summaryrefslogtreecommitdiff
path: root/figs/figures.nb
blob: 2216101ff338e6b63805725fdd65908bee0ac622 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 12.2' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    527303,      10141]
NotebookOptionsPosition[    516698,       9954]
NotebookOutlinePosition[    517098,       9970]
CellTagsIndexPosition[    517055,       9967]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{

Cell[CellGroupData[{
Cell[BoxData[
 RowBox[{"p1", "=", 
  RowBox[{"Plot", "[", 
   RowBox[{"\[ImaginaryI]", ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
    RowBox[{"AxesStyle", "\[Rule]", "Dashed"}], ",", 
    RowBox[{"Ticks", "\[Rule]", "False"}], ",", 
    RowBox[{"PlotStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"Black", ",", "Thick"}], "}"}]}], ",", 
    RowBox[{"AxesLabel", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Re", "[", "\[Xi]", "]"}], ",", 
       RowBox[{"Im", "[", "\[Xi]", "]"}]}], "}"}]}], ",", 
    RowBox[{"Epilog", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       RowBox[{"Disk", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", "0"}], "}"}], ",", "0.025"}], "]"}]}], "}"}]}], 
    ",", 
    RowBox[{"AspectRatio", "\[Rule]", 
     RowBox[{"1", "/", "GoldenRatio"}]}], ",", 
    RowBox[{"PlotRange", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{"-", "1"}], ",", "1"}], "}"}], "/", "GoldenRatio"}]}], 
      "}"}]}], ",", 
    RowBox[{"LabelStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",", 
       RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black"}], "}"}]}], ",", 
    RowBox[{"ImageSize", "\[Rule]", "340"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.827382480044902*^9, 3.8273826908509808`*^9}, {
  3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9, 
  3.827383160348928*^9}, {3.827385962751856*^9, 3.82738598922388*^9}, {
  3.827386034376981*^9, 3.827386035376443*^9}, {3.8273869985697823`*^9, 
  3.8273869997536163`*^9}},
 CellLabel->"In[85]:=",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwAmIQrWcv9ur///f7GaCg/HxLbvq+d3D+lSvcrw4mvoXz
ZQ/ki5jLvIHzt2YfYeW/+wrOT+gx/HCz6SWc/2NSdcd++xdw/mK+e5IzHj6D
8+d4GRZd7nwK5zflJFZoej6B86uZV5UXvX0E5yc2nFe5tuIhnD9179MZc7Ie
wPm77mvwrFG6B+crCzg4hcy7Dedv0urIevT4Bpx//+hGBTOza3D+U52pRvu3
XYbzBetWmukxXoTzdcze6yz9fAbOb3Z5e2FnxXE4XzRk3YRI8UMI+74d5T+h
sgvOX3r7ae/LlnVwfmygzJbbyVPg/J1c1VcPlU62h/FNHzHKNUash/OVP+z+
aXVoJ5zvufjmWb+IQ3C+q68Q89etx+H8/vjrDQbbz8D5x/1keQOELsL5bxVF
6y7Nugznl5ZoJ/aLXYPzr98RCEo7cQPOT6i0ec7ucxvOP6xt3nWY9R6cr8a5
58USjwdwvuyebFfWjodwPsMvppVFjx7B+d8D98YdVX0C5982iZdWbXkK5xeE
Cwgq3XkG50tOeRLBIvsCzl8XvWD554qXcH64bb3Hib2v4PyNcblKVn9ew/k/
uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
    "], {}], {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{
    FormBox[
     RowBox[{"Re", "(", "\[Xi]", ")"}], TraditionalForm], 
    FormBox[
     RowBox[{"Im", "(", "\[Xi]", ")"}], TraditionalForm]},
  AxesOrigin->{0, 0},
  AxesStyle->Dashing[{Small, Small}],
  DisplayFunction->Identity,
  Epilog->{{
     Thickness[Large], 
     LineBox[{{-1, 0}, {0, 0}}]}, 
    DiskBox[{0, 0}, 0.025]},
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->340,
  LabelStyle->{FontFamily -> "Times", FontSize -> 12, 
    GrayLevel[0]},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, 
     1}, {-0.6180339887498948, 0.6180339887498948}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{0, 0}, {0, 0}},
  Ticks->{{}, {}}]], "Output",
 CellChangeTimes->{{3.827382624611155*^9, 3.8273826915148993`*^9}, {
   3.827382821172866*^9, 3.827382840956325*^9}, {3.827383007560814*^9, 
   3.827383129164433*^9}, 3.827383160604924*^9, {3.827385963050185*^9, 
   3.8273859898238077`*^9}, {3.82738602858241*^9, 3.827386035704603*^9}, 
   3.827387000123047*^9},
 CellLabel->"Out[85]=",ExpressionUUID->"fa3177c1-247d-40dc-9f56-c55f92b9bc73"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Export", "[", 
   RowBox[{
   "\"\<~/doc/research/first_order_singularities/paper/figs/F_lower_\
singularities.pdf\>\"", ",", "p1"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}},
 CellLabel->"In[86]:=",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"p2", "=", 
  RowBox[{"Plot", "[", 
   RowBox[{"\[ImaginaryI]", ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
    RowBox[{"AxesStyle", "\[Rule]", "Dashed"}], ",", 
    RowBox[{"Ticks", "\[Rule]", "False"}], ",", 
    RowBox[{"PlotStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"Black", ",", "Thick"}], "}"}]}], ",", 
    RowBox[{"AxesLabel", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Re", "[", "\[Xi]", "]"}], ",", 
       RowBox[{"Im", "[", "\[Xi]", "]"}]}], "}"}]}], ",", 
    RowBox[{"Epilog", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", "1"}], "}"}]}], "}"}], "]"}], ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{
                RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}],
             ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{"-", "1"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
         "0.025", ",", "4"}], "]"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{
             RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}], 
         ",", "0.025", ",", "4"}], "]"}], ",", "\[IndentingNewLine]", 
       RowBox[{"Line", "[", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{"0", ",", 
            RowBox[{
             RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0.05", ",", 
            RowBox[{
             RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}]}], "}"}], 
        "]"}], ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{"Black", ",", 
         RowBox[{"Text", "[", 
          RowBox[{
           RowBox[{"Style", "[", 
            RowBox[{
            "\"\<\!\(\*StyleBox[\"i\",FontSlant->\"Italic\"]\)\!\(\*\
SubscriptBox[\(\[Xi]\), \(YL\)]\)\>\"", ",", 
             RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black", ",", 
             RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",",
            " ", 
           RowBox[{"{", 
            RowBox[{"0.125", ",", 
             RowBox[{
              RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}]}], 
          "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", 
    RowBox[{"AspectRatio", "\[Rule]", 
     RowBox[{"1", "/", "GoldenRatio"}]}], ",", 
    RowBox[{"PlotRange", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{"-", "1"}], ",", "1"}], "}"}], "/", "GoldenRatio"}]}], 
      "}"}]}], ",", 
    RowBox[{"LabelStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",", 
       RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black"}], "}"}]}], ",", 
    RowBox[{"ImageSize", "\[Rule]", "340"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.827382480044902*^9, 3.8273826908509808`*^9}, {
  3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9, 
  3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, {
  3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9, 
  3.827386268132721*^9}, {3.827386902576284*^9, 3.82738699484161*^9}, {
  3.827387056043375*^9, 3.827387113115541*^9}, {3.827387242150291*^9, 
  3.827387318344166*^9}, {3.827387529243909*^9, 3.827387531995368*^9}},
 CellLabel->
  "In[132]:=",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwAmIQrWcv9ur///f7GaCg/HxLbvq+d3D+lSvcrw4mvoXz
ZQ/ki5jLvIHzt2YfYeW/+wrOT+gx/HCz6SWc/2NSdcd++xdw/mK+e5IzHj6D
8+d4GRZd7nwK5zflJFZoej6B86uZV5UXvX0E5yc2nFe5tuIhnD9179MZc7Ie
wPm77mvwrFG6B+crCzg4hcy7Dedv0urIevT4Bpx//+hGBTOza3D+U52pRvu3
XYbzBetWmukxXoTzdcze6yz9fAbOb3Z5e2FnxXE4XzRk3YRI8UMI+74d5T+h
sgvOX3r7ae/LlnVwfmygzJbbyVPg/J1c1VcPlU62h/FNHzHKNUash/OVP+z+
aXVoJ5zvufjmWb+IQ3C+q68Q89etx+H8/vjrDQbbz8D5x/1keQOELsL5bxVF
6y7Nugznl5ZoJ/aLXYPzr98RCEo7cQPOT6i0ec7ucxvOP6xt3nWY9R6cr8a5
