK4/dS+TizZhFNZcyqRC84KzUgxguCrsGnXR4RwX6
2nmn2BAuavm7Zhmmk+edYX798QUuzvIC7UzTqDCse+91vBcXE3kx4wfeUmHD
gbUjiYe52HRRdOnT12Q9uk5IvLDk4oCjeVB9KlkP33c6L024qOD230dR0tN/
fzmmbOfiyj2R/I4pVIi9o3/ttToX9WRbJKmvyPrIhKW83cDF4vVxM9Kk61Kr
K9NXc9G8YT3l5ksqnNJaPvxOnFynVKkvIL2oyF48ewkXjU5S/COSyXpaJWvn
zHFw6b0fF9aQ3tneb0/9xUHPD75b81+Q9Ty19Sp9gIMT59cmniR9YSrwJfM7
B+8tYtJXkxa/8aGc1czBxsdc/44kKmQuXzKYX8PB7St0P6WTtnhhJfa+iIMF
KooVYaR71eK0kMlB9Y181p6kVUNejwy842CKc9j9w6R9GxgZEi856FiY4XSA
NE2+wmPnYw5mdcRmHiM97cdW9IjiYGmFbmAA6Z2lfd/vh3Kws8s9J4H0dak/
CXkBHKT31+2vJ13hLnCE48XBmr5JW1Fyv0sJGUlRVw4Oa5qnOpK2EVRp0DnE
wRyXWWMG6ViH7VGuezkoaK4hL0ueR2uGxe5I4OCv8Q7tGNKyc/b8dG3y+1E+
B0iR53nc6jR+28TBA//yW1NIv0kKuiKwjoPOsfIHjP5XH+OECUchDiY/qzyR
TNYvICaDcmO+BwteunJPkPXN5+R7Z0/0oPuGjfu1yTyY3mrnLPjeg0Wl+0r+
vqFCRMvQi81NPXizqJPyi8xPncrc0UNVPSgizO80RebrcO3a5jRqD76Nrypa
T+YxYe2WB41ve/DriktuVmReO30MLOcSezD4/OcH4WSeT4k7l9nc7kExqrCX
NJn3K4de0KeO9uCKhYGp9WS/FL2hnJPf34M5QfscHMl+WjSNant39eBogpbO
BNlv0Qldqc81erBJFLT2FJL56VSIM1vcgz3etbk3Ssn6amjt953txvm5FCW/
crK+YSai8aPdyN0tePB0JVnPDSduDrV1YxGxIim4lqzP6dSAmOxupEpp2mxp
poJwAV2zMKUbS/ea/Ahgk/0kUv6zN74bDbvella3UqEtu9ddL7wb+3Z9mo35
RvbXhNLhriPdGHzwNz29nwrLQ9J11Bd0Y1b2S76v5Py7xVSpEv/ThbNOXmaJ
5HycHXnrMDHchWzp62c9yfnZ4/ImmNXahdX2xiYrhWhANU4pMcnpQu2sAtMe
KRrYLX5ufcSlC6PaRQqXqtNAeZVCPd+VTmwIjDxr7EED8ch1Y+UenRjD+GPG
70WD6VlZySi7TnS9cHNZnQ8NqjpWO0irdqKO7aiRfwANTiVL9W5q+44lnit2
LrtJgwxlwX92ut/ReTIxMfg1DdR0RtVeT3RgMu/I24xBGnioX7uW960DFyeX
CEaO0uCF0rLG+soO3CHwnO/sbxpIkE+dqWcdGF3Ff2TPPA3+/PEt3m3WgefL
HaUMJOhQkjdyaDC2HXfN5HuI7KCDvcFIyFadr+jksUL2zX06hJv9/JR3qQUD
jKWtXwMDSiyGbbRPtOBi70i/leYM4LMa+pht1YLXRFXdovYyIPjQj7oUxRZk
r1m3/9whBgR69Fbdq2MjVaZETdubAacivhW5ybPxSkF7w8PHDLCsq88RqmpG
yecU15XDDIj8VLf1BrUZC9Je5x0bZ0BVc232fGIzjrm/PZ48xQDzb9WZE37N
uKwn1VF2ARMMR8rTvq1pxtUhPl0T0kzQEP+QnHu2CcfEva7xAxOkD2Y/cJBp
RFal8/C2aCZQlaLyzfkb8cTPD7XZMUywnfHkao5+Rm6/ftDGJ0yITFLYvrTy
M5775C6yJJkJ8wOxnfmBn/FjlHBeTC4T+q5eUV/L/oT7ejUSGpqY4GvzMP79
pgZ8kvBc/rYUAWm/9w7HLWjAcwuYf0+uJKDn6SIj37aPGMH3Qd+AvJ8d5l7s
l7vzEZvf0gs71hMAQc46oQP1KGjh9J6tRYB4yuZmk7d1uEr65LFsGwKoU+XL
qjbU4JDpx6dZNwiIznhVYjhTjV3ZK6MEIwjwdr4WwKivxpvC3k+PRhGwoWJ7
+6vAaow/I9L/4yEBj+PevblaVYUJ+buN3yQRcFn7ocG2M5WYLWCz7jGT3M+A
z1i6USVmxPIl++YRsC1xb4q8dCVaKkrlGhYSMMy/SEjsQwWm+FJPlhcT4NwU
2DywrAIzJM/onakjwMTfyTuJVoYXhPM2ruoiQE5JT046ogwVf6SoePaQ99U2
6c9RTmWYwta2yOQSQDdu0AlaXIb5q+JK1/wgQGm5ycKDR0pRw9NtLnqcgIXl
coyazaV4iDKsHTdBQOelv57GfKVo5sbvEDNJQHwXvV49vQR5ET8t/WYIWJqj
/FTobzEy2ZoWxXws6DuxyDK0oRitdGeNQhayoFSme34qpRgX6TNmNBexIPha
wkmuZTEKcGoeXxUg7+PWohqYVIT2zuenUkVZULNwsOe/80XY8GiHu8wyFrxl
VsRl7i7CdkqiT6g4C4p28v3Z1o2YWByspyPJgtftvfd+3PiAhat379JYyYKv
wStePN/2AY8yKZWmq1ggJrc7Z3/Pe/RsvDZrvZoFga5pjXnwHpPFOJ6Wa1mQ
saCN4zNSiHNjLomGsiz4/kpoUuF5Id57KxOoIseCXb1eMpGzBZgHr0U561hw
+dYzFcP0Anx6q7mcJs+CbOU6vV9HCrBmx7hMsAILZLy2ODky8tGvYMe1CUUW
WAo7+4idzEe921vvv1rPgtDM6JASiXwsfJSovmcDCwZGRpNVz+WhyT4+iasb
WbD2gTz1u1wesu8r7V+qxAJbzf2lMfUstFq5ccV90jcarzfvCmbh3zGas7Ay
C1jnqb2zqiw80f1E5RrpYSnOVHYbgW4HX/kNkpZnSgqeiCBtlKtrpcKCg0fM
VsnoEvhiGeXSW9J3pi+o1vYyMSgiRmuG9Ienr3dci2ViJcP5hMkmFvzSZ1tu
M2WiRYOiUDhppY4lzv3jDFytOKtQQNrxqu7ZZ8kMNJoRzhwkHS13KtTGhoE7
bkW9Xq7KghKMf8g/T8esakJEg/SUa/UrIpOOy4LbO81Jqy6cpXkfpWPQlKXs
AdLOKarl65bS8coa39IjpGPMjrKbWDTkQean/61X9Eb13/akoYVUqOlu0rO3
Cqd3rCDX7/qs1iKtrvJTaKyMipZ1/AelSB+vll2Tep6KS4W/jfwk9/fYy1rN
XpGKImFJPz6QrhW+ZiDyORf9Dkyb3CbNl0WxLrqWi5IXXs/sIq1t3eVyQT0X
F8R5i8yT53NqVNxP5VsOSouuuZxJOvGBcVhHVA4+L4k2tiP9SdP/0QN9cl06
022UPH/BN+Z77jRScKbieFs46VZVwWiHe9kY/j66Noasp5HP6ZziwSwkKCvM
REmnUWoaN1lkYY7GMfFrZB6CtO/JzC7MxPJjeckWZF56Akf0jru+Q4ETmieS
yTztzbNxqnmfgXtC1AJHybytNpR4mXApHTfLtEeeJ/MYFnq+dCE7DYkBg6g0
Mq9DJc29XtvSsN4qrK2ZzHPh7ieqO0beIL9pwDFJMu/H9q+lt59IRQPF05PK
ZL8MT0zqBZSl4K7q3xVryX4KftyAYhtTkF/gvp4Q2W+J7WG1xn0vUUqpm69a
mgX02sZym89JuDvGVoJL9muz+K3PYTHPUXqDT18c2c8Th/S+MQ4kIoVn7ghi
LNDqevF7Dfsp8vwlFYKEWUD5fWb9wNdYjGhfrBaxmAUf9eS3rkl8hHJNrPkp
fnJehDTpWx+LQY/zuX7HyPliL3Eh9RTex1FxQ73lPAIO7BBbuKD6Js5oVh2S
miYgtFmleU2pFYb6GEncGSBAbdk3r8VbtCH8KU3Mv48A9njYC/Fpe+gyjcy1
I+fjlUe7ary1z4GJWMnwbCcBpfJ3bj8XD4OZR4b7+tkEeHqqejDnYwAorXs0
SgmwULzoGG4QC9I0b96jIgJUvpVa2wbHwSpZD8/R9wQM2h3THZx5AoXf9tjd
YxFwxvCBoNxkIvQaDmW7ZxGQt/TKl5KAFNBsnPW+E0dA8hbpJopiKrx/Z3pu
QwwBt2wpnxIbUqG0YFkpI5qAg485tYGb3sCrHZ6OBbcJGFOwLFH9lgYFkxXB
dkHkPNeTpcSYZYND13MBqiMBIk5E5rXxbOhIoOZRDxMwEbI/40wSBcjr/Jd0
OwJce0rs1gfngJqWot2VvQTZP3+s/n3JhSOLtsS+0yOgmuZilnuHDrPSO6dM
VhCws1ytVLmLDlb0BVvfLScghz1jnKTDgKu2t8eFRMnn3cwjiOIwQEX62Np3
/ASchCp9dwPyuWFdZR48xgRejYbmqvE8uHXsbcvRKib817NA7ro9wuFMC1l5
Pyao5x8Z10hH+HuaSyvyZoJSTFZZ1wzClpNUKwcPJgi/zPwv2aoIbF7xP/I/
yoQ5W/sO3kgRaN3IfG5uzoRvOZRNqFkCgkaU62dlmPDinHOZAVEGm8IuGHcz
GJDoJJQd11kGlwzTLW5RGBBvQX/yU6Acll9Pf7w+nQEP5Jd6P7cvh3Ch2mW7
ExkQ+omx/N9MOfzMm6JphjHATUPUpXBnJTgseJv7xJIB68cKZvRLquHh40kJ
ZjsdgutNb/z+WQ1mL+vUa5vowM6oFcteVQMpUXx3W2rpEOnevl7BrwaeycxL
swvoMPZ11kpAvhayVTtZXs/o8KFc71XT1Tp4X52Hv+3p4PiM2HtGrwGMPCgC
yfU02JPSVm9t3wgKxaISk8+pMHYz26PcpxFqgygr5WOpEH8qnLcjvBFkB/hP
mEZSYWDLFs1N2Y3Q5xJa7x9I/l5hhcbyL2qC7/+qzAKsqVBVr3yURWmCdcl5
EsL/cmH3dMCAgsAXWMUcKbh7MBfMrST4Jxkt0CYn8en3Vwrcd2kJ1SA6QI+v
xdlPKAMqrWVFbSW6wV1ROoA+/Ap+KkiHNCZwgN/pU3Sn+hMIuLDZ7f6KPpi4
kVK+3DsEWjrE7TyqBuCj44ltX2VuomvQzn4ByyGIXu47/u9hIpZu1o0sXTwC
Ed4fbbyepaGSUOFAqsUYBJSe3f3oWC7KFnqbL44YBwPf9a/eRzKRb3Zhun/P
L2iLbTnS4FaIf/a/dy7f+BtUs+enNi4qxnZtlzUbb0yCLuPcbkP1Mjx3RHy5
YscUxLI/3GUfr8RVsVz7RbLTYG6ao1cSUIPZR5PfTlyaAXHrM+F7u+vxiME1
i6r3s2CkVNx/8NEnzHX2UdSf+wucF55WqNOI00tN+fMO/QPJOD2R0wLNaPd5
h45s/DyEsQvxXfEXXLpDuLjw+TwcWDoqFFD9BYtTv+5zSpkHZ2bAb8PPX1Dj
UpDbs+x5EO2Rymju+oJi64i7q8rJ9zu8ixXgY2P1GS2O9K95UHrcbhNlyEYj
wU0PxCx54Nop91qokI3TftOrs/fz4Olr94q+UjZS2itfWx0hHUS/UVbLRjmK
R8Hd4zzI+Lmw9Xo7G+cOpfYtDeKBmOlDNv9fNhIp6wwE3vCgYDuf7Eb9FvQV
Ha18844HnlUFC0VMWlDp4ge7Xbk86E7qDZ/Y04Kxe4+dulnIA6kqOfsyhxb0
H094xN/EAyeXE+Y+QS2oetRLLqWVB77G9fwO11uwu0wv3eQ7D1Qj2p3M77Sg
bXzrh+s/ePByIPT7uqctKLgwbY/CKPl5A71LxF62IHpfbC76zYPplVHVc2kt
GPhll4vrLA+GQo8oDee04P//Xw/J6lqyHawW/D9T3HEf
          "]]}, Annotation[#, "Charting`Private`Tag$2929285#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmHk0FN77x5XskaTUp2wpClkKberJ0kJpkUJESlS2Em1CH6WsJevMkG1m
FB/ZGlnz2Pd9hhn7FklItpDMb77n/P6653Xuc8997vO83/eec2WvuxjfXM3F
xeW+iovrf6MKbBpjs9mYyZpQPXGOBS6Lcn6LS2z0qO7M1z3FgoxP6vIzc2xU
E/lQCTos2LvL6PrIDza+UtC0ObyPBfvXv+isZ7LRj36JckCCBceGftUS09nY
G/vB7XQfE4xfNfy3z5qNK29SG1tdmPCw6YWTfdEKykYf4nMKbQcGQ2isxOYv
uhw1kaPkMUCy2EV8/7ZlFLIKFfEUoEO2QznPup4l/KXMLzp1pwWuBalPdfgs
4p7v0VoT9k2wEOrhh7CA2YyPIdkG9UAW6d1CGJjHSee1/itcNRBjqO5K959D
TZuO6PSBCvBxtHm022AWU75ZMFiiZeDBnfLQdWIab/Hx5q+SKQabZ0072j/8
Qne4o2S8nA8RX4YJMXemcJe5d06M8GfI79u1NnX7JFZqe4b7L2WAnOgxXZPY
H9jyOXStuUgyZCn63RkcGsXOI/cPy22Oh76KTBktrRFsnDN15d4VAsPKEXvx
8xD+p/HEIcXNDhS9qJOj/w1huPbWqbgyW3Buyk4RSxhCWpnNUtKGG7Bwr327
XeAQJkiJ9HY4WYNgjsQG4WtDeMB7PK1P3BjUdEgzVwSGMLtzlCfb/hh6XIqj
zVsM4sRxhmKrvxMWJ6XflbkwiKeCZvumN7ngmgVUNjwxiP/sclJ3vXAXX5P6
Ke/UBjF7oKCR1HUP4/tkI/R5BtFfx9Urb9QNK29T3EPTBpCQpXglc/gJrvdK
1lJZNYA64n4qB/Y9x5efd1WL/u5HPiuNFP+Xz3Fp8r35zHg/CrQ8rAvpeI6D
1klPc1n9aJl8qL/I6wVm6ZBLdTP6UWZj65XQCl805nl31tS6H6W0kkoY+n6o
sEW2gcujD32pCcPhfMEoGiA9VWHXhx6Lka3cF4JxYUlyQ6BxH46s95KTIgVj
dfc/5hsV+/BCKrpdVHqNt+LFh3d39OK9rL7Dnw3eYIoC/1/j/b2YrjxydHVB
CCpr/VSmznTjhj2hn76Vh6Kdird3Xk83tvO75PqOhGKc/LrWhqpuFPcYGv/O
F4ZiEqoP56O70TKogcBtGIa/fzuXnNTvxvG0wGzXujAszZu8NBbehQP+r15P
l4bjcqbXhxWvLpQa2/6+tj8cNVNE/ojd7kLT6cEzN1bC8QNJJf7wkS70w+RM
xoEIDPZwHgsa7sSGP1oFqSkRaHZk0ktVqxPbhRSIjH8jMVTTq0VPphNZWldN
XkRHYt0ekR1mgp04y59An6BF4lEplZpnvR0oKih+ZHwkEuXYThtaX3aghcKL
Y/4no9Dy99+bI3c7UChmOGXRKgojfwbnLl3pwHvVsz+lH0Qhf//Hq3KqHbhH
fPp3IDkKJ4sn3rsxWch7ynkHfSkKFfI8l/xKWNj742T40DoCXssUNnr3Hwud
jdTeUHcQkJ6wZ7rCm4WW/xF6DhsRMNfHSVtiFwt/83Q9SSAR8Ln+RHPeIyZS
O4/cq9pJxNJT4+c0bjAxuPD4vJUmEbmMfjSmGTHRlth+KEGfiE8vfa8nb2di
ILbZyF0n4gO74erg+nY8uth/TohIRNqdryf5c9rxoX0M3wiViNPOQ5U+Ce3I
55PHZ5dFRJeHA+UPH7RjncOBv8a1RLzl11NsI9OOHjQCb/0cEZOCuqFbsB2H
P+aZF7KJ+DWkq+jyXBu+5vefOS1AQhtiR+Hp2jYcuSzQdHwrCePfsQ5X0trw
fk+NW5ocCXsTmPnH4tpQM+jc7k9KJLyS0par6daG75+kOAYfIiEhjbE/w6oN
v8c/PWOjQ8L2LPpnRYM27Kjn7Wk4SULxnFZN6r42PCKafazViIQXC1po0lJt
mKn7LMrpIglDsXkfib8NT5n+WIk1I2FzWVOW+AwDm+a4Qm9eJaFIdaP6mx4G
llpcuF1sQ8Iz9Q0ZAtUMtPCfIqXdJGFAc73qiywGHkK3Q6q3SVjNqEtbiWHg
uQtzZjqOJOTtqN3z+BUDv9MFeL46k/B4T03qzD0GTr2vMdx0j4QvBqqVnC0Z
GPqjbh/TlYSlw1UpoycYWMBQqNrpRkKuscrdN9QZyO/hLrDKnYRHJys+9Gxl
IHtT07I9h59OlyuY8TLwbWFrvDmH8+fLklqn6CgZRZlmcNYvLJXuNOqio+3H
X+Os+yTczy6hVFXQcYvGzCtbzn4PuEvkdDPo2OXumvfgLglpfMWJhSQ60kwb
3EQ4+U4Loex+X876f/+kKDqQUE20KD7ThY5LauGGtfYkdBb/Iq18hY6PSxgw
foOEqZsLY5P06Xh3/L3bG2sSjm0rkJRVpWNe48fmrCsk3C2bHxO9hY5lufoH
L10i4a2deVs3raHjSmvoW/dzJEzanUsKmWxF1biQfDEDEm7f+5ngW9aKNOfe
30Wcfl/TypbgSmtF6aCksrq9JIw7RIt8QmjFN2qKTecVSbhNLyvcxakVv7bQ
V4okOHo5mblhzLQVEyVl66jCHL2czgi11W3FvIEYBS5uEm40SQsxl2hFY9fJ
RsFxImbJB+Yf525FII/1hPQT8fyi/Vf1ny1YkCQdTWAQMSBW9oBgVQvKtrxS
311ARIV7KzbzWS14NfPw+oyPRCzX6wocjG1BM1XjVFocEVdGw/vyH7SgauPw
ln0+RIwuuCfw/noLbjiUOZHiSsQDr8/uCzvbgl8DUr1jOP5z3cf/ykG+Bemh
Uj2jx4g44umhsq29GfeHON4X/M3x93kzM/7SZtzMEFLXGCKgjJymz+zHZmxi
jKU2NRLwSvVkW71vMzpI+34zpRCwUey6p6dmMz55FNDx9hQBHYaPvr8t24xv
/9bN71EjIH/u1pZLws14aixxlYYEAX3zUwwsa5swyHGTxJOhKHQ+95bwZXcT
PtkYbcBwi8IPs4bjEauaULrKqYlqGoWDxDXHnDsasd3w51zHwSi8/PXhNyn/
RnR//LvAbjkS4bGV1rPRBkzcFL3/z+NIfCK1OcCsuAGT5M98rjWN5Ly7LT1q
hAbcLbnj0bxGJO4SOe47cLIB5fVGF6wnIlCUrMTQfV+P00/T825djkDDU8MK
W73r8VSj7TyfagS+mIj1mLlcj7N/rAJWeCNwYb+YHIW3HrMfxzT9pIXjQP3C
PR67OiQa6Vkw+cMxa75iXfWOWjxt/p3mFRKKr1MSS48u1qC8+pN4lSuh6GDl
7Z7dUIOnX7ZFi8uF4o7KA12JD2rwm1xQ0/OstxgZ8V+SZ3U1vtpql7pUFYJP
NN4e2edYhQKBKlHN0cF4edRpKvlYFeKYUvTzTcG4L8aQLLOxCotWfQ788iYI
x7nXCIgUVaJX4kx/q2cgWtEfMEbXVWKocNjxkVP+qOtq6RD7qRxNu10crGNf
oJT8QamNfuXoW+jgdZX7Bf7p2NgSaFmOtN/V4or2z5Gm06T1mKccqx+HlZ1Q
8kH59bqrTUzLMEb5g53nGW8UzFAgCvwpQRsntX2GnW5I7RoO/v6iCNk24aK5
rurQ+XRT3Lt9Rbj7LlGSpaIHIlInMy4MfsHD3T82Zbw3ggfXPrTmwRe8m17D
O3DeHE4M35EIWCrA06/26/9QtIfRyZ/xinfzsInLPNpC4gEorl765GBBw0tS
BIffNr5gRVaskBakoVP5YNUY90sI1bdop+d+wqrJLTfNqS9h6WXhwuFNn5A1
9VsoauQV1Al5H1nbkonpctFBMtcDgKXI/9o8OA1XSPc37zr0Bq5e2EbrukHB
aj3fGoJyOIzPzB10LyejFsNeJu1uODyNbEKRnWT0KPC/bUYLh5gunzqdkQQ8
B3D+9qEIoNW1VpxricWRpWP5jjqRkD7rKDfaGY69Kx46kYcI0HhQRnVrTBhu
f5q0tfghASa96IfOXg1FkRgtu0c0ApiJuVFu4Ru0SLOKDlMmwsXDIqtX1fii
5wr8uCtBgmeMXYytZUZ49m2/TgEzGpTX9dzh2aMBonf4TEqFY6D9l0+c6IIZ
HCDesTbViwGPsBO1Dhp3QacZO5U+xkCZjP+rd6I+QPOvdfHxeAf29op2n1dC
4WV22w1R7jjIE/RoK3Ung+GOP9PYFw/xezbS07dTYN2GDI2guXh4eT69OaaJ
AoNUCat/hBLAJHKo7sHuJBCTVTDz1EyAKdkzpYo9H4BX2yzK9lUCyB+UTA/V
T4N4liT/T+lEWGuZk+r9Kw0ow0LN8+qJMON1IcUxNh0+GSQ6leslwrXBUmO5
pxlAK3Tbk2WXCCq7fhv9bcuEUnHZnt7kRKj5ZK2f6U8D/bqEieydZNCuUC5T
6KeBcFqf/0ENMmS0L+rEamVDmLGB4CtdMkQuhkHgUDaIXj+d+8yKDLZQfejm
kRzIElIrnwsjA+t8RF5XWA4sr/np2RRPhtPXrx8wHsuBub7Hm90/kmGv77Im
ROXCz7dXx3ZUkoFdq6a+5VceNB9bqZecI4Nr99/0NyfzgctI/8pVLgqMTNSq
8Mbmw8rv5s93hChQL3pTecawAM7XCTX/lKEA6TJRoYFSCO/eum9IMaCA5uAq
qX/NEOStbB3FQimgkm/6Sy0ZwcqoiIRECsiHfizvX0RgKH8/qp9AAaGEVM14
o2LQWrs5lpFOgeXzZt3syWKYXyUbv6mOAgva3JWmEiXwPWHe7kULBWZ3paWn
Qwk8vCnFX8ekwDjXmufWISWQHMzzamiIAj0Z6btRvRSe/5rYdWKJAp0xVzZI
XCkFfaFKd282Bdr9eP46+5TC16KOX6FrqNB4zaJZil4KPVtfSRqIUKH2DG/+
gz+l4LriLD0uRoXKA5nkRrky2KmgOndbggpFonwPvdzK4G+xUtG8NBXylzOv
tceUgXNv1SreHVT4PGppqFJRBhvH/+RNKVAhrThLsndjORQPnZI3V6VCSupV
Pq2j5WDCxdrF3EuFJAL/r2C7cvBm/tBW16JC3F2r8iM55TCiPbvviTYVYiwF
0iL6ykGH7nHjNlCBcIoWNcFXAT3JaUc0dakQIiPo8M6sAg4qpvrdOEmFoLXZ
JnPPKmBpjYp+pQEV/BasjxolV0DcmlrgPUOFZ83Z6/8uVoDx0MEAqfNUeFp4
7Y/J9krYpvdL9vcFKjz6IDScalgJ9y8HBH68SAW38M+Na+5XQsnwyJjOJSrc
fWaTaxldCXPU9Bu0y1RwdFybSCurBIaPyRYeMyrcMssJXDteCfJja1U1zKlg
q3/d3Va8CkolWFU6V6hgoyZsXahdBdeve/KqWFDBalvuKfGbVaDlHyS8yOEr
/Df2OgZXgdRqK3aiJRUuzwpvK8+ugtenNqwoXaWCcX8uz7beKlhRjlIK5/DZ
+hs/7/NWw+iO2OQuDhvminTUqVSDTnQScbUVFU5Q8krlTKvBSmdxmwCHdUNs
Uz28q+HEtWSTn5z4o0/XRdLfV4OFYoRNNocP3cr3VmquhsvCdrYWHNYyuXn7
+UI1BK556znAyWfvMdGLXTI14PDjcsNJDqsoF2jvM6gB7eby+685+StutpMP
vFcDf07QQrI555Vfs150iFgDdwrr9L5w6iE3VbB4qLQG1Gu8Uqmcej1t0Hsx
O1EDNlwtbhdNqdCeUieStqUWTAlTVd2ceqv5XSTaH68FX1+ZBh0TKgTc7JKT
vVcLYo+t//MxpsJX3RtpnTG1cOvqLf84Tj+PyPw4EF5dCx9as4IJZ6kw1blk
xCdTBwy7dwnShv+rjw+r+HQd5GT0L3/k6IUSIXjjycM6kOlI3bjlOBVMz//z
aKKxDm7uNhd/ydFbxp7E1e+X6sDEt03Pj6NHQSHF4Gvy9XBQUrzc/iDHDxUH
E+me9XAk3OwkcvS8mVyiHJxcDxpruEP3c/Tu+swg50RbPXSW5RUGK1Fh52Hz
+jzlBlAxnT7KkOPoNePRfFxXAxj7zZQ0cPw2Esz1rzlfI1CaxToPcPx4zMFP
aMO+RkhS8hz2EaDCzE6CzMuARlj31tOCxvHzlegcQ8eDTbBNv8syZIwCtEfQ
tvNmE0hzRSbPf6WAyOUq676QJtjr8u+kdh8FSkSZbsajTVAqd6bvNp0C4noe
52JON0OXREXFqXzOvDqKP7ZphshHEUezPlHAWYa789LDZgh/v+b9cioFqv8G
2K4jN4PF6qQijTgKeOSSHvssNUNnzY3jmj4U2PW+96i1aAs0zv99lPyEAoyI
7Wu05VuAOc/9iu3KuQ/vp7yeu9ACAWHylAs3OO/OnnzyreQWGFttOReiSwED
ckfDWbNWEOc1nAn7Q4Yp3zS7CqdWOLPI22M1TQbCrefsw89bQVVYyELkOxlG
9+xR353WCif/qrtvbSeDX+6zcO41dLigm1o6lUaG6gYFi9x0OoQ26p2NsSDD
3YzlGZUKOvxL64goOE+GzWEtQdROOnxl7BwpPk7m+NejKJSHAW5yCoueqmTg
H2qUdbJggF6J/enyVWQ4ueA+KsvXBoZWrw3DExJhstPwX8K2Nnh+q1xdKiIR
Ir9I/7NubxvMeoq6vfFLhBGfmtPLlm1wZxau7HJJhJfCkuntWW1AvNDJ0jyc
CJXby90Drdqh8PeNuObGBDhuJMY9l82EAWHDrFdf4+G1jcCvxRomhNek5im1
xwPLnatvpYcJlr3D5wur4uFO7GQ+Py8LmBTzm+QUTvzPWtdtl1lQZfMtLsCF
E//2+aDePAuWr8b0v/0RB3faZ0tCtTqh+MM6/8LRd/DGmvlMLacb3p0dfM7/
mAgvx7VhpL4bItbbTymeJ4LX48S/0YPdUAuur+UViOAc5vSET6QHGpQdK5IZ
BDhbxe3Wa9sD5roaXwf3EEBEVc0+SKwXrJRTkzU7IuH1ip/RqFMfXGtoteER
D4eqs5LC58UGQEZy07FbR4NgQnajVytpCHxOCo53yV0BdzclmzebRuBMVEhf
iYkfMrtFje2qR6F7OeSqS2YMXnus/Y3vzA/oDf872PQ5CcuU9geU8UyCnErO
r7z9GSgvUDhKOTUFQWLlLoYC2ShZ6HCcx+8XPLqptfyBKx+5llYnuw5Owzmv
Agc5CuLvC1+sKnbOQvG8OmX4TSl2aVhv3fliDgSktzodpFbgXVPR9du75yFx
+cDYy6pq3BL+1WyN5ALYMLu4/tbWYZpF/PuZR4swfuJ0ub5CE5oe8T5V/WUJ
4uuCYltUWzDTymn7oeU/sF+j2cSqoRUXBPW48y79BUlD2wNKBAYatxzWkiSs
wNosqRPXjNpR8LBQSeG7FQhKE2NtuNSOJZTO05bkFUiP8VhfbdmOao8e20Sn
rcCByL1P9jq2o4h0TtCWihUwuDYkvS6wHWsc9w5tnF6BFrVvCd+q2/EY/+4Q
kTNsWHS1TRc/zsSFewv/pF1gQ6hP41z3GSamd1VRjUzZ0H1xto9qwkSpdLuC
oOtsmGauxB60ZeLyJcqI4GM2fBwfLL/1nIk5ZOkjfElssF+hRA6XMNFZ+GdV
0n9suJSiLZRbw0T5h0XGJzLZ8H5XmWxgCxPDDa/e8i1kQ1aJosa+ASa6/iKF
cdPZsBRp8COAi4WKFnekyCw2hJVoO17nZ+FA+cFk3V42rBLSfn1IlIXnCayi
f7+zQdFykjYuzUL+1R8MZH+yQXvP7bxKBRaiw0NG8SwbmOneVgmqLHzQdsL6
2hIbxAY2Up7uZ+H//59DQdW6ADNg4f8BrWdJZw==
          "]]}, Annotation[#, "Charting`Private`Tag$2929285#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmXk01d/Xxw0pFGmQCKGMIUMpot2oKCoJUSEZIiXfylSRzCQzcXE/l2iQ
ociQbGPGa3bdzEOkgQiZ3ef+1nr+Ouu11jnrnP3e773POuuIX79jYM3GwsIS
wsrC8r9REbb9ZDAYGOZxf/ixPh3uLOwKWFhkoJyA5naPU3TI/qAsNT3LQHGN
bKrLETqoyOhdH/3FwEvcf4ucVehwYJNPV0MnAwtGthC3t9HhyPBU3YssBmpI
pb173NcJBv7Ut6rmDOR+tNaE5U4nuDT5ONqWrCKrUph/aDgN2tvX/yyzXMGx
3i+irwraQaT0ztYDwssYdt7HyYKzDfIcKjk29i7i3tKMlHc3W8AiRHnyq/cC
Mt5lL3BYN8F8hEcAwjwOOaznN9dugBTePsG4wX+4nj9FdetKDZB0lZ3bAmdx
9nsCO19vFXjfsnSV1ZlB8aX6G9brK8CD/Y2L8/hf1Jtdl3BTsBQsvZp2015N
odWh9JCrv4sg+vNIHMl+EveXhmWJLOZBUb/MhgyJCXz5X2d+32A27OI7csww
6Rfih93bs5pewXu5APuh4TEcqzAeSA1Mhv6qHDE1tVEs6+qOFAsMhRH5aBX8
OIx/VI9Xfde8DHKPX06MvR3GM8LJyRc+X4LbTXlvNhPDOCJjEUsBA5i/S5Ow
CR7GRO/bKsuR2sCdL7CFx2IY1zlsYVUz2I1KR+OnTbmG8UsAuwi14yp6XErO
/Wc2hKUOtDHN4nu46fFrNUXWQeRenzwQ1OeHfh9lavjmBvDm2q8jFQf8cXEi
/fL07wGMGMDLGOaPQ+ZpDwvoA5ggtji/fDQA3x9NKT+WPYAhOr8XQ4lANOBI
1Dc2H8Da9HfEb8MQlBYUp7J49OPahtqg4qow5AvaOVll04/fuCb3m06E4fyi
yJZgg36k3jeKpW0Lx5oeocv8cv14Lpcq6WAbjnbkrSOyX/tQqdmei3VdBL6R
5lwxONCH7ou2Og0QifJqf+RfTvdgSKa7jFZsNNooenoW9vaguHRlSXBJNCZL
bWylVveg3CXnyqyRaNwssNflX0IP/uAXiHdRjcG5udtlp070oCL3x2o2agyW
F05c+hnVjTd3Fx//MReLJloTj/eqdWFL/D7K0p54jNj/uOW4WBe2BfwTztWL
x3oF3t0m3F3IPd/qpnUnHg+LKtZ69X1F7WOXD5TnxOMuhuOWVr+vaP5A6Mjz
fQk4UTqefq+TjjL3SD6blUn49MR4c6FrJ6ZveCPsuyYJy0//PrfPqhOFfgVR
fHcmIYver8ZMvU6sSPQ5cVEjCR9e+tGQItGJpeargpfuJOEDm5GaZw009GDI
UsZpSWgX0FtqKUbD5N26YSdJyZgW0gM93DQEepoKS24yfgvrLjGa7cClRfV8