58USjwdwvuyebFfWjodwPsMvppVFjx7B+d8D98YdVX0C5982iZdWbXkK5xeE
Cwgq3XkG50tOeRLBIvsCzl8XvWD554qXcH64bb3Hib2v4PyNcblKVn9ew/k/
uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
    "], {}], {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{
    FormBox[
     RowBox[{"Re", "(", "\[Xi]", ")"}], TraditionalForm], 
    FormBox[
     RowBox[{"Im", "(", "\[Xi]", ")"}], TraditionalForm]},
  AxesOrigin->{0, 0},
  AxesStyle->Dashing[{Small, Small}],
  DisplayFunction->Identity,
  Epilog->{{
     Thickness[Large], 
     LineBox[
      NCache[{{0, Rational[1, 2]/GoldenRatio}, {0, 1}}, {{
        0, 0.3090169943749474}, {0, 1}}]], 
     LineBox[
      NCache[{{0, Rational[-1, 2]/GoldenRatio}, {0, -1}}, {{
        0, -0.3090169943749474}, {0, -1}}]]}, 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, 0.2913393248452837}, {
      0.01767766952966369, 0.3266946639046111}, {-0.017677669529663688`, 
      0.3266946639046111}, {-0.01767766952966369, 0.2913393248452837}}], 
     RegularPolygon[{0, Rational[1, 2]/GoldenRatio}, 0.025, 4]], 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, -0.3266946639046111}, {
      0.01767766952966369, -0.2913393248452837}, {-0.017677669529663688`, \
-0.2913393248452837}, {-0.01767766952966369, -0.3266946639046111}}], 
     RegularPolygon[{0, Rational[-1, 2]/GoldenRatio}, 0.025, 4]], 
    LineBox[
     NCache[{{0, Rational[1, 2]/GoldenRatio}, {
       0.05, Rational[1, 2]/GoldenRatio}}, {{0, 0.3090169943749474}, {0.05, 
       0.3090169943749474}}]], {
     GrayLevel[0], 
     InsetBox[
      FormBox[
       StyleBox[
       "\"\\!\\(\\*StyleBox[\\\"i\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
SubscriptBox[\\(\[Xi]\\), \\(YL\\)]\\)\"", FontSize -> 12, 
        GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], 
       TraditionalForm], 
      NCache[{0.125, Rational[1, 2]/GoldenRatio}, {0.125, 
       0.3090169943749474}]]}},
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->340,
  LabelStyle->{FontFamily -> "Times", FontSize -> 12, 
    GrayLevel[0]},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, 
     1}, {-0.6180339887498948, 0.6180339887498948}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{0, 0}, {0, 0}},
  Ticks->{{}, {}}]], "Output",
 CellChangeTimes->{{3.82738699503043*^9, 3.827387001000444*^9}, {
   3.827387056404755*^9, 3.8273871135979233`*^9}, {3.827387261706016*^9, 
   3.827387318714815*^9}, 3.827387532223402*^9},
 CellLabel->
  "Out[132]=",ExpressionUUID->"e864482d-d84f-4248-97a9-69e174917c6a"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Export", "[", 
   RowBox[{
   "\"\<~/doc/research/first_order_singularities/paper/figs/F_higher_\
singularities.pdf\>\"", ",", "p2"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
  3.8273862326284933`*^9, 3.827386237604206*^9}},
 CellLabel->
  "In[133]:=",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"p3", "=", 
  RowBox[{"Plot", "[", 
   RowBox[{"\[ImaginaryI]", ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
    RowBox[{"AxesStyle", "\[Rule]", "Dashed"}], ",", 
    RowBox[{"Ticks", "\[Rule]", "False"}], ",", 
    RowBox[{"PlotStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"Black", ",", "Thick"}], "}"}]}], ",", 
    RowBox[{"AxesLabel", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Re", "[", "\[Theta]", "]"}], ",", 
       RowBox[{"Im", "[", "\[Theta]", "]"}]}], "}"}]}], ",", 
    RowBox[{"Epilog", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", "1"}], "}"}]}], "}"}], "]"}], ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{
                RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}],
             ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{"-", "1"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
         "0.025", ",", "4"}], "]"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{
             RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}], 
         ",", "0.025", ",", "4"}], "]"}], ",", 
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.75"}], ",", "0"}], "}"}]}], "}"}], "]"}]}], 
        "}"}], ",", 
       RowBox[{"Disk", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "0.75"}], ",", "0"}], "}"}], ",", "0.025"}], "]"}], 
       ",", 
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"1", ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.75", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       
       RowBox[{"Disk", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0.75", ",", "0"}], "}"}], ",", "0.025"}], "]"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"Line", "[", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{"0.75", ",", "0"}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0.75", ",", "0.05"}], "}"}]}], "}"}], "]"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"Line", "[", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{"0", ",", 
            RowBox[{
             RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0.05", ",", 
            RowBox[{
             RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}]}], "}"}], 
        "]"}], ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{"Black", ",", 
         RowBox[{"Text", "[", 
          RowBox[{
           RowBox[{"Style", "[", 
            RowBox[{
            "\"\<\!\(\*StyleBox[\"i\",FontSlant->\"Italic\"]\)\!\(\*\
SubscriptBox[\(\[Theta]\), \(YL\)]\)\>\"", ",", 
             RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black", ",", 
             RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",",
            " ", 
           RowBox[{"{", 
            RowBox[{"0.125", ",", 
             RowBox[{
              RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}]}], 
          "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{"Black", ",", 
         RowBox[{"Text", "[", 
          RowBox[{
           RowBox[{"Style", "[", 
            RowBox[{
            "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(c\)]\)\>\"", ",", 
             RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black", ",", 
             RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",",
            " ", 
           RowBox[{"{", 
            RowBox[{"0.75", ",", "0.1"}], "}"}]}], "]"}]}], "}"}]}], 
      "\[IndentingNewLine]", "}"}]}], ",", 
    RowBox[{"AspectRatio", "\[Rule]", 
     RowBox[{"1", "/", "GoldenRatio"}]}], ",", 
    RowBox[{"PlotRange", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{"-", "1"}], ",", "1"}], "}"}], "/", "GoldenRatio"}]}], 
      "}"}]}], ",", 
    RowBox[{"LabelStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",", 
       RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black"}], "}"}]}], ",", 
    RowBox[{"ImageSize", "\[Rule]", "340"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.827382480044902*^9, 3.8273826908509808`*^9}, {
  3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9, 
  3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, {
  3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9, 
  3.8273863320539207`*^9}, {3.8273863645590267`*^9, 3.8273863742232637`*^9}, {
  3.827386476137185*^9, 3.827386479416823*^9}, {3.8273870103864107`*^9, 
  3.8273870114740887`*^9}, {3.827387151108595*^9, 3.827387206893936*^9}, {
  3.8273873335042467`*^9, 3.827387391017824*^9}, {3.82738742603411*^9, 
  3.827387500451023*^9}},
 CellLabel->
  "In[130]:=",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwAmIQrWcv9ur///f7GaCg/HxLbvq+d3D+lSvcrw4mvoXz
ZQ/ki5jLvIHzt2YfYeW/+wrOT+gx/HCz6SWc/2NSdcd++xdw/mK+e5IzHj6D
8+d4GRZd7nwK5zflJFZoej6B86uZV5UXvX0E5yc2nFe5tuIhnD9179MZc7Ie
wPm77mvwrFG6B+crCzg4hcy7Dedv0urIevT4Bpx//+hGBTOza3D+U52pRvu3
XYbzBetWmukxXoTzdcze6yz9fAbOb3Z5e2FnxXE4XzRk3YRI8UMI+74d5T+h