n/pktHzxtfhMXQdyit4M/LmQjKZvOgr23+vArCTRqE1yZDzbQM3mqmnHAdbm
HG5PMgY1N+z1ed+Oo2pisbKBZKxpr89cJbVjQsGt6D2RZDzZW5sxfbcd9+4O
vkpPI+PhiapXvTvaUeOg5vOWBjI+/FspbbK2HXfNVedw0MhY9K8irXWyDT3/
Sxjd0U/GA4yy1OqqNiT/qFkZnySjEl8JOedOG+KGc7ySWwi8vfXzTnnTNhzw
uTFlvYPAjO3FSWkn2tDG+GS9/y4CZcWLSAmCbVhb+KPRUZVACZWPcb4Vrdj0
YGGy5AKB/IaZYZcFWvEriMheDCDwvVRw0Un2VtyoZrpZOpTA8wu235T/tGDr
KRtqbySBQUniB7mrW1DV7ILcdBKBq2NR/UUPWvB+KotP4QcCEz7d5Uq/3oI3
JKvZyAUEHgzVV43Ub0HhQ4Lydp8JdFbl9HeQakHaQ65h0hcCRx95KArTmtH2
qHZQZCeBT8+bmHCWN2Mlpyvn024CxXbt955514w73McnDPoJNK2Z6GjwbUbL
51G6kaMEzsXXMwruNuNgzqOb7D8JjHJ8JfvyajNa39164uI4gY2brz96tL8Z
Z9+tuIVPE+gwcjj9pngzlp1vdPf8RyBnwY6WSzzNSDl03PvsAoG+RW90rtQ1
4XXbgR/eqwTTVzcS91GasOvC9M9fLBRcXCM6tcG9CSWD3PapslPw9rnwuM+y
TSiwe67bbB0FX83o/o5mbcIbRQMdmlwUHHqx5sjtr40Y9lfo/BI3BYWhJFI7
pxH7zWa3xW6goNE3l++igY1oH8L7byMvBcMClQ/NWTSimcr5AuuNFKxT/BXa
dLARlzh+ScfxUXBNe+pQOl8jWiUY8KZvoiC4XVPzGqNi/Gb1fRGbKeguuj3I
pJSK5alBlpe3UDC3oqVXKY6KCxtuXl1m8oRdsDKXExV96qUm3LdSUIb3pO/g
KSp+PnrsazuTr39YpRfupKLGS4thLn4KkkwK5CPmGvBxzelmQSbTVu562Tc1
YEB+7/U1TOZL2dN+LL0B7aQEr9Yy1+ueHpHe4dmAa7I5vOyY7DOe5DFt1IBr
hwuCB5n7l0SYNNUrNuCUkB7sY/L8gc27Utc2oOSubhML5vlVeusfPOyrxwji
v2hrZny3vH3rDD/W4xft7TnHmfGnSYOoQmg9Fpbm2iwy9RpsmL/LYVOPfY4C
ToE8TH2d31f1atUjifrDd3I9U1+BW4If+evR+u0r871M/cOKJR1Dx+vQgJX0
4SQnU1/L/lKbqjrc87xRTXUtU991L7ZCYh26S3AkzjHzezjDwE7gfh0qhuTF
RbBS8P2/qo01u+uwPj52y5llAkPfUMoPL9TiRVufMmmmfxyued7Po9Yi/fCY
Russgbu/HOymPKhF0xbj3tAJAlnc+UMFz9Si1ZNwaTLTr70Kf4+E7azFyQk3
z0dMP8dEv017VFODYTLST+J7mfWiE3B5hlSD3IZi6l/pBJ5bubHB4W4NNvOv
3THUxvSvtaiziVANGqn1mJ2vJdB9X7iW6q1q7N+rKxeWQ6DRmOPk6yPV+Pym
MWnTWwJVSbopYvzV+PnN+TGTVAJ/s6/h4i35gssXutLUYgi81vagfWzjFySu
/dgi4kKghv9Ff/NvVejF1lL+6TaBAoeUNGgFVSita7h1hw2BzZQfyRWWVfhh
3ClzuyGBx5yvOCR9qMQ5D3P2RXkCRaXURfkDKrHh1Os9ARIELn3lbwm+Uoks
PFG+zQIE5h5tUnPjqET7jHCxEFYCpTYdYzM0rsB18pFxkS1kZKsSzavbU4Hz
p17upFeSsd91yfYoSwXeiZLMbcwnY9xALlXxdTlu+7tNn0oiI3e29AuupTK8
We6w8Ps6GUet1pz1airDOk61vqSLZKwQGFz9l1KGwzydx+aPM/uvZ/yNb2fL
0PahoHHCLjJO6PMoYVIpYv4U7XtxMr7sHnn2w6cE7csl1R89ScKuh9uSE1VL
UBoD962aJCGv6KnsC0OfsZiXy+LtXub9Y/GqtRA+45fO3HCXrkTUHrEXCFr8
hAvWig06kono7pcgc/j1J5RhlPUkz5IwU7pB/a/xJyyKv+A3V0lCAXuFK6Z5
Raiux7Y7woKEYxN/yHJOhchCLkn9EJSAwmFi7/tEC5GozThobJCA55UvVERQ
C9BUu8ytfHsCFvz3fmRRrgAnaE+SqUQ8Bs7fk6sf+Yhfnx0Pz015gSUvXh7y
jPqIyQbP66ItXuBfDdpZ1eMfUWWle2Zqxws0fXTgTgI5D03d7Hb/eRaHcmyL
HxzMcpEaZkP9dDUWr6XIVe3kzsWMws6C/TyxGHHCjNZW8AHn+B7eohbF4KJf
8fyhbR/w7seKcUm+GKxf76m1oSUH7Z8kjapSopDlXZZ+qWcO/uDNuX3paBTu
0x8wv6eYg6y9v8U1+yKRFHbUuyc4G8/d3hJ4cFMk0uU4Qy8/y8RHh2qp+mbh
eMTxZnbZz3do6y8u+e97GL7KqmuVPf0Ob0xT+7Wdw9Bt3zOBRbYMZLX5T26W
EYpChzcT8a6v0Wtr6nAqazBevSCc222VisUDURH2ht74e3pW/X5lCnLgl0mn
g0/wYUwT8kqmILus/gOqkBeSur3rjzLrkj7o2W6d74G59a1V51qSMNxM0ycz
wxmzZm7tGuuKQvYkJQnpIjlsVBfbu4MUiTm745UUbfbDxOM2Df2rEdhn1LZ6
bOoMmGy+l2qHz/G979SU1co1uHiIl4211hePJvzpvsfmBF7tMu07KvSQK0BM
WcvJE+Q39tpzKOyDpY/rT1wkvIA25Z3MN28CWjWidY/8n4BHpHadwz4nqPvc
oV+u+xQqxAL9E/m8wduY9UzCOz+wtZWz+bgaAVXf5pcXfobAaQkX06daUTC0
Sy7XN+0ZyPRW6J9/GA3/iVyXe2weCj8Nrh74uRALuxP573fVPodbh8M4RWdJ
EKXmz0McCYdCbo+O8vspwJp55NbpskggK/C3ZUmkwpDYxiffNkeB3/msZlJT
Krx0F7LXt4oCw5jh+geyaaC0pWAkiSUaJsXPlsv1voLKbzyyHxRiQEpdJCvi
RCbs4Xu25uqlONhwJT/DcyoTflAjlIei42D68YU3t5KyoG23We+DjjiwGCo3
2PUwG9buS9zUc+EFKMrM6a105IDOBeLGH4iH2g/mJ3ICcyE41r+1fjoBNKvk
K6QHckElJVgwT4oE2bSFo0lqeZBXsjew24QEMQuREDycB89kpeBHEQluQI2G
tVY+7Mpc+1X7QSLQz0cXdkfmg2wbW4xJSiKcuX79oMHPfKj2Iy8XNCWCiu/y
fogtAO+lnveOUknAqFNSFpwqhEWpEK6e+iRw7lnJen6qCHS2bn4ZN50Eo+N1
imuTiuCmfvuX90LJ0MBnLT+t+wkIE2GLtbbJEG/0QpqaWgxLLec8TOaTYf8Q
q+gTE4TXZ/I0H3uSQbHIeErpNYL4avGJl8/IIBXxrnJgASGQx4z+PIEM64mM
/WS9UnCqnc7O+UiG5fMmPYyJUvj3wUNI7ScZ5jXZvxgLlIGe6/0n/v/IMCOT
mZUFZeCStOYqmY2A3yxrnpqHlcE1n1vH5IQI6M3OkkXlcgjJtxF8q01AF8l0
i4BpOVAjfvicuEAALYBj5bZ3OayWa3a9MiOg0cKsWbStHBS+vulru0NACd86
l8f3KqBN5+jxkmgCipZzLGikCggWKlguTCLg49gVXcWqCqjhj/7wNJ2AzNL3
In38lVBSkBzoXUBAstO1Sq38Slj5o0I5QCeAdIUrM7q/Er616ex4109A3Onc
2PF1VaB64abB9CgBYWLcDokmVbBlQurk9AwBIRvyDGe9qiD+pHbKuyUCAubN
D+u9roK1M+5rNNgo4NWct2lloQqcVIu56ngp8LDYYslQ4gsEGfKfbtxKAddX
60cydL9AhI5UyUshCjh5WRZcSfgCIe53PJokKWCpxGNerFkNp5OUFLZpUOCa
cMHprdbVELE9WaL4MAVMOa1Ubj2rBkF/i5ADx5kv1IECDuG+auDl76vLOkMB
/QarP/+trYGwxdjd785RQLeA92u9Yg3kuaUve12kwLGwGxkenjUwsawq+86U
AocfboxpS68BR4rfMsc1CmjYFXnuaa6BNSkDZ9QsKaByhO9it1gt7BU1MRS1
pYCi/CdNVZ1awM3BfrSbFJDbbiMVfLcWJnT+SdneosCuyU8LGuW18NNeOnHz
XWb81OM+M+O1cIXPw/jyfxSgvannzRSsgxb7QxnO9ymgFHDxhe3JOvjsMjF0
zYUCQdbdu8Tv1kEq55Fjom4U+HbMKrOLVAdsQRx8Oe4U0BL7dTCqpg5ico+G
CzykQMyKc4XeTB28kpXhNnhEgcmuRb11YvXQtShWYvH4f/F700vP1MMG0YY/
xz0pkBrNbeXuUs/sB2sGl5i86hwxrppSD886v7UGeFHA+LyQ63hjPTR3VHP8
YnK2AoUtfbEeckz1CyWeUIB7vdwzC6kGMFxnKa/E5BtjOQJCBg3AHamauIXJ
JVXqlLZHDUArO6VDZa7fnlIm/+x1A3zVdXK8ymRnL5187Y4G2JDVdrKSuX/D
1ZajLKxUKGL5w8PGZMlDlxsK5amwiRTHIsA8/+Ptg0b/mVBBuYXNhJ0ZH33W
blDehwrCXiV61R7M/LRNOoxmUaEj7bOQFVOfkGzXf8ndVNgydGmO5kqB0Wcs
Ty6vawT6wLEdu5j6HnEIWL9FtRGO17/6fIqpf/xpvpiGa40wStrGf5KZn2nJ
ODG/oEZYcg4w3sHM31l2sbfwsRHyG28W1d2mQNpA+v6FwUbY2hDrfJGZb9OE
fN1b6k1weUfkhykbCuS6QoekdROQl6xT1t2gAK9RtXl/WBOc/BT1cc6CAmV8
nfcMxpqgYa/xRlum/3hcshgc3M0w8LA5f9SIAkXW05VDO5uh8M09naNMv249
7nGOdKYZnuxMHfNn+rtMGbe6WTZDqbjKpXunKHBbjL3rkkszfGSfsdNk1kPN
StCNjSnNkNjJBhbM+vEoiHfzXmwGTtbf8UtSFJBJ7ztsztcCO0lz6nXiFGiP
llijKdUCG89+GL0vzPT3f29CZy+0wKmgB1uZ7wUYUihKsXvdAhwBQZfTFwjQ
SflK1TdpBYkxWZ7+CgImfTNtqhxbIUyjVC23mNk/7J4yDj1thRLtWSH7PALG
FBSUZTNbge+WbrJrGrNfFHhFsa9pg8/CRma7/QmooUqbFWS1wWzuIrXtGAFO
2cvTilVtsGbTwN1KdQK2R7aEvOxqg9NW5P5YJQLsTDxKIjjaQV95b+R3EQI4
hxvFHc3a4XG4VprCHBlOzd8fE1/XAdFvh7bcTiXDRJfukzjhDuCT5FF58YIM
MZ93Cm1U6YBOlv6xV6FkGPWuPbN8pQMmKa4hD1zJ4McjkkV73wFBcmJRVF0y
fJGovB98jQZ38qqC2DqS4aTeZvbZvE7Q8JASu6SQBKGWXFMLtZ2QcYWNT3BL
EtDvs/Sv9naChRYt/P18ItgnTRRxrqWD2pmXNJuKRAj9U+csbESHu3QjaboR
8z4Mfzp0/B8digQEtZfuk8CeNlMWodYFllG0mV0x8fDh56+sWN0usDGszPz6
IB6WV4cSSde6QL9F4a+dcTyESre4pfl1QaS4SMDW7cz5ru+Ui2hdEH6wiysl
9gUsC9kQgw+6YXJm6nXe8zh4bt7ppZTfA79o5GcON2LA77cmjDb0wIGk6XuP
tGLgsRtlJWGoB3rpYmw222LgdqSj+zreXlAztgv4VB0N+tXs9/pu9AKj2i3S
QyYaePcq2YZs7oMS17fBN4ciIXQ1QG/MsR+MQrubKg6GQ7W+CM/5zYMQp9fM
avbTD7YqDm5zFh4EBS2zoZnnfmDB81IsSmoQXtXZLl3Y7weL9fL76BqD4FvC
Ym3k6QvyOppmFlaDEOsh8CeYzwfCjpu9dsodhKSZaxI10k/A9OCLk+FGQ7Bn
b55Ln+EDGBfnf9waPwxJLpw8GUGn8P69PZbPt41CBlfk4nNSCHb28BnY1IyB
qNwB9x4iCS3cNL+vO/sLbvolGmskpGPFngNBFRwTkCVi8X2CnI1SXMVjqacn
4ZDAKRFThzwUKXY4yREwBe56FJO0K0XIssj22nnoL9APWEdcX0Scu/D5WpXk
DLy+vofjTUE5du8z3yHpMwtkFRdSUX0VOhnzbZLo+QdeOoyrvL9rUDDqm8ka
kXkYOygl0DNej5lm5PRp1wW4u8Oh6unpJjTW8jxd83kRHGVqCkqhBXOuOUpo
LC+BTIw6W1ZPK85zH2cvvLQCwitHDvaltaNByyE1kbhVeH1kU3+wGQ25D60v
K05che8b18trWdGwLLXrzJWUVdArPiL+x56GSq5ulgmZq+Bo+I39kjsNeXfm
hwhWrYJ9WFaazAsa1t5SGeb/uwobbkae+kOj4RFO2TDeswzYf7VEYsGgE+fv
zgtlXmBAu/opTTTtxKzu6pd6xgygamsv+l7vRNEsm08h1xngz6dsxe/cicuX
Uke53Rgw7e89cii8E/NTdmqtS2OAhI9XRHpTJ97m+VOd9pYBbe9zRlw6O1HK
pcRAO4cBnDp+3af7OzFK96qdbzEDAq3SMn9PdKLzVHwkexsDtMIS/xzipaOc
mb1oCp0BKX8rDTdto+NgpfrrY30MGFV9Y/ZdhI7n4+glT34woFFfUz9agY6c
bK90xP8wwAqy1R330xEdXNpLZxhQoOn05aQWHR90aJtbLDLg5C/zGdGTdPz/
/wpwXbheMX+Wjv8HeA3r7w==
          "]]}, Annotation[#, "Charting`Private`Tag$2929285#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmXk0ld/3x6WUiFSkkFCZQmaValORFMmnkIyFRCSRlDIkZMo8D/e5VKQM
mYfaxszDNVw38xCJEqkMxf3d71q/v571Wmd4zvu999nnrHWEr93Wt2ZmYmJK
WMfE9L+vDOycptPpKKajMOGhS4Pby/sCllfoGHVhz273MzTIzZcTXfhNx+OG
Ba2uajSQF9e5NjlDx2nbo6VO8jRQ2ebb19JLx+GkocRbO2mgNj7fFJ9DR7ZQ
E8JjqBf0/VuzFMzpWOQufXzNsRfc2n0dbnxYw4bwCZ3gcCp0d7NPV1mu4gtP
3/gXJd2wp/I2t4rAP1Rxq4s1Ze2CQvtalq2DK/jhAZ/d65sUsAiWm/vks4yd
WwMC16zaYSniYQDCEq4aTQcYaLZAGufQ7rjRP0hbKZRiW22AJG05565nv7Hj
qLzUhsE68LlleV/i7C/8pWnjaMheAw/Xv3Zz/v4Tmf9KFRntrgRLr/b91Ix5
LLCoz1T8VgbR7yfikuzm0Cmfq2hmuRDKhsW3vBGZxSz3Ha6po7mwj0vt5KWU
GbRpjzrD2Z4B7yQD7MbGpzDqZB0u+afCcF2ekLLyJEZ/MwwO8Q2FCaloeSwa
x7OKk3p8bFdA8vGL2amscXxVVLRNJfAyOLYXvt5OjCN1glXv6BZ9WLpDFbEJ
GsdYu8fzcwc1ga2YdweHxTjCuuVP9/4dQFn1hAXjzeOoaU7vL+Mww4eXUwv+
XB3D7oGMUznNLrjtcaayzLpRFFMP+rxjyg/9isQbuBZHkB5rE2mi7o8rs6+u
LHwbwcJ03u4bCf44Zv7So4Q2gh1ffrrVnQvAd+pp1SdzR1BQ4cXR+KxnqM+S
rGtoPoKXg/6mepsHo9hu4Vamh8O400L8K9EchlyBe+fqbIZx79Un7Nq/wnBp
Zc+OIP1hNCX5rHYIhGPDAN8VHslh9O8PX3ngEI62JO4JiU9D+IDatnyMIwJf
i7Gu6qsMIVUtoNBaMxKllH9IvVgYQBeeAdXMlGi0kfH0LB0cwKx9Y8abPkZj
qujWztb6AXzOU8Wj+j0at/MecvuTOIB3pt4MiqjG4OKiY9WZ0wO4S7lNeK47
BqtLZy9PR/Wj1d2QQ1ZMcWh0fPbxIeU+/LNGG6lQSsAIpceUU0J9WGo4MR1k
mIDN0pz7jdj60KLYWlDKPQFPCMo0eg19wvtXK68PlyfgPrrDjk6/T7ibh3sT
ByTibOX3Vy69NNy8ravO4lgSPjn9vaP0fi8euPE8pXxbClZrfbugeL0Xr8p1
vBqUSkEmnZm2bJ1eTP9kr956JgU9Ln9tSRPpRVGjv3bcj1Lwns1EQ0gLFV0L
L948PpGCtgGDlZZCVOS/+uB+e1YqvgwegAE2KlYLD83k16Ti57D+Dwa/e7Bz
v1X/tf5UtIz/VHGuqQfzHDSyt7KQ0Ph1T4mSSw9e9xEL8JMn4fmW1tzNDd0o
N/E1TCOAhIEdLYd833Vjd0Tr18cRJGzobs5eS+rGwDnTmsQkEmoMNr5ZuNON
0eby3p65JDwxW5cxyN+NxbPh1BkqCWW5PpDybndhYsB5/2OCBDpyv98rZdyF
v+nKtqmiBL7ZVZHy8nQX/rx9s21chkAJ4bKkxN1dCNu5yVxAoIh8UdzTmk4M
UQmI/2NKIM+l7LArvJ14TNjGsDuawHeiQWUa6zuxe4ytiJJIoN7yjc9yPyhI
6/KNekcQGJgifJitnoIuXfN6gm8JXJuKGi67R8E8q1CVhGoCE8vvbH51jYIX
CtI35tYTeDhUVyFSl4Kq/Ks6GS0EOiuw+tuLMlhlsRyoBE4+eigjQO1Az60j
ahunCHyiZ2TEWt2B4xaL9IPfCBTap+Tz620H8vD94leYI9C4Yban5WkHmuZF
UD8vEriY0EwvudOBvR06ks//EhjlkCHxwrQDh08JavDRCWzbfu3RI6UOpD1U
Vu5kIaP9xIlXN4UZ7bZZH9ZYychawk+5zNGBj6RDnNm3kPFp2euzJk3tOBVe
WlG7jYyV5lbJiuR21HPbxXyHm4wrGwTntzxox7aSzZR/O8noeCE87r1EO87t
1rd+x0/GjF/a36LXtaOXhAu1fw8Zx+I3qDl+asMQ6XLxz3vJKAAfIjXz2lCq
dEm2WZiMBp/dvgg+a8Ou+eCasH1kDHsmp7po0YZeLVYFigfI2CQzE9p+uA1d
1JeoRaJk3NCdPvaKqw1P3NNa2ylORnA3U/aaakXq4OC/SxJkfCC4K9CoshWf
6X5Md5IkY0ENZVA2rhWvc0TW3zxIxlnbILnNTq040GagrCZFRnFOjaejZ1rR
5U1a1QKDr+Wv0Ur3tuIi57MjvtJkTDIqkYpYbMFtIeEO8wymrt7xsmtvwa/v
K6VUZcjIlXaw++SrFrSmh2lYMlhba0KM37MFaw7NP73OYN/vKQ8XDFpQ3Phk
uTqDP0QYtTfLtGDH5cvv/jLmW1LZvi99YwveNrRVCWew/GDzPY+hZrRx2b+T
mcG3fJ42XSpqRmvexN26jPW9FANB6dBm3GhzaosrQ89oy9IdFptm/BuzWHyP
oVfA+V3d4PFm1D38c0Kf4YcB763dRTzNqGndbLaZ4VdYxQGH0O9N6DDjOh3P
8LPJcrjSpq4Jj5gd09vA8HvDpnhuSG7C1l0fDLQY8TjxRt+W17UJ9aS/1Vgz
4vXuT93Whv1NKGEQO3mQEd/Q1+TqE8uN6KshT03lY+SXmadrYWsjflMY0pzg
JeP+j4f7yfcaUYcSfnuckU9MD3hCd59rxKGNm/wTOck4KP1TLWxvI5rKmA7t
YydjTHTWy0cNDXi/9ho9bT0Znc8GXPmV1ID8fcF7Exn5fGHVaov9nQZsbPSS
smTkO6u1oLMRXwNuLw18Y/STwAeK4ccVbtXjdzUfk5lBAg2mHOYy1eqxv4/E
rEcjUCFJO02Ipx7Fr6rle3US+G39hs2cHz5iFulFxumPBJp13eue2voRz1nX
47ksAo/6/+dv/rkOL7x4ksqSTiCvquxRakkdnsEk7YAkAjvIX1NrLOtQLW/o
1GQwgSedTexT8msxykxi35IdgYKiRwR5AmpxTUG0acaSwL+feChBJrXoqPU8
JN2IwAL1dmV3llqc3/bH/roGgaLbTjJfMqxB3w8CfKwCBDLXCRY2HazBXNVR
jZ3bCBy+//eGOlMNHt/23mCChcC4kYJWmcxq9K2dH6iZJSFbrlj85r9VyGev
2H3nPQknr28479VehUeYLkXeY9TTGt7RtT9pVYiORw1V0kjo4Zlg9fl8FXr3
7jw57U/CWV0OWUypxJoNfw8x65LwRf9EyFffD5i/bv+ftLhU7PPYmZqs8AFj
b2T86HVLRU7BM7kXx95j8dmPRZ4GqXjPIqOzFN7jmHxw4P7tqag5YccbuFKO
h0iXdWN8UvCBX6L4icxy7K0dWlA1TcFssZYjPw3Lce1olaiWSgry2kmbGBeW
Ycm2+Kbgr8k4NfuDJOlUihQnbfswzWQUCBN6NyRYimWjl8UVBZJRT+5iTURr
CSotx2jLzCdhyd13EyuSJbj+a2OkQHwSPltykWyeKELlcC355JFElGReybe/
WoB2/iwRTecS0CxNsm4vWwE68nPtieNhnM+nr1K7SvLxpXRVSMhQPK74VSyp
7sxHR7VzfiMO8djM7nl8CyUPhVl3quR6xyHT2xzdSs88bJE9fezM6ThU1B0x
d5HJw9c3lOTGWOIwKUzdZyAoF3dZ3M7l8ItFmiRr6JWQbORNHz0U6h6Dag43
c6um32LB+NyNeIUYzMhp6pTQeosbuDQO3v0Wje6KIbwrzG+wRSZP4bZxNPKd
2E4k3M9EH0/kdhSNQh+vuzXM1Aw89Y/doKcnEmequyfsFDLweF5CX+6TSKw4
EyupOvsSvVVKFZ/0RaDpRYGC/uvpmM4tlmjjHI7fFn4fca1Nw9iEtw8O8oSj
R0w7ch5IQxW7p6xVhWGY1O/TrD5JYHGo8Y6E4eco9djkYr8mgR6LosTgtudY
LqTc6/KKhF2K5WW3ToRiQXNn3QVKCjL79t4N9g3Gbi4/ik9EMjr86RNlTg7C
hctHBgv/S8ILFYt3n70NRPmR1F/81HisuJIgXJAfgBcP/Md0ITYOtfP6f0a+
8kcnu41bfIxikfumEsf6MD/M+XVr31RfFMblhb1xOeqLbUeEDvEnRSKzvvbT
oBUfnH3cdVTXNAL9H/NzP8/yRqPtLum2+Bzzdap+6OMj/E+Vk3ld41N8eTLR
es7sDkbUuey+ce4JWsQKGMlo3cKOC/2yra1eGHz1ruHrDmtMbNBD+RduKB7G
MW3Kq49e3eLd/DU6OJBxsOgEkxlIbR20Y5FWBPf8c5V5KVZAnfdJ5VoyglPS
mlMTO+zgYaRmk72iEwhva9fiOOUMNULP/JO5fEAh2vfn8qeH4Bsj4qQS6gvP
RBe+9ux8DJpbKowo7P7gYCl0103ECxoWZyVYNgWD80i0ep+qD9y4IWlTtBYB
H98RDmH7/UBLxM34yfEoGFPuEvnC5Q/igzW6eh7R0Czbbiy95A/T+qYq08ux
UFdbIHCl5BncOhHGKvg7CWahYbfEhhAoZXvYU+2aBn/VlzRCXcKBJM3TlSOS
DnV/L5R/7gwHP72cjqT2dCg13DvrfSgCLsWMN9+TeAkZ5QfSqscjYE74fLXk
YAa4Vl6rizsSBb2nJ5E3MBMGKi/PWQdFwYcbXu83qLyG12YmS239URD0tqBk
KCwLDirx74q5Hw2iR/bkRJzOhrsjR6fayDGwxaT4jed8Nvi16Kldmo6BhccX
X99KyYHc9vOVObKxYDFWrb/PIxfGLnQyrSuLBRnxRZ3VnjxY5FQrf4lx0Jhv
fjrvWQF8dE64o5SYAMfqpGrERgrgh2w9k1dnAuRSl9VTlAtBNc+2fZo1EWKW
IyFovBDc/zOiytxNBCtoOGp9vBjyzzQUNh1PAppedGl/ZDH8zj8g7+yYBOeu
XTusP10MP/m7uvRTkkD+6T8liC2BXTJO15r+JgG9SVZu93wpsAVcKut7mwzO
A6s5z8+UwVtOg7+RtGSY/N4kszGlDPJp0YYJzCnQwmUttaBdDkPJTYqxl1Ig
wSBerDW9AjwULpoGz6WA0tg6QW8jBFh8tp2NhQQyZYbzspkI0qJunQrcJBCN
eFs7soxQdPJqjsA+ErATb5RIOpWQ/uSBuowaCf7pGQ3QZyvB0etjpqUbCZaO
rf9oyFv1Px+1o31J8Es8OycHqoCrRLsyOJwE35g2PDEPqwKz6ayLja9JMJib
I4Fy1RBasT3dv48EfUnGO3iNq8GtdCR8aoIE1ACWVUefaqDNMN3cNk+CNour
HYJd1eC97mxBxUYCPnBtcnvsUgNiL2bu+x0ioOxfngU1qQa4yTPuCkcIKJoy
0ZapqwEd9plfWScJyK58t2eIpxbOtJvRmS4TkOpkVnu8uBZqmZbiNN0ISDLZ
nB09XAvxkqMZxp4ExGkVxH7fVAcPrXoMjvsTECbEZp9sVAcGIw3MTjEEeHUU
bltdroOiiI4AxgUePCos/l4S+Qii0lu9xUoJuJ/BPvFG+yNocjKNBiEBTl6W
JSaJH2H0+uEDTc0EWMpymFccq4eZdweSDowRYCZQosVtXQ8Tz/yLz38hwJj1
uvytkHpQ+aJWcuYbAfojJSwCQ/VwVjY6quw3Abot13/c3dgApV0H1yusEKBd
wvmpWaYBKKL8j7zWCDgZZvXmoWcDeAQR2YkbyXDCY2tM16sGeBpfO3+TjQxH
bcs8D3Y0wDyPpSEnJxnk1bj+6xdqhGMjAbF93GSQkSo/pnC2EeLmKv4w7yKD
5C4b0aA7jcA/XuPNzE+GfXPly0erG4HvRzF/gBAZPFpP+f763ggZmv6bT+0j
A/V1M2f27iaY07KQbT9ABtmA/+JvaDSB0J29Q1LiZAi07t8nfKcJgm+SzE0k
yfD55PXsvqQm6P1TzWQmRYbjQjOHoxqa4ETN7S3yMmSIWXWu0fnVBJvYk1to
h8gw17eis0moGVgO/heoL0dm6PehVZ5rBqHteSGp8mRIj2a7/sCtGepj5vZU
KpBhzTniu0JaM0jk2XkXKJLBUI/v/ve2ZtiYmLjqoUSGXGky86uVZhjvEe3d
rUwGNnbJEAvRFnDa1X8xiMFWU3m8fPot0LyvKJfC4A91R8hdjxjt3lNK3xm8
K61KKiSzBe5IfhIZYrCz19lizZ4WeLNLoiSdwS2mFHWmda2QUl2kpM7gA6pX
WkqlWuGRD9GXz/j/412jBneNWkHg6/mJf4z10X7bjkr5toL26vVIAQbLd83Z
T+a0gpDtgPAOhp7g3Pt/UvtbYTB0uWWEoX8yhMn7yqY2qE+40PFUlgxq9gHs
OxTaIP72Rxtmhl8JWlwxLWZtsBqW1GQgTYaFA3FCfoFt4LV4U+nJQTKcXy+U
BUVt8LRHZMRfggwvR14pLY+2QeR5vvXWYmQwTizWvnWkHQY5/j3PFCFDwX3o
OWDdDhPdj29sY8Sf06DefDisHV7I34vQ30OGKq5eF/2pdmi86FNsyUsGDrcc
OgtbB2jLB/PJMvKrzHqhdmxvB1C8l8k0LjJwn3p4IelcB9jTB3+UbGaMl0Nu
d0sGJ8/tmmchg6PQ+r7Lbh3AWUfIbmAmQ8NqoNXWtA6YVLX7Ub5MwMOSBHef
lQ5w5kj7co+xf8RfDZ0w56KAKWH0MYixv7qjRTYcE6XAzAgf56NBAmTuvg79
fZEC3i/5Q353EjAmXZZmm0mBdad6BE9VEPBcYM1WAynAPT8jqFZEwDH2kzIi
PRToD/GZ4MslIGaqsaSfqRN4Blgc7NIIOJv2qVXXqBNKTpgMuwYQMPc026bO
oRPkevmG/bwZ9cT2CV31SSd8NkvYff8BAVPS0nIS2Z1QyWdB+WtPQECJV9T6
DV2wcb+DarAOAQ2tYldLcrogU2XD7R9sjPqR+29Bpq4LJi1MU7mZCdgVSQl+
0dcFJ3VfyAosk8DW6OGHCJZuaHx+93fnJAlYx9uEHa52g+MDM9exShKcWXKd
Et7UA29EaeNpt0kw26ftHSfQA5wcyYGrViSIeb+Xb6t8D9gP9jmrGpNg0qfx
3D+THjA6mupmdZoEfhx7cqjvekAj99BlR14SfBSpdQ0yowL/Opnn806poKGz
ff3vwl7gmeJjVmhLhlDLzfPLjb3QJ6bjcawgGWiuTMNrg73ANndKgD8hGexS
ZstYN9JgVfS9iZE1o/+PJmcBAxp4qye9py4zzsfwJ2On/tBgzD1Kdh1/EthR
f1VFKPfBu7Ny5xdOJED+9ExOrHYfZPyMrxnbmwD/1saSk8z6oHZ4090spgQI
FaO4v/TrAxWy4Y+GqnjIv/9WrozaB7Sm8WcqJ+PhH58NMXqvHwZUlPn/qcbB
c/NeL9niAaCn7183uiMG/L4dg8mWAZDlYq0R+x4Nj93Jq4ljAxB0jzZy+mM0
OEY6PNjEOQjJHDveMjPuG7r1612GrAbBwivsy/NPUcB5SPZG8PYh4Fru1GGP
joTQtQCdKYdhcJXruK43Gwb1uns49LaPgoVHolCnuR9wy4zudBYYhYlVJb98
Fj+w4HghFCU6CoFeT3sMs57CSrOUIu3oKFhVXqj6+tsXpM4eu2pxfRSeXcou
UA54AmGnrmY6FYyC8WvpikjCC4wPx2uEG4xBh8OMx3M9V/guzPO4M2EcQlMv
sGurXEBXl4OWz3dOglFnX5Yyewj2DnDp2zRMwTkxzycTXSlo4X7sy6bzM6Ab
fNrr8LtXWHNQJbCGZRYoTjziT7JyUXRzxVS61hxsPnzOXdG1EPdU2GuwBMwD
+WcW77h1GTKtMGc6j/2E6cF2eLquEhcvvjerO/ALzp9bW19VUY39iub8B3x/
w55vdSKx7XXoZMi1TWTgD9jx/x0v/tGAu6M+G23YswRugqV9xvPNmH2V9Grh
/jK4vqan0c61o+FxT62G9ysg2MFqe0WdgnlmDiJH//0FZsO4apWhTlxiO7W+
9PIqgMm4oGFGN+pTVJX3xK3BJ7a3kosmVGRTZa+qSF4DqRGt4xlWVKxK7ztn
krYGR14qLl25RUXZ++6WidlrwO3jZYMPqci5tzh4dx1jvEWQcEQCFRtvyY/z
/FyDAArxx4BGRTVWiTDO83TImSjWMr3Ui0t3lviyL9JB+OxFyX0mvZjTX/9C