sgvOX3r7ae/LlnVwfmygzJbbyVPg/J1c1VcPlU62h/FNHzHKNUash/OVP+z+
aXVoJ5zvufjmWb+IQ3C+q68Q89etx+H8/vjrDQbbz8D5x/1keQOELsL5bxVF
6y7Nugznl5ZoJ/aLXYPzr98RCEo7cQPOT6i0ec7ucxvOP6xt3nWY9R6cr8a5
58USjwdwvuyebFfWjodwPsMvppVFjx7B+d8D98YdVX0C5982iZdWbXkK5xeE
Cwgq3XkG50tOeRLBIvsCzl8XvWD554qXcH64bb3Hib2v4PyNcblKVn9ew/k/
uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
    "], {}], {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{
    FormBox[
     RowBox[{"Re", "(", "\[Theta]", ")"}], TraditionalForm], 
    FormBox[
     RowBox[{"Im", "(", "\[Theta]", ")"}], TraditionalForm]},
  AxesOrigin->{0, 0},
  AxesStyle->Dashing[{Small, Small}],
  DisplayFunction->Identity,
  Epilog->{{
     Thickness[Large], 
     LineBox[
      NCache[{{0, Rational[1, 2]/GoldenRatio}, {0, 1}}, {{
        0, 0.3090169943749474}, {0, 1}}]], 
     LineBox[
      NCache[{{0, Rational[-1, 2]/GoldenRatio}, {0, -1}}, {{
        0, -0.3090169943749474}, {0, -1}}]]}, 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, 0.2913393248452837}, {
      0.01767766952966369, 0.3266946639046111}, {-0.017677669529663688`, 
      0.3266946639046111}, {-0.01767766952966369, 0.2913393248452837}}], 
     RegularPolygon[{0, Rational[1, 2]/GoldenRatio}, 0.025, 4]], 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, -0.3266946639046111}, {
      0.01767766952966369, -0.2913393248452837}, {-0.017677669529663688`, \
-0.2913393248452837}, {-0.01767766952966369, -0.3266946639046111}}], 
     RegularPolygon[{0, Rational[-1, 2]/GoldenRatio}, 0.025, 4]], {
     Thickness[Large], 
     LineBox[{{-1, 0}, {-0.75, 0}}]}, 
    DiskBox[{-0.75, 0}, 0.025], {
     Thickness[Large], 
     LineBox[{{1, 0}, {0.75, 0}}]}, 
    DiskBox[{0.75, 0}, 0.025], 
    LineBox[{{0.75, 0}, {0.75, 0.05}}], 
    LineBox[
     NCache[{{0, Rational[1, 2]/GoldenRatio}, {
       0.05, Rational[1, 2]/GoldenRatio}}, {{0, 0.3090169943749474}, {0.05, 
       0.3090169943749474}}]], {
     GrayLevel[0], 
     InsetBox[
      FormBox[
       StyleBox[
       "\"\\!\\(\\*StyleBox[\\\"i\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 12, 
        GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], 
       TraditionalForm], 
      NCache[{0.125, Rational[1, 2]/GoldenRatio}, {0.125, 
       0.3090169943749474}]]}, {
     GrayLevel[0], 
     InsetBox[
      FormBox[
       StyleBox[
       "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(c\\)]\\)\"", FontSize -> 
        12, 
        GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], 
       TraditionalForm], {0.75, 0.1}]}},
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->340,
  LabelStyle->{FontFamily -> "Times", FontSize -> 12, 
    GrayLevel[0]},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, 
     1}, {-0.6180339887498948, 0.6180339887498948}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{0, 0}, {0, 0}},
  Ticks->{{}, {}}]], "Output",
 CellChangeTimes->{{3.827382624611155*^9, 3.8273826915148993`*^9}, {
   3.827382821172866*^9, 3.827382840956325*^9}, {3.827383007560814*^9, 
   3.827383129164433*^9}, 3.827383160604924*^9, {3.8273860069463987`*^9, 
   3.8273860642094803`*^9}, {3.8273861334648447`*^9, 3.827386200584742*^9}, 
   3.827386268408902*^9, {3.8273863170992117`*^9, 3.8273863329839163`*^9}, {
   3.82738637105767*^9, 3.827386374474081*^9}, 3.8273864799189863`*^9, 
   3.827387012286086*^9, {3.8273871575708647`*^9, 3.827387207139093*^9}, {
   3.8273873631427307`*^9, 3.827387392526597*^9}, {3.8273874262628717`*^9, 
   3.827387438548918*^9}, {3.827387470865808*^9, 3.827387500818487*^9}},
 CellLabel->
  "Out[130]=",ExpressionUUID->"a7d6bf32-3297-4ed9-9cc5-d1836ef7d9ac"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Export", "[", 
   RowBox[{
   "\"\<~/doc/research/first_order_singularities/paper/figs/F_theta_\
singularities.pdf\>\"", ",", "p3"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
  3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9, 
  3.8273863926784687`*^9}},
 CellLabel->
  "In[131]:=",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"p4", "=", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{
     SqrtBox[
      RowBox[{
       SuperscriptBox["0.95", "2"], "-", 
       SuperscriptBox["x", "2"]}]], "/", "GoldenRatio"}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
    RowBox[{"AxesStyle", "\[Rule]", "Dashed"}], ",", 
    RowBox[{"Ticks", "\[Rule]", "False"}], ",", 
    RowBox[{"PlotStyle", "\[Rule]", 
     RowBox[{"{", "Red", "}"}]}], ",", 
    RowBox[{"AxesLabel", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Re", "[", 
        RowBox[{"\[Theta]", "'"}], "]"}], ",", 
       RowBox[{"Im", "[", 
        RowBox[{"\[Theta]", "'"}], "]"}]}], "}"}]}], ",", 
    RowBox[{"Prolog", "\[Rule]", 
     RowBox[{"{", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.95"}], ",", "0.0115"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.8"}], ",", "0.0115"}], "}"}]}], "}"}], "]"}]}], 
        "}"}], ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Circle", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{
             RowBox[{"-", "0.75"}], ",", "0"}], "}"}], ",", "0.05", ",", 
           RowBox[{"{", 
            RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0.8", ",", "0.0115"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.95", ",", "0.0115"}], "}"}]}], "}"}], "]"}]}], "}"}], 
       ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Circle", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0.75", ",", "0"}], "}"}], ",", "0.05", ",", 
           RowBox[{"{", 
            RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.7"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{"0.", "-", "0.05"}], ",", "0"}], "}"}]}], "}"}], 
          "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Circle", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0", ",", "0"}], "}"}], ",", "0.05", ",", 
           RowBox[{"{", 
            RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0.05", ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.25", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Circle", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0.3", ",", "0"}], "}"}], ",", "0.05", ",", 
           RowBox[{"{", 
            RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0.35", ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.7", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0.0115", ",", 
              RowBox[{
               RowBox[{"1", "/", "GoldenRatio"}], " ", "0.95"}]}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.0115", ",", 
              RowBox[{
               RowBox[{
                RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}], "+", 
               "0.05"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.0115"}], ",", 
              RowBox[{
               RowBox[{"1", "/", "GoldenRatio"}], " ", "0.95"}]}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.0115"}], ",", 
              RowBox[{
               RowBox[{
                RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}], "+", 
               "0.05"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"Thickness", "[", "0.005", "]"}], ",", "Red", ",", 
         RowBox[{"Circle", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0", ",", 
             RowBox[{
              RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
           "0.05"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
       RowBox[{"Line", "[", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{"0.3", ",", "0"}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0.3", ",", 
            RowBox[{"-", "0.05"}]}], "}"}]}], "}"}], "]"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"{", 
        RowBox[{"Black", ",", 
         RowBox[{"Text", "[", 