x5AO697czf16vRcFc2zKg6/Rgct2MPP+3V78dzl9ks2dDiEdW3RTInqxOG3v
8U0v6fAz4MRJVkovOnL8qH+ZRYfI/AwzGq0XRd0+6Gvm0WHIo2FP5kgvRmmb
2j6toMOXR4VPzs/1ovN8QuT6Ljq03ds7k7CVhpJX7QTTaHT4HMTF58RLw9Ha
I5knh+jg5ECZ1thLQ7042gfvr3Swc9C7syBDQ1bmjLPCPxh6wnpEm5VpiPZu
3ZW/6LAnsORR2gka3uvRNLdYoYPc7wFXD00a/v97DFxzE91qoEvD/wPbCGD1

          "]]}, Annotation[#, "Charting`Private`Tag$2929285#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
         TagBox["t", HoldForm], HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"S\\\",FontSlant->\\\"Italic\\\"]\\)\"", 
         HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{Automatic, Automatic}, {
       Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["h", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{3.8871885224783792`*^9},
 CellLabel->
  "Out[201]=",ExpressionUUID->"bd8d7289-1f4d-4488-a85d-8754938f155f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDut", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", "All"}], ",", 
   RowBox[{"Exclusions", "->", "None"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "t", ",", "\"\<\!\(\*StyleBox[\"c\",FontSlant->\"Italic\"]\)\>\""}], 
     "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
   3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 
   3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
   3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 
   3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
   3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 
   3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 
   3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
   3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 
   3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
   3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 
   3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
   3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 
   3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
   3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 
   3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
   3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 
   3.887187764733572*^9}, {3.887188007450289*^9, 3.887188008193816*^9}},
 CellLabel->
  "In[192]:=",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtl3k01e/zwKW0KJJWyi5r2T6WNk3JUqTSghSiUhGljbJFlKwlt1AqXWS9
901SFBOyRrZ73/de+xKJsia7+72/c35/zJnzOjPPmTlznmfmGRnHK0fP8/Px
8VXz5P+0Gqzr53K5GHB0jaflHyZemZILnprmoq+ZgPrdASYS7zQVxsa5KJ43
czv1FxO1lMwdewe4uFNw9bfpHibqrQpsqmZxMVki5lhMGxP3dI9UxdK5OLKp
oqqwlolHH9Sk/2fPxYXbT9I+ZDHRozbQ9ULhPJrUNIeY3WAig7G8v8hhDuMT
lPcf6GOgxJcra/Q2zaKhvpPh2CkGvnf5KrCydRrPLdIJLS9vxDNhmsOcgCmM
Pj5zb3xDI05GeQUjTOJDP4eV/ecbkCrcJhbT+Q9P3XPvyY2oxxemmtcaH46j
bV7qDH9CHQZcdvBUPvAX2Yp8I3/MatFrYZrHtT+jmD0Xv+JLczU63K2VJ1NG
0O6egM3VbVVIKeiJeeE8jBcnxfRyt5VjfrvSigzZQRyz7LAPvFyCciJ7DI6/
HMAjs0pyMomFmK0S7NzV3Ye+p7fHKjzLwfbSLGld3V6kfn/yXnuCij1bKFqY
242+S4yeXbWzQBXfpMG+9G5kXn70+LCrPrrVvk8TTehG17DHZWqCm2HSnZR1
Cu3GnJViboH3LUHww/rVQme68ZgR6mziuoHG3rgxm2Xd6OXD2GTt7g9eJ17l
/DvVheHi3Y5pAlHwJZl+VdqiC1erBO2OpETBokncYmrchd+k1eaY8k8gIq4j
MV6D5+8WHxGwNxpet8tQDAW6MM60RFfl+lMou5R4M4rWieLtxitMc+NglW+q
rtqCTow7Yi95xToB7ucqVYhMdKDUD+r4yKMEmB58e3Lsdwc+W7Y1SLwyAbrs
k70/sjswZT8ZZrPtDWTvpRYbEB0YuNu44L4oFY4KxB+ysu/A+JGZ0PXvE6FM
f1PH9hMdeGl8iJXzMxF23HruvsmsAyknlC4OiSWB7M/Y6E7dDnTOE3Ha4ZME
YxVPm1yEO5DhkPBcHJJBUUymhs+rHSftP7Jf0t+CSIjUcKlTO3onhdtymt/C
5LTE6tCj7ch/h7k6bUkKVLSIn1yr0o58Eivur7BLgYuv1/Qoc9rQjs97vEog
FdIUl84d1WtDzXQrsfY9aRAVs1h6g1wbil0aumThlAZ3lgnsaxVuQ+qDtmvH
Q9PAdGDBwwu9rVj5NTd0OSMNBmgza7wprfjSx/+Q7pl02KI7tCVprAVNvGbf
mpzNACc1P7+8Vh67apOqgRnwSmFlQ015CyrrlUwHJ2aA6Hp1j3/PW9C/dN40
szsDJibcikwMW7AU/Z7EnMoEjeH51afVWtBHSmtwt2cmOPdFOF3d0IJKv5mV
p6MzoYVNWx77uxnlxptvz1dlQnHe4In+6GbM638TRGrSYDbLN2Xetxnn19Nf
6pjSQCdNeEb0Es9fY+GF5Y40SIlTe71TvxkNjFVrxB/RINzLrT+spwlVViqN
lffQoOz6/K6E2iZUWGDg2TxFA77LEZHv85pwcWyRz3khOlw7TdNuC29C7xoT
2VYtOljrD/qq6zah9vJfi0970CFKx7d+n3QTPry39p38Azp82yosby3YhIej
ko6ce0qH3ZJqlXfbOBh5erRs/zs6eKwr3Eip4GDqC13Ony90IIQPuaVmc9Df
7edhwe90kOO6rm64z8FNYW0Tqb10OD0xd773KgcvUt7d3DpKh6dD4R+nbTio
9335iNIcHZZ2ZNrKqXNw8NeDA1+XEmDA1if0xDj4us897JYQAV51NfwHF3JQ
pX3v1p5VBAx++fP2BouNutHwd0KMAMU8n+ngIjay5FcdeyFBwJksIfP4dDYG
b17hPydNQFxq/KssChtFBozjN8oT0JiwdbTUj43n9g6V/1MgYEVcgWHTJTaC
xn7ZSGUCjKPMnw0eY2PI+7fff6gS4BfS+ot/Nxurb94YnthKwMcA113rldhI
OsplVKgTMHpnLkJVlI191jqKVpoEqF4P74RZFgZmawdTtQg45yKhfbyXhaqN
2f8y/yPg5dnM+xfrWLgz1ej5LW0CWKf0Od75LNyiGPRqjscix2tUHyey8GzO
UrV9OgSYHrT1TYpgIZty7poJj+8Z/qnL82Rh9SHFWEEeF+//fVj7LAv5T1yn
RfLO85kPfKeZszAtxM+K5MXbbdFvrryNhU7FikVtvHy8T/yqpsqysOKcglgq
L9/8k31mkkIsVBlYFaGjQcCU7c+qmAkS447bHA5UI2CbY++B1V0kKlKMwylb
CLjl1FMRXk1iJnfE85IKATnOP0yWfiDxXNoBQz4lXj3cussCEki0+75M1mYz
ARrXu4zmQknUkv1k5CFLwBWPzq8et0icUSe6raQIoHl17Bs9Q+JQMr/m7EYC
fvu1F182IzEv5dHZcxsIuBjc+sVBmsSOkvhj/iIEJIe1QIsgiT9an97VXUHA
j0fNhZbjTLy4KN+dWEKAQyzns1kVE41bUPjnDB1ex7N3luUwsVB4s8GdETq0
JbDy97xiYmtAVEMM737apDE/6vDmoPxi1cHbtXSIoTH0CDsmnglyc9MvoQOZ
3ZircoCJTxvbdSJy6XDsU32OlCQTzSmXojjP6XCwuoZYVsFAMdugiM0OdAip
q1YPzGZgUNQHMwcLOlQwvtHmXzBQE5bbq+2lg1FrZcaYOwP7fdoTfaV472uw
NKV1I48tDxGLWTTwHv2qaL2YgVXjY2ItJTTI/1eS3DDciONBtltNCBrocYsS
y0sbsb9QN7zjAQ00RApfZ11pROmBXH4NLRq4rSmQ2mLTiHXK5UHFG2mQseHz
y2TDRiwUDYChRTRQlsl/8VysET9aT6aLkZkgq5UbE1TSgAt/fu4svp4Ja4/T
Hp1c34Ah648H/X6RAdkKoflGCxvwhs8xC8uADDgydeGH5lA92oZ7sa9cyICQ
lzLbBMvrccA5ckOORgbM90W359/i2e0eX43EdOj18VLbRNZh8s7NyF+bBm6H
H8cUKNdibMTwatePKZDy1/Q3ZUEtbpTVLKuMToGu2EV73Djf0TG73av3agpY
/vD4KfnwO9oFWM04KKUA3LbTvdtXgxtX2gRfiebNF6oqw+BtNXbpH9tn6ZAM
2f9KV1bIV+GA5XvNhnoqRKS9Kd49VYlYvzs5gkoFFzu/m+9rKjFE0TtB9CYV
5Mu2Nb+5VYm2EcVx19dT4SklPdmnogLV2zf6p518A3e0H+v/d7kcj8fuCnJn
vAaDa6ddXr77il8km7PbDj2HpOae8F+Bhegrl+M1ExgKthabcprPJuJel7UF
y5xCME/Qi1nMi3P9psmE6BwVdboWSPpbI9zON7fYwiVQbvjT1I7iStCpUzT+
IP0BD1A5NYesG8DCrYaSZlSARuaiC8ffs0BHRYsT7lSEkfasuxofWuDm1COH
3q8lWH5IQuiIaCcovlrHZypThn9k1vo2xHXDON+sYp1SBd68oeoQua4XRhqS
HXr5qpDVInLUqaIPFkX/m9Ns+YZnbu/6ueTgAGzpTFRv9qzBElW9kBKBQVDM
UhW6Jl6LCss+9yXuHwbXXR+fFeyrQ4nPLkYCwSNgcNNYGX7XId80f+q1rlFo
fyhvGRJTjxMWBXalm/+CXd66YU+NBmzWtt+4OXAcOkfX+JyvbsCrViKrZFv+
wQUzoTM+to0oFv3DepHEJLhQlLbbtDUi7dTrt2OeU3D5bejYq7MMtNL3219R
MA33ih/G+TQxMMvOVXbH7AwktUrE7TBl4qTgvoV5J+agtPLKkYBC3n+3fqeu
RMw8UFndebkKJAruXF70OX4elJ8vE/VTIrEoscnsNHUecpgUCRMVEjU8bzs8
p82Dnr/hYXIricJSH8LESueh6Fe61Ig2iZWXtbrXjs7DKuclIRv2kbhnqfIj
4YNc+PusfKu6PYmT7pPiNAsu3D30VWaQ18fozeVJ5lZcEHqjVJ3hSKIk3elT
mCMXdlwIMlR2InH2RGKv4G0ulC0WL5N0JfEDVUp/STIXzBo7pWfvkOgmNFSe
nM6F5i8a93O9SVTwKDxqnMUF6VdW1Ku+JEab2l4M+syFUuYDgR/+JF4biXuy
sJEL2wL7XcqDSVQ55SxJZXPhZYx7lF8IiZ1ft6catHHBuTvQXS+MxCMx7EL/
X1zI8Ek9mRxJ4lL+lAMyQ1xIOPfT0fYxiejiwfjylwuLswQ3r3lC4i2msf2Z
aS54UJRfV0WT+P/7CkTssGHcfUri/wCiH9o9
          "]]}, Annotation[#, "Charting`Private`Tag$2829527#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtWHkwFYr3JzxLZevJS5ElhEi2knSEkIg8SpGtUETxLCmFKCIVUcpadpUt
+3auy+Va77Vde3ZJsstSuV+/md9fZz4zZ5vPnDlnPkfE7paJ/TYGBgZ2RgaG
/7NysHuaTqfjG/HX36vNaHhrXSxkfYOO3tNXciVNaZj7+YjE0godxSX1lcJN
aKhw0NBu8jsdb5zW8LloRMOjPEF9zd10PB1xZWVKj4YaYwuNb3LoyMbBlUJX
o6FJcMsHRWs6KtjX6fwSoaE3JcjFsWoT7xNd+iR+dGFn5/bpats/OGwfIE3y
6kJBwq2/j+77jVw32mVFmLqw0LmWhWtwA6mPJxUCn3aizdMj870P17E48biI
DUsnrkXeC0FYw5NnLzKE+ndgMueXPTEjP3GRgzPdYaod4/SPuHc8WUGiWidj
2Zl2fHjT9o7UmWX0tgNH/Y9teI8py9v9xyJmK7ybaV2hoq0/5QAtYwELH7oI
fj5JxejKiZg4p3lU5DCsdNtoxbKhgzs+is5izGWRQYcjLSjGraFpmvAdK3jn
ml9ZNmG+dIjT6NgUOvco6dlKNOAQKU9YRWUSFeKz2Us+1aHvv+vaxw5N4tdQ
1WOU5Dr8Z0TjxnHRSUyk3ioaflOHxr8peSc5J9Hk2qHAxUd1SFCY1dSdnMC9
4laB1Ct1mJQobW/+agKNb3vz3NpRh3Y+yZl3f44j920DqY1rJJw4FK2ARWPY
+GI5fT9jLUo/SJ2d+jCGL0zmOh4t16ArpTCL990YLp5+qTv6tQbX3GiiDmFb
mGyJ91trkKOYf9dOmzFM/N60diK2BuVPvV26zD6Gnn2MB5sVavCeWWLBT4tR
XI6LDEu4RERCWs5t4fOjGOOtE5J+lojMa3hIX2cUNRWkZFPUifjs7XBKvPwo
CrXbcNwRIWLSkEi0NssomuyeVg+eqsa6GymekdkjKC7h3CvjUY08DzJV5BhH
UMGxbH+VPwEfFx0kc68O46AvcyiPOwE3ZtMvLc0MI7PA9pELVwk4ap3mW9Iz
jPqybf1FpwmYfyqZqJk7jEPT+vFkdgKasMSfu2g9jDJ7Xn2QFUKU3CPSwnBv
CO07KWFkgUrkDt0/T3IYwr637in26xW4tiG4K8xkCFn5Ve0HuyuQPCBwiU96
CE0D0r0toirwetLfE1K9X3D5cl1j8PYKzJJk+2Ny9AvK7fINM1gsw0Mqc4dS
lwbQPTjLLi6hBB3k/PxKBwfQbXHVNdijBBMluNpb6gew8D2/u4p+CfLyH/b+
GTuAQRRC5uByMa6uulbrag9gzvYQV3XdYiSWzppNR/Vjko6zbsJQIZqrzz44
rNKH8ax6qvK9+Rip/KBNS7gP3RwY1vjT8rFJlvOAOUcfmhab5Wa45+NJIbkG
/y+9KDWwo5PAkY9idJdd7Y970fgIQ8AnlTycJfxI9+juwd7WVOaFtWwM1P5B
Lb3TjbFCTVf+uKQjUW/GSOlqN5o5eD4vmktDBsPvrdmG3djiJD3jfTsNfc2+
NSeLdqPc8HdZ1lup6OUwQQ5vpqFKQInaNptkvB4ySLAVpmEBj5iIrmACpj0d
gAEOGnYsB9tQNuNw/EV/1YWVLozZOc7C+CUWbd/0Vpxt7MLmeKda7eg3eDmr
q0TZowtvT1SLP5mMQoPmllx2cidO2Vmzee19jKHU5sNB+Z2oJSs/yRweiOTO
puzNuE7cpfjSib7mj6cHGz4uuXXiJ8XWrlU/bzw5S8oY3NuJYqt+flLBGijP
XZWUd6sDV4ufr4Y+eQR8ptkvLvG3Ixtxp7Xz5DvIlwgrO83UjnLvqk6tZb8H
43XH8SNzbZjN9FuczycZQhNEjnHUt+Fp0yESM28qbE5FDZV5tWGdrr7g4IUM
mLx/T24fjYos18onmWVzwNUoIqZSioJ/JUxd7t5WDBnL+jPRjBR0BH2vKb9i
GH3DrOHa24oCbTNNmX+K4cK491ehJ61o9plULf+rBMDHSsV/qgUlWY4qzP4p
A+5kmU7N9GZULjVidhZCyP9J4iIfaETdPatjVdQaeJb1nnhyvQHpBxXY6AK1
4Gzl51nY0oBMi9puMva1cKDuWP97rwYcLvDgkluvhVfRH9Luk8k4uXTv+9/7
6+CuUoS64s16FKmUUGmyIMOFKZf5TI16HCiK3bR4RwbFOP1kYb56JMrt3bwy
SYYZJmZ2zqo6PDOtVvjStQGsOrw6p7jqcHkyjrvbqxE03S2dEz7X4iWbx4+N
rJtBSEJViC+kFscOnXf59boZfvXytYVZ1uJ4arvkS0ozFJyiqPiw1OLxiect
jmotIMGjuc30Yg0yD/LE9zO3wjaSUGGjTA1OPGqbFlBqhaE7vxxPMdRgjccN
a067VogZLmiRyyRiZvraro3SVuDIlXzD/qsaVcuPNBheosDkVWYDf0o1Dtu5
10Tfp0AN/8jmz+RqDO3i+XgjiQK+fm+vjRtUI+9Hpuq0EQqYK3rzW4hUb+3K
wVJmBioof/23sW2FgKzvhyM8Oakwe26nPCYQsCnIfjuPFBUat02PKv9HwKm4
ugpVZSqkF9VFf9QlYMaBoR0JGlQIckrWE9tHQIUeXRf1s1QgnGBYVRxBXLHq
8OE3o4JPSqmlSChiOOu1NRkrKijs+I/IqYjI929Wz10HKsz8d+jg7/4q3EVu
VmR2pUJq/0T4t6Aq9IhdP0v2oEKf7+7EeMUqlK/jbnS8SwVOId3c86OVKLuS
LW7pRwVN9K5miajEYyPLi6mBVPCyyWgvhUo8Y2Y+djqYClmMvWMusxW4oshD
OhFKhS/v2VdE4iswb/ruw7CnVODVPv4X7WwFii05iSg+o4LOhBN/6EY5arDf
Jyo9p8Ldx7EHT2aWYzjRLCliC2dLNqsuXizHwKMDnGe38Cj5t37aX+U48Z/z
XbuteH4nWcvLhWWYaP/boXcrv8F2KxfOa2XYyXTmVt5Wff+Pzx4Qecuw5Po3
rZmt/goM8blXdSkKv3HOCguiwtTsXJL07VJkL3DwjfCnwr4XwvlfhEpxQTM0
jX6PCsZHztdEtpRggW2WZI/XFv/tAZ06viVY6NbAJehGhZL/8ic2pEswjE3Y
j+q0xe/fYz+ze4tRrk4sdfkqFYSLdrFdDSnG2dJwDLOkwpM1D+mmiSLs+bXA
vs+AClVvUtX8oopw7ubc0h4tKiwepxkoahVhSNdN7ShVKly+f/RWbFIh3tXy
/8UqToVnQtf9jYwKsXG03PEvASoQMSaCabMAjbp+aIVtzZP0to3PzhYFW/dy
+Lj9DAWskqVJ+zkKME0gJr6gnQKR2ha0jpLPaDex45N4CQU2Hlesqe3+jL2u
rGMB/hRo2u6nvqMtD33fjQcWsVKA4VPOOYJfHibE2mykfW0FpXPD1h5yebgf
QXOsrhXiXpx6OBCWi2NpWnymga3QI8327FJ4NgZ/zopMW24BDZcbudXTn/Cj
BM+jR5QWyMhpbJfS+4Q+eSHTPZkt4KMUzr+x7SN68VZ4z1u2gMBJ3ndv72Si
skSigGNlM1w5v6+g/2oK2ixLilo5N8HM0oqqZ20y7qDtvx2k0QS+ryjIKZ6M
JrTLyY58TRDX/7Dp1OQ7jM5fLHSvaoSCpnaSUVsCxl4RMF/f2Qg5yzfFpvqi
8HjX5yqfVDL4dx7s3FtjiDml6XXiZBIc4hp0YpFVgjb+JlHztySgLTxM5F4z
B/71n0+jb5Lg3kudRmel2xBirH7yKA8JaoSfBMdzP4Qb+Rc11CxqwdFR2qFo
MxJKpXSPnlkiQinHvS6iZzI8WL7u/kyVAEmyfB05oilQara+ELCdAI+Nc6hx
lBQQaA0X1SpHMH011uQllQa5nraFLcwI8yIGROnBDKiNDb0vGVcJEqqCOZHa
2ZD2JyvSYaAMGj5ba+c9KQD/8XFKfUohnCAdqpEcLgCu1w+/3jcthFza+qkE
lULYpVot9ZK5EF6tv4SwsUJYVpWHPvsCuAbk4/bqxfBrLu9cx6HPQG+UP7Jn
oRRIT1I0ZJpzQXmUUSjAHOH1SGfd09gMkCu7uCCfidD2IfV3ikAGSER+qh1e
Rzj64N90w7fpsP3dR+UkQwIkNpQYGsamwW9j8wH6LAHoI9ds5pNTYDA3RwqP
EEFtvivqH0oSJN62qlUvroV5xixBPq6XEGfJnh09VAv7f7OnOcpFQoxewesf
rCTQfrkok3UuAl4IczjHm5Mgvf9qwqLYc/CnFvL8WSfBPo/cs3K6IWArv9O6
4kQ9KB+vPXqqzhPE5svXjxMbwCainj1b+z76tmgFLf9ogGCjaXaJc/5Iy2ri
zN7TCN+exBMk1wIw1L5fTMStESb3ctdRdB7hfN+GIatwEzRo3w5mo4RhFUn1
fcf9ZuDiZXzwRScKL8cW699UpQDTy0xXJpUkPJPc23LOvB1SLN8l+Jz9gPOP
sh1ILu3QkeZaYxv/AWOuB9LVAtshrkV3B+PcB5ySlT0ild0OMfKbHQ4RHzGk
xD+KibkDlgS5n/W3f0Jyi6RFSU4HaJ8Iyrl2IBd11zynRFi7QPne+X21Afl4
2pCXaaWwG4ZTGfaZjRfhM1v2hfWGbohdFtFwZyrGHk+Goc3BbghJlArxES1G
p4TZMra/emAlZMeKjk0xPptrdN93oQeGOHcbDfdt+UcEjmr97AENf+XmA80l
6ERbro5U6YOw+sPZmYll+Ny621++eABu7j1MQ64qrD8nuNOYdwTcDQIfh5oT
8YcI34P2t2NQoptKXGQjoaeHjO3z3ZMgG7Hnzj6beuwe4DZxIE/Brj1jboFp
DWjjc+Irq8F34Pymx7MZ0YQ1MkdDa1hmYZaiKcx0pwUl2CumUvTmQd76mHfv
PxQUrHA+zRKyAJFPCPMrZ6jIsLEt0310EZYqb46dZG/D1fOVViTxZaBMcl3l
ym3DfiXrveJBK8ArGFWVcqkdb1/k5hEd+AkVFeX7RX+2456ocXNmwTUgKcWb
Sm3pwWyLpPSlO+sQ6+ZszcnZiRfV/fTIlRvwwKNHZSGsE/OsXESP//4FLW0e
qQTGLlzj0GIqNfsDZbIM2n33utCkTU1FMGYTAkyXK4emupBDbXt1RfwmrKte
t6uY7sLqlL6zlsmbcPPV4dyYmS6Uv+NjG5u9Ca17VfSM57uQc3/x0z2kTei5
+9SlfLULG24qjPEtboJM+p2MgL+29DKb1AtOAzowGmFBqxhtS4+tCWSfp0NV
ggQmidMwp78+1fAiHZhVP3m5S9JQKMeh/KkdHcZfh//4W4aGv81SJjl86FCZ
3vzHTIGGxcn71VnT6HCMPbGarEFD151z9Wkf6GCy/OZDtCYNJbyrTHTy6HDL
/qG2nTYNo/SvXH9UQYcc8/DADV0aui+8fcnUQQdufK8quaXvpS2chJJ76BD2
QCRhwZiGI7WqmZpf6KCneSu/3ISGxjE9VQHftrDf1+lzF2jIti3jjMgcHVIy
znD9Y05DdPbuJCzT4YnK9NjwJRp6delY22zQYXpg/HqmBQ3///8AlqfMEtyu
0PB/NIzz6Q==
          "]]}, Annotation[#, "Charting`Private`Tag$2829527#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmGk0FYrXh2UoTcKNrorIFJnr6pralUxlpigy5GowJGWMiygVKhkimWWs
Do553MbM4TiO6RwkXJnnUJy/d6330/6y9+/LXmuv59kCN50MbRkZGBiYdzAw
/F+VAu5JOp2O0qYhk11XKei0Lvh8fYOOR4Cmr3iFgjl5siJLK3Tcp9fqlmhE
QbkTOjfHp+hYQj21w0Gfgmc4nvS39tDRQGFuP8MlCp77vtD8LpuOpWEnV46o
UNDwWdvHU5Z0/Mve/O5xQQq6tz9xvF25hXONLsq2s91IJu+drLbexN4voj5n
PbqRt8rp4Jmjv5GP81H4IHM3FtjXsRygbWD34VyR8FdktAqRne/zX0f6nM3A
8C4yroV5PUdYQ4K+zmRoQBemsA3yRH9bxeixP0bFpkkYe0n2QdeLFQyyrJZ9
oEtCfwdrDzGtZTz6HILliJ3oxZTl/mBmEe+5LLO6b3agtV+7ECVjAbOadq8l
aHZgZMVYdKzdPL5iv+seeLAdS4dO7Pt0fBa3bos9M77ShoLs5y4Yx08hbSKG
5+qrFiSKP7cb+T6Bs2ksbulOTThUn8svLz+OyYre7n68DTgmESmHhd/x6kcn
JBDqkMMnU15qxzd8Or+bZpZVjYGFJxrZfw7j3XMhXKfiq3FjNv3a0vQwBhPV
fzOGVeOIZZp3ce8wch6OygnxrEbi+ZSaCznDKGhgXqiuWY2GLHG6JpbD6C7K
tVdntApFeQTaGLyGMGI1I+cGdxVKyM9JpC5Rkf+RDJyrKsdbUr6+JTQqarz2
KlBMKscEkQOktgYqZudUyPP6lyPnIWn31fdU/CGtVfNOtRx//rxXrXGRir/D
+6od6suwpmT2ymTEAD64kKZqUleKpiqzPtLy/Ugc/ePOAUIxhv3l06nK3495
rMpcpcHF2CLJJmS6px8v+F28oHG3GM/ySTX5Dfah7tqWFqtQMQrSHf8gBfZh
WvsOuWPRRThbNZPu0tOLT2jMbk6PCjHg4kxHiUcPais5yM0J52ON5rTeaZse
/LzT7+NJhnxk0Jn6StDpQRdpO9GL/XnofeVHa8rxHpT5VLmL9VUeut0aa3zZ
SsEjxGSTriUi3nlOq7Lmp+AEHvM8XZyL2q1tObsbyWhxM+5bhCoBgzpapZ8Q
yWh4mOl7x8xnbCS3ELZiyThxVLaVEPUZ1WhNn5acybj5lDSsPfkJz87WZ9CO
kDEvIkloPegjyrBXJuY6deEdU5/RsyUZyGVMCL12iITXNJOc99ckI1EkuFSN
iYQ2M5sW522TUX/99qjsXCd+11YMYmZNxqB4gb/3NHSi78TToVPaSbg1ETFU
6taJr5rMfU/EJ+D4v15SRykdeEuLwc3R6x3e03sTXSHWjkFTFbe72p9jxvKl
6cgd7cgmmFL7N88zHHnHfO5e31ckz4zaHrB6ildH3f/je/EVT382dJgZe4zg
aSHvN9GGbIzTDT3JrsiecpJ8Ib0VxXTDnK/vsQTiav2BRqFmTB0f2+gbfgOv
spJrzq43YRPHwDRlZzjYW/i6FrQ1odCyQZSWdAQIffl7INmtCUuOFxjWPHsL
byM/pv3b2IhibzbNPUzfw6PTb1ROOTTg/v4ESf7aZLg64Tifea4Bex6Liik4
psCp2Esp/FwNKNYhAWw8H2CaiXk3W+UXTIy32P2nWypYdLmRJw58wTm7+6Pz
6hlw4YG5fXxeHVZ36/WE6BGAT0SBj+t5Hd78y0LK40g2/Orj6gw2r0OlCItn
rJPZkH++Xd6TpQ7NVn4t5DfkgAjHBUZjk1q0vq6v3e5DBMZ6voLmk7XIPsS5
8HKeCEMev26fZ6hFn9+XAjdt8iB6OL9NKrMG4z+teIrp58OeHNF3u39Vo27M
tL0zFMK4DbO2X3s1PjB/YHO/qhBqD33bWk2pRnLDudB01SLw9o35Z1S7Gu8Y
aThxGhTDrO5+GYyvwnrrhwlWQaWQOjD28seTSnTV4tESfo3Q782dEHeqEoND
PrayHa4CNj6NHIORCpzSdOo0vlcFblYZpBKowLWs0t7Ao9WgPmZ3KGijDAcV
Rq5nvamBR4HvT5zNLENl1sNFUcs1QBBtVVg0KcOTSY+YV67VwiE7SfPrBaU4
E5aVf1OiDiZm5xLF75fg66shJfOL9XA0lJ84yFeCVtmSFioOX0Bf1qA2rK0Y
kx6detQ98QWKHxLHNsSLUfxtrv3N6QZ4seYi3jJWiLSZPCcj/maofJeq5BtR
iLKR58yuFzXDoiJF+5RqIarYCPgnGrbA9X/POL1PLMDfRs0MV9+2gjjjRp69
WT6m1m6xfTVuB4sU8fpje/IxokytmJe1A8IumlG6ivPwGoTbyd/pgI3A8jUl
7jx0lnp/z0e6E1r2+qrs68zFSY2lUqY+EjB8ztat8s1FysTIlIdmF5zWHbZ0
kcrF1oyPW59KuiA29Lw/NTgH967tiwlIJEOvOOuray8JqJ37zMXBgwLnHO/m
VE9+RlvizeU3sxTIyG4miWl+xuVjn4jrNj3gefrloQ3GTzi+c7GLeKkXRtxm
FW5afcRwZrF8lrJeuFSiZ95ckYVRDNJnE0/0weGznEkxHpn4dkZg7el6H/j7
PaxlpGQg52iLToVZP0zVkMfsTmXgf+LG7/4s6QdjFnnWrtB0fPFP3F1ujgEo
14gSV5pNw/4Q80BlmwEQClrTTrmchs4X1JkOZw9ASOs1p72ZqfhFP0tWa3kA
ltnK3jzcmYqJi8aWznJUuGFwNH/A5gNu6nMYad6lwvTSioJrXQrmq9yJLY6i
gvfb7dshnILdp/eaVlVSYZ9CplrG02S09ftmpDFIhdgB/5bz40lYovKVQ22V