          RowBox[{
           RowBox[{"Style", "[", 
            RowBox[{"\"\<\[Theta]\>\"", ",", 
             RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black", ",", 
             RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",",
            " ", 
           RowBox[{"{", 
            RowBox[{"0.3", ",", 
             RowBox[{"-", "0.1"}]}], "}"}]}], "]"}]}], "}"}]}], "}"}]}], ",", 
    "\[IndentingNewLine]", 
    RowBox[{"Epilog", "\[Rule]", 
     RowBox[{"{", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", "1"}], "}"}]}], "}"}], "]"}], ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{
               RowBox[{
                RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}],
             ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{"-", "1"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{"1", "/", "GoldenRatio"}], "/", "2"}]}], "}"}], ",", 
         "0.025", ",", "4"}], "]"}], ",", "\[IndentingNewLine]", 
       RowBox[{"Rotate", "[", 
        RowBox[{
         RowBox[{"RegularPolygon", "[", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0", ",", "0"}], "}"}], ",", "0.025", ",", "4"}], "]"}], 
         ",", 
         RowBox[{"\[Pi]", "/", "4"}]}], "]"}], ",", 
       RowBox[{"RegularPolygon", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{
            RowBox[{
             RowBox[{"-", "1"}], "/", "GoldenRatio"}], "/", "2"}]}], "}"}], 
         ",", "0.025", ",", "4"}], "]"}], ",", 
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "0.75"}], ",", "0"}], "}"}]}], "}"}], "]"}]}], 
        "}"}], ",", 
       RowBox[{"Disk", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "0.75"}], ",", "0"}], "}"}], ",", "0.025"}], "]"}], 
       ",", 
       RowBox[{"{", 
        RowBox[{"Thick", ",", 
         RowBox[{"Line", "[", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{"1", ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0.75", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], ",", 
       
       RowBox[{"Disk", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"0.75", ",", "0"}], "}"}], ",", "0.025"}], "]"}], ",", 
       "\[IndentingNewLine]", 
       RowBox[{"Polygon", "[", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"{", 
            RowBox[{"0.3", ",", "0"}], "}"}], "+", "#"}], "&"}], "/@", 
         RowBox[{"SortBy", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"0.025", "/", "1.5"}], 
            RowBox[{"Join", "[", 
             RowBox[{
              RowBox[{"CirclePoints", "[", "5", "]"}], ",", 
              RowBox[{
               RowBox[{"-", 
                RowBox[{"CirclePoints", "[", "5", "]"}]}], "/", "2"}]}], 
             "]"}]}], ",", 
           RowBox[{
            RowBox[{"ArcTan", "@@", "#"}], "&"}]}], "]"}]}], "]"}]}], 
      "\[IndentingNewLine]", "}"}]}], ",", 
    RowBox[{"AspectRatio", "\[Rule]", 
     RowBox[{"1", "/", "GoldenRatio"}]}], ",", 
    RowBox[{"PlotRange", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{"-", "1"}], ",", "1"}], "}"}], "/", "GoldenRatio"}]}], 
      "}"}]}], ",", 
    RowBox[{"LabelStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}], ",", 
       RowBox[{"FontSize", "\[Rule]", "12"}], ",", "Black"}], "}"}]}], ",", 
    RowBox[{"ImageSize", "\[Rule]", "340"}]}], "]"}]}]], "Input",
 CellChangeTimes->CompressedData["
1:eJwd0FkowwEABvA/ppzLamPkmCPMciRLMmWztpelRaQ0GdFybEkWS2H+eXBG
JFeaBw+OoSWMF1eOltWSrCQSac5cD0b8v//D16+v7+2LrtAVVHkSBBFFBZ7p
PMISyEexKLs0A3KDu6SQM8+Ww2r2dimUvgY0QKPN5EikvP39dULzwsk1nKnw
f4BzgvJ3uL7R4Ya9N4N/8DvugOBTOirJQDhV/ERrUCmUcEugo51suVFD3sSF
Bh7HLDdDxtBVG9SGiEl4qO3vg8EK4RuMyI53Qz/9jlcSpbJuOgh+yTw5UOtu
p5U8xkfSe9YRbavcFQsN9fYUSLKG0yF715ADGz/0Yih0KOWwpHAgH5qM92p4
+rw3AsucHuPQVTM6S/ci1QK07XMtUOPN3YR2090n7A7o/IIxVv4P/A5dZwgo
w8eufGDe4pIvZL1ImJDXw0yEMo45BZr91ZmwwN4kgsxLRS48X9WsJeNPi2oT
1lo12zAtdWUH/gMYPumJ
  "],
 CellLabel->
  "In[104]:=",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], 
      LineBox[CompressedData["
1:eJwV13k4VF8YB3AlibJEKksiOxVKKuFNRVLWSrKrUPZKtuxUsk4KJVuRbFnH
vhy7scVkSwg3ZJmZkhaU+p3fX/N8nufcOe+997nv9z2iV1yNbNczMTE5rGNi
+v/33Z9BUSk7BrLY6PnpquxtmMp76tFpw0DmadXTe/KfwAolfMLEnIEq+vVM
YyJTgHPaV2fGmIEoa3bCuT9fgvg6V/JtQwaSL9/an8meCSq7bITXnWOgL87d
bkRNFugfPR8WrcVANwTpvmGyuXDtouY3QQ0Gil8V8Uq+9gZ8bh42zz7GQGpy
Rt7bPQqAFCXTqqzMQEDy74aSQniVLajQrMBAhq729q+Ti6B38h/zuAQDFTvR
b3QblMDM2qKzkwgD6etymF8TIsNv/qmhFQEGIlEfBe+cIIOkESV3GzcDscX9
GeM4XwaqLlV8L9kZaGCZpfIpczkYhucFyLMwUIviiXuT+eXg20g6r7NKR9ts
5GJMf1XAuwOXfwdM0VHL3SyT3ybVMKt31pZjnI5uf54+yjxXDWsOaj2Jw3R0
xqP5006PGpBOF00vfUtHCUN/EvjCasGPd15noYKO2EnXrKVjEMTKj5K9Sugo
lcchrp2lHrLOvhXemE9HbT66kywn6+FdSPE3kXQ6CnqtjWqr6kH6u0+icRQd
KR+5Z7kvrQH6+zfPN9jg/S8ZuDqcaYKga6V1ueZ0BIzTV8O8mmD/d8vHcZfo
yLZO4tK+100QxlusekOXjpi2WrjwMzeDmpFJDPdROtoct/LybWkzZPZkKFlx
09F0pKggbVMreHWoBfypo6HbsXqhXrcpIGH6+fxMJQ3p6VodmEmgwLs5knQv
mYZ4ZF8O7KihwF62KWp6Dg09l47e0sncDpOnw8XPxtPQNZ9fgpGkdtBpGWx/
5kxD3Mvc9SppHbCr3nXbYSEakkv8xKmb3AVdPIfcVXbQULFGraVcdRf42K72
qfHQEGvoD9/p910wyH7v8alNNBQcwzTB4O0G0sVEHqPvC0j/6okpm7BuYF5o
5nbuWkAdBWoXdzu+hTk+AY503wUUMXLPQJqjF0odm1m4xuaRNntcBWcCFY6I
uChmDs0jzrz3KlnpVKjq32Gh9m4e9YvfVVUupEK9miPZsW0eFSwr7VZop0IH
F89VStE80jJyW05epcJEiVV90P15pO7ZnnDH7B2w/1n1+S4/j3iuHNB8ydcH
1pGKX4eD5xDF69KhJNd+8CHH3u/2m0Mr1XuYVbz7IW50SajBaw7drS29Tg3u
h469ZWeyXOaQRNY/YXpcPxzsVkn3MJ1Dwc8/7Buu7oeNnKeMeQ/MIVKksWrE
xgHIizGuOTc5i1r7fxpEJwzAcuzdMASzqCNzQ1Ns9iCkc37kfzo5gz5XKVB8
a99Dko7irb6H0yjZTnkwI/QDBDvZeMmcmULNVeY3Ev6MwF3mHM9bdAIJdhxh
ibMfA5vAHvHBrElEiwxu4oz/CHG100+THCaQbQH3Ocu0cagal96St+cjGiCu
u94wnAAx7uMnLqSMoN1sTvVzNRNQLBvmQHx6j8r/cQloi0/CeEuRiLLyIPrd
VNZ30W8SpvfGHUBlfWgqqgh9aZmErf7ZyvvXUZGvQe7kEBsB98ukKdy/ehF3
pm5BPTsBq4zXl5dovSj4b+JM1mYCCKtM34r3vShA71GsJwcBxRrpjScKe1Hj
pSsEx1YCjFiS9S5Z9SJPftY7wjsJkOIX7Wa624PqWrf87ZEgYK/yl72vlroQ
aZom4g0E2O0PCKgc60K5kbwmuscJSJXketfd1oX2lJRPiWgQwLND3vPn8y4U
yDzwt+UEAb9+uTScPtWFTpvPHNmkRUBjJePi/JNO9GK7/HuncwSYqDH85ZU7
kOSn3RblJgTEHvKnnhTpQNFSu109LhPQuY9T3IS9A4nEXhxWMiVAXXh/e+DH
dnTVrLKswIwAsX/OvO/ut6PtmbEJyZYEMOrpr92HKOiyys/1ptcICDlF7630
akMnnaJZjV3x/to0faWrbegw+eL+NWwm3YW3+bptqHaloDTdjQDfi3Nd6Xva
UNy09QzjJgEedtOUqK5W9JozjOrnTsD1sLF6G5FWRPTrjvl5E3Cuq7uQjdKM
dlzmUmENISC8t0s+tLgZVQ+FxCZiU/o78/8mNaPr30J094USoDnWnrd0sxkZ
29osGNzD98NoyRoTbEb5RpIU0gMCFLjr0opcm1DWx9M8SxEE8F3IJ13e0YiO
7Z7QPvEEvz/JiCpN5kbExcYaWIltsGI/pfilAbmmpMgrxOH9U0SPsLc1IOK8
9rJgPAF/Z5+MV3k0oB+TKQr0BAJm/O7uFxqsRyMqvzQ9nhPgov/oaa0MQuFP
6zTFXhKQ9V2HFrcOIY1rRckPsYlnG467DNehcRcN1y/YxlOen4Uf1iGXFLOA
ynQCwNtSOXC2FqUY2V04/YoA7nS5/hOva9DD30LDZ7JwvT9buCjiVSibczR0
/g0B0TkvG9VXKtGi9xP90/kEOFoG3CntrkRu5n5+6djirUdGXnpUoomqDcym
BQTEx+Vm+lEqEGr8VIoKCfBReqR20KkcPX/g1+hcguuZdf6afbwcKauaNtdj
H0zSSRfhK0eDS19leMkE0Jg3sHHWlSHZF04iZdiWfR79s1xl6MtXn+rvpQSc
uGXumFJCRh+DCgovVBAgLHlUmC+MjLYtUBeTsX8P81EjzMkIsUgnzGCTNXqU
vVnIqCwugtOjkgDJrSfWX7hUgq69/FYYVUUAe6HUM7bfRWjmtmhHag0Br0am
o+ZC81H79TFv/XoCPvhuT00+mI/MNIrqg7A5hU8XGhJvkNUvq8ASbA/rrHeV
8AZp1lk68DUQoDXtsCN8NRctBV6Ye4c9y/iSJuuWjQyPPYpXaiJAiCRS/FE4
G22lLDpZYhsoGjbFdmchDybHmgfYFbeLp1dls1DWhdLW99gPl91lO6czkYTc
pofuzQTIrl8tcTTLQAK/77TFtuDnky7bsps9A9n2zymQsWNPmQ32VaSjMzlZ
vAPYq/drlo9tT0cCBjyafK34+9wcoLaF+gK5i01cisFmelOgVx/wAi31/ozI
w1bSm7By3/8CWZs5H23HTiJpBI9GpKHfKSFM69oIeC+7KfpyVApKi4wDB+zj
zjcKG+aTUaIQTT0EO6ug452MdjISjiWXP8f2Vorasbo+Cd00TefrxBZQ53mR
6PUMXRCWDxGjEBAceLtp/eBTxDt7Vu8I9kJj/7TDwadItGMu9hx2zekE2WOM
eHTrWUHYbWwLQyHyyNUn6MIxkmQ1Nm3px9E7zY+RgkCrYye2b3wP4pR4jMTo
TfIj2EkjwZ0aM4+Qlo+Q0gr2Xn9zwxGtR2g81dudtZ2AahHlIffXJGRNSj/I
h03ufNeiT41GB5Wv7JfH7ue+Tw2OjUL3mFduHMNeunh0rPR8JKrptBY/jX1g
IvW74OBDdIj9NZ8FtqHEeSb9hDDEr/ngnD22m8PGLcEmD5D0BtX1N7ELvjuJ
zX4IRZ4SkvPB2G+PisgLJoUg9hVzoQhshn+fip5FMHI86Ngdi83RfF8rSDgI
qd02XHuGbcLjnnEdBaCKc9x5adgJSR+q32r4oTdnsoYzsQclNfqUmn3Qgzn+
+3nY24pezydqeaFTL2yLirDPH+Ncv679DgoYiTArw45tcee3P3sbXV+ODK3C
7tUfUejudkMdujf21mELk0NIdmlOiFVK9HwD9nOKATrwyh7xt5CXm7B3ju1i