ChI+5gYD6kl4fSviSdVOGpTxy/e4pCdiw2MZ7/YDNLhUe+AGG2sixh13b4rk
oEF+C6lerzMeq5QuCV7cRwMye2Cnf1gc6r9W6+NmoMHSFQVagVEsKvuOWhnP
UIHz/fTExMH3GCVh0XyZTAW54YTlI5R3WFjMK25UQAUDYSMGvaho3HGrk/FL
KBXu2+3c528ahX/czi1luk2F0OySQwU8b/GHyJrQvb+pkL3sIDjRH4GOO/NF
7rBQ4asCv/SR2HCc91DxNv46ALM+XYq6N8KwafJrckT4AJhyuny4g68x7wBr
YtDBATBSYmPc0fQU+21BfnB7f37kE+QjtTp42Vw8JPN1D0gcoNmxSJ6GYFOl
OsfzPUBZ8E9gXzOFzxcjjdyXKOAVrt5sf/o+LDaXltaYUqCW/8WzOHZ/OKyq
7+Qs3g23b4vfKtwKAyWlru6kZRJoHne/HqASAWqxyRxbuSQ4QavV1feOhMkq
Jzat+ySYNLxxZnI9CpQ5K+Iy5zrB4WwoK99KLFzutHniuN4BJXu8umtcU6DM
YlnC2fErJEpydWUf/wBHWeR0FH61QaB+dkds+wfQ0psu/RrUBsZvv7e4iaWB
nsdQqFJ2K8wLaNeI0zLgiZqzMPe+FhBR4M0Ou0gANZvWrKX9jbDPvOiT7wIB
DmbE7dXLb4AlH4Msh/hsyKDpVk2bNYDVSI2hoHcO5Ckw7CURvoDUiZ86m925
sDm/etP/Zj005VlezH2RDwr+I1Mbv2pAuV6iVnQ4H/5szHJyzKuBHMr6+Xj5
Amjiy7lcbV8Db9fDIfh7AUx3dbFtDFbDP9CoaKtSBCOHNGmy7VVAb5aR5Vko
Ab+eLbJJWgX8NbKD77EpwnLSPtHylEKQKjVZkMlEGLDenWenWggiYZ/rhtcR
XJt9E6a3c/cmfforUacKvKSSxG+IFsBvfVMqfbYKmoT8/owqygNaTrYYytZA
pKCGVM9GDiTct6hTKaoDmklhadxKOsSa7yZEDtUBx1NBYTHLdIjWzI+a2VUP
MZ0UxYqmNAjl32MfZ1oPWdf2hy0kpYJfRwHH5no93Ms7kSlpkQLWMvsty5Ub
4JuDx063nfEgOF+2rljTBG3xz+tuE4PBu031yfJMEzh8F34mGfcCKFktbASe
Zmg+ttSrEvwMgmwHBAWcm4E7W5GT2zkA5vs3dHbxtwD3sfjgk/VuUFmvkNz1
byvE9M2yBHyywuvviy45KLTD4VqmBXJiKOZ7QLewbTvkaC3e5/J9g2xXGyyH
QtvhnUT6v1LmYVjN3uNiONEOa3usJVc5I/Cgqpde7OUOcCKeZ5Z8GIVexTGe
/hsdIFeWwpTAEI9aKX1tuqYkeFdeNOook4rzTwm36h1JUG+wS/Xby1SMvhNA
VwogQfdlnuCpyVSckJSUFSOQgGsh0rUxJQ2fF/tFMDF3wTDtjxvl7BnY2CZq
VpzdBecafhRr9mahxprrhMCubpifzPTM5MhBNR1OppWCHnAOiSzLGc/HV9a7
F9abeqDDkb6ZzlqAva4MQ1u0HpARLr0cIF6AdvGzpaw7e0Fk+HXluGMBvppr
fnD0ai9U3Wcbtl3a7n8TMKK62gtzaJNtt16IdpTl6jD5fpgWUItOXyzG15Y9
fjJFVLjyISz2wzZPB04rw3grFUr/1uwS2+ZtH8/kzfcjVFCMMbONHizHe+GO
j3ax0cAg+F9+uSMVqNvA5DL4Dw38WXmfmoVXIJu0zO0QzkFIILgWJflW4qut
5zoTjkPw2fvamq1QFTbo8u7X5/wG8sIE5ezOapwR4PIhxXyHwUPdOYSEOnR1
OWn9mnsc0kV3Bp3fu81VVHbDW40TYPXaby7XugmtPJX/26U9BeTjh9oNTVuw
9uSZoFqWWVDuDD4TpdGGIrvLJz5ozkNSTB7LybmvyFtur8byfAGsQ9VDvpzp
QIYNxswHI4vQUuLWbLvegT8NKizqhZeBqG86yZDciQOnLY8IP1kBr3Mk21M6
JLxvws5xnLoKAZu+LUxTJOSJGDVl5l0D++XBhUNuXUgwS0xf8lgHmSkZ+ioz
GU1UfDUbKzaA+NlKNSWAjLkWjscVf/8C9aPuVsc2tv1vjypTyZVNiEtLlKS5
dKNhp5I8b/QWyEvqv7w70o17lPZWl8dtgdoXkzuao91Y/aH/snnKFrguvZgS
Ge9GGQ9P6/eELRgvmJ0c+dGNbMeKQnjqt0CaqNh5daEbmxzkvnMtbkHNaqaJ
FMO237KKhbJp0yHhYatIHC8F15zXDhMM6PBoSO6i8zEKZg80pOqY0IH0OGO/
mgAF+bJvlYXcpANbskLqlBAFf1/5ML7Hkw4DRgqTpyUoWJRyTGVX2va8StZY
kSIF7+2fa0j7SAfuoPXOQGUKirhXGqrn0oGnUNbhylkKRly6cedpOR0sFzqy
Fs5T8MFCTDhTFx0OP1oxEtGioLiZHV9KLx1q8gqJi9s+/q1OIfPCIB3GGjSq
KrUpqB/dW/n4Bx2KBi5PXNn2d1bGDC2BOTqUf//JKGBIQbR3J1ct04GhZ6x1
atv33brVLa026HDioJx64RUK/v+/AH5Mrt3zM6Hg/wC/QLd2
          "]]}, Annotation[#, "Charting`Private`Tag$2829527#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmHk01I/7xYXSgrR9WolItkikVDyUKIoIiaRdkUgkWUIqISRlLWtlHdtY
Gx5r1rHM8h5hENJQDZJCMd9+5/z+uuf+f+8593WlLjqbXeHn4+MTW8TH93+q
DP+N8Xg8FFu/I52wJNB5Vjpodo6HNyvWiWlZEJhXqCo7Nc3DVTWpe1NPEbhb
7sTFka88BPbx+psnCdy7KrC7lcVDPcG4Ln5DAnWGJptjc3lonrWHKqFFoNlj
apaaHQ+/bN5iu12aQI/2QCf7ygU0ya5yvMZlIoOxYqz6wjxSwm/pHbrLRPEq
57V7t/xFQdaOpUOCTCxyrFu8kj2HjntGbsaEMfB8qOrEx4BZ3MSK1/sixMCZ
SK8ghBn8qe6VFfOAjqmifRtjPv3C60FSQWrfaJhgqOpKfzKN9ywkDH2NaRhw
48Jd+WM/cd4hI1e3oBO9BDI9XL//wDIWNSt4vgMv+LXLEOmTmPyjwLnsaAe+
qPgck+AwgeZnvjo3rW3H8n454extXAyg7hjOs6CitJjOIfPXX9FaRGw3EdaC
BQpBDoNDHKyISk6/7NKE/fX5khoaIyjJ2XY9RaIBPyu92I3FQ7jMlKTtlleH
q3wzNJQXfUJDQ0fNWznV+KhYrlHs9wAKRHfamCRX4xz33ZmpbwOYZyuuI/ui
Ggft3nqXdg3gvSMZipXe1Vigm1pzKG8AP/H+RL8wqkazxa+MT9sNILcvqqf7
SxXu2ChF5fPqR0uGoIb3pipU0hhXejPVi73dMrRHLRS8qnz/fhm7F5FI8EvO
pmCi7EoataEX09N+kdKeUnD1ehWPX/G9KJz2+M8lEwr+/n2z2kCvF73o10/V
dL7HmjKuxVhUDz7ZJN3b21mOVlpcXxWNbkzlDIk6VZZi5B7fzsOS3ajsP3DN
KKEUW3aKylgt78ZzO+ZWidwrRW0J5Sa/vo+44/DVcM09pSjNc1pDe/QR60qX
UVUzS5Bb9f2dG6sL76QSp13DivGB3veOsrssvGEqWknSJmPN0W8m6pdYeCsz
b1RnIxn5TnxtI51g4cbWNc/ypgrR22K0NXUbC9UKy8x2pBfinaufG5+2Ephm
td/DcWUhXgtiV12QJFCwWzVwNSsfj7dS85Y1MrBrO6fxzTMSBne0qgQWMHCp
jIfKGi0SNjJaSAsJDPzuoeoox8nBI+ym7Klb/3zUgreBVg5qc+vT2ZsZGGi+
Qu/wUBbuEqtMynemo8EqFYUH4hm4zpwUcWY9DW/miJGkj6RigWxI+REBGnoO
bEj3HkvBk7P2w6rjndig3qXvEp6Cwa+l9i1v+JdT4ff90l3JuMCJ6i+/04kq
AnfaUy4n4YiPl/IWogP3JvpzjWlxeNPkWUyFfDuOG56NlbsUiuk/Db+9WNSO
uOt20NeKYByMFdS5+bENXfMwO/i/J2g57PFF4kkbOl8aX2VQ/RDB85yGH4eK
t+OXPFSc8UGxVEXGoXetyN1mkeCwSQcLftWvbJRpRu1NyxV0h0MhLDOlRnu2
CauWbXHTWxwOjufuuxdRm9CtZ/DZeFQEyHzY15NypwnPmX2YXYyR8PJF1luf
xkZstPm8kykfDffUn2mp3WjA4lgHLaFdSWDJcZrI0GnA7KYOgwONSaCWYJgq
ua4B5w/35IVdSIZvAoLLRCs/YG6P92hadAqco99hcFZ+QKqUaZbI6jdwyPWs
4+vCOrxI552X0csECVlNiXVBdahWxNMJn8iEPx/XdYacrUNqS4bAjddZQNZt
1/BcXIdZPuTEqIVskF11iN/8dC3mfSC6bTtzYXnejthlf6oxcKxAKX2oAN70
fH46GliJRtZqX0fiyqDb+7/EV2qVqMV1puUsLQdRCYM808EKbKNPt6V5lMOd
8+m0MqhAHx67VPvMe9D/7LA+eO49xtKsXv1QrAAOdzxJwaUMj5qM7nQOqYIt
EZIFfRJleIrzbGc1tQpOqprWRlJLsVdM8Mi0WDWU3i74PKdQispuKv3icdXw
ZMZNoeVzMfKWrWrXLK0BBf65QkcbMrJ2daXtV6yHc6kK9VuXk1EtQUby6f16
iNSzIeilhRga2rfFllkPc48oMwf+K0SlM4urCx9+gJYV97WEO/NxbOW+cuU/
DcCXk2tcdT8f3a53dlnbNoK68YCdm3I+HhqPPZ1S3QgJEboBvSF5eEbkYceP
iCboUlgaduYpCQ/clp/aZ9wCOk7X86rHcvDrqKI+o64F0nObafJHc1BOhx5V
pt0KnupP18/xZ6NZqcs7Iy0qDN7hal48n4WHRaaGfGqoYFhmcra5IhNHw8PX
Cx1vg03aq5Pj7mbgd85ykRCndgjwu13LT6Sjs+/wrJJAB3ytYXx2UEtHgzht
kZdmHUAxiFY4wH2Lgzd3x8T96QCZ4JnjqUZvkZnFV8Sx6ITQ1jPOKzLe4Ezm
SEUyuRNsTbeQey6l4Tt50X2X/WnwbWpa070uFdv0It0duTTwftmOottTcdpY
7fb6i3QQ1sw4kv4wBZNDl4zrsOmQ0BPQojuSjMrWu4OGzjNAyfesaY9+MurH
Kv3axmXAe0kNltu7JLzma25x8hETyC20epPO1+gsOpVdwiaAIfaoMyDyFaYn
m3JiklgwZaHJLjqVgMcjFQfy3Ltgdfw3DmdtPNaeNCNp2X2E3QOJPzcTsXjK
087Gx64bTLef4jOJjsGluVMs97s94OKwRDjAKhq1slv047N6IffnDWlOdxRu
F+jQ2ni+H9o0JVU2JzxHux216bNOA8D1pe83to3EAT3viOTdn0Ck7pG+v8Qz
rMvWFpWd+QRWq93SrmE47hN3k3pZPAjRCd3v23Sf4oaWb0Wul4eAkNWlq9cF
40SUyzz19xCszX83FqcfhEvdh8vY9sNw6oAo/6Kmhxj8VLIokjQMkfVuG+2N
HmB50qXpjKZh6DDp2UWl+qH5ffIIq3wYJMgPIq4meaPlTAn/ysfDEN94Ene/
8cCzskIuB/cMwwa2OHchwxUTfysKTLUOgeIQU/OlrSNGydgQ5yyGwI8hx9hc
ewJV5I4dSDMZBKWVbIfFO9Xh8nye/3zTJyAmAxLFZqwgVKJN8qD+J/B6rt/s
qO4CtHOFXV6GA7Dg6xmfqOIOwt0dvrLp/eDnkH2DrnAPbuu6N2790Ae1kk8e
vxILAL/c54J629gQ+HKby96wQKAMqqVU2fWCvjDFqnPFY1Ckmud0v+2Bxt9c
+cVCoQBkr0MpJt0Q7BS0OjEwDI5F5/Uo5n2Et5MRPlv8I+BuKiVxzYaPYG+v
cLV4IRJeC9ASZ/+w4Og2D+sHWlFwZdETjxUeLJBj1xqf9H4BQRR+IuU3AWNm
tnvHZqMhOW7u+4gQAc0imYol+2KhkukvNfqSCVmNv7YGesTB85mcwk0KTLih
HbFUYjoBiqvmBxdsGHBitvfvmNpr8Nfqeblvjg7KZPnJEtdEuF1C6iPF02Em
6tM3uZkk+Gg/sP/ZFxqULfdi1rinwojimc8Frzshaec6eu62NFBtuaJGN+qE
RydzOxLa0+DMwM0o23/9M3851HJH/i2stQTezgsdMCF1vEaBnQ7ioz5SFk/a
gKU3guuDM+BYTpj8qEAbVNr7VQjuzQQ7zYW2fH8qhOSQS/sisqDs1mMv40et
IKspnhupR4L38JhQyWsG4bMl2fcnSXBxwV2vQ6cZpnxNM2+8zoVFfWenyfQm
OD9YYybtnQep7awVP3iNoCz3+8Q8Mx/0rScvibg0QFOhnV7+EzKEvE1Y655U
BwfrlWp3DJCh+MzjJbzjdZBHzOq+1iiCtdihxpirhZezzyFkqAguty+j7bOu
hcvQuP+KVgm4uujs58rWAK95l+rGyTJY0tYbEDKI4No7nxtuUA618qf7DG0R
Rr43Ky95XQ7Dmeyl5I+V0Cp2RWnK8D3cm/aNtGZVQJxl7A5qGgV+O97t/jr8
HvYMLpLwt0JITzGnU3RLQbn89OSuDITzrFmuUXcJyEbm1A3MIsyzD8iwb5fA
iuTsPUknqqDmsoH6j4xi+HvSqpfHrYLN/Pwjl6WKgJ2XK4+qNdAgvMmuWrMA
El3O1WmV1EHbPrOh3RMZkHB2GelFfx3Y123J4JplQMxRcvR3oXqwDnc9RRSn
Q4TkcsdXVvWguku1bn3AO/DrKFo1P1sPIFZl/X37G7iwS8SOcrABogYmnX0S
k0B64v3s/pomOJxmWJD0MAK8qYcDf35vgg8E1bHkcxgQmS2ipI3NoGDTuLW2
NhSCr/RIS91qhituppY3goNgonvuhJBkC3BF1UcbdPygsl4zhe7TCvFWB+SY
67eBdXyJ4Q3Ndmj2fMds9HmK5LvA3H6lHf4EXCf6DoejqGWDXX9EOzz1tbtf
9SACq8VYbmacdlCqNDheczgS1x72Mkkw6oDd609eTSx6gV6lcZ4Bcx1wnX2R
5HQpAY+lfqQaW9FAoSDNWtcnDScekq7WO9EgXy7zlnpvGsZce8A78IAGG3It
I8v2v0HOzp2q8iQaeBbOfvL59QaDSv2iBATpoC09GrPs+jtspO6wKc2lQ0jt
Jb65/ZloMOPOkRJiQqvSgyeiMbl45MRqgekiFgTHFotMksgYdmHZ5GwTCxgb
KarQScYud77+BTYL+qpaI12myOjwmlu+dEkXKFELWnz2FmHYeLPrFssuEDiu
cNCgsgi7nj0YPPyrC/4qb6iq+FCMDsTP6kiNbrCplhK+UFeK4XYsv10lvfDq
i735i3sUfPTtIIy09kKAx1Nd01gK+nqmzMcP9kInU37drxIK3nzudE9IlA1G
g/2zcz8paNwg4NZ3mQ3JfirO004VKKqyyz50dR+QBdI/NNlUYthC0AmOUz/w
xvf/GVpThQ3G4iInV3+C2Of1GU9qq/G71DpfWtwQKAXL/1cdVYfubooXwv8b
Ab9HW6MD+BuQ1StmdrWRA5w0dYc06yY873nwi9Dxr8B5JNXobNaCtYp7g2sX
c8HrqyNf5iEqyi6jcNKOTkD/iMzv8bE2FKc4HlkcNAlaa/zHuHs6kG+OP8N1
8AdIX37v1vK7A3+bVpyr3/4TNj0xv/kiqRN71O02bw+chtK5cIEfRjR0OS22
alvvL0i31xoaHqXhxqhhK0HxGcgS8jm91p2OJJukd1N3Z+GvgHaFsCADT2vd
P9pYMQcvFl+5Sg1gYP45p237//6BqrmaOevZf/y6/LBAmcU8lKrK2Mm7MdGs
84CGeMwCTCo8t639xMTlB1ZUU14twOLSplspQ0ysTus2Opu6AFZkYWX/z0zc
ddfzQjxpAab+7EvUGmWi6NaS0I31CxA1kWNfMMHEphu7h9b9WAAd9dHsEB4T
dZbKR4ge5wGlZ9Pw/BYCZ27NbCKZ8sCEtGYvTYL4t6sb3pw4zYPazXwab/9x
kUTu1fehF3kwZaS074QMgX8t0kaWe/KAt2GTabQigSWpW7WE3vIg5vnp8c37
CbwpMt7wNosHOpeDVn49QKCsR6WZfj4PnqU+ZpdpERhlaHvtIYUHNX+uPLDU
JdB1Mu65AJ0HzPC22ZCjBCrYOEikdvHgVFViiJUhgZ/qNDMO9fFAaEy2VeY4
gSdjuir9R3nQ2tJ0hmJC4FL+9GNS4zywypV499iUQHT0YFT95IHyUHyq2SkC
7zD17c7P8cCOZWsibkHg//8dsOi7X+YXSwL/B/POLlA=
          "]]}, Annotation[#, "Charting`Private`Tag$2829527#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
         TagBox["t", HoldForm], HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"c\\\",FontSlant->\\\"Italic\\\"]\\)\"", 
         HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{Automatic, Automatic}, {
       Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["h", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
   3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 
   3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
   3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 
   3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 
   3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 
   3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 
   3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 
   3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 
   3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 
   3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 
   3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 
   3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 
   3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 
   3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 
   3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 
   3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 
   3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 
   3.887187744969038*^9, 3.8871877776872168`*^9, 3.8871880220364237`*^9},
 CellLabel->
  "Out[192]=",ExpressionUUID->"e3227dcc-9afd-4977-b15f-eede85b88fcd"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "1", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
   RowBox[{"PlotRange", "->", "All"}], ",", 
   RowBox[{"Exclusions", "->", "None"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "t", ",", "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\>\""}], 
     "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
   3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 
   3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
   3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 
   3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
   3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 
   3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 
   3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
   3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 
   3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
   3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 
   3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
   3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 
   3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
   3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 
   3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
   3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 
   3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, {
   3.8871882148709106`*^9, 3.887188249270643*^9}},
 CellLabel->
  "In[198]:=",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt1Gs01HkcBnCxFCqyyUruaqVZG1s6q+zjKC2KomxKLsOuLSrl1LqVFK2p
rbRkV2i7zKhISoWY4edaQ6RQFCWmmUbWbczMf1jmv7Pn7Ivvec7n1XOeN1/L
sGi/n9TV1NS8Vfdf2mPRJ5qmyVIXB/tnIi6iJ61Zk1M0USqNRMEjXNx74LBs
QkaTpG7BU4mMC0db7zDREE2OpvnY2mjysGZB6puWLprkNxf/cMeaB1fBePOl
uzThKG+aBzJ58Etrvf1NCE2ae1P8Hfp4iG1L3f9ztZJI1m1zWSWsQmen7qda
5gxZ3dZuwbKtgWlN9MI1S6aJTVBVn9eBWpRGNWjqvZ0ibwtubUh7WYfQsw5j
r09OkkqDMPbN9AYoMhJZBApSfixfFhrxGOz574yz++XEfubY9xr3+Mjzcojp
OC0ji5+/Kg33eoqT+5hxyz2lJMVlcbPQ+BkSNQpjY4YlxJ3x/rpNx3Mwk9ts
Xt0aJz1GWuOTde3IqhJm50WOkVZB4Ok6RScq+2znFlmNEG3lwejKx12w1nd1
2/7XENF+4ZaT3PEG9+1YkQMCMemNbfGVcd6hr7HEwslJRPivYz4ePtwPISPL
kZQJSHOS+EEbR4AFSQVO9rP6yddJfI9JWxEYTqOM/IlewrI4pe1zRoyUDcPP
K+K6iKjVQHlt9hAMtxdf2GnUToJEZ/YmewzjvrxRj2/TTKRdZe4RdqPI7xGe
G0ytJtHO4sKQhDEE+S552BPOIazwTXtdVo2jQifxZd0RNg6uc8hldoxj9cAs
sxMBBFfUv0pkREpgPcaddK5rgt0ky6ddKIEn+3WrT0A7FJqFeqd2T8Dd20BD
VtqF3PVzTTc2TCA9pCt5ZXkvvis8KcsykeKJj+m8rQb9aNGqz2AfkmLY0jCp
PUeAX9+7tJlwpThyeAUzfZEIkp1R1zgzUnT16vtF8MWI7/vD/zdXGULj132c
vXkI9Odba/ITZKhfseZMveYIUqZc/FmlMizT5ok5HmNgdYvPWwzKYMqLctdk
jSMj5VXfhy/kUJtSL4gZkIApSzYTespB+VYFNy6VwnS/zyW3I3L0rAoxWZoq
g1izX2/0mhwHd+gvsOqVg7crgFH0VA7jix8CPjNVYFq/fo9gTI7iwKs3J+Im
4ZZcJU0zorDD5bgHv2oKRcHu562cKZQE77dynv4HcqdtNU27KCh01mtU+M+A
lZNZIDpKwe/FWifTbCUi/Fv0/syloLNWt5Z3WYlGk+tlpnkUajlvNu1mKzGQ
tdCTo/LKuHhmbrESz34cXFlymcJ88/Kzxo1KlNCa85qvUGja5ygwlCgR2HN5
mmJTcJ2z/ML8zTSua7kJNxSp+g8pFhf70riUOaLbpPLdnif53jtocL9UM/e+
Q8HsbgT3bBgNy+JIHf9iCtP+HJFOPI3CDC0q/B6Fcra5y+wbNM6dz2UkPaRw
YN7okxu3acAzasmsUgrLYqv9NpbQ4H+iFSkqX/QK2nOKR8MsIT3udBmFmPGc
TI0OGscD/v498xEFu8BIM3Y3jTtDaWLDCgr9Dd8WuL2jobvFiJGt8tbs7uoT
gzSM+LYJeZUU5qjf8rQcpaEeV5ZqxqVAomI7a6SqPYwtR6+q/MvLjSGhUzR2
FylCrXgU/v9fsOM+cuSo/C+985py
          "]]}, Annotation[#, "Charting`Private`Tag$2904258#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwt2Hk4FIrXB3CRiEibuIpICNlpd6yJiJTSVdZLRSkVKkJyI5G4kjW7LNl3
4UjGvu9rZCdmzDDGUjO/3ud5/zrP53m+33P+P8LW941tmZmYmAS3MDH935QB
3nkGg4FGIWdO0F1fwf31w37rGwxc+pCzIeXxCnLy5cWWqQz8co1++4bPK1CQ
MLCe/snAUU9nQ8K7V3B8l89gcx8DPyyffFCc9grUJsiNEdkMXFHVvC04/AqM
fVsyFC3+5J1KM5g1fcG1zeferUo6Tlledvfh94Pubs75r1a/0ZemT/Dl9YeD
Vff3Hj/wC/1Ijxt2ygVAoUMN686RDeTbQqoW9HkLlgHySwPe66gT85HjWf47
WAtx80NYwzE+JktjtRBI5P7OH/5jFZmNAoy/KYZCtJ78w67XVGR2fDHb/jgM
RDn1Gtt9qGibuS119XkYZDRZi7R6UnGHB0lDxDcMyvRDO+udqZg2YSv0JiIM
Bi7SFCqtqFh6/xlLUmUY8F6uWE49SUXrE9930rZ/gCAzXWePuRVM3JyTPZ/8
AbzvWj05qruCHbJ1ckOkcPj+1jy6THMFHX285AI3w+FUrlnVBdUV7M243KbD
FgEUqgm7o+IKFlM3d/QJRoCVp1543sEV9FbJfW5+MQLUQhRLTlOWsTMjeyt/
dgTQi1nXDKKWUQzfBj93jQQ3lnTXh4sUZJO54acsFg2OEebbLGcpqDb5QdNe
MRqsZfe8N5ig4DGC4pdUtWjQM3PPkxig4G+Bsm2aZtHAl39x8XsNBbffZRIl
vouGAutl6wvRFOQM1NUVp0cD8euZi6IXKCi5d9HHcSwGrLzaRHtTyZjpZDDW
UBsLVwdiVUcSyfjz4deRh72xoKfwwHTyIxmjxA9vik/HgtIkTwAllIypJY//
GWKOA/bzxsvcL8g4muPAVSASB1k7e77qXCejbJV8SIhNHGx+HDQv3U7GpTkF
F6X5OHhfMRUebb+Eeqylrz/vSADzJ5Eex22XUPti8SzX/gSQUDT8p9NiCZ8R
+FOfCCdAWWqJLLvJEtL11FzsVRLg+39vah/BEhK9n32oskwAcXv5Fb29S/jJ
39dWvTgBHh7b+EhxI6HR1fqZBYdE2JpoYy/hREJP3b0CIa6JEMbXomxuR8KZ
SSNtjZeJ8IUlrrnBiISyb+eKvkX+yQ9qb8QdIWFvYVmMfuOf/KtgE8M2Io5k
b1F7KZUEZaMSOz6LEPHKNXVe0moSuJ/ZkhnJR0QrYsikDEsynI0YMHjNTUTS
uXri053JUGXsH2S3sYgCfqwkeYlkqCP83C3cuYhfvMqkpf5Ohu6MLP6wF4tY
+eXcNcOqZCC6Kol7jS2gTryIUMP7FMjp3lHv2LuAu3KZrgYmpoCT/NTtm80L
SP14v9g8NwVW5t+nnypZQO76cNWjLSmweZN2jBq0gDkBzloWrJ+AXatMyR4W
8JmlQ5X5k09wmEdN48rHn/jjrz3nZe6kwlu5H8/s//uJk3IiShzPUmHNyDvf
y+8nblIDbNb8U6E5uEY08+FPrGuWW+PMTIXHe3TZtun8xDcx7dTdlFSo5TVu
LibNo6cEf0+JZxrYH/znqoD6PKptNVxUTE+H7rOsQfIq86hV1Gf1riIdVM1T
6nSk5rFjMXOUuSMd9sTOnni8bx5Vh4o8JdfSofzQPYGWuTnM2sYs4KeTAdyi
LmMeIXOoR/qbGDWfAXmSfvbjE7OY2xHrIqOZCUIdlqVSA7OYdszhquT1TAhw
Pcnu3DqLb2KF96rdzwTbmvlkttJZPMmV01oalQl85gY/pN/O4o1gpf55aiY8
D95t6npiFvldNvfdyc6C82vR2jsCZ/D80bBhzgM5UPjROdTEewavm3XTOyVy
QET74sRH1xkkWjr8SlPOgc1ghpe89Qyub7dd8TXMgSwp6/Krx2ew8qJs2zaf
HNhrIa4Y/2MaRbQ2Pkss5cAoIfeQiso0FhcfyWzpyQX3y+taJ6SncUgq5Tph
Ihf4fqjdOSUyjenZPgdayblg9KstV5V7Gt3WPK/u4c6DKgWihs70FOqz6VTd
18mDuFhJW9OwKXRRTTP1r8gD66eJac9WJ9G7WuHM4ZJ8oG/72eK+MIm9BpGH
ntbnQ2SoAsVjfBLH9h4WmuzPh87sr6detk6iX2XF7/X1fNCcHm16kzKJF7k+
mR49WwCilw8Qo69O4pYs60sldQUwJf1eAYsmUH/3k+piYiFIeiQTZzMm8Dax
6UQ8SxE4thWm746fwMwGycI0viJYc+oVsXszgad+pxbzaRYBR/H+PVyWE9je
EN/oHFEEcuqRy39vn8DUHgEHW/1icDOJLVg1G8ch5dJytpYSqErJfnDo0jh6
+QUcvDpdAlvXUFrv3DhKtxr7NjNK4G3kWFKM3DgaZUfVKyiWQtyo8Hst1nGc
6ChwIUaVQu2dJOeQrB9IuFzN6+RcBrs80lRktvzAMIMDxXoXyuFVkUQ9D20M
27uKz529XQ4bxE/XlxfGcPL7MZ+b/5bDuEWKe0n/GHJxCflKVJVDnnpitUbO
GPq/f31t+XgFGLPGXLxmMYYnCd65BXKVIM4v3MLkNor6Jn68ZNEq4PEXWiLY
jeLOLMN/M1SqYG3j4J43xqN4Y0Wv9uX5Kqgf/uv6PslR5NzKXvv2bhXcjts7
dXTgO5J6P+7lLaqCdHH238bHv+Plw8c3xAy/grQKSTp5eRj/62GJtIqqBjsZ
T8/SkWEM2LNH6Ex+NcSK7exsqRtG5rWbrNpN1bB7v6zratQwHi+sqp3YrAYa
zfGrjtYwuokuHrS2+AbVpUST+dAhfNakFdMqWwO/cj1S6R5D2JIX86JerwaU
07k3d98ZQrFHtulrtjWQGikTd/rsEKo516/8jq6BQDfH+YCpQeS4/GElg4sA
pmeJHrIqg1hx75vw/g0ChCh7dGgeGsRjZwl5pXy10HSMW9SUYxDX1ALIUcdr
QVVQpsHr+wAmDx7hFnGphcOMe3s6Xw0gmTlITWe1FohVi58e9/Wj75Vp7yCW
eniptdhe+qQPdW+5R+hfa4Tq8wuGSjZ9GPY4hBTo0QhMBj9bswz60L+pml80
pRHcTeaaE0X68JQ7h77xaiO42E3VBzb34uCsrFprZBPc9hupsjrUi6nBh9w5
qc2QEjAMwxy9aJ4R9ZJFpAUm3w1VXqX24G43zxpzwxawihgov9DYg0Q79RaN
jBb4O72nRPlxD56UEjEdvtUK+s0tOdvru1EgOzFXmdoG/u3Nsj553SjGpapy
d2871Hc3ZdGju/FdpZOWq0w7aI80fF526kaD9F/vzti0gyqRkDoi0I2EpqL+
kLZ2kOOpjMu934W9djvmpvM7YN+VrHfX93ci062E3rWsLsgTe1OmzdKJw/M8
UdjaBUbrtyblSR1oFjdsX0fsAv+Pwic46jqQeeRebZRsN9BnQ0fLXDow7Gbw
deuCbph+7iZzoLcdL0lO/1Xa2AOOhsHhFUfbUDi5VT5duh9SV/QW3m9pw0Fh
M1clk34Yj9iq5jjQijxDSqbsHv1wddJ1RvB1Kx6RFN8X2N4P8NRcxWu2BTX5
bntxPB0AnkSpbo1PzZip3s7+rW8Q8lYJO+tFGzGJMOys2zgCb9MTqlXXG3Dy
0RW9HsYIOJh7Ohe2NODOvxVG0pW/g2jtiaEElwZcLeijyiR8h7D3GSnP6+tR
IbHE5pnHKDxTCj6reLcO2WfIb57Gj4HGwxsOH/NrMPBlgs2U6zgIip0U3OdX
g4Wg39X5fhw2B/Z1vLlRg8UCdp8b8sehQL1N5SlrDRJfxPG2kcZBbJcG85Vr
31BnZ10j3+0J4MgRj9i++RV3c94rTDKdhOShqcA5n0oMXesPzZafhkF33tgY
xUpUpwcbZ+tPA7egTs6l8QrUIGavhN+aBhfL1M5SqMAc7OQSj5mGc1P2+/03
vqA2p0OkANsMzBJJcZIPSrFI8pPUSM8MSDJv5DuYFWA3p96jR2ZzYJ4oSRDi
KMCewczy5IdzEKJl1ttVko+rx0lr+a/nYONV+dpp3nycsx//YlM8B02cnmd3
dOSi/9p3G65d89Avyf72emAWbiceorlXzMPNSwcKhmyScNuY7iuuzZ+wsEw9
6VyTiE577BTNuBbAPawNuY8k4raE82m+QgsQPeTdpD4dj1mG0inPNRegoKmT
YNjxEXd8yRaZeL0A2St3D88OhiLxUtiRrzyL4NUt0S3wzQBdG5ZvXmIngvTO
EXvWY0ogmBOpO8pLhF6ydyzPminwCN1dMj5CBLf/zjU6KD2Aven1ZgvqRPh2
6LVvDI83pLoa8RKfEuHWLUm7InoI3Mkit1pMEaGUw62n2jkRnBWGtL0zSBB3
bF9XtkgSJF7ke6pQQoJXRtnt0W1JcEeQs7uphgRXwiaaXI6mQLNrPK1shARL
wvrVkiOpQL9fV3+ebQnETh7MDtHKgjSNiidHVZagId9CK/d1AbSUjBBbA5bg
DEH6m/hYAVB4ZfxJwUuQ07uu/lGlEAq6tzCzf1iCsPX/4M1EISiNGYwcil+C
f6D+lO3ZYvA/U/92pWAJGI1y8vzkUvjwxN9ReWgJlMe3CL4wRSAHcznFiJBB
puwaWS4NoYkpSDZMjAxiIZk1Y+sIW51uNb2WJANn/GflOIMq2KFxvdFKgQy/
jEyHGcQqeOFqJdGrToaRnOyjKF8Ngvezdw1akCH2gXnN2eIaaCZaFr8PJ0P0
je1Z70droPeRSho9igzh5ws+LLIR4OWZiGKbWDK8O8ThEGNKgOfdY3oiKWTw
ai/c9XudAP/uviP9MJ8MVnJcFuVn6qC83yPSpoUMh5e+rJ+qbgDfA9sWKulk
cG/R9FlZbIA8ov379S0U6E1v4s7ibwTpH50FcqwU8LcdOizs1AipL1QfhXJS
YGlww4DtUBPo686VKPBRoJJwMqHreTOsEl2ftMtR4O+oYr27J9vA5XqCZ4UF
BXQTB1oumnZCHpiaBxX+6f+bZUe41wmcmjMzHCUUCL/9knH6ZSfMmLJd8Smj
wOyxY/JHszpBWUxn/AFSwK/EK5RlaxeEb/11Qr6BAvUt4mYl2V1w+MYA4dIw
BXTWnGeF2XogDJc9JLYsg7bBbhZqYR/4fGrxr9NehiCLPi+54mEwn67Yzlm8
DHUXD3IZ7f4BWuc8fZWFV2BReJ9HZ+QE/Luza8PtyQo4P5ayCuKdhuNCC1nm
hBXoG+YxtqufhQsFgV2bPFSwfHpmhk3/J+za4Uf3vESFb1LH/b+xEuF2dxKd
GkwFse3ls0nnl8DMaPJkQwMVDpY7aLP6kSH4ReA5xi8qMG0wpz0cp8CtCaur
gvKrQLtUYU44sgKC9BLmJfNVGFKyEDjiQ4WJ0n650cBVeHCNZ5fI8Cr41Rzl
eVG6Cvyhk6ZbD66BZeLqZxhbhSyzuE/LT9ZBSTViwISdBtfOep6vr9gAbgvX
D4LSNMg1vydy6tcm7LP5zd9sQIM1Dk2WUpPfcLzl662pBzQw7jitcjCcDq1S
Rs9vvaMBx2nOr+UxdHAydY0g//HXpMELNxLpwKIQEusWTAO5J0+torLocJ1W
dScohAbcQsUB/AQ6rEL3amEoDRruKkzso9DhSJXRBj2cBmrsR99x6zNgxbVj
wCv+z32ntb+yLjHg/qV8DfYEGmQP1SUbXGNA95JTWNAfC2bbfQmwZkDC53h6
TCINfpkkTXM8ZUCVR1BnaTINihOFzrKlMOCpQPnbxTQaOHKR6lIyGDDGnpP6
KJ0GYq6VxudyGXCulZS5/sehejdv/1vOAAMpx2esn2nwkBz5H0sXA7hcRA8c
yKKBpJm9YGI/A0xeKgfH//GPmpNpGt8ZoJJUTxbLpoFReH/lizkG7KIHOcvn
0ICdOVVXmPRnf0xHeNEfo4Nrd9UKA0IO5Hw6nUsDl55zFpYbDCgQU0io+uP/
/+fAfhtzP+08GvwPkw2GqA==
          "]]}, Annotation[#, "Charting`Private`Tag$2904258#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmHc0FY77x6VBKpRKUjITISWkPjy0lEpSysoKhYzsIluEkJUQQkJlZYfH
3ntvQsbFde81Lir32++c31/PeZ3zes7zz/u8/3h4DCxVjejp6Ogst9DR/d8U
g4MEGo2Gr777OEyt3wHLdT7f9Q0acrkl8vVt3oHM76ePL63Q0EGCY6lxqyqc
OXHLYGqOhpdOHttStEcVpPd6DTT10vCcFf/fDB5VkJ8gN7zPoOET1aywbUqq
oOrT/EVCl4aLy3zWGjGq4NDqZf64dBMfEVerNhXvQlfXLkK5/l+k2/gkqTJ6
D46WWe6XPvIHcxOpnM/f3Idcs6rtLMMbmEHo4HE1VQe9gNOkfo91bKvhcu8s
1IS1ECdfhDX0/trSxyX5EBKZRzgif66iL3/AJz1hPYhROm3d+XoFX3w+Vm+8
pg/8u5Qa2rxWUMFtK6GQpg9fGg14W1xXkMTGVLKXwQCKboZ11NmtYJHr0uvW
AwbQr0w9U6q/giJvDCW8JAzg4N2SpRSZFcxgtbHrtjSAIK3rdi6zy+jNkXtO
at4APJ7qOwpdX0Yb666cleVHMBKoE1N0aRmF9Ie/3t18BOeztMpuyC1jc4RZ
UAGDIVBW1BgtJJYx4j29+LvDhqDvqhSZfXQZ4YxzUoq8IciHSBRcoCyhj3Ri
Im+gIWzmb1+7Fb2ExwTkJD+LGYHT1jQH6wUKKqbGcef5GIPFe50dejMUJO1L
q1IKMQaDU2zhtyYoODeTJTMdYwxKWs7ZJ/opuKJ4I0862xgOfVdeGKmi4OeU
nj7pYWPIMVgyuBFDwesnGkd+nH0MxPL/lPlvUPDTwa6/ewiPQd+tlb8nhYxT
7/U5+i1N4H5/nNxwIhnHwr18jJ1NQOmMlfpkLBkP8ynk/PU1gbOTrAGUMDJe
1Z2wvp5gAozXVJeY3cmoZa2f+qDbBNJZussVNcioUZalrC5rCr9jB3QKd5Ix
vm2a+9wBMwgv+RUZY0rC5T8qU2zTT0HHMcpF2oiEUdc4QoqoT+GExG3DDl0S
KjzrVrNiNIeilIJTjGokjHenWe4UNoeRUP8aGyBh+qbZlmVzcxA0Pb2stJ+E
xIsOgT/WzMFadCOW4rSIyh813BIOW8K2xEemJ54totuqRY6qqCVEHGqW1DFe
xLPtQaH75S3hx9b4pnqVRWx1uZfebPTPH7iyES+wiGn0dcPs2f/8V2/VbrcS
8fMLshWroBUUjZ7Y/ZWXiA9WuIc1GqzA+b8t36IOEVGP84T2qS4rkH3ff+s1
MxHTuU/N7RmxgjJVvyDjjQVk+DRnPEW2gtrquX08HQvoqj17aMfhZ9D1JZ0j
wn0ByXnkCqanz4DocFbQbWwerx7W5nBjt4bMrt11Fj3z6HGQXyCI1xqenf71
5GHTPEZYzXWmiFrDMiE87XzBPNrdslL9c8kafj+kiq4EzaOG6396As+sgfFy
0VlTmMdIkyN2Ac3WwMcqf/Fe7BzKDJ434giygUDxny9MQ+fQRl165+cYG1hT
8fju5juHduEsdpfSbKDpbRX/N+s5vLfb/09KtQ3Ysl1n2KE4h9MnDWSF/tpA
zUHVpvxFAkoRCKn7LG3B9KjhfU4FAtoPRKRI6NpBl+z2oNNSBJzRUrhZZ2EH
cjrJtYonCTiSFdVm4WIHbHEz52wPEJAtO2GO/MEOirnNOZtnZ3EpWfV157Ad
MPPbj7mEzOImz3c2Ln17yBb2NR2fmMF67yXvNHsHONauV3iyfwbZo14a6Ps6
QICDDKNdywzGcSzcEI1yAKMqwieGwhmsaHvasq3UAQ7p3PopEjiDpvW79fJ2
OMLLt/vUHc7NYLTJVfZLMY5wbS3myu430/hig310T/9zyI21C1PzmMaybeWX
0xeeA+8V5YlYh2m0nzALfUL/An6/pbmdNpjG9vo/H06KvID0kwbF96Wn0Vtw
Wpvk9gL26wpKfPw5haRrVrYfTjnBaHUWt5TUFNLJu5dNJDiD8931y+dEppBi
1CXnXOgMh37Km5znncLvAoXN4m3OoPKnNUuOeQpP87EOEf86Q9kZ4kXFqV9o
/vzVzirNlxAfJ2ykHvELV7PFnDY5XMDgeWLqi9VJfCtkXSKU6QqbO+aanecn
sbNv63xKgytEhZ2huIxPopi06W+lX67QkVF+3rNlEonZLNrOe9zg0tRoo3/y
JEoOaXXRXXYD/rtHiDH3JzH9gfhn9xw3+CUSfgbzJlDPqWRKM8kdhF0+EWe+
TGBHmfGabq47WLTmpu37OIFGskOTLjXusPash9fYfwI5jusL7Jp1B6Z8drY9
ehNYovbu6qNTHiCuELWkuXMCU1Xr6C6Xe4CTWlzOqtY4Rug28zr+9oSy5Awr
7jvjmCu+pijC6gXb1lBE6eo4bmFWkKQX8ILAqLGkD+Lj2OF3I2L/bS+IH+UJ
v7x9HN+UaE0OJnlBjUmSXUj6T9T7dE/gwgNv2OuSKiW25SeuhntcTeh/Ba/y
TtSxUsfww2p/9UvyK9ggftZYmh/D0iBmV7edPjCum+xc0DeGO6r86f7K+EC2
QmLFxcwx3P+LwjMU4wOq2z8oP9Adw9Bj0urepr4gyMHTTOc0iqs8i72qJ/yA
1e8Yqdp4FAn5r/S6r/jB2sZRNn/VUeTcvlU94JEf1A0d1jggPIqMBRYh7+P8
4En8/l9C/SO4tem1Jxz2hzRBxr+q0iP4fiaP7/ThABCRWhT5tDSEgsLf8mqv
BYKxmKtr4fAQrval8jM/C4S44ywdzbVDqExIWEl5Hwj72E85rEYPIb1Hod/o
XCBQqRblipeHMMrzXpNZWBBUFBLVCGGDmHDlR7CNUzD8yXJJ2XQZRM311y72
IcEgmcb8e5/JIILwll1fU4MhJUos/oLsIDrZ7HyU1RcMb5wsCAG/BvC1fvtV
KZm3oC5LdDklNYD36xc/Fm0LgRBJl/ZL3ANYzZfFcfZYCDSKMvOrMw2gU0Xw
EEEmBOS4xOrdRvrxy6NkZTarEOCjmbN1vOpHVoGWEaPRECCWLXy27e3Do+dm
HzQ1hILn5YW2QsdeFJseGJAeDIeKa/O3zz7qxRLLxy0Wm+FAd2uuJf1WLyaL
OwrReCLAWW22KZG3F6MSnJfFTSPA3vhX3ZumHhyyjOb7sxkBT3yHy/S5e9Dq
d6WEzoVISA4YgiGmHix/rPe23jASJoMHS++vdKN+eqhLUmAk6L/vL77R0I1f
yhaeZ0xEgmZad4GkbTd6fM4ouxb6Hm42NWfurOvCGhktEgdTNPi1NZ3yyu5C
Hkd2c5UL0VDX1Zi+GdOFHfFmu/ebR8OV4fqvS8+6cEqJqH+jIxrkiNUpw5xd
mPPA/31hYgyIs5bGZ1l2YqZgXXaOYSxY7C85JqLZiZcJotsG4mLh66Hi2OTL
nbigc/JbzmAsCPEUxURzdKKrXP1SuFoc8J7Ji/Su7MBvN8PSTwnFw4F76cEa
7B3YrnE8z1XmI2Qf9y+6srUDi83VvrBpfQSV9ceTpxfbcb8vfw7zy4/gF8tz
jqm2HR0EperlKz7C5kzYaJF9O7YriLnW3EmAqZdOYkd62lDDJDVnm08ieKqo
qzNWtGF/bXTibEYicPNJeix/a8OVtGv6av2JoFlH7G7ybsPV3KaWBtEkaNln
8PKlZBvyqLTy2gwngcXtt5ElQq3os2VP1iHNZEhZVpoP39KKLLohE8kByTD+
fpu8RX8LfmTtWp3BZLg/6TDN9boFfRWP2Eac+AzwXEfKbaYZaWqzpr/pU+AF
1yE/9bJmlPJ/8yPgQgrkVLYPi0c2o82nuYhF2xQ4wXzF+6diM8Y5e/qdJ6QA
a+LJroufm7DIouOd7mgqKF37Jcjp2oQLzduqV7nSwGsh1mnpfhOqERQCPXXT
YE16H1/Sjiasyj0rFzKRBj+b1p5tN27EpsCc9xxrXyB7tZqljr8BmYkK7OsP
0iEwLaFCbr0eYXT226vMdDDTcbXLba7HcyLsQ6lMGcBfc24wwb4eCctzaX2V
GRAR/iX5ZV0dOo6JhLl+ygTr674ayzF1qJB+905GXybc/mu42+xZHYa2XC3u
3p0FjEZc1uqH65Bl0ZZ8zDELXpx9KyvxtBa1J63bjbWy4f6MOSlVvhZjpuO/
MrzLBokYpUTuA7UYpKbm3duZDfNbt+1kLq3BMwrnpvnvfAedTvuuGZYarKDW
CZlp5cBFa22z2O9V2CGl9Pt+fh5wHZfhOuBbhdlMkt76TPnwu/9Au792Faoq
ajJe1s2HHIVWqefbq/AVa4VFPXMBHN97kf7eg0pkUHKycnlVCPTVXLkNJyux
vuEoEGcLYdTx92MFukos8cE7ubeLIHIsp1kstQI1984nhPH+AKZMwfc7f5dj
1Lsrum3TxTD1aNtNt9ZydC+QvySmVwKV7D83VxPL0XNzJ1PgYAk4u0YZTt4s
Rwe2VSwYLAWi8h5xjC1Dz9OhOdoeZdBATxiXtClD+jpBU5amMvicVxP+VbEM
qzgWJfLYy6HsPzqqxE/E7ZVs8fy55fBp8NebWa9SLHO9OOLHVAkDzgfjPkiU
oiqXGLFYtxKYuRQz74yXoHlCKbdQfiXY66V0FEIJqlpmft14WgVXf5my+238
QBEPhtKs1Wp48Sr6hFzqD0x4d2jLmG4NpAs2yVAe/MCn7O5Mi401wG4qqq2Z
W4QVnNDI8q0WZoiL8cJWhfiI80mGQEQ9HAnmzh7hKsReL9EiLo4GUDl9pzKk
uQADj2052hjXAAU22b82hAtQIiFJ8XtBI7xesxVu/JWHwfxHWPceaYHS958u
uIbl4c218NFFbAHK+Z6bEpfyUJTld5j9k1bQfCltGR2fixdGCQx/HrWBMP3G
9385QENOYgfTeDvoJApXH2PKwXf3w+3lrnVAyGWtns6C76hOnXl6LqsDNl4V
r104+B2riAJ2af6d0LjLVXZ3exYOacjcM3zUDXTfMpTLXLOwZe7m229j3XBW
eUzXViwLX87P+03r9UBMsILHkH8mfkz202c37YU+YcZAjTfpeJ5KSdsf2w/y
5iaZ5YRv2LO58jjp9ACkZDR0CF37hhMxZhBbOwDPz75h36D/isYxddmXNgbh
sNy+j1GOqZi8yecSZzcCD+8cyRl8lITrHeetzzX8hPmlFRm7qkTM5Obx3Ht4
HJwjWpFZIBEb882tnpqMQ8ygR6PC1Ee0jFRVurBjAnIaO6pvt8fiSyO9mEjJ
SehifdXuEfIBpzYXx7tcJmFJTWY4924MfqrPHZismYQzY3HLnD3vkVvYj/HW
3V+QsfyUb2YgDJ9dDipW1J6CFhnuU5wxoWhqK/mFM3oKiC6d55UfhmD1i58D
b/qmQH2fbdITDMJsNQdTldvTcPcCM/2Wem/k1R3hSxSZgZBqW47HNzzxswtP
7Xe9GWi7PSje3OyGbldWRDxCZyC6TgXPfHJABp7m67YrM+DWdaKLs/IWPjlp
kuL2ZRZEWIZNt4ueBU9dZcbbPbPQQ/aIY11Th0jBfdyH6AjgFHq1weysFYRT
z5UVqhCgkvu1zwdWD7jB0+POMk0ArwheK+lAL5i2CSn2ZZqDq7uL1dt3+YC1
s0aTtOgc1FGJQtsZAuAZJ+ePO1Zz8PixsHHeZgjMLXyY4iHOwTVeB01P2TBo
ZAuSXds1DyeGK5VVnMMhUvbRTwmheSCoPpQmrL+D5m2HORf15+GpXDAj10oM
fBCojqY2zUMhk1N3hV0inBLvPjcQsADxogc6M3iTgKdn88tE0gK8Usloi2lN
glHe+kXX4gW4FzHRaC+UDGWWD5NcCAtA4rlZITycAsIn6a4uKBDhuMzRjJDL
6SAsfXmSNEaE3dr5X13J6WCYFRDusUSEJZc7aU9jM6CGxedL2/ZF0BuvUOVz
zoS2m0cupQotgtgJ6q2/3Vnw20njlJPFItR/172c9ToHDI7OCc0tLMJ/1SKV
gmM5wMZfoPf3zyJk9qwrxErlgnuP0RXydhJErIeC/0QuMF3rnw3bTwJDqDtv
JJsP241LQibESUBrED/NQS4E4/2v+TaNSCA5voXLXR3hBaNjbGAVCcSKHpDF
UxFEKHtF0+pJcDzkW9XYOsKGvI/5jxYS7Pr4VTL+Vhm8IWV8xT4S/FFRH6IR
y+Al/RO/u/MkGM7MEMLTFXCom7Svfi8Z4qx0qmTzq8DroS1T7X0yxGjvTA8f
rQLS4QDxQU0yRF7LebfAUA1R8wVDMzpkCOZmMvugXg1vM8SPkI3J4NaWu/fv
ejWoVVvY5NuTQV98j27xf7UwwPufqEg4GfhIP9bPV9TDC/kLtsItZHBuvuS1
vFAPdrQjvQPtZOhJa2RO/9dzu6mHt73qJoOf0SAfz7MGcOcuWG8aIgNpYOMW
A3cjZAtskrnmyFBaLZPQ+bIJ8jVDYHQHBTSj85WeyrTC0lqbveAFCuQ4QreA
USsQe/I8leQowHy/Vnc0uBW8rp8aMlGgQDlrr63qTCt0LfmGfVCkwP5LTrdj
brSByrjKkYG7FHAqiHrusdEGTBV6c+lmFLie2N+srN4BwJ7S+ieSAiTvdONq
8w4oLa0+/DWaApFPPGkXPDvA5Gt/oXosBWZERU8LpXfAm+c3mNISKeBb4Ba2
dVsnCL5QeSOaToG6ZkGtgoxOEH9E/lpcQQHFNbsZHoZuEFBXKj9CoMCVW/u2
ruT2wmv0c6s5swSB+jvJ6/W9cEfbgFB3dgn67OhGN4d7YVP5wGi91BKYxhKL
GHf0wRYJeuva8//8xQbrI/f7gFXf1ynr4j//ref4pdU+WCs3Wb+o+s/vWS4P
kRqAiE7eQBOrJQjS7XUTzx+Cx3d9bgumLkGt8tE9Kvt+gnyHeX/TwWVY4Dng
0hE1AfDR8Zus1TLY2Z7UDzo4BftGR40SS5ehd4hV1bhuBqYWD5603bUCes//
m2a4OQcGyWKhbTdXoPKktF/ldiK4fNtR8/vNChzfWTyTdI0EwkVq2vdqVuBo
sdmV7b5ksI+ef7K8vgJ0G/Sp1uMUkJNw9n8mtgrUOyU61QLLcPxI/4y/9ioM
ntXlFPD6t9ezyFrivwpWD1j38g6twiThtlN4/ipwhE2qbzu6Bmv++Nl1ZBXS
teI/Lzmug2x/cHjpDio8kHW9VleyAemTXA9ThKmQpWPOe/7PbyCtaWhZ36TC
GtOlrYVqf6HsqPdksiUVVNsvSB2N3AQ3uVFHCKIC04Vd5cUfNiGbWLZU/4/L
kwZuaCdugmG5sfq9YCqIOz7Xj07fBGuto6NP3lKB+Vh+AEf1Jnx5uGsiOJQK
9U/PTBygbALRxLtx6B0V5BmFgplv0mDH4IaqYfy/+8/WDqffocF/VeP75/9x
xmDtp1sPaNBe6VRu85EKXBnGPwIMaPD30/CARwIV/qglTTE9p0GxzwmW+CQq
5Ccek2VIpsGVB7u8elKoYLFnsTb5Cw2GOx8sa6dS4bhDqerVLBo8ka+5PfGP
w5QePvEu/ucn8NctplHBmhwVurWTBhc7UpDhGxWEtUy5Evto4C1e8/rNP/5Z
JZN6cYQGN8P/A7Z0KqhE9pW6z9LA5cftp1wZVGCkT7nOs0iDjkMbE4n/GM0c
usqWaeCZc0hRKJMK9t1XdfU2aLB4Nzs8/R///38bdhU2t0pkUeF/0p8S2A==

          "]]}, Annotation[#, "Charting`Private`Tag$2904258#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmXc0Fo73xyVJSz5KKGRmJluImyQSEZHMKBJlVZIdkqJCSMjICGVGtmuW
TciWlZHx8DzGY8Tz7XfO7697Xue8zr1/3fe551wuSwddK2oqKqrEHVRU/1dF
4cgMhULBXz9C3+2rYQOHdZ7A9Q0K5u3bnbXcyAY5X8RPLK1Q0OzuWdHRDjaQ
ENCynJyl4LbCYbfaMTaQ/c+/v7mHgs+4+Fzzqdnh7Dix8V02BePij/UrqLCD
7rOWT5LmFGxNYv6z+o0dHrX537tdsY1RYpfE3/VxQFfXvpkqiy0svVAd+jGP
E9grHQ7Lsv3FX5YZIfV7uaHArnbXwaENdCx3MrwdyAM3gsUX+3zXsWBvjKir
BR+shbkHIqxhwVE1gQJTfkii/8UaNbqKdQ/6reyGBCFWQ9y58/kKHhRb30yv
FAHefRqN7f4r6PcpR9ayWQQ+NVlyt3qvYGn20CpXrwiUaIZ31D9cwZ7FWdai
BRHou0yWqLBYQVqV8s9w/CQc0StfSpP710+oca7K+yS8Nr740OvPMr5y7f1Y
c0EUfO9auApeXEa1Luv3poRT8OuVWWyJyjKyDrTbGG2dAvlc48pLSstosh3K
LU4rBqQVfTp7yWUUfxKVdZFJDCy8NaLy2JfxWqoJT4WkGJwNkyxSIC1h25t9
z4qdxGC7cNeaVswSbjPtpuIliYH7zoxHzvMkVLurPy9GKwH278xob0yTUIms
PvyRXgIsTx2K0BonoVgLEyMfswRoGHvkCfSRsHPZQ09CQAJYvlye/1VLwruV
jGtRGhKQb7lkeSmWhAzSB1xjQySAUHXmMu8lEp56N/LmE5ckWPi08XanEfH3
TuNC3+tSYNAXrzSURMTygAzflzelQEPC0fB3HBE5EpE14Z4USP1mCCaFE1Gd
R7d58IkU0KnrLtE/IWJmm+jJggwpyDr4s0rtOhFbHk3q/dmSgs24frPiPUQM
cXDTf58hDRHlE1Gxtov4V4p4V/u4LJi5RnvJWi3ikRSt1EQRWRCQ1L7VYb6I
mkE7lyhyslCSVnSKTn8Riewm1KNXZeHXm6Bv9+Gf30qfKBMkC/y24ssahxcx
0s/UUXFDFpxPbsSR3BdQgC+OVXjsNNAk3bQVcFpAJt3ONxzE0xDJ0iJtZr2A
r3uLxTip5KB0Z0Jzg84Cyj0vPHaZQw5o+lU3EvgW8Ol2Z5mBsRxEBoTqa7cR
sNO8s0a4Vw5KhgX2f+YmIPejfVqOQ/LgcWZHZjQLAQU1RxxE5uVB8V2f1nN6
Aspb0Bwi/5WHSt0Xr6035vGHtD5PEZsCfK+bZeTqmMcj55WdZ00UoOtTFmvk
k3ksdhUw5R9RAMIjKX6fkTmUPdvp6U06Azld++vtu+fQ/oCmkTiNIjiJT9iY
Ns+hFOu2wjKTIizPRGTIF83hun68TaacImyakk+uvJ7DNU/asYUnikB3vkTK
FuawSxgyG5iUgIfh7LmrcbNI6xid434J4JXYqJvtm1mUf7ZqKWwBsKbj+8Un
cBb/TEmUkVwAmkNreTOdZ/EDwW2x/gPAg0MXd9OqzWLZe6VLbzcBvh3RbS5c
mMHuXAZqguFZsGW/ZXBMeQb3vZQX2ceqDF2Ku16Ly8xgkDhB1ZdPGZTMUr+r
Cc/gzyNembsllOFQ/PTpB0wz6ELZX6l4SRnKOO8da/nzB02OFDld91IGel6X
Ea+wP2g3RRV5c0oZ8oQCbcfGp/GqlLKTU905OP7jRrFw3zRG3Pgv6n3nOQh+
JEf3sHUasxvLIvtHz4FV7UzK7uJpXBM98/zZ9jlgMdMaFXk1jZat9y7nnFYB
z1BGw0enp7FiOcvFIEcF1NdiVfe/nEId1VvLjZnnoSDuYbi+7xROsm+nXKo4
D9yql8fjHk3hxxSOQ6Ot52EzlOIjbjmFZZHhWRqL5yFL2LLMQHYKP/P0j7JJ
qcJhc37JxNFJzKN9RRlCVRiuy+WUkZlE0p+BrZnpC+Cht37+tMgkqoi6slI2
LgDL6Nk78tyTaLsfMgQPqIHO37ZcJfpJLH9HX1strgaVEoRzapMT+PwFH8se
DzVIiBeyMoycQNG+NoM9TOpg+Tgp3W31NwZzd4fsNLoI27SzLR5zv/Fl8viA
jMNFiA6XIHmN/cYxw2sMAf4XoSO7St6v9TdePVqw7Zp9EVQmh5uCUn/jvkD3
oK+0GsCrx0aINfiNMzf1KitKNGBCJEICv47jhllSfYi8Jgh5pRCmP43jK6oe
rRZ9TbBvK8hgTBxHMYqbtKSTJqw5dXNbB43jKfs8f480TdhbyHzowI1xfFpu
XkXPqgViytFLRnvGsaBUtvAJ9WVw14/PXzUeQ4rC4leDdW2oTM125Lwyhu/r
dRzOHNABmjUU0bgwhtxmFi+n2XXgVfRI8nuxMTR3Od4fBjqQMMwVcX7XGCoN
Jz+W8deBb3eSH4ZljaJfUJcSifEK/OeVLiO6YxR/P4cifnVdCPgqUM9AHsFy
3m/iYKwLG4SP15fmRtDp2StGF3tdGDNP9SjqHcFNYWY+lQhdyFNOqj6XM4JP
9FkfW/7WBd1d7y9fMx/B+t4oIjlQD/hZuVqo3IfR7Feid8X8VWB4cXyxznoY
N72PhZrs0oe1DfZDQbrD6N0qGc/Lrg/1g0evMwkNI+VamoaUlj7YJByeEOz7
hSn/WRiYZutDBj/dlq7sLzxpZK4h42EAIjILIilLgyikZ2KprWAI1qLe3sVD
g2iyvPNSsLEhxJ842NHyfRDTvrY07/cwBEbmU49WYwbxnMFWykC5IZDJ9lVq
5wfxuZnbm2/nr0N1MUF/JnwA3au6FV/cMIK/uV5p214DWBT/8K/FUyOQzqDf
ZLwzgAqGWX0vMowgLVo0QUFxAPWc+mo7V4zgpbv9TPBEP4bSdlKZhRiDoSLB
65RMP5odlT+i1G0CYdJeP1Q4+5HRnVL5gcoUmk7S8xru7Ue3A1GZd4RNQYlD
tMHnVx9WcDw4xeNrCjyUe4c6AvowokKQ10bKDAiV8x8f9PSiioFboVWmOfid
n28vdu3BmYlivQlPC6hWn9OWutmDxnPjDEejLYBKa7Y1S6sH34SceB751QI8
9P80J3H3oED6aITtogW4WE/Uv2zuxrX91n4xty3BJnCo0oKzG8VL+c4dsroJ