/M2+guIsxXe1Yst9Gjgab2GGsne71bdhS25xS9hvb4gEZJ8SFOzAful+wSY1
pBWXFNKOvZdrzIFlnzhIufil/+/BxeBU7mVt0CtXOfG/v+pLfXO9ZQwz1/ut
/r/+7mOtDkclayhy0/nz/35//b2fp8rbAkdx0o6W///fIc+pT9YBGCydRY3Y
zMbjaqySrjCtMtCBsJtEHj5I5r4F/HzVV2qwQ+P3uB2Odoczer7eFdhaW2pM
qJs9oSduJxcZmzX4oobjQ29IJsWIFWBTfjFkWFh9QX14oiwbO9w5jCc11B+o
/za3p2NnLpL8hIICgS+c2zQZ295e1q7sbzA8yEtfjsbW3uNpGqIWCmJCihsf
YEuPNekZ+N4DzZS4WH/seSOLw/MrD8Bl+6SUE3YHR45c+ZGH8IzUqnAFO5fy
c3eoZziQJAIrLmE7qZM2Cf+IhIRDTqc0sHVXRv/MH4wG78kk7UPY+8kyi+W3
YqCdLaVTGnv5ySRNepkEZXUcepzYlex3BxrvPAbZ3yGn+vD3kbaPr69gzxM4
KCA+1oB936CgN6nnCWw9XTBWgH0h/lOnh0w8KH4O2B6O/VX0XKPs2FN4Mjlo
dxh76NQM2hH+DH64J6mLYtfZB9ZuOJwIM0Nq/uzYEW/IFR9Jz8HYdPOhEdwP
JI/uKog9lQJLWo8C72BvMS/PC1hMgaqiH/Gm2Ev+hjlOKakwyynGB9jWRKOR
mG8aqAm/1d6IvV/6l+7awAuo6dsZFYX7VXuJ1amihxkQsTx/PwD3P9WWvU1S
ExnQt/feTjPswsEVjRTlV8BXUr5VGTt+5TFEfHoFMjFDKvO4v14Dioqt2mu4
rJVkfxb7X4eCIv9iNuTnDEktNhJwa3StIOZ0DrxTVFBswp6hd+zfmJIDJm8n
XzzB7uK23bukkwvnPNQrD2EnGj+T6s7Ig+wYC+SG8+AQsU44yKQAno+vl+hA
uP6qS4sK2QWQkP/BLB5bMvZN88RKASQO+HNcwd78Iu9Qmm4hPCMLTP6qI+CP
gcnoP0YhOP4RO7MLe6ywQAYpFsPhhps79XF+fUgy5d1hWgwbihZWeLAHw1jW
XIKLQfH3zMXBatxvrM16hfuKIcZQ188Mu46b1dPfvQQ0HbUfWuE8THWzbFYr
J0PRgu4jPZyfSeZs+XHjZBhpv7aTHfupNjmBzloK2cmZ/C3lBJBE2B2TTUoh
cvVx+FHswN7SrWsrpWDd6yYhVEaAjQKHVY1qOYzt/HyUgvNe7Gv1ikpjJeh6
MxdV4/nBt/tk6Hd6Jciqi2tZYQ/mdHLm81eByzNBtfXY4bYjYqI3q0CV74aB
Fp5Hvn5Y1WUVqYbkBK/Nbbm4/pajL/v8akBN/19HDp5fTJ+X6zgdReAo/EX6
9wvcz71gQMIWQW593XQ4Nqdxm9U4CYGO2S5mAewG7iF3o1kEFbtMrZTTcL88
eVc/6Ww9eMWTkuxTcL+pSPQOXq2HoO/5u/MSCTiTPtytZ9IIjDrupZpYXM+9
fLsW50YI6pfbfgz76fWQf8dCGuGH+q6Uikc4//ftU5TJbwTVGf3RIhIBYRWB
T5g3NEF+Rjh3cjTuJ91SZhUFTdCg3HvOOJyA08t3ZkVZW+Dw1C/y+SA8f+ry
MP8obQPpG5ycns54HrNhW1xpbwOSaKT5sBPO4ztM43/H2iCFlypyDNshhVG1
aSMF7jG82Ncc8PovHbeEjCmw4FZu7XMdr38UQpz8SYGYDq8tZlfx+sHvDbHK
HfC9x261BM/zMVZDgQrlXcCHg7wenw/u01RhpqsLAll12r7g84O/98u150QX
jJuWCQljuzx29mHl7Ab+mhyqlzoBem3M7h+vdcNIzn0byWP4ecsr2EfyvMW5
ObXhihKu52+Y7qxzD5RtsyKbShLQpreLw4CHCpIZJ46d20QAXZTP/11iH7jb
hMQTlEm44y5nE7N9ENikm8/LBE3C0Ci3kR3lPRD6G/bySU+CtbfqZ9ZzI2Cv
vbKnvX0CmuQOhzexfITXqqFaAcYTIMlWM5uhPQHpa9nXparHYVeNoyZL2CTk
NydvGy7+CEyr67NvEQRoPDeUs7k1Br8May1bJKag0cS2LkJsFEaUrAQlQqfB
7svVmoKID+B2iXvrntEZ2HHlsNyBlvfA/2TKZMOuWVjWk8lYmByEfLO010te
c2Bo1hN0E59/lYbEVjf6z8FU9URZl1c/VBu9PicQMgfP1GtuiuLzM+VM/uLx
qDkg9UycLzfrh0+Ha45Fv5iDkATmxsdK/bBz2/se6Y45nCP0ko3TfRDcxbVs
ITgPswvSxeHH++CSWoA2pXYerE6t3tYZp8LojxmuxsZ5GLgXRp3uo8KVfL2h
6rZ5SKP8aPCkUMFpt7BdAXUe0jPO8gQUUSF4XW1I/PQ81NtsucofQoX8ltW6
axwLcOn+X09HcSps0PM4tM5iAQ4F3dFbsOyF8I0f/6zaLACN9wwoGPUCF9Js
/m63AEJMvJ+va/aCgALf+Vm3BahmZ8yQ5XpBnofs1hO6ANNsHJXXv/SA6eBi
bnLeAlR0/9zjINADRZbOe1T+LIDlkYEpH9NuuFL6dVfaOho4dL7I+abSDdu2
uPNvZKXBIW9RmROC3eBR6cP9bisNNBFF1W6kC1S2hf29IUWDPRrSkSWXu6Cx
/eWHZ0Y0uDWmJvpRtxP6ld7HrmTRYPJJyKmbXO1wL8Is2iqfBjsjcv/FzVFA
mfj4sKWEBg23m3K8myjwNGY68FEdDbrGbTm9PShgMf/NRaafBq22djFKw20w
k8px9vI/GqwaHu8zJ7XCMvtJ5sqLdDiymDoqWtEEPAzOJ42mdNBxPsQrFN4E
ctQP4l1WdGgtzR5LM2sCy4RbWuM36KBikZSnutYITWIvH7L408Fc0Gbggkoj
jG50EeAKoYPofkUN1U2N8HPuaO7OMDpUFF3QjB5oAOlCapdcLB0EHDfmWrg0
QLTqOm6jTDp4zbJKsj2th6zd3WlmuXRI2zC/L9O6HhrWP1O0LaTDjfoDbXel
6+E7ReG8VxUdumxJ2paOCEwvWsenvKWDu6qwul54Lbgf2SuV1UeHDImxuOUt
tRAluFxe9J4OoxsqdtlH1UD9ZMxwM0GH1TXuNd4H1SDhgoQWfuLrLWszoy5X
grphxJvvv+ng2s5nrNVaASZKl9T/MjFA6WJ18zX5CghfZVht3cyALSYmu0p/
lEHGWNVXAW4GXOFk8QKjMqitvx8kzseAvLf2V0azS+HrfeH0w7sZ4HJlLtBK
mwzsDvMHNcQZsG+qI3lHdAmI6ZY168gwQDLyw0mfrmIw5tWbsTjIAPZ7MiXG
8kXg9pPf0/4IA9xHZvOPGxbCw+Fp1ptqDFj8pjPB1p0PNal+MqGnGdDtLjUs
25ADg8FnqqLOMaB31Cui0ScLvtjynU0wZIAaES9F+/UKNp2ZHEkzZgDr5Oml
OZF02LP3jVOOGQNW/2z+KPAoFY5xea+VWDMgRCiZeQdTAlz4diq61pYBPE0q
d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw==
       "]]},
     Annotation[#, "Charting`Private`Tag$56431#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{
    FormBox[
     RowBox[{"Re", "(", 
       SuperscriptBox["\[Theta]", "\[Prime]", MultilineFunction -> None], 
       ")"}], TraditionalForm], 
    FormBox[
     RowBox[{"Im", "(", 
       SuperscriptBox["\[Theta]", "\[Prime]", MultilineFunction -> None], 
       ")"}], TraditionalForm]},
  AxesOrigin->{0, 0},
  AxesStyle->Dashing[{Small, Small}],
  DisplayFunction->Identity,
  Epilog->{{
     Thickness[Large], 
     LineBox[
      NCache[{{0, Rational[1, 2]/GoldenRatio}, {0, 1}}, {{
        0, 0.3090169943749474}, {0, 1}}]], 
     LineBox[
      NCache[{{0, Rational[-1, 2]/GoldenRatio}, {0, -1}}, {{
        0, -0.3090169943749474}, {0, -1}}]]}, 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, 0.2913393248452837}, {
      0.01767766952966369, 0.3266946639046111}, {-0.017677669529663688`, 
      0.3266946639046111}, {-0.01767766952966369, 0.2913393248452837}}], 
     RegularPolygon[{0, Rational[1, 2]/GoldenRatio}, 0.025, 4]], 
    GeometricTransformationBox[
     InterpretationBox[
      PolygonBox[{{0.01767766952966369, -0.017677669529663688`}, {
       0.01767766952966369, 0.017677669529663688`}, {-0.017677669529663688`, 
       0.01767766952966369}, {-0.01767766952966369, -0.017677669529663688`}}], 
      RegularPolygon[{0, 0}, 0.025, 4]], {{{
      0.7071067811865475, -0.7071067811865475}, {0.7071067811865475, 
      0.7071067811865475}}, Center}], 
    InterpretationBox[
     PolygonBox[{{0.01767766952966369, -0.3266946639046111}, {
      0.01767766952966369, -0.2913393248452837}, {-0.017677669529663688`, \
-0.2913393248452837}, {-0.01767766952966369, -0.3266946639046111}}], 
     RegularPolygon[{0, Rational[-1, 2]/GoldenRatio}, 0.025, 4]], {
     Thickness[Large], 
     LineBox[{{-1, 0}, {-0.75, 0}}]}, 
    DiskBox[{-0.75, 0}, 0.025], {
     Thickness[Large], 
     LineBox[{{1, 0}, {0.75, 0}}]}, 
    DiskBox[{0.75, 0}, 0.025], 
    PolygonBox[{{0.2920745290308737, -0.0025751416197912287`}, {
     0.2902035791284588, -0.01348361657291579}, {
     0.3, -0.008333333333333333}, {
     0.3097964208715412, -0.01348361657291579}, {
     0.30792547096912626`, -0.0025751416197912287`}, {0.3158509419382525, 
     0.0051502832395824575`}, {0.3048982104357706, 0.006741808286457895}, {
     0.3, 0.016666666666666666`}, {0.2951017895642294, 
     0.006741808286457895}, {0.28414905806174745`, 0.0051502832395824575`}}]},
  
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->340,
  LabelStyle->{FontFamily -> "Times", FontSize -> 12, 
    GrayLevel[0]},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, 
     1}, {-0.6180339887498948, 0.6180339887498948}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{0, 0}, {0, 0}},
  Prolog->{{
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{-0.95, 0.0115}, {-0.8, 0.0115}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     CircleBox[{-0.75, 0}, 0.05, 
      NCache[{0, Pi}, {0, 3.141592653589793}]]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{0.8, 0.0115}, {0.95, 0.0115}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     CircleBox[{0.75, 0}, 0.05, 
      NCache[{0, Pi}, {0, 3.141592653589793}]]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{-0.7, 0}, {-0.05, 0}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     CircleBox[{0, 0}, 0.05, 
      NCache[{0, Pi}, {0, 3.141592653589793}]]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{0.05, 0}, {0.25, 0}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     CircleBox[{0.3, 0}, 0.05, 
      NCache[{0, Pi}, {0, 3.141592653589793}]]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{0.35, 0}, {0.7, 0}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{0.0115, 0.5871322893124}, {0.0115, 0.3590169943749474}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     LineBox[{{-0.0115, 0.5871322893124}, {-0.0115, 0.3590169943749474}}]}, {
     Thickness[0.005], 
     RGBColor[1, 0, 0], 
     CircleBox[
      NCache[{0, Rational[1, 2]/GoldenRatio}, {0, 0.3090169943749474}], 
      0.05]}, 
    LineBox[{{0.3, 0}, {0.3, -0.05}}], {