qcGDMLi3G7csArvPBdyE3yEDFQYrPzH4je5W08ebYPGur+xS40/89XhJcnH2
Jhhl/CySfvAT6ZrotlNcb4Fmc0vOnvouZK5nydubYgUv2ptP+ed14UXt8iGP
Ziuo72rK2o7twrNyji43lq1Adajh85JTF5rN0JB8Va1BiVCXNnSsC+WtyMds
5q1BjKEiIdehE7MH+sBO3wbsD5cfFzHqxKLd+sr9/jbwmaUsLvV8Jyo2LokN
5NuAIFdJbAxrJ46b7vKLPXIHuCW+Rj2t6UBiHpXTzdE7wHQ1K+Q6cweaeW65
WUXaQd6JoBLVnR1IJ5Ljd6nZDnTWb/8WX/iByjvWKnqo78KLOK7Te7//wO7S
p53zTndhezp8uMTlB35+FkG4YXgPJj3dRdm621GCxSua7aID+OkYGtJVt+MF
moapHy8cgJNH2nc5sx1THqkfsWhxAKN6ws/mp+0oT5HUfSXkCK2Mlp6e0u3o
zSwjXV7oCPbaoVHlgm3IWZdytO+PE6Qta8xF7GjDSSrVyKeMzjD2juasfV8r
OtF/na9RcAaD34+mOJ634lXdAw93hDgDPDaT8ZluQY9nDqUdcB/cOFheGFa2
YGJqmuuNe/chv+bHkFhUC955hk+iYu6DAL3q01G1FiytiBRj2rgPDEnCXec+
NuNnT0emVHwAGuoT/Me8m/FmTEP+DOkB+M/HuS8ZNOPJo2se5BMPYU2WkSeZ
thmLqNUs3UIfwmjzmtMu6yaU4IuaS3R0gbzVuoP1vI04Yi038s3YFV5lfKhW
Wm/AWGJOu1WSK9iZeT8saGnAv28f/7wy5wq8304PfHBpwG+j828lfB9DZMSn
VM/6epSka61mQDdwvhh4fTm2Ho8+PXubgdEdtLdu7bdzqkcLilfIR2t3oLPi
cDY8Wo/0Nekl3w97gJtUqKLk3e+444m5y6EATzCYvreYfvY75luJbTNMeYJk
rEYSJ9N33CMrOUSr4QVzO2n20Fd8+5e3gXcOH/EGs06XrumD3zCKX6Va7JYP
yD/Te2b+uw6rgntzb733AWYFMfnuojpc1h+v6OrxgfYPf+JrLOqQLoSJ/rXO
EzjnbGIX96UWuez2mb7Q9QWOE3IcTIG1KJz/ta8k0hc2+5h+BJnUooe10C3P
QV/IV26TebyrFv3Hyf/N3fWDE/+do756rQZZLpXzr37wB+o6joJG4RpUyD8g
Lb/iD8Oum7eVqWow4g6wBlx8ClEj+S2i6dWotKpa47H2FPbm8L/bs1mFRxTj
zWmdn8HkTRpNn7YqjLtzVTSl+xnUMI9uryZVoWz0n5lFxUDw8I6+9VuzCm3j
fWKXDz8HwuUDYhhXiR6MAfeLpl5AI/XMmPT9SnThLOGsuRUEH79+i/isVonO
vd4iNhNBUHmGiiw5isiRypfERAqGlIGJl3/8K/Dpse73boqvod/jSPx7yQpM
cBiz5v7xGug51HKujJUjC4058ZVUCLjcSOsohnIcubYVYNkZAhk7+sbvEcrQ
IEoy2uZEKPz6sGeF630Z3h5z4113D4ULE7bMLzZK0XZneL3AqTBwC4gRUEov
RRPHgXM7X4ZBFn+zHOlaKebKLgkMz4cBs+1JE6OCEkxn4SHxFr+BacJCgpBj
Me5zkIk+7hYBbCGceb84irF5LslAfDkCdMSv1IS1FKG0vOKOMOdIKLqfN7Eh
VISSfvaCRz3fwtzh8dWsvkLs0lxRK9wTBZxfD9HdDCxEqM/heB0TBc/XHgg1
TXzFWMZkTtr2d1DxLkXBO/wrjt5p9TtzPxpI8t2akipf8Yr24R+DbDFg5Cnr
EJNQgC7D+ZZ1/rEgRL3xxc44H6XllvMi8+LBLEmo7vjefLz7jk3qpEYChJ03
7u4s+oLRm1WnD1YmwEZA2ZrCkS/47bzNKGNZIogKzO9ZrM3DAeqLa+PnPoBl
A/ux5Pt5qPAm1Yip/QM07fNW3P8jF0++qpy5REkCqszsy5XeuUg/tZ6u/CEZ
pC6PmD8QzUW9I3pVblopEBui7DsYlIOB7/UbD2EqtIs7vwmRz0EatrDw2oCP
QJeqevF5Rza2Bp65b3o9DXqF6F5df5mFgY81qpK4M+DsvTs5VTOZKNw8vyV5
7BOkZTd2CKpn4phdx5gL92dgIAmvhKZ8xlIVW5U4uUx4LPWSeYP6MwY9oHXd
tMiCMReCnOWNTyhdzaOy8302aBRrmzSWZyDn7S4uQZccOKrEmBjtmo5iOZr3
X0/lgq/P/Rrq7jQMFEjQuP0lD2aruyZsJdOQcpdlPublF7i6S4auM+Qjcri9
THj5KB/K1N4KKRBSEZY3X39zLgDeF2uaSZdSsYRZK4DqyVcIbr7usC89BZu2
/z4WTi4E0yts+QM3kzFqwPe7jkQJzC2tyD2sTUIMHDf8G10KHpFtSM+XhGwN
Yf4/uMphv1y6atrTD5io+zyRrbECYgd8m5QnE1GGPBLfcKkSRLxMrgxcSER+
ntmtU2pVUMop0/PgYwKq126zvb1eDRo1B03p6RLwNfWWdfTTGshv6qjT/hGH
gwaO2xyttdDFEPDDN+w9rtIOS+nLfIMlfbmhAr1YXO5mTy2o+g6MMXPT04dj
MC/gtin5fgNIjMQvH+t+hw7Xi+03dZrgCp8elfbbKBzcv22abtICjra0+30N
32Jk5f6mr9FtEJJdzFzAGokNfD+NhHb/gOzluzzT/eG4474457BJB7TKcZ46
FvsGV034q7paO4Hg1Sl/2TQMSxbj9+qa/ARDxgfJNvga621u6bdiL7yN7S9t
VX6JHjQhr9OC+6H7hHKnVO0L7P7SVjNnOQh6CvTUOxqe4h2vSd6TtCMQVveA
9fYlP7Q+NvibeXoE2rUHxFpafFD6tr8NT+UocOT7hVgneGAOJWCSL3gMYup1
UCLlEW6whOgMaIwDyxA7YTvdGXfwX41s2RwH4fGfcpGmdjgXSeYRjP8NPl0C
XcdqtPB9/6plL06AyMEh210npYDRy3aZESahm+gbz7BmCMRZg//U8ydhUZuf
5OBsDTuuXLnlwTkF7m8uNNpJOUL1YQm7JP8p2PZ6HBN/6iEUcY+tRo9OgY/t
57udQm5AM8LYJHh6Gmo4nz97z+ALi4mO7MVd0+Afye0o+8ofRM7Izw0e+wMX
9pcZ/tj3DJ6oPKseM/sD9WSC4K7dwbAv5CaLYP8feHEvkDHe/xXQ69NoMB2a
gVRiiCfbkxAwZ6PmU7o4A7dvC1l/3Q4D0vIfa9msGVDnfmTkpxgO9rQbXg5D
MyAwVHNZxyMCqCXnnAv2zsKMrqnszPpbmE9uUt9xYxYaD2QIF55+B3cjy1LU
A2fhU/3qcf9H0XBufKiZK3sW7iqF0HGsxMKNThvv2bVZ0Fof/DsjGQfXRRf0
drPNgWi+ILHQOR4+uTvt3680B2vho3MCawkgTfpvmNF7Dor3uv+sfpgEQb2y
X+NW5yDhJFNnNncyBPBrZc4fnocAnez22LZk0JbyX7gnMQ9XI8ebXARToVyp
//tJu3lY5NKsFhpKA//WT9rZXfPQc34SmV+kA/M7C9bw+XmouO1TTiObAQdr
a4YJuwgQlJlf9CvkE7iHF9hxSBPghBx7dtj5LOhNiddZf0mA/SaFn72JWeA3
VUvmTSLAkteVjLtx2RA9cYqGUEiAG2PVujweORCacHXaeoTwL1/JWls/c6Fr
RPWm9skFaPhifj73eT4kLLAbGxQvwJk6kRr+kXy4L8peW9iwADnd68pxMgXw
9k//6+G+BYhcfwNB4wXwBc37A9cX4BbUy1spFoKHVTC3zLFFoDSKibMSi2Gl
4Fxuk94iOA9uZb9WK4HTm4/mnxgtwuR8oyhtXAkY7xM4w2exCM0MViJLGqXA
YjncImW/CNEG7/hbkstAUav5mN+zRZAe28HxxBChINk4SKRwEURLrhHF0hHo
o/KXvMsW4URYZu3IOgJt1tH071WLsC/xs3SCViXkKqd1SDUvwl8dw0EKoRJS
s/MKgkYWYSgnWxDFq+FOQempq7uJEO9oVqtYWAvpFlWzJpeJEGuyJytiuBZ2
RdGaBusSIUo9/+387jqwetfQlG9AhBDOvXbvDeuAON5PQzQjgk97wX9b63Ug
THPUi9WBCBZiB8zLznyHpUGjZsVXROBZLF2Xr26AJwGJm4b1RPBoUfFfnm8A
T6X5fUebidCd0USfxdoInraqsT/biPDCaoCHy6kRyOnnn5zpIcJi/4bWbs4m
IBw2EGiaIEJFndyHTs9miGFyvb6+gwRGMYUad+XaID3GFskyJMh3hZ98Vm3A
2qvVyCtPAnqD7+bDIW0QyZK3qaVIgiqGnge6022AhiHr4SokOKzirh17qR36
Uy/ar2qTwL0o+rHvRjtQbaoLH7QhwcWkvpbLhv8u86698+0RJFh8mmVdd68D
7O4uhQdEkSDKxo+i4NcB3icWPeRiSDB98qS4YFYHBD4c4H2bQILAIp/wnTSd
gBdOu0h8IkF9C79xUXYn+JSzE+eRBGprD6e5dv8EWROxRzFTJFDVYty5UtAD
n+KpM8vFluCVxR7iekMP6DuJ0ddILEHvQ6rh7aEeuHrBdemb1BLYxhFK6Gh7
IeVQnF7j6X/+QqMzm0EvROzYnYFn//mhfmMqq70Q08kea63zz+9ergqT6Ycy
n7CNL/ZL8Nq8x0escBCaDL8M5X5cgu+X2Q/oMI7CRT7d0CKmZZjnYvLqiB6H
zJLyd7ccluHhA2GL10cmwUh6D+tS+TL0DDLoWtdPg+bU7tXxvStw4/GZqd2a
s5CQ6V9toLkCNcKyL2r+7fGHKua48JcrcGJP2XSy+iJQtfuPbNStAHuZnequ
QCLottBUp6yvANUGdbrzGAlWq0rdRERXgXyl3KyObxn807nPXDZZhQEp82N8
/ivgknn2SEDQKjheY/iPe3AVPtXp7b5VuAqs4b8NadjX4NACV6zur1XIMk74
uOS6DrnyjmkRtGS4puitXl++AUtmm3W+QmTINbvHLf93E85mDidpa5Jhba/K
zmL9LbjWPjwb4EAG3R8KMuxR25DpbF/L9ZoMexX2VZW93wa5zH71z/+4Krn/
kknSNrjI0xbKhJBBzPWxRUzWNtyaKta5FEoG+uOFwax123BvzMbt/hsyNNyV
GGcibYMEtV8mviXDWTrBEHpNCmQqff+mlvBvvtPa0awrFFCaSQlt+8fZA99T
tK5RoPOsuNq1RDJwZFuXBltSoDna1tn6Axn+6idP7n1MgZ6JU41+yWQoTDqu
uDuVAgkbsk9L0shgf2Dhe+onCnwek94+m06GE48qdC/kUuCj5xXL7/84XMPU
5mkZBd6GbM12ZpDBmRj9ZmcnBeqqZnbNfSaDkLEtR1IvBTKIb3udMskwWiuX
fu4XBXR3REeS/7FOVG/Fkz8U2DpU1EWdTQY66rSLXAsUMC0avRr4j9HuUVfl
MgVUvd0rD+SQweXnBfMbGxSoFwtmfvOP////Ay9Djxqx5JLhfyEsbYw=
          "]]}, Annotation[#, "Charting`Private`Tag$2904258#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, 
     AxesOrigin -> {0, 0}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox[
         TagBox["t", HoldForm], HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\"", 
         HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> 
     Identity, Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& ), "CopiedValueFunction" -> ({
           (Identity[#]& )[
            Part[#, 1]], 
           (Identity[#]& )[
            Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> 
     True, PlotRangePadding -> {{Automatic, Automatic}, {
       Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["h", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
   3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 
   3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
   3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 
   3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 
   3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 
   3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 
   3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 
   3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 
   3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 
   3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 
   3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 
   3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 
   3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 
   3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 
   3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 
   3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 
   3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 
   3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, 
   3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, 
   3.8871882575514183`*^9},
 CellLabel->
  "Out[198]=",ExpressionUUID->"58bb8392-075e-4542-92cf-f8f93253afe9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"LogPlot", "[", 
  RowBox[{
   RowBox[{"{", "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", 
     "\[IndentingNewLine]", 
     RowBox[{"-", 
      RowBox[{"Re", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{"DufDuh", "@@", 
           RowBox[{"PrepareArgument", "[", 
            RowBox[{"Data", "[", "6", "]"}], "]"}]}], "]"}], "[", "2", "]"}], 
        "@@", 
        RowBox[{
         RowBox[{"InverseCoordinates", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], 
           ",", 
           RowBox[{
            RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], 
          "]"}], "[", 
         RowBox[{"t", ",", 
          SuperscriptBox["10", 
           RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"t", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
   RowBox[{"Exclusions", "->", "None"}], ",", 
   RowBox[{"PlotRange", "->", "All"}], ",", 
   RowBox[{"AxesLabel", "->", 
    RowBox[{"{", 
     RowBox[{
     "t", ",", "\"\<\!\(\*StyleBox[\"\[Chi]\",FontSlant->\"Italic\"]\)\>\""}],
      "}"}]}], ",", 
   RowBox[{"LabelStyle", "->", "Black"}], ",", 
   RowBox[{"PlotLegends", "->", 
    RowBox[{"LineLegend", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
       "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", 
        "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", 
      RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
   3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, 
   3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
   3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, 
   3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
   3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, 
   3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, 
   3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
   3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, 
   3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
   3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, 
   3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
   3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, 
   3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
   3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, 
   3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
   3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, 
   3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, {
   3.8871880651171618`*^9, 3.8871880740271997`*^9}, {3.887188109820418*^9, 
   3.887188166220853*^9}, {3.887188266607832*^9, 3.887188319744246*^9}},
 CellLabel->
  "In[200]:=",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"],

Cell[BoxData[
 TemplateBox[{
   GraphicsBox[{{{{}, {}, 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.368417, 0.506779, 0.709798], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtl3k0lfv3x5Uh6oiUJEOSKFRIlGhTKcrUKUMiQ0WX0qVMkYRuJLdouKVJ
19DgRmkktR9KVJQkMmQ4zuzgnPMYDsX5Pr+1fn8861mvtdfzWfuz3++993oW
Bx+hH5guIyPDo57/e6+E+XypVIp8OfdPGQVlcGR8Sfr4hBQnlGu3DXHK4NET
c0NyRIpeZgkP/E2egMUy12B2vxQd0+pVPcuegPWctPb6VilGtkUWlBBPwb5P
9PFaqRTd4rIdZnc/B/qZhuLVAVKM32KhfFb/FcR+STsc+mYKT0vUdPczqqC5
eRa/KmgSbdv1XU4lfQId4sg8a+3fuHyX3ljc/iZ4Fv5OXuXnBGrJn9OO0WyF
wHPmwraUcTxo0hdTEdgJkpyEdAQJMlqVC5xf9UD+7C7Nq72jaGA5GP9Pdh/c
2GYe9S1jBMvsXN7wD7Eh5VBQ3HLnYfRPFOz9pM+DBNkHsVEDYhR//2AdrSGA
oOQvBi33RPivh4q91ddBuPyadfVGmBB/S5yCox4LYW9cbpL1ASGeDqtSb30u
hGWr3fc3BQhR+XFD97pKIVTce7lK0VOID6efyR9/L4Sui5nvj4IQNxvI7Anq
FIJRmPnwtnlCnLgb+ateQQRRKyZuiROGMDbwSsvgbhFUdC+j/ac/iOuerXg3
WyKCRNtpD3MXDCKvfUo94bcI7K61uWbMHkT13d/CmDJiIOhnz4dMDKCtQ5t8
iZIYamv61RY3DaCjM7lbW0sMzcUlmldODeCUzkLDQDsxDMZaGiX3CFB+jKHu
c1IMj5ppdREtArynRb7xSRVDpDnroH+9AK2X9t3yPCOGYf7lBzYvBbi0q5Gz
6bwYfvmPrRg5L0Cdlcs6RLfEoLi5wjIMBJg7+VMj67UYlqjab9x1qx8PqMz4
kDUmhr/Neo+HXexHs2+S1h2/xCDxSHmSnN6PltNS9qpKxVCf/c7gYVQ/OjWu
eJCoQMKxuc4zFLb2Iz1nt94cdRLez6fXvxji49/snHQ9cxLMrEm5z0w+LvAt
dTxjSUKu9yU7Zhsfj+X2NnOsSThytaVE9R0fL4+Wb7iygYQFC/dk/3GVjyO0
YLW720kI09nvpeXAxzuaY8vP7yeh2U7+vLkVFTf/eygrlIQNe4tqt5rwMWJt
cuvpMBLm3uauPabOx2/Vq3sD/yShUu+wVgOPh+9WzrxZnUDCbIOYnqQcHhq1
HfvXOJuEuM0ampfP8PBf7Z0rnl8kgbH/5Y7iRB6mropfbHOFhBeFE9WtITys
37xyvsl1EgKNThaaredhwfYTfaUFJJQZp4cx+rjY/k30l81zEhZ9DSw3aeMi
bXpIqt1LEs7FrlOM/sxFe+V/o9dWkHDgHb9wRjkXT/r30ua/oe6717XX9G8u
dhh7YEQNCWlyhmYxqVx86iezxKyWBNGDqSSM4+LvUx90eXUkfBwr1abv46J5
2eFSh3oSTmSr+cSu5aK/UgQvs4kEvnV/EbGCi2AdX63YTIJX19sRpSVcfOz8
sjnxO6WHSfTFG8pcVMtTi972g4QbX10ZrOlcTPJw7M9vI0EpztB8lYSDNbM6
wobbqXq8a/1cxeDgXraN1/GfJLiHP9KZ9YODpXtkH5R2UfWdk3FoVwMHrdtM
Wju6Sbi812Ym5wUHbcjErAUMEpwkNxxpWRz0Xvd+gT6bhGe3oi95pnCwebMT
m8YhQd/Rre9WLAftFV+YDlL8K1uabB7MweV0ueGLPBIOrv3x5bg3B9l/PvPz
4VP6dz3SfefCwezvEuW5/SSUmARXellzsKvnu2a4gAStJptZeaZUfswNfooD
JKTHzfXlLeag67a259cpHtYV3LPQ4GChQ5bO0kESgmrejSXQqO/PbEoroPhz
+M0tNdM42HSN1aU5RIKNWszl2WNsVOT4Lz5N8d2XbkxvARtXyl8FNsXzAoxW
3+ml4szkFXZCEk7Jy6TwW9jImDajO4PiweIfjavr2Xgib6FTPcW+9MeLTlSx
MXrioZ+ciIRaSUbE++dsNIh/pmpBseXt4Ncq/7FxjG/k40lxnuN62u47bNxW
MWUYQbGyYO6ef6+wscTAKjKR4uM5gvv9mWx8FNVgnEwxe22NxPIUG1XMarfG
U7yz++bWpBg2Ru1fXhlKMXE65kptOBvT6icTtlNsaurOUg1iY85ceoIBxdea
jCx9vdh4UXltiZjKVyFeJjV/OxuLRDWKzymOWtT2VWDPxslL809GUNxd81jP
yoqNNkXO8toUJ+4c37zWlI1fmlIsa6j6LOi1/8NGn41DWw/U76f4aUR6lu0C
Ns7x2/N2gqq3x+8vjzfMZmNA1TeVMxQLMjRa7OWo+GOHe0oUp2sETGycYOH4
fJ3UFEo/wmJw41Y2C83j57V7UXr7EWtCnTsp9lq3qYzyg8T1ROb2Jha+f/uz
TpZisz9oze5vWJiuTMpmUH6qH90p2fGUhcHu14oquZS/0q5r73rAQj0nY3s2
5b+828YHfK6w0GeowkKL8qvtiqgM33MsLLXWjzdkkfCjovyhXwoLo2o3ZRsx
SVBtcRoNjGDhwP3GObMov/+378LCffup8//pCB3oofwvat1wwJeFtoE9YTVU
f5yihZ75YwsLP2aG7fSi+kk3t6Q43JaF8lENhiqdJFQYjX45bMFCIpeV8prq
P/HG0wuidFnYUufyeKKVhOD4/PvHR5mY8yF9YOQrCVMK/Q2JAiZeYA7QfBup
+XrJQpzEYKL2K/2IJ59JaCqtskn9zERlT/jm+ImETezuT5lFTDS3O2DNfUtC
z1EjYdYNJtpGGhwbqaL0m3Zk3oUcJm7c5V4yhpRe2lN+l5KY6LXq7Hj7KxIM
dmoP3vCiznO8I6f9hNKjZ5/abRcmznJOcGx8ROkRUWx1ZyOV35GNG+NLSLiU
YXOycCUTK/o/ut+/T4Ic4aNaosBE/pNF3cm3SWCZXrbA533IW+asNyODBOOk
wkFucR/m+Y4+qjpNQsSXZw/U7vShy5LVUREplL6RLfohmX14LvNy8C1qns98
oTFXObAPx5bdk/c+TOntkEv6KvVh9MCF8SVuJETnPChNm2JgtknmxUlnqr59
FeElJAOvpk9vr3Ok6vFXR9+0LgaeLRG4WdpR8/KTdvO9Mgbqhvqr7jUhIcHz
9tPRPQz0tp+lPCZH3beo9E+9HQwcF+it4VL7UE6Cptu2MHDJy4a8jxPU/szt
KbhpxsDGp02m+4RiyOtefHmzPAOve9anMtrF8P6Pguickl48UH5yQv2hGOYk
3bdaOa0XNf7sDV2zRQx/PV9WpzrWg6+Pno59DWKYGLy7mxT0UPu/y23tOjEw
AooSX/7oQQd6m4eCqRjKHPKrNz7qQc9/NmTJzhEDXf6mm3dADza2W9xJ+SEC
I83FDTIJ3fhilYnsP/4iUD27SFgT0o35nuU74jxFIJnQmZtJ78Y5SYJkF1cR
1HUu3K1u3I0KskvPNdiK4GDePNbyti78qnHrnoWWCB4YKU7SrbvQd8cJUeZ3
IZhaDZkWkp149VBGzlV7IYSsPHmy/GcnvrdRv0+zEsJtQ5WmhtpO7HvtKhNl
IgQ1jVWxo9c7MVd7a7bqfCGMjUVUbd3ciZEq1+i234egunzQk3+pA+3GJZoK
+kPgYzeYtMqqHeUSFg4dLRqA1M0DjeVxrdhvmMCVBPCh2kngbrmvFUM8kteX
buaDjGv/5xLXVow6/UbOfTkfEj159fn6rbgqWyFyu5gHMSGsuqz6FjwV8WTC
JpUHB9N/EkF6LZiH2RdV7nDBpb7hkVJdMy5/s21JeAMb1HeVXNit0YRwy+TV
fCEDykZrVOoMPmLxL2X7Wu8WKOxgZfHS3uDgYgetBfll4L9D+2nHvgL8ZB1q
7NZSi+UzE75XR+dDY32A9ZnqDlzDmKZ7ygdhVeTwk1B1Ni4Rvhq3qf4AP3Ri
6cddBtA5v63BzacJfB66LtJ1E6Ojq5rsyLNWYGXnyY/nj+D5gNZksxedsLqx
iemXIcFaNx1lD7Ve+JuuXFwe/QsHFqsnNeX2gZz5T26kzBRGHzMJOj+fDX2R
qpM1xjJEa6cqPaSOC5k6c90VfKcRgfG2nBku/aDk0T8/cN904q2J9dm38oOw
6duy/opIWcJQqZJb4CQEu7W+J48HyBE6leGO8ukiEObWVKjZyhMyE9PvRzHE
sMjgMlmgq0CM7Xi9t2bpMPTU0u/achSIDssAraVpI2AUdWek6dkM4k9v1Tn6
naPwbIct/78YRULzEtNHTkcCjeD3KkxfiSjZk3eXjBuHsZ2phTHNSoS33Umn
utcTkKxqEXf96Ezi8d7D+ja/f0FQoJ5botIsQjJzk2y55ySs+SfXubxwFkH/
ut5K5+oUfOy1zRo2pxEz18+qqrw5BQVbWrX2WNKIqoL27X75U2CqKLO1yopG
mMXFB10vmYLJoJij59bTiNmLXpzTrJmC9m9bl+k60ogPhyz61MVTUNz2U2uV
D42wV1x+YbaLFNqumf+akUQjJJGShSU7pHAg+LpncDKNKO2oLXT1lkII38mj
MoVG6JaGvDoXLIW4KwzDI2doxG/PAvbMeCl8t13j13iBRrzIX2Q3o0gKF7K8
ZE7l04gI5aHaomIpKPFCD30vpBGGsW/oWx5LwV2Udnz5PRpxaZv/wdOVUnjm
Rz/R+B+NiBLlXpT9JoVO+ja9hc9phPGeMN38H1Io0v5wO/wljeh9t+7+xi4p