     GrayLevel[0], 
     InsetBox[
      FormBox[
       StyleBox["\"\[Theta]\"", FontSize -> 12, 
        GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], 
       TraditionalForm], {0.3, -0.1}]}},
  Ticks->{{}, {}}]], "Output",
 CellChangeTimes->{{3.8273909699521523`*^9, 3.8273909789452953`*^9}, {
   3.827396042711411*^9, 3.827396059416113*^9}, 3.827396117784916*^9},
 CellLabel->
  "Out[104]=",ExpressionUUID->"753f522e-db04-4909-b8f0-e57c0454a0e0"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"Export", "[", 
   RowBox[{
   "\"\<~/doc/research/first_order_singularities/paper/figs/contour_path.pdf\>\
\"", ",", "p4"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
  3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9, 
  3.8273863926784687`*^9}, {3.8273886033746567`*^9, 3.827388609494101*^9}},
 CellLabel->
  "In[105]:=",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"ComplexExpand", "[", 
   RowBox[{
    RowBox[{"Re", "[", 
     FractionBox["1", 
      RowBox[{
       RowBox[{"(", 
        RowBox[{"t", "-", "\[Xi]"}], ")"}], "\[ImaginaryI]", " ", "t"}]], 
     "]"}], ",", 
    RowBox[{"{", "t", "}"}]}], "]"}], "/.", 
  RowBox[{
   RowBox[{"Im", "[", "t", "]"}], "\[Rule]", "0"}]}]], "Input",
 CellChangeTimes->{{3.827397067296423*^9, 3.827397071104473*^9}},
 CellLabel->
  "In[122]:=",ExpressionUUID->"1fb1f920-f38c-4eb2-9e28-4bcb008fa2d2"],

Cell[BoxData["0"], "Output",
 CellChangeTimes->{3.827397071978077*^9},
 CellLabel->
  "Out[122]=",ExpressionUUID->"d6edca36-a4cf-4c5f-83b3-574289a56af9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexExpand", "[", 
  RowBox[{"Re", "[", 
   FractionBox["\[ImaginaryI]", 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{"\[ImaginaryI]", " ", "t"}], "-", "\[Xi]"}], ")"}], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"\[ImaginaryI]", " ", "t"}], ")"}], "2"]}]], "]"}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.827392340498281*^9, 3.827392362569867*^9}, {
  3.8273924560685463`*^9, 3.827392474836338*^9}, {3.827392508669565*^9, 
  3.827392517493204*^9}, {3.8273928391881437`*^9, 3.827392839355523*^9}, {
  3.827392914693452*^9, 3.827392918813306*^9}, {3.82739295042251*^9, 
  3.827392966942542*^9}, {3.827396544064262*^9, 3.827396544327231*^9}, {
  3.82739666785751*^9, 3.827396678337653*^9}, {3.8273967361390944`*^9, 
  3.827396753402955*^9}, {3.827396832461341*^9, 3.8273968573966217`*^9}, {
  3.827396911686181*^9, 3.827396926448296*^9}, {3.827396961350854*^9, 
  3.827396964022704*^9}, {3.827397032648273*^9, 3.827397034295686*^9}, {
  3.8273971015378847`*^9, 3.8273971172972393`*^9}, {3.827397325876824*^9, 
  3.827397401566285*^9}, {3.827397820590563*^9, 3.827397868142569*^9}, {
  3.827398034378117*^9, 3.8273980344573917`*^9}, {3.8273981362675943`*^9, 
  3.82739813831738*^9}},
 CellLabel->
  "In[142]:=",ExpressionUUID->"3411f987-6e0c-43e6-8774-8bab579534d3"],

Cell[BoxData[
 RowBox[{"-", 
  FractionBox["1", 
   RowBox[{"t", " ", 
    RowBox[{"(", 
     RowBox[{
      SuperscriptBox["t", "2"], "+", 
      SuperscriptBox["\[Xi]", "2"]}], ")"}]}]]}]], "Output",
 CellChangeTimes->{
  3.82739236277209*^9, {3.827392458777472*^9, 3.8273924750758343`*^9}, 
   3.827392517770557*^9, 3.8273928395865593`*^9, 3.827392921373645*^9, {
   3.8273929523584337`*^9, 3.827392967221002*^9}, 3.8273965446002893`*^9, {
   3.8273966684654284`*^9, 3.82739667888195*^9}, {3.827396736651239*^9, 
   3.827396753666822*^9}, {3.827396832987563*^9, 3.827396857586887*^9}, {
   3.827396921612953*^9, 3.8273969268301563`*^9}, 3.82739696425456*^9, 
   3.827397034582773*^9, {3.827397108690279*^9, 3.827397119440362*^9}, {
   3.8273973264927893`*^9, 3.827397401861537*^9}, {3.82739782105422*^9, 
   3.8273978683764563`*^9}, 3.8273980346259108`*^9, 3.8273981386105013`*^9},
 CellLabel->
  "Out[142]=",ExpressionUUID->"b8cea288-1647-4b56-8f3d-dcdd2b6ae91b"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"iF1", "[", 
    RowBox[{"\[Theta]c_", ",", "B_"}], "]"}], "[", "x_", "]"}], ":=", 
  RowBox[{
   RowBox[{"(", 
    RowBox[{"x", "-", "\[Theta]c"}], ")"}], " ", 
   RowBox[{"Exp", "[", 
    RowBox[{
     RowBox[{"-", "1"}], "/", 
     RowBox[{"(", 
      RowBox[{"B", 
       RowBox[{"(", 
        RowBox[{"x", "-", "\[Theta]c"}], ")"}]}], ")"}]}], "]"}]}]}]], "Input",\

 CellChangeTimes->{{3.827549176981242*^9, 3.827549201331346*^9}},
 CellLabel->"In[6]:=",ExpressionUUID->"2cebc6d0-f18e-4865-b6ef-a0d1f3bf0805"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"iii2", "=", 
  RowBox[{
   FractionBox[
    SuperscriptBox["\[Theta]", "2"], "\[Pi]"], 
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{
      FractionBox[
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{
          SuperscriptBox["x", "2"], "+", 
          SuperscriptBox["\[Theta]0", "2"]}], ")"}], 
        RowBox[{"5", "/", "6"}]], 
       SuperscriptBox["x", "2"]], 
      RowBox[{"(", 
       RowBox[{
        FractionBox["1", 
         RowBox[{"x", "-", "\[Theta]"}]], "+", 
        FractionBox["1", 
         RowBox[{"x", "+", "\[Theta]"}]]}], ")"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "\[Theta]c", ",", "\[Infinity]"}], "}"}], ",", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",", 
        RowBox[{"\[Theta]", ">", "0"}], ",", 
        RowBox[{"\[Theta]c", ">", "0"}], ",", 
        RowBox[{"B", ">", "0"}], ",", 
        RowBox[{"\[Theta]0", ">", "0"}], ",", 
        RowBox[{"\[Theta]0", "<", "\[Theta]c"}]}], "}"}]}]}], 
    "]"}]}]}]], "Input",
 CellChangeTimes->{{3.827550808671958*^9, 3.82755084362461*^9}, {
  3.827551052940673*^9, 3.827551056396649*^9}},
 CellLabel->"In[48]:=",ExpressionUUID->"b3488c4d-f657-46fb-9b11-630b0fd6d206"],

Cell[BoxData["$Aborted"], "Output",
 CellChangeTimes->{3.8275508262823143`*^9, 3.82755104553023*^9, 
  3.827551666146019*^9},
 CellLabel->"Out[48]=",ExpressionUUID->"b33dc2d4-cae5-42eb-a0ca-3a6e33f3cb70"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"iF1", "[", 
     RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", "x", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "1"}], "}"}]}], "]"}]], "Input",\

 CellChangeTimes->{{3.827554296583604*^9, 3.827554327320253*^9}},
 CellLabel->"In[58]:=",ExpressionUUID->"c7dac445-5908-4fa8-8a0b-bb252cb276f4"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{"-", 
    FractionBox["1", 
     RowBox[{"B", " ", 
      RowBox[{"(", 
       RowBox[{"x", "-", "\[Theta]c"}], ")"}]}]]}]], " ", 
  RowBox[{"(", 
   RowBox[{"x", "-", "\[Theta]c"}], ")"}]}]], "Output",
 CellChangeTimes->{{3.827554317783595*^9, 3.827554327962017*^9}},
 CellLabel->"Out[58]=",ExpressionUUID->"71c3cdc7-d817-4f4d-af37-5b9bfea1f179"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     SuperscriptBox[
      RowBox[{"t", "[", "\[Theta]", "]"}], "2"], "\[Xi]", " ", 
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", "1"}], "/", 
       RowBox[{"(", 
        RowBox[{"b", " ", "\[Xi]"}], ")"}]}], "]"}]}], "/.", 
    RowBox[{"\[Xi]", "\[Rule]", 
     RowBox[{
      RowBox[{"(", 
       RowBox[{"\[Theta]", " ", 
        RowBox[{
         RowBox[{"h", "'"}], "[", "\[Theta]", "]"}]}], ")"}], "/", 
      SuperscriptBox[
       RowBox[{"t", "[", "\[Theta]", "]"}], 
       RowBox[{"15", "/", "8"}]]}]}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8275543532807007`*^9, 3.827554388944468*^9}, {
  3.827555347554227*^9, 3.8275553652900763`*^9}},
 CellLabel->"In[62]:=",ExpressionUUID->"6f05087c-413e-4fb2-b2c9-e923fdd92c6b"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox["\[ExponentialE]", 
   InterpretationBox[
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       SuperscriptBox[
        RowBox[{"t", "[", "0", "]"}], 
        RowBox[{"15", "/", "8"}]], 
       RowBox[{"b", " ", 
        RowBox[{