GMxYXV1ZQSM8rv54c4onhTINa6E/0gjF6fecFw9JwTBL8ffDKhqB4bHNxDDF
1auLJ9/SiJjvWwICJ6SwwqF50uU9jfj//09Qy5Afvl5HI/4HZdvh0Q==
          "]]}, Annotation[#, "Charting`Private`Tag$2920311#1"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.880722, 0.611041, 0.142051], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtV3k01P33t2bmM5OlqCR72dosNSXp/eZJISqV6FGikCdLUbYQRQ9tksqj
slRKtNhSlnA/mAljZ6JIGkuRLGViEPOd3zm/P+6553XO65z7uve+/rhX/dip
fe5iIiIijcL4v7wOLfkuEAjgv1HbmOrcQnRqWjN2ekYAh4xlH6pMFaLcVwZa
E78FELQhhBlpWoQMdWyPfR0WgNS2JQwPdhHaJBfdWd8hAK/nRave9Bcj3PeT
fTdHAHpxny18lErRvpiG50ZHBbAEgl5mWpIoqCna50T5PLR5DkZ+bmIiDof2
vcJ1DmRMf/ybzWtEyuQp+U0r/kCf3Vmd5b4c9NqLKSnTPQMDAQlU9oWPyOWa
wfjHi9Nwe6bH1t+qB/ETQmMB8cFIhhuwJ7QXpUt/VkziTsJQXtGhqJIBlGxt
4N92+TdojEa8k18xhC56uwbrWvFANVHFbkPADxQq/izIf+QXrGW47JPQG0eu
kU0r2zN/gqfOTvYexV/oTtlAUvLJcbBxCdu8XIOHSnp06C80RkEvRk6qIXoS
acpi8wOpw+Dnky2fOs5H+XqxJ3v7BmE64x6N2jKLelh5agzGVxhKZtxS/DWP
BtbcMYQ3fVBXEO19fpkoljufxVgnyoXmn11WL+XE8RrG2JonE59AJI1/K1FT
EkdtH2kuDu6AmIu1fcxkKVxp+WPPhuMdEPfGjsXMkMIitsON2bYd4DqaIcfK
lcJh9kP16RodUGJo6fuOKYUDPQZqrte3A4Uj/6jmhxT2jO0mXdXa4ZNVhcvz
rRRsU9+QS63hwM7j1buLOin4SnP9+uh8DgSsv2cY1E/BNZy67PlkDkQ1/f1S
f5SCLbprX0z4cSDIaaVjgigVbxtlZXYrceB0FL+UokPF+rLlD/JOtUGM+ecF
589QscKB7PhDS1tB+s3+R1QxAudrXS2xEG+FDQ6FnAEqgfdOn+g3GGuB5Cjz
D/lyBL6Sqr6ZqG6B4sS6h8rqBJ4fvN1TEtgCmksnZnQRgb+Gh65b0d4MRnrJ
6q+DCBy119GRUtkM4Qa8+BPnCaymufEi72UzRM2t1BK/ROC/a0bf119qhq4r
fjcmbhK4cdGx8PCNzcCVu/tv1jMCew1se/qPejNcS9t++E4ugSlFSi32C5uh
YWFAqfsbAl8qeWZ1mN0E3ANxT/MqCOy752ZSmW4TUCN2/NvfTuBMnvWPO6JN
MPDf1hV9XQTuvSuBfT82gk5RoGrFFwIf7A/6pnK5EXB7bsmy7wSOv2xgMuXS
CH9kX/DiRwnMXjcc17S5EW5enuwZ+EVgFOLMiBxsgEUV0bMaswQ+p7LsiiPZ
AKHfEUkVELigqqVbP6kB/jw7cJQtRsM60haXuDsbQNqGs72dSsPHXs1/KFZt
AOqH4cVqC2k42bFoTcJUPVSYf2zEsjQsm76aY/60HjjLmmkSS2jY2nJAWymi
Ht7oDNOfLKPh6JHU0ImD9TBnocdXVKLh8gTHprp19XBoQRlxTJmG+ZsWaT5e
UA+WxfQLYao0bNhdFxj2uQ4sw98neqrTsPfFS+wDb+pA4TiOWaVJwxnaSGVt
XB30pc1fy19Jw9x6vp+kRx3MNrr3SmvR8Ar/fFa3aR3cML9eYaxNwweXeiu+
UaiDBce93Qx1aDi+dJVP3AgbHJRmJPhCzHbtIT1YbPDda9t9WZeGJaTuyqMU
NnxwKdf+JsTbXuzzXBrAhv1ZVFUZPRoOtqOXjtmwQZY4My8ixPmTLJmalWzI
PfFdtFTIj3v2qHLbdC1cHGp0MBRiL+eIgNcNtWA1NrTfQ1jPctFhnTWPaoHN
NRNxEOpb+W5z16PAWnhBee4pLtQvck4hTnFXLdibSd4/Keyve+0vHK9aC7Hz
555e1aDhEm7jxAJeDViHVzxwV6PhxDvPM8JraoCn+HfylHCe/laxh3jJNZCa
zcnHwnnvmXOje/nVgH3vIhEs3MeaPDPgWtSAYPe1dJ48DVPcVfwdl9cAcewW
eUSOhvuXza5sGq2GwM57588J911R39FhUVUNeqxQqrXQD+c23DQ18q6G92Ic
m3mhfw4O+oxn4WqY1QoK4M4Q2CjZOl1NoRr25XzYdfY3gX+IS1Cly99BZmqD
asYQgWsKv7yNTngHKLXy7V99BH7iVeY76/FOyK8yj/tEYOe2QM6gzDsY5Zkm
aTcSeEvM/pij/SzQahszCXhH4KUm+lvai1iQf+dhgE85gZsfDaVVubLAhO70
zOklgc39D3ulvmLCLtPGbxoxBFbRMlZRiGWCspYzpyiMwLMfFVquHmZC0R+Z
jZN+Qv+bNTFCJJlgzEw75eFEYC05c7EDDlVwzjPk7TI9AouxVF6zV1eB5J1O
/sAKAvcEz54wE6kCkSm7wUMyBE76UtCwLqsSWqKcMWOCiolc7bvU2QooCD7R
yXpDxV+PS9hENlUAo0zVrSGDiquWcucn0yvAXj8qJDyRisMi7rn121SAIk9n
7sNZKh7dvVAfUkmYdV/85OpaKn7SNXB9KLocLNI40v43KLgzbElailE5LFA0
JQpCKVhaZWeuXW8Z8DMCb746QcGBLpmtxagMVvc/iRndRsE7Bk4uvTLzFpzc
d6z0/i6FB0fHHuidLob+58EBBxlSWE9s5pWXUwEw/BaeUsmSxEfsVhR0HX8M
qb2ldl8YYvjHxG/jAGY6OC5dfoiqJIbDEptAelU62F/2i10vEMXJXRfrzL4+
hCHVtxsCq0VxQV0ra09LKlSuYXwWOIjiHJ635mDnbRihnTFJCBHBkRwdjlKV
LXg/l1g0HD2HionQ95UB6WjjKrfCeMEkerBWoS1H4zGy3uJXeLl2Ev27N6c5
uekxOnQ2xDvv1iQ6kNhXF6ibgYLfTzGv60yicXWbSr3uTBTde0M+4sBvpGWs
nJOwPRtReK0pLq8nUO2ro9vzLhegrtHBAv/742gra02V9pcCtIlfKePrNY5y
26fNUhmv0Y/ZHsu7JuMocfoWutr3GonK1H+bKxpDbqhmi7tpIeIqVvtQzEaR
gK1voPizGLk+0uG/PjaMNvaKqlxwBGT/+Sg68n0ArStx+KmfBehaRO2nf+4P
IK2El8wv04B+8rIDK2wGEO3hi40PbEmkyff22Jvbj/7sdfwkGCVRYds/1/rP
9aHu3BxdMKhEjf6bk9KUuSjttDPTtJCJmPnJ2y3XfUSa42+nt1TWosURHrct
NCpQWMNf0byRWgSrUFrMIhK1P6uTzlZkoyuzSnuSpMrRFfcuTXU/NhosXVn4
UuiM8c4ZWym1OrQ1JYJ9OzIPlbOMH7WF16PDg+qVSdfPoL/vF1p7Gzeh0m2C
8PqpMrBK/9iw27EV9UlFah/ufA/jl7I9WD6tiEhvPiFv0Q5JnlECk6hW9E76
SE9ATjsMrl1roJvdik7ZluxnRHVAbFHkbXGJNkTfwzEv0foINQ3aTkU5bYg/
WWRm5PwJdvIDBtWl3iPzFSfv/7bkgoXtIvHfrzuQj2L8KjW5b3DjaEekfuEn
tOOJtv9lm3Go3q28cO8iLqpevCm+sYwHI+oK51vv9aE2U7HdQUf4EHB2teuN
JV9ReWaS24+YWej4JLvPo2YQ3fSidvBT5sElZOs3KZth5JCi0CGXIkJWrd50
pUpyFOVYnywSfBMltailg48tx5G+s1qwkYQ4qVzqZSEZ+xON6V9XH14gQYrM
iGX59/5CUyVpRoguSU7ZlTmzVvEQez8zYPe4JNm14ajSqujfqLL3qrj1hwXk
aQdZOY1Pk2hpmIRDcLYUqXi731FCmY8uRMrbBnpRyGynB08ngqdRtd4e15a1
VNLBNMKypmwGFe5tarfppJJ5zj4aW/7Moln+xiOVoQTJJ/4SL7afQ4a6kiKa
mjRyX4sJQzlpHtVuetafUkQjCRNaRWnKPNKZeBy6+i2NrHjcuetw+jxqN7FO
LiqjkfrBIa73s+fRkXvbQlsqaaS0auE1RdY8UvnvdMFcPY2s9TbsUxDeleQI
bMZcGokpuvHSNgJk7vvqmS+VTvL9+Muz7QQopLCqeoRGJ3O6qp/YOghQ4Kkn
Z7yl6aRKjsfba8cEqNgtLNhzMZ38Y//4KxEiQFfcGrc4KdPJwnRVU6kMAdKd
8mWuNqCTvgvHqjOeC5CxqDw33YhOagWV79uRJ0CWC+bjlBh08rb1Ec9LpQK0
XtkkjWpCJ/1/3rsl3iZA5/uu3vmynU7qOZ1USf8gQM8Lr2L7nXSSyzTOMv8s
QAeLxc7XWtHJvUkfyi8MCdDWbyO5ubvpJEUs00p9TIBSXr3M0LSjk+AVxCF5
AtQ3Ero+cT+dDHy/46jLjACd23h+F+Ugnfz/fwZ5LemcCXGkk/8DRFly1w==

          "]]}, Annotation[#, "Charting`Private`Tag$2920311#2"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.560181, 0.691569, 0.194885], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtV3k01P3/zc6YpqGZ6SlLtpQ1lQjxflsqCiFFUSpPKUskS1KSSrRKiKLI
mmrsWw9eH1v2bJNdNCIpW5YsMd9+5/z+uOeee879595zXue8rvRpd6sz3KtW
rVr4i/9jVcQY5XA4sDfF/EJnSQFyX5ANWVjkAOnVv7s1eQtRZs42+elZDqRr
D65P2F+Itm8xOz38gwMhMvwiUR2FSFPkVndDBwcapbMt+X4VITw4VReTwYHj
+x+p/dlSjKzuNL7Z4cCB0/liqtkHCeTbdMvNqXQFJKyXxr07KhGLJTxadmoZ
AtZmt75b/ogkCHeapvgfKFTLiz1/iYXyXCr51vQtwm1Nh1B6SBc6eX/bZFfQ
AvgQopsYlv1oPtw/BNA8eAZIG41fZ6NEyuf10V/m4AB1DvSJIRS7f5tnW+gs
VHjmWJnIfkdBrqcuK5jMwLFNM0ZaAT+RP0+6r+fYL3BMbpbv2zqJTgU2ybWn
TYFZOOXdV6lfKLJkKDrWeRIirYOPiCjPoPf9W8hvZcbhbirtVWj4HJKlYgPr
Fz/AK+FwWirPAspWDHFmD44A00fvoeTYEuqvypLS0BiGxONCR1ZLcNCQcuR2
yB8EZp1szoIWFxYJeK2hyvUF9MXvbww/wIOD87fUUH8PwIT/Y8Vvh3jw4njq
0emfA1Cc3KGkb8+D2Q4pVws7ByA1/eMWXjcenK2fWG6QOQCejw7lfnjIg634
4sxtHAaALTrlZdjGgzevl25c5d8Px1zMGCYnebGyxoRy8nQvqPa7Pha7z4fP
ql6/XtTXC185r+n5UXz4pfya1sbqXpjxckuwTeDDouu2+s4974V5bqlV+fl8
+PfvC2X7jHrBKOucetsXPlxeNH54NKIHgpc3pr3S4se2uuMBWzW6oUhM8t7s
BD8O3xnQYijVDXL5aiXpS/y4XoUiZ0vqhh/m1vnnBQSwnqRqbeDnLjBp/qHH
t1EAy3Lc1rYGd8HFx3xXcs0F8DgxlurV0Ql3jJ+mcmcK4JtGY81FlzsgrCy6
pP+KIC43/nlQ3bEDXg9aPMu5I4hXmf34yDTrANaVeypPIgTx1cPfGxJl/mqW
V4M3UxD7nB2qedDQDux9lAP1bEF8LqSPOCXVDg0lz/jrzYSwaUNjplANC179
GY+vUSHhu80NW29ls2CXVCJZfzcJ17DqmSuxLNAJp1rV7CfhPX21b6cvsuDg
ATU2zzkS1huvSusTY0GhxrNL2xNJWI1aGp/l3gb6UYmuoeLCmG7NDDu6rhXS
ahUkaeJknC1/7/0enlbg+x6dc0+JjC0WnL5um2iBO5wNUjQdMr77QnoXqboF
dvCHkG2PkfHKSET/e58WKFcIVsmMIePha/6q4u3NIBlLaSoXW40vHHwcXaLQ
BB8OfpOJUKXgtJn9PyO5mmBU1YHLC1MwO4YXX+j6CAUW1WRnKwo+8tX3m2To
R2gOGrgc40PByO+ERuBIIww1R7gJExRMTVRiGaQ2gKKdlqirzRqcPVe1pkau
DoJ8rS+xTan4Yfqrcr2FWuChxSlZ2lKxy4nr3nmNtRC45aJXiyMVy33Y1fPK
pxae+1Z7CPhTcVTkm5RrNTXgSj2obZ5OxVfUH+vucK2GQJnUCxfJItjA097l
RU4lLNmV1jgPiGBJeS1JekglSGhuZZ0fF8FLXfSWe/aVMGS0wzvwjwjO1W/S
8OOrBEWpA7TZf0SxvIgBt7VNBVTyqcdwrEQxKXNzjNBSGaQ+9ypg1ovi5J6h
B99vlYLQxwdTvz+uxd1XGS/jdpRCWbdJJHxeiymS+zIt2SXwZLt8fuT4Wuxz
Mq21CJWAm9yNW+cpNLx3yHnd3cX/oI0+vvOhOQ2PjE/EK3oUweecE82Hm2hY
PEwq+7NkEZi4igma99OwxTbLivDGQrj8bui3+gQNF17KHlpULIQOvYVpoNBx
6LyXYv1QPqRqP2YeNKXj0phknesR+ZBoH11gZEfHv7TbTXcY5kORuEg+lzMd
H7um6f48Pg94ZJ7VFwbTsSL3Yo6LXS74cf3csKeYjk8kKlZtJOWCtTBfYEoN
HYcb2bW3FebA5bP9xg9YdPxh6N63O045MBi/IXu8n44Xg4vndRg5cOlNlyOM
0rHqljGhycps0NBiXpyeoePTtRJiSZeygf1E0D5ghY6jnM2VbWWyQXzOee0h
AQauF76uS27JghMnXy07rmHgVe8yzInrWaDiarz8isHA6uYDDl6qWYA8Wvy5
JBj43AT14pa+TLgy6OTjIcPAsWH6Qb33MsG9r/nBgDwDN2/zfBKmnQl1jg/W
GygysGDKHpPQ1gwY8D+pd1uZgT1GUlymtmYA6bSV4DMVBu5UFHx49AETxJJ2
hnj81djtfGbZ6DsgbX4+M6/EwGkZda0Kxu+AFsn/UVaBgam/lGYfJ78Fw090
frYcA/upP1i3yP0WbDuUFTZtZGC2z7jW6ZNvoNqedrd/HQPvLzpoX1eSDm1L
HRd4/+bLXsoM2C6WDhS1NXohvAy8QU804dnl12AxGP/m5DwdBwVequBuT4P+
0MXBW3/7/FHOGnLekQavCpNzx7rp2JpPQ7AtLBXsGmSyImvpuHjfU0Wd8RTg
Vpiz8sunY7m786aJB1Jg3/2RtU8T6Ph+w1F34dfJYD8Vc2PiLh0ftxTP7XFM
gpSXsnrHben45/SslndlIrhtz4qh6NLx1agmoGxKhPge5XgZKTqO7Qmq1x9O
gJCA8Oq4LzSsHGBv2bM3ATZEQaEkQcP/SWl0eKXGA0P9TPbOOBrOrW+tOtjy
AtykXTecP0TDLGpwS1B4HGR+TJp4rUzD04e1+vIOxYKh0+LuWl4a3j7wckas
PQa6otNJM1lrccaMq+xIdwSM1Wq26nKvxR+1pLaKxT6BcxP2zzNZong8oE3b
/Hg4uB+JX5ecIoptRb2SzsEjGGiZrjhhIooP6VC4uWpvg7yq1sKfeyI4kLWF
JVZhBisCirp2olSsvKbPmU9FHemXH81Uq1mD26eCXlLnbdGZ2ZZdpq5rsP+T
vXUu6h6oHH7mROVTcIVU6J04ahDy+KolccN6NXZyUjybvxKOlscELNLfk7Cx
jO+xm7oRqOG2EzPOhYS39FWYW1yNRJF6Hdo3JEh41Oq45ujCUyRy5qYH45YQ
dtULE5ScjUWmTr1NR+wFcRHJ/1O5dyJy3BEXeVqTH8er0NsyZJJQbuL0o3VT
fDjYIqM5tikJ1bOO3C19w4etowbrfRRSUOTOp19bZfnwpLRpuWJfGvIsVOZN
leTF8loSGeFGTNR4+7ZxlA43JtsXvL0+xUTL13YHxXBz4+kAy3TXFxmIqrt5
wrKOC59kl1vJXs1EmnkJTJYd19/7/W22/CkLFfrE7a4KXoVrcxyMskJzkXGY
zDqj6WW0u0q5YvNALuJcsLuzFLGMMtsX9F9o5KGp+LIvJZrLKGrhCbo3mIfK
1NxjDgb+Qf+iGu0zugXIMyrmj4zEEuLUqW1bP1WEfFSe/Si5MY92srkkb9gC
MmjSKaP0TSPV9zZTaq8BZdqsq5yMnUby4e8qBxYADcSbfbM5Po2EE97ujDcj
0Ev+wffv+n+hPxa2vZxxAilbNv0yGJ1CfZkZCrCtHPmC34379En00uNEpW5B
JUpWOnKA3+s7irUXYkb2V6KCizMZQPmOoo1zn44JVCE2fbFaLn0EhUmRXOJs
q9CFitz739nfUGBznsjyQhU64+zYIms/jE6prXYo3l2N3P5sOPHGZRDJTv63
oF1ei0b22VvsGu5BVxsNb82M1SKXTqUdCdt6UHt6PYW5vg6NPflBkwroRnfP
9MhKX6xDTRY76Yc2dKHJ7kUzAal6pJfTlKHp0I5Kq7RetV1rQKRaA3TxnxZ0
7HnBfletJtSQf9TMqrsY5V5GnzadaULVc7qZudfeI8qRaof+sCbE/q8mT0mu
EJVRO7ysRpqQ8eunibuu5CCaof/B2APNSHfuvMjckyTkX/jML2ixGbEPFKxc
3fUCTBK7Gs1tW9GB9TzvV5IqYfI282yVWyt6RGJQ+xOrIPrcTY7OzVZEuy7G
Tkr4ACMqKtsUmK3IPzMrYDSmBkIKAyN4eNtQyeMjz15ca4Caxs12hRlt6Hje
y8hGoVbYN+89Ii3wCUmc23xztVEX7DET5ZnN60BB1wbNWbsH4eEpoamF2g4k
YB+239hlEDq9V/Wv9HUgjeFWx6iYQXB+Mf5ekL8T/RT58KVs9q9/os5T/Egn
opxbeGj/9it0Pr7JNpzrRJu74oXaRIfBuX2mLFyjG42a0LR1P4zAI4eOQLWC
XjSznUftVMsYBP/cjYYbelHFelVv1aUxCPB7tfyc3YtcxK+M9sqNw4UnblcE
KH3ooljcP599x8G8msfr8799yP+DkrWP+ARQtqo53Rf9jBr9Wc0iapPwcCXE
bMStH918ii32nJ+CanOJ1RaiX1BYbaPX27xpGJOmB7Q+G0SUzhBk+vA3eHsp
nXrEGEac0M61dgOL0NFLtTpbM4JuWSZ/yKGvwEm/3d8ETH+g8nJu0T7HVUSF
kubdCr5xpHtFwmOwgIuQFyoeSTKeREfO7lwo7uYmJIpd9vCFTKFGbl73XDYP
sWqR+7Un+xeSLNu94/VPXuK3ZcmJqk0z6Ntow/c9LD6iR91BbNOtWdTIDGN6
Az/hYUMVkemdQy9qUur3RAsQ6yO+2vJKzKORXdbvj9kIEky7+NTpywtIc/+V
K6liQoSN7nXjmpJFlM5xl8+tFSKyTrjJaP9ZQo+OCbbccCUR8yRDnqLDy2js
fFKTAl2YsGrR0ZCIXkGXOtxrs94IEyQd4bLiuBVkGN5QZ8gUJsqSug/YJ66g
Ftvbhz5lChNql/1OPWeuoMOp/y3N5f39IDcW3F9ftYIaD5HeqhPCRK3r9kH6
rxXUlHw0O4YlTGBBhTCKKQcN52gHCS8LE/MX5zcwLTmoRXOo/CFHmMjoqU42
s+Ggf1mGYSLcZEIy4+x/909zkPyJ8ha6AJn4czhpmOTHQRsphjP/iJCJgsSN
ugIpHGQzuNwttIlMXFg9UZ3yhoM0rNYu3t5MJuR9S632ZnGQCcUpjUuRTETs
P37udjEHDQidz/mtSiY8p5494WnjIJmcrXc+7yITinbOkomdHDRTGSZno0Mm
vlRqvTb4zEHWu9ysmnTJhEV0Z+mN7xw0gXeeLDUgE4LcaSbSExzEJe2Od+4h
E+DiyyJmOMhrnsh6s49M+Hza63BykYN0iixzpfeTif/f36gRGxs/NSUT/wO6
LMC+
          "]]}, Annotation[#, "Charting`Private`Tag$2920311#3"]& ], 
       TagBox[{
         Directive[
          Opacity[1.], 
          RGBColor[0.922526, 0.385626, 0.209179], 
          AbsoluteThickness[1.6]], 
         LineBox[CompressedData["
1:eJwtmGc81W/cgOmYx+l0yJaTESFJEhn1vZUkWSlRKlRUMvorowiZESUiISlK
sssO988K2SN7RSSZIaM4z/N8Ps+r69317npziV9yMrHZxMTExMrMxPR/VAD+
SQaDgYPUVEZWSwvAaVXyweoaA2/cY6syZymE7I97pReWGJiHbphXoVcISjIG
l8Z/MfCjwD0dBV2FoMrt39vQxcAHarhsdv4uAjQ6/+V5FgNzOUj8oMuWgElQ
Y9o+SwYWl/VVqjIiwK3Z3+Fq2QZuj2q6GNxVBR0dXJPl1us4YISzv2q9CUQJ
J17Vbf8wyTdkv9utDsi7UcW6ZWANkw99SJF60ANWoXvnenxXcXXO6TzZk0Ow
EuHxAMMKbrnPLbTmPQJJ1EGhmG9/cGLvOxdjYgzi9fY6twcv4fJ+Wo2F5E/w
tbd2lz2+iDNE/SyNvabAg/TezXn6N/a+ViE+tWcOrH2ad3S+m8dNXYPCK2K/
Iap0LCbebg7bsx4bkZNfhOIhGUq6xAx2vuE1kB7xByRp6PDphF+48Lh8QDdp
FT7IPbAbGZ3A167tKLad/gtD1TliKirjuN99es5DlAFj8lFKOH8Ub1303Wes
zoy4vVJVFJi/YV6rgI8y+iQUmC9TS1sexv5NGjTv0yS0NpNydmFqGMfeWrTt
PU9CI5ZvPQu7h3FJg65wogMJfdBKqjicPYz3qI5oXXtMQiasLwzNLIfx9uOP
WObbSWinkHgjk8cQXvieeZjHmgXJq8zKv1nox/dkVWcVwliRrYK3d9FAPxaY
iApseMaKXkpvaWus6cda68mKzq9ZEY/AHrc/cf04LElp5msBK1pediw/pt2P
pT+PODKNsqKKohnTyad9eCG/Z3xKnQ2ZH5zx2qPSi882pOoGzLOhiP1erUfE
erHvn5jrsM6G6ndTd5iTezGJ09aGxMmODtEV6nwGe7DNRQ3FVDF2JMlw2NoW
2IO1fKNmHIzZ0QwxnXK7qxuf53Py+pXDjvy0p1uK3LtwxBa/y5r3OFCF7pSR
8uUuDHc/OgmGcCAmg19NmQZduDDD+QzTMw7kafqzIUmiC3fwRHAtZnMgV9ux
2rCGTjz8OyLYYYwDXXswQFiLdWKCM+VUqTEn0m9ozOas7cD3EtaKfPeSUUhL
wx7/Dx14/cjvMk5ERrUd9Zkb8R04MsBk/KUhGR0dqEtf+K8Dq9OMRdZukNGh
mep3AyId+IrJ/YzrKWSkSCtLzHFqxyaTkSdOiXMhvtOZ4WcF2vCftM1xZhIU
9EH6YfFRUhs2ylTx+LmXgoxXr37fO9uKi/7lloVqUVBIgvgBck0rNvVVoHBY
U9DGxNOhYtdWbGTXKtWZSEHj9zwUtnW2YBUfqxNLkpuRo9GTmFLZZrwU3F8R
pEZF7xb1pqKYm7GOzhLrixNUNPKcBTn2NGHbF/VE3QUqOvPd7Qc9uAlbdlyI
tPOlIrhzUcVnohE7prs9b2mgIlrSro7DKQ3YybR07prtFvThT/WW2h1fsMMY
yzEnMxp69P51xaHVOrz7/hU/scs0dOOit0teYx3WzRS1GXOkoR2fD/S9dq3D
zfmOkmmBNBQdlfb2Xm0tXg5WkVQooKG7yk8O7rOvwb2XSDWntnGjMxMOc6mo
Bm96VZBgLcuN9sXrJYnx1WDFLtU/QSrcaIrEwkkt+4y1CgJjtp/kRhfbXTsm
tnzGehk6+gFB3Oiw8/kbCR+rsJmtvXTQKjeiS6vR+R5UYZfCbD0DDh70t4ev
9eH5KlzNcbNdSYAH5Wo1q9xhrcLkZ6BwcT8PkuY+vOm0WSW2Pmr3+OgtHkTO
3vmc8285/nR6dmloiQe96RsL++lfhtXAg3gowot6PflfvthXhq3qe5gPK/Ai
Kv1Y9smRUpw6KxEup8WLXK3etRVBKWaUp3VGX+VFOmN2AiFrn/Cwplnr33xe
NDEzmyh3swivakyO8FvzoW3hYh8G6UWYNtunHOjGh4z3nqyMaCzE1uSxxIOP
+FDhrQ9ja3KFWFzzHUdoCR8KXrktVz+Wj++JF30a2MaP5DatfbxhkYvtyGY8
BjP86GKSXPV2ci7Wzm1rRmQBFKFt0dle+BG/4Fk3SZIWQGuBJSsa/B/xb1Cl
VVgJoHou74OU1hzcpy26u6FXADFlZBkS3jnYf2cRI3ZNACkbDlveVsjBdc5z
x5aFBVF8uJZv/8NsbN5Skmd3QRB1y3E8OhuWiSdy7Btqfwoi5HA9u3wyA7sM
hjWEUYXQu6wvbbK6GfhnliaVrCyE7iiHCaxtSscb5wKi0H0hJHyI51Wseyrm
evH8lqmUMLpwcltu3+VknK/prKj4XARNLSypuVQlYesH0SKkehHkGd2MqVJJ
WLOSSeTTugiK7/Ot1xp/he+tykQm2WxDufVt1UatCVhWU/soVVMUddACW30j
XuCHzJin8j9RtGCqNpB3Kh7XML2bqngrinjipiYmeOOw6No+6t1eUaQ0/HJR
pPM57lqROrGLQkcnpU4xGT2LwYF/75z9oU5HN+3YKL7mz3Bjr8aonw0dhWcV
CeQJRWPPhxxpkSF0lLVoLznR+xQbXPdbtH5HR01qYntE4iMxOYVwXSyhoxmv
dnXDCxF4H3cct+BnOtpcFahzn/4Ez3Kyp3qW05E5z+3ka/gx3t54ZGkknY6e
xfd+atIKw9H2c5PnAumoU1qrXbkqBL+cja0O0acj3pyUyVidB1jG8drQ7IYo
OqVB3cRcF4A//iUM2BNEUUT1baGrJ/ywvgBSM94lilqM+hQbG33w/kH7sR2p
2xA91y/cNtET3yLN294W3obiao2x0hs3bLUh5OPkK4IEB0RnNlKdsbBxsq/G
d2G0a/SrWvSFG7hHWGax4LAw8umQ6RCpNMDz+UkpUgxBJL9lwI51tzLQnoeK
v7ISRJ3zvi9pK+Ygb/IvaKZaAHlE6ny5oXwT3jpEHW9N4EcbXnfiXu5xgfmA
GT/ZrfzIxy7dvl3uLrjJa5guh/KhSrHgoBc0X7BY+zZdE86L/KMlbqo+8oeP
rwqu+wv/b1+UEvNWriAojXdxUUndimqXZ2RZ2UNBTzIrNbyDB129KmebvxEB
ocbCfd7nuZGuhNs5v4NP4Qf/qJM9OzeSGag0NPaMgpn1Zgm/PBqaNLmgOrn6
DCx2JXbdEqahL5vf7yo48BwaHgh4zr7agtJq/2z3d4sF8Yq59N9btyD7Q+Ec
9KV4aGFeX2pipSKD1f5/k/sSQFApiSodsBkp5MrOFzi/hPOK6RO3ODajlaff
pmRWEmG676YLXZiCisgeXytckqA37Idy3BUyStzN154lkQxDp/1jfy1xokDj
rJb45mRoHs/caRjCiU5Hj9a7yr4F/3/5KpmfONCcuH6F3MA7EC+r1Zc6yI66
tMexQEgqdFJCQjVH2VDZVZ9SFtX3QA6xULR7yIYeZuQWDoanQeNP2rOMb6xI
Wk00K0I7E/haBjUSk1gQ5XxBuvd8JkSa0ufkzFnQgtfJ9/YJWTAbaEvaT2VB
ViMVJpKe2WCxR97ukRcJKcgsG6x/zYH3Fy4FzTluQnUfLbVzgnNh90OezD0B
TEizWr5y53AusLU0PjbSZ0LZnataCSp50D8YUmnAy4SiVyPh4WgeiFHH7aMN
GHAFatVtDhZATkHA5WPv14HxRXGv0HwReDXWuia9WQPn/vWsx8eKwVTPITFC
bw3Gp78osCUUg4V2T++ruVVooNnIL+h9grRkBRIrWoXYM893NiaXwM470cVy
v5Zh/wgz/b45hn/3w/w2OS6BQrHZvGIqhgz5TgXlnUsgHZFRNbyKwfPuvUN8
3xaB61X6/kQDArbfCjbpPrMI/4zN+xkzBJzWIdWS9RZgIDtLFu+tgC3t7eMp
+vPw8ubFqoMFVSBLOtFbc+UXxJ/nzIwaqoIj1cVDSyuTEKOb+2yavRrW+Btj
5sImIVyMfOOFeTW8SRlQR8U/waclj3t9tRoKxOHcisgEWCtutizRrIHHXD5m
95jHQHLu06p6RR0wJosjp4IHwbPxiP/idB1wee4PsWkcgM739dRMoS/wNLLJ
RpBnAEJs+iTF//sCYuKT+SIv+2Cud82AXawe/pNjuSRf0w1l1Wqv2+81gMak
7UkD/XY4F1egZ6/WDNfTiLhhmQrIdYevUjbNwNf4K1tungDqmRrLofBm8Dyx
r+yoK4ZyWtdtk4lmCMrffJ3/XTHwHvEwij/RAjGC2dzeSjngURh7x3etBfTm
C1nPGDrj40k9jYbmbSB/N7/Jub8czwVk2lY7tIFju6HSwW8VOOaaH0PDrw0a
JIzYer9X4ondu/fKZrbBHLtHXdRENX5Q6POUxNIOudKW2pYjdbi2cadFYVY7
sBd6s+W1tOBjKy4T4uxfoSdCjpys0I2PGvCQlvK6wGWY9jK5cQQ/suacX63r
AqWn7SzV/0ZwtwvT0MZAFywbOM+X7hrFdgkzxRxs3fAndNJGPXgUP5r94rzt
TDd0W8x9vnL4O+5+4jdy5E83eFNZqvMyxrBd52J5hEovuHVe5x28PoEfW3b5
KBb0w/erZufO+03jwClNGG/oh3+zbwOiM6ax153X63Ej/bD1mPtqdtc0dox0
uMtOHQCZDqp70K4ZbFhDuj14ZQCqy0UncOsMpu5RvBrKMwgNCzpMRyhz+NHG
A4MJhyFQPqD25JjuPK4xFN1szPMNzjIbBF1+voCnxfm82mJHIV+/+LaT+zJ2
ub3L+jH/OHjsfSTa27SGu/ppJra1E+DX1ikRxb6Bre5o/mDX/wXs/ndVVy4w
EZW7VEMqWWeAL8LYffEDMyHNWTKRrDsHx/fHHfXp3ESIltw4yvpgHqjGJsmk
IRLBtLYp1XnkNwTwfRG79ZOFWD5ZerFaahHcpMRSHFpZiT5lSxEp/yVAK8mf
5kvYiJtmNG6J/j/AldgyxhbNTgg9/W7OIroCvwQvBpiYchCZFokpC+6roFy9
Rm4T4iTMDnrr1pauwQuSZAR7LSeRc9FBQv3fXwiLe6K+YkcmVshHSEWm6zBF
PHQt38pFmLRqqIjGbIBGtm3xlfdcBFmDq7zkxQYkvD+jsJzORZQn9544n7QB
RUa2ssFZXISi+x3ruMwN8ByNykvL5SKo2wtChao3wPIb565fZVxEnb3SKN/v
DVBMjcw+1c5FIA7ZcKo+A7hlak41/OUiVv5bEc48yYCPjFqG0QYXkdVX88bA
jAHrr48daGeiEPQs20+hlxjgNWVl1M1KIf6ZJo+T7zDg4JZA4YEtFKIgaftB
9rcMMPew1W2VpBCOm2dr3qYxwFn8ZrOBNIWQdisz0clhgBLdb6xOhkI81btw
LaCEAXm6NpjYTSGc52MjSe0M6F52VUhVpRByFnb0pG4GCHjLKEmoU4hvVWqp
hwcZkBwu/jlWk0IYx3SX3f/5v76BoJchWhSCY9O74+KzDHBMPTLGrE0h8A23
DmKRAeES3z+561AI1686llZrDLh1IVxyVpdC/P8/gNPnnLbZnKAQ/wM8aBta

          "]]}, Annotation[#, "Charting`Private`Tag$2920311#4"]& ]}}, {}}, {
    DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, DisplayFunction -> Identity, DisplayFunction -> Identity, 
     Ticks -> {Automatic, 
       Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
        MachinePrecision, RotateLabel -> 0]}, 
     AxesOrigin -> {0, -4.225253979208682}, FrameTicks -> {{
        Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 
         MachinePrecision, RotateLabel -> 0], 
        Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, DisplayFunction -> Identity, 
     PlotRangePadding -> {{
        Scaled[0.02], 
        Scaled[0.02]}, {
        Scaled[0.05], 
        Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, 
     DisplayFunction -> Identity, 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
        "ClippingRange" -> {{{-1.999999918367347, 
        1.999999918367347}, {-3.597953707140854, 
        7.693451190080213}}, {{-1.999999918367347, 
        1.999999918367347}, {-3.597953707140854, 7.693451190080213}}}}, 
     DisplayFunction -> Identity, AspectRatio -> 
     NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, 
     AxesLabel -> {
       FormBox[
        TagBox["t", HoldForm], TraditionalForm], 
       FormBox[
        TagBox[
        "\"\\!\\(\\*StyleBox[\\\"\[Chi]\\\",FontSlant->\\\"Italic\\\"]\\)\"", 
         HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, 
     CoordinatesToolOptions -> {"DisplayFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& ), "CopiedValueFunction" -> ({
         Part[#, 1], 
         Exp[
          Part[#, 2]]}& )}, DisplayFunction :> Identity, 
     Frame -> {{False, False}, {False, False}}, 
     FrameLabel -> {{None, None}, {None, None}}, 
     FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     GridLines -> {None, None}, GridLinesStyle -> Directive[
       GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], 
     Method -> {
      "DefaultBoundaryStyle" -> Automatic, 
       "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
         "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
           "Droplines" -> {
            "freeformCursorMode" -> True, 
             "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
       "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> 
       None}, PlotRange -> {All, All}, PlotRangeClipping -> True, 
     PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, 
     Ticks -> {Automatic, Automatic}}], 
   FormBox[
    FormBox[
     TemplateBox[{
      "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", 
       "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", 
      DisplayFunction -> (FormBox[
        StyleBox[
         StyleBox[
          PaneBox[
           TagBox[
            GridBox[{{
               StyleBox["h", {
                 GrayLevel[0], FontFamily -> "Arial"}, Background -> 
                Automatic, StripOnInput -> False]}, {
               TagBox[
                GridBox[{{
                   TagBox[
                    GridBox[{{
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.368417, 0.506779, 0.709798], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.880722, 0.611041, 0.142051], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.560181, 0.691569, 0.194885], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
                    GraphicsBox[{{
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {
                    LineBox[{{0, 10}, {20, 10}}]}}, {
                    Directive[
                    EdgeForm[
                    Directive[
                    Opacity[0.3], 
                    GrayLevel[0]]], 
                    PointSize[0.5], 
                    Opacity[1.], 
                    RGBColor[0.922526, 0.385626, 0.209179], 
                    AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, 
                    ImageSize -> {20, 10}, PlotRangePadding -> None, 
                    ImagePadding -> Automatic, 
                    BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, 
                    GridBoxAlignment -> {
                    "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, 
                    AutoDelete -> False, 
                    GridBoxDividers -> {
                    "Columns" -> {{False}}, "Rows" -> {{False}}}, 
                    GridBoxItemSize -> {
                    "Columns" -> {{All}}, "Rows" -> {{All}}}, 
                    GridBoxSpacings -> {
                    "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, 
                 GridBoxAlignment -> {
                  "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> 
                 False, GridBoxItemSize -> {
                  "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
                 GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], 
                "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, 
             AutoDelete -> False, 
             GridBoxItemSize -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 
             GridBoxSpacings -> {
              "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], 
           Alignment -> Left, AppearanceElements -> None, 
           ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> 
           "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
          GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, 
         StripOnInput -> False], TraditionalForm]& ), 
      InterpretationFunction :> (RowBox[{"LineLegend", "[", 
         RowBox[{
           RowBox[{"{", 
             RowBox[{
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], 
               ",", 
               RowBox[{"Directive", "[", 
                 RowBox[{
                   RowBox[{"Opacity", "[", "1.`", "]"}], ",", 
                   
                   TemplateBox[<|
                    "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, 
                    "RGBColorSwatchTemplate"], ",", 
                   RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
              "}"}], ",", 
           RowBox[{"{", 
             RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", 
           RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", 
           RowBox[{"LabelStyle", "\[Rule]", 
             
             TemplateBox[<|"color" -> GrayLevel[0]|>, 
              "GrayLevelColorSwatchTemplate"]}], ",", 
           RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", 
           RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), 
      Editable -> True], TraditionalForm], TraditionalForm]},
  "Legended",
  DisplayFunction->(GridBox[{{
      TagBox[
       ItemBox[
        PaneBox[
         TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, 
         BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], 
       "SkipImageSizeLevel"], 
      ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, 
    GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, 
    AutoDelete -> False, GridBoxItemSize -> Automatic, 
    BaselinePosition -> {1, 1}]& ),
  Editable->True,
  InterpretationFunction->(RowBox[{"Legended", "[", 
     RowBox[{#, ",", 
       RowBox[{"Placed", "[", 
         RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
 CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
   3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, 
   3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
   3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, 
   3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, 
   3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, 
   3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, 
   3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, 
   3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, 
   3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, 
   3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, 
   3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, 
   3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, 
   3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, 
   3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, 
   3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, 
   3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, 
   3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, 
   3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, 
   3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, 
   3.887188089249675*^9, {3.887188126546927*^9, 3.887188177721342*^9}, {
   3.8871883124067802`*^9, 3.8871883283898573`*^9}},
 CellLabel->
  "Out[200]=",ExpressionUUID->"354629b7-052f-4d2f-a20e-746898ed9556"]
}, Open  ]]
}, Open  ]]
},
WindowSize->{630., 1010.25},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 318, 6, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
Cell[879, 28, 214, 4, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
Cell[CellGroupData[{
Cell[1118, 36, 166, 3, 50, "Section",ExpressionUUID->"c6615333-57fa-470a-9d07-45b7998853ef"],
Cell[CellGroupData[{
Cell[1309, 43, 3515, 72, 186, "Input",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"],
Cell[4827, 117, 28223, 602, 189, "Output",ExpressionUUID->"1e4ad944-e98e-4c7a-9635-ca69ead5609d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[33087, 724, 1663, 39, 144, "Input",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"],
Cell[34753, 765, 22153, 481, 186, "Output",ExpressionUUID->"b3456563-de2e-4cab-8de9-9936c2f54801"]
}, Open  ]],
Cell[CellGroupData[{
Cell[56943, 1251, 3554, 72, 186, "Input",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"],
Cell[60500, 1325, 3354, 50, 220, "Message",ExpressionUUID->"9b0aa616-8fe6-46d6-a9be-6d62ea62ac99"],
Cell[63857, 1377, 3356, 50, 220, "Message",ExpressionUUID->"3cf38fe5-056b-4e76-a342-8e2c2b0786c0"],
Cell[67216, 1429, 2830, 44, 162, "Message",ExpressionUUID->"9f39e826-00f7-402f-871b-4606e9158cd2"],
Cell[70049, 1475, 470, 10, 22, "Message",ExpressionUUID->"a67bf71d-de22-4a04-a00f-2a4e90ec18e4"],
Cell[70522, 1487, 21789, 476, 191, "Output",ExpressionUUID->"03a49490-2ef8-446d-ba98-3e5c10e80cea"]
}, Open  ]],
Cell[92326, 1966, 2449, 65, 75, "Input",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"],
Cell[94778, 2033, 483, 8, 22, "Input",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"],
Cell[CellGroupData[{
Cell[95286, 2045, 2046, 45, 98, "Input",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"],
Cell[97335, 2092, 38401, 718, 181, "Output",ExpressionUUID->"a1a5856a-a28d-405e-8e1b-5efdfee445c7"]
}, Open  ]],
Cell[135751, 2813, 2524, 67, 75, "Input",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"],
Cell[138278, 2882, 490, 8, 22, "Input",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"],
Cell[CellGroupData[{
Cell[138793, 2894, 1962, 44, 83, "Input",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"],
Cell[140758, 2940, 51416, 932, 181, "Output",ExpressionUUID->"2782289e-0500-4f20-8ce9-6bd7b1629e9c"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[192223, 3878, 237, 4, 50, "Section",ExpressionUUID->"af69f70f-b3b9-4794-8398-01134650a149"],
Cell[192463, 3884, 1824, 51, 103, "Input",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"],
Cell[CellGroupData[{
Cell[194312, 3939, 2213, 56, 126, "Input",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"],
Cell[196528, 3997, 22021, 413, 288, "Output",ExpressionUUID->"0be94975-8aee-49b5-8880-e4fd79f9f11e"]
}, Open  ]],
Cell[CellGroupData[{
Cell[218586, 4415, 2283, 58, 126, "Input",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"],
Cell[220872, 4475, 13909, 278, 288, "Output",ExpressionUUID->"8c8e78f0-682f-4cb9-bf83-9197b2c8a8c5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[234818, 4758, 2409, 62, 142, "Input",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"],
Cell[237230, 4822, 24237, 450, 300, "Output",ExpressionUUID->"2310df91-f2f6-4cb0-8fa7-e0535e8bac25"]
}, Open  ]],
Cell[CellGroupData[{
Cell[261504, 5277, 5637, 139, 210, "Input",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"],
Cell[267144, 5418, 35987, 657, 266, "Output",ExpressionUUID->"c5da7894-3e02-4b45-9ef2-8e0b3fea9304"]
}, Open  ]],
Cell[CellGroupData[{
Cell[303168, 6080, 5171, 127, 209, "Input",ExpressionUUID->"7bc98e14-1631-4fc3-aed1-367c66e81e01"],
Cell[308342, 6209, 43632, 785, 259, "Output",ExpressionUUID->"9dbcc449-beef-4593-9962-5e349a2d55a3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[352011, 6999, 5021, 117, 173, "Input",ExpressionUUID->"b1086ee8-7679-4537-81e7-3871b266ebb6"],
Cell[357035, 7118, 4468, 67, 140, "Message",ExpressionUUID->"47c3b277-8c10-4a4a-afd4-bd90c43d9128"],
Cell[361506, 7187, 4166, 61, 116, "Message",ExpressionUUID->"88979e53-fa84-4309-bb1e-7f9206ce0235"],
Cell[365675, 7250, 55750, 981, 259, "Output",ExpressionUUID->"655a40ca-05ff-4292-b196-684739c53e3f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[421462, 8236, 5177, 129, 209, "Input",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"],
Cell[426642, 8367, 4497, 66, 136, "Message",ExpressionUUID->"62fc2290-ec12-4106-8db3-83accba90389"],
Cell[431142, 8435, 4104, 60, 115, "Message",ExpressionUUID->"776a18de-180c-4668-970e-1610ceae4ab5"],
Cell[435249, 8497, 52763, 934, 259, "Output",ExpressionUUID->"a8fc096e-6fad-42c0-aa7a-790bd2df6a0a"]
}, Open  ]]
}, Open  ]],
Cell[CellGroupData[{
Cell[488061, 9437, 212, 3, 50, "Section",ExpressionUUID->"7bcdac80-37e1-4f66-bc64-b0d2db5bf4c3"],
Cell[CellGroupData[{
Cell[488298, 9444, 4085, 116, 213, "Input",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"],
Cell[492386, 9562, 44836, 816, 202, "Output",ExpressionUUID->"bd8d7289-1f4d-4488-a85d-8754938f155f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[537259, 10383, 5348, 133, 213, "Input",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"],
Cell[542610, 10518, 34792, 647, 205, "Output",ExpressionUUID->"e3227dcc-9afd-4977-b15f-eede85b88fcd"]
}, Open  ]],
Cell[CellGroupData[{
Cell[577439, 11170, 5402, 134, 213, "Input",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"],
Cell[582844, 11306, 37912, 699, 206, "Output",ExpressionUUID->"58bb8392-075e-4542-92cf-f8f93253afe9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[620793, 12010, 5508, 135, 213, "Input",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"],
Cell[626304, 12147, 35524, 665, 206, "Output",ExpressionUUID->"354629b7-052f-4d2f-a20e-746898ed9556"]
}, Open  ]]
}, Open  ]]
}
]
*)