         SuperscriptBox["h", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]"}]]}], 
     "+", 
     FractionBox[
      RowBox[{
       RowBox[{"-", 
        FractionBox[
         RowBox[{"15", " ", 
          SuperscriptBox[
           RowBox[{"t", "[", "0", "]"}], 
           RowBox[{"7", "/", "8"}]], " ", 
          RowBox[{
           SuperscriptBox["t", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], 
         RowBox[{"8", " ", 
          RowBox[{
           SuperscriptBox["h", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}]]}], "+", 
       FractionBox[
        RowBox[{
         SuperscriptBox[
          RowBox[{"t", "[", "0", "]"}], 
          RowBox[{"15", "/", "8"}]], " ", 
         RowBox[{
          SuperscriptBox["h", "\[Prime]\[Prime]",
           MultilineFunction->None], "[", "0", "]"}]}], 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["h", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]]}], "b"], "+", 
     FractionBox[
      RowBox[{
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{"-", "105"}], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["h", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["t", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
         RowBox[{"240", " ", 
          RowBox[{"t", "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["h", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["t", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["h", "\[Prime]\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], "-", 
         RowBox[{"128", " ", 
          SuperscriptBox[
           RowBox[{"t", "[", "0", "]"}], "2"], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["h", "\[Prime]\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
         RowBox[{"120", " ", 
          RowBox[{"t", "[", "0", "]"}], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["h", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
          RowBox[{
           SuperscriptBox["t", "\[Prime]\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], "+", 
         RowBox[{"64", " ", 
          SuperscriptBox[
           RowBox[{"t", "[", "0", "]"}], "2"], " ", 
          RowBox[{
           SuperscriptBox["h", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["h", 
            TagBox[
             RowBox[{"(", "3", ")"}],
             Derivative],
            MultilineFunction->None], "[", "0", "]"}]}]}], ")"}], " ", 
       "\[Theta]"}], 
      RowBox[{"128", " ", "b", " ", 
       SuperscriptBox[
        RowBox[{"t", "[", "0", "]"}], 
        RowBox[{"1", "/", "8"}]], " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["h", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "3"]}]], "+", 
     InterpretationBox[
      SuperscriptBox[
       RowBox[{"O", "[", "\[Theta]", "]"}], "2"],
      SeriesData[$CellContext`\[Theta], 0, {}, -1, 2, 1],
      Editable->False]}],
    SeriesData[$CellContext`\[Theta], 
     0, {-$CellContext`b^(-1) $CellContext`t[0]^Rational[15, 8]/Derivative[
      1][$CellContext`h][
      0], $CellContext`b^(-1) (
       Rational[-15, 8] $CellContext`t[0]^Rational[7, 8] 
        Derivative[1][$CellContext`h][0]^(-1) 
        Derivative[1][$CellContext`t][0] + $CellContext`t[0]^Rational[15, 8] 
        Derivative[1][$CellContext`h][0]^(-2) 
        Derivative[2][$CellContext`h][0]), 
      Rational[1, 128] $CellContext`b^(-1) $CellContext`t[0]^Rational[-1, 8] 
      Derivative[1][$CellContext`h][0]^(-3) ((-105) 
        Derivative[1][$CellContext`h][0]^2 Derivative[1][$CellContext`t][0]^2 + 
       240 $CellContext`t[0] Derivative[1][$CellContext`h][0] 
        Derivative[1][$CellContext`t][0] Derivative[2][$CellContext`h][0] - 
       128 $CellContext`t[0]^2 Derivative[2][$CellContext`h][0]^2 - 
       120 $CellContext`t[0] Derivative[1][$CellContext`h][0]^2 
       Derivative[2][$CellContext`t][0] + 
       64 $CellContext`t[0]^2 Derivative[1][$CellContext`h][0] 
        Derivative[3][$CellContext`h][0])}, -1, 2, 1],
    Editable->False]], " ", 
  RowBox[{"(", 
   InterpretationBox[
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"t", "[", "0", "]"}], 
       RowBox[{"1", "/", "8"}]], " ", 
      RowBox[{
       SuperscriptBox["h", "\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]"}], "+", 
     InterpretationBox[
      SuperscriptBox[
       RowBox[{"O", "[", "\[Theta]", "]"}], "2"],
      SeriesData[$CellContext`\[Theta], 0, {}, 1, 2, 1],
      Editable->False]}],
    SeriesData[$CellContext`\[Theta], 
     0, {$CellContext`t[0]^Rational[1, 8] Derivative[1][$CellContext`h][0]}, 
     1, 2, 1],
    Editable->False], ")"}]}]], "Output",
 CellChangeTimes->{
  3.827554389179389*^9, {3.827555349902762*^9, 3.827555365548625*^9}},
 CellLabel->"Out[62]=",ExpressionUUID->"e72062d6-2b09-4495-8402-b0e6bef938ab"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"iii", "=", 
  RowBox[{
   FractionBox[
    SuperscriptBox["\[Theta]", "2"], "\[Pi]"], 
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{
      FractionBox[
       RowBox[{
        RowBox[{"iF1", "[", 
         RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", "x", "]"}], 
       SuperscriptBox["x", "2"]], 
      RowBox[{"(", 
       RowBox[{
        FractionBox["1", 
         RowBox[{"x", "-", "\[Theta]"}]], "+", 
        FractionBox["1", 
         RowBox[{"x", "+", "\[Theta]"}]]}], ")"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "\[Theta]c", ",", "\[Infinity]"}], "}"}], ",", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",", 
        RowBox[{"\[Theta]", ">", "0"}], ",", 
        RowBox[{"\[Theta]c", ">", "0"}], ",", 
        RowBox[{"B", ">", "0"}], ",", 
        RowBox[{"\[Theta]0", ">", "0"}]}], "}"}]}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.827398353256083*^9, 3.8273983957208767`*^9}, {
   3.827398760367425*^9, 3.827398836928145*^9}, {3.827398896506111*^9, 
   3.827398907017392*^9}, 3.8273989826513567`*^9, {3.827399019491435*^9, 
   3.827399047403905*^9}, {3.827399266719953*^9, 3.827399276184062*^9}, {
   3.82739933374548*^9, 3.827399335417035*^9}, {3.827399382418434*^9, 
   3.827399393305705*^9}, {3.8273994776115007`*^9, 3.827399487643407*^9}, {
   3.8273995869738693`*^9, 3.827399587277536*^9}, {3.827402058892399*^9, 
   3.827402085443573*^9}, {3.827402137725361*^9, 3.82740217971719*^9}, {
   3.827402449762793*^9, 3.827402452530192*^9}, {3.8274895683360233`*^9, 
   3.827489568495656*^9}, {3.827489688770116*^9, 3.827489715938286*^9}, {
   3.8274897856277246`*^9, 3.82748978623564*^9}, {3.827490092977054*^9, 
   3.8274900932009687`*^9}, {3.827491095100894*^9, 3.82749109786831*^9}, {
   3.827491133445551*^9, 3.8274911345971603`*^9}, {3.82754875904348*^9, 
   3.827548763579376*^9}, {3.827548968119054*^9, 3.827548973055189*^9}, {
   3.8275490338006268`*^9, 3.827549041834475*^9}, 3.827549174059781*^9, {
   3.827549220027563*^9, 3.827549225027791*^9}, {3.827550187268937*^9, 
   3.8275502147414837`*^9}, 3.827550801121107*^9},
 CellLabel->"In[53]:=",ExpressionUUID->"45253125-7b71-4e2c-bc30-668e3b338cbd"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "\[Pi]"], 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"2", " ", 
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", 
       RowBox[{"B", " ", "\[Theta]c"}]]], " ", "\[Theta]c", " ", 
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{"-", 
       FractionBox["1", 
        RowBox[{"B", " ", "\[Theta]c"}]]}], "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", 
       RowBox[{"B", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", "\[Theta]"}], "+", "\[Theta]c"}], ")"}]}]]], " ", 
     RowBox[{"(", 
      RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], " ", 
     RowBox[{"ExpIntegralEi", "[", 
      FractionBox["1", 
       RowBox[{
        RowBox[{"B", " ", "\[Theta]"}], "-", 
        RowBox[{"B", " ", "\[Theta]c"}]}]], "]"}]}], "-", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", 
       RowBox[{
        RowBox[{"B", " ", "\[Theta]"}], "+", 
        RowBox[{"B", " ", "\[Theta]c"}]}]]], " ", 
     RowBox[{"(", 
      RowBox[{"\[Theta]", "+", "\[Theta]c"}], ")"}], " ", 
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{"-", 
       FractionBox["1", 
        RowBox[{
         RowBox[{"B", " ", "\[Theta]"}], "+", 
         RowBox[{"B", " ", "\[Theta]c"}]}]]}], "]"}]}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.8273983937112637`*^9, 3.8273983995108433`*^9}, {
   3.8273988111915216`*^9, 3.827398852578842*^9}, 3.827398926547677*^9, 
   3.827398993620363*^9, {3.827399029117091*^9, 3.827399053448537*^9}, 
   3.8273992799360943`*^9, 3.827399341103878*^9, 3.827399422456213*^9, 
   3.827399554601347*^9, 3.827399654476961*^9, 3.827402127001665*^9, 
   3.827402448064209*^9, 3.8274024949881144`*^9, 3.827489607746436*^9, 
   3.827489754705557*^9, 3.827490081610094*^9, 3.827491132020056*^9, 
   3.827491245091855*^9, 3.827548905664464*^9, 3.827549083629471*^9, 
   3.827550798445965*^9, 3.8275518930000343`*^9},
 CellLabel->"Out[53]=",ExpressionUUID->"b820a378-a24b-40d9-848b-d271118a47ad"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"itest", "=", 
  RowBox[{
   SuperscriptBox["x", 
    RowBox[{"3", "/", "2", " "}]], 
   RowBox[{
    RowBox[{"Integrate", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", "y", ")"}], 
        RowBox[{"1", "/", "2"}]], " ", "y", " ", 
       RowBox[{
        RowBox[{
         RowBox[{"Exp", "[", 
          RowBox[{
           RowBox[{"-", "1"}], "/", "y"}], "]"}], "/", 
         RowBox[{"(", 
          RowBox[{"y", "+", "x"}], ")"}]}], "/", 
        SuperscriptBox["y", "2"]}]}], ",", 
      RowBox[{"{", 
       RowBox[{"y", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
      RowBox[{"Assumptions", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"x", ">", "0"}], "}"}]}]}], "]"}], "/", 
    "\[Pi]"}]}]}]], "Input",
 CellChangeTimes->{{3.827490241164371*^9, 3.8274902719969053`*^9}, {
   3.827490521401638*^9, 3.827490534121044*^9}, {3.827490678140024*^9, 
   3.827490712468458*^9}, {3.827490884984619*^9, 3.827490901968405*^9}, {
   3.827491586461814*^9, 3.82749159659795*^9}, {3.827491746721252*^9, 
   3.82749181717035*^9}, {3.827492035774888*^9, 3.827492041462571*^9}, {
   3.827492102391716*^9, 3.827492110375875*^9}, {3.827492176945887*^9, 
   3.827492179144786*^9}, {3.827492279235435*^9, 3.827492333115738*^9}, {
   3.827492363276701*^9, 3.827492454085841*^9}, {3.8274925625290003`*^9, 
   3.827492562672227*^9}, {3.827492607745925*^9, 3.8274926079140053`*^9}, {
   3.827492690314501*^9, 3.8274927141551533`*^9}, {3.8274930229453583`*^9, 
   3.8274930402486687`*^9}, 3.827493076298266*^9, {3.827493432192507*^9, 
   3.827493447935803*^9}, {3.827493488161765*^9, 3.8274934949849052`*^9}, {
   3.827493566034436*^9, 3.827493568050148*^9}, {3.827493739070094*^9, 
   3.827493748653948*^9}},
 CellLabel->"In[47]:=",ExpressionUUID->"98be6fd6-d0c5-46ca-a3d5-250ea9c619bd"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox["\[ExponentialE]", 
   FractionBox["1", "x"]], " ", "x", " ", 
  RowBox[{"Erfc", "[", 
   FractionBox["1", 
    SqrtBox["x"]], "]"}]}]], "Output",
 CellChangeTimes->{
  3.8274927178327208`*^9, {3.827493034238329*^9, 3.827493047437254*^9}, 
   3.827493080950856*^9, 3.827493451967753*^9, 3.827493515415063*^9, 
   3.827493568497258*^9, {3.82749374361351*^9, 3.827493749101988*^9}},
 CellLabel->"Out[47]=",ExpressionUUID->"02273014-23dc-45c5-a3ff-2366921fabd0"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexExpand", "[", 
  RowBox[{"Im", "[", 
   SqrtBox[
    RowBox[{"-", "x"}]], "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.8274936885252237`*^9, 3.827493710933008*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"cc5be459-b1a4-4071-bf81-958b4fbe4d9a"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"(", 
    SuperscriptBox["x", "2"], ")"}], 
   RowBox[{"1", "/", "4"}]], " ", 
  RowBox[{"Sin", "[", 
   FractionBox[
    RowBox[{"Arg", "[", 
     RowBox[{"-", "x"}], "]"}], "2"], "]"}]}]], "Output",
 CellChangeTimes->{3.8274937111801863`*^9},
 CellLabel->"Out[45]=",ExpressionUUID->"03b899db-cf29-4fc4-b21a-0c99949276e1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Exp", "[", 
     RowBox[{
      RowBox[{"-", "1"}], "/", "x"}], "]"}], 
    SqrtBox["x"]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8274933082944717`*^9, 3.8274933432541*^9}},
 CellLabel->"In[29]:=",ExpressionUUID->"72d5b6dd-c9d9-411c-ae47-018d1493f38e"],

Cell[BoxData[
 TemplateBox[{
  "General", "munfl", 
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"48951.048951048964`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 29, 3, 
   31546217051116231707, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{3.827493343468099*^9, 3.8274935170070543`*^9},
 CellLabel->
  "During evaluation of \
In[29]:=",ExpressionUUID->"c89d0736-26b9-4e13-a981-096b6f1d6e1a"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw9lnc41X/4/1EklL0pREMlZGS8X7edrIwkinyECkWIZOQo2VFG9t6bg2Me
JzMrZBxJlJDZUUhG+vW7ru/3e/9zX4/r+byv+5/nH09hG2djOxoqKqrn1FRU
/3/r2M0PkhZMEdX/zH51PpcpXhn4Xz6fFp+M59X4P9btI1em8F75Pzaz3Wx6
xWsLYd6iPRyBC3yfzgWpR/C6Q3PUpb/6W0Zn0zkvPw/lfQap36SnPG1C5HD0
+BMhvDEQUshFJ3TzlJL4xZfBlS4xsEus8kn8iim9D3Re+NgZA+/2HDK7jhgp
ie47UyThEQuRziWpzu3uSh1/siWG38cBww3Z1iR2ghLTWpzs0fAE6Li1egLr
Pa5cLfUwTvtrAujzuis8cjmvbOVisvlAMRH4+WVLDM1VlMtWmOva5hOhQNIu
Y075qrLxfLCyg2YynHLxvX9zEKe8c/x2SnRyMrTV2esaxoYpZ9tp7jWuJYO+
0cimhEis8sY0NYk5MwXqHUXyx3nylVOFPwspbKVASO34lOmPCmUtayLOxjAV
skIfrS961ytTUpOnw/JSwTsyw2fBulU5/tNj9eq9VAiR7C8cOtqrrCpgnj1p
mgYd3mHyXWhYedFCnpa+JA1cTGXIY0sTyt29DHgemnR4Z3WBqsp/RvnIstet
krPpIBzmKlHzcVnZlXGBXc08HdwTxRZTxNeVO8SvtY0+S4fn7nYzJ/d2lPl0
Ot0dy9Nhc21js1ZvH+Z8V06MaiIdPMWtolkfMGBtwTkjMQcyYChRyuAYFRvG
k8/x/NT5DLjHZh8rc4MHc+p8Kke0ygBJhxKHPzZCGGnu55xxaAYU5r8zyV8S
wzjobF5/q86APo3+DPlTZ7G7YoMXfb5kQLdDUPR7nfMYUUPlN8uhTEAVrYx4
WwWMzbYsP+dCJvCKBbkHp6tg9k+PmCvaZoKZZl1zUaEm1pAZcbA/MhP4jhdl
i/DqYSwtu3W3GjIBvj+9Yi1ijNl+cXT4PZcJhGCZRgZ9M6yW6iNfBFsWTNpb
7Wa8s8SYhHR6hFEW6D2IOZm2Y4NZQ513zd0sCOOzNu5lv4NVW508oxubBYRw
UTydw32Mwe/1xBQpC65ysrjQirhhVil0Ee7LWbBsofro5bYnVtn4EDvIkw1c
PnXcF1Z9MbqJmZUU9WwY9qCnnU4NwCx2TFKlnbNBXnvL5zpHEFbG12rQmZgN
1maOCz64cGy/ovTf6x3ZIMLI81Qq7CV2zTyjbPVHNixxIQ98YCxG+XiFIZMv
B6ovHMDSfydgz63o7UzUc+BToGxnpUoaJvCloXm/Uw58PcES3U3KxPC3nPlq
YnKgK/LST27XXExnTuTh7aYc+KNiFVPQU4h9vjPazzOXAzIU8dIL82WY51KI
ePfhXFDNP3KOf60SO3wfC/SWzwUJ75+GR9xrsJzV1akz1rlg+iVLoD20HlN2
y1acDM4F/1hnEU39Zmxowyw2siIXiujf8Vs4tGAOjxhXVcZzIdsiNK04tR2j
3iHq/KTJg6zcesYAky4s3tc1J+t0HpRIC72qSezDJKiOU5leyYOb7luKJzQG
sfaADxZ0vv/0Nho2M95h7AZtRDUhJw8SRfQcHM3J2M8gFZa77/Lgp2jMrgnb
RyyEYd2BbzMP7Dn5P70ymcKEIvLae47mQ7FEtrQU9zRGYL4u5KudD/p73Rvf
x2cwg1eHvSUe5INO0HZN3N9v2CxHy8hUQj4YPW4+NR61hPm8fij5siUfzD84
VmckUTB2vlNhakv5cKy46xU790+sMHlido29APwy/ZgPFq9jKkejVHKUC0Az
SlpON3YTI2eoJ121KwBuEw1+nYlt7L7o5saBFwWQRhUpaBm2h+3PKzSsqymA
572vAxevUqOkU1ZFDlMFIPWTUHwgfx+SLmalE6AvhOF9Y8rtQIe6JNqt+yQL
gZ31ZaGv2EFkXfGowc+8EGYnI3el/mNCv86f4ZIMKAR++nli7A4ziqiZcvlS
WAiq6+d6D/1lRaIK0T2vhgrBfktJHafAgeobtI5r7BaCYp/zdEUlFzJC2/4b
okXg4+hdme7Ci+ZJJR9z9Yuglfizt9tLAD1R/0/umkcRaGdMWEmNHEVcHRwv
D6YVwRLD7/1S7cKoWPvtUn1nETAt6Q81DxxD6j3eWk6rRfBexLUqh/U4Gtc/
lyHIWwwzlw7Kvg4/iVwGpnfeqRZDY/mL3gyt0+iASdxVf4diEOjvPyilKYFS
Ry5VSEUXA4PNxe2DnZJI9tofxq8NxfDCJ8r4TbQ06h0vt4+ZKYYw0t2DbOEy
yMbS9o3moRI49WCBKRQvh7amuAU2ZUuguiNrYv2QAoqy6fHItyoBI7xYu1Wa
Ejo+6zdoHvTP33ziAo8TQlcWZ583jpVAno11BJudGlpySvhyj7oUfl43Xe6Q
1kABFD3lo+Kl4P4yWFD5pBbidaV6PWBcChxK7j03tbVR+Tr+B867FGxtyBS9
OB100fO23vnsUqA20P2mz6mPJrf48mZ6S6H69JfoybeXEeNf3I2LR8rgpX14
ldF3YxR/18zqjFYZrK5Uz4cnXEGiw2esWe+XwaZrN6Ha7iqqQDQ2v2LLIHqP
X2r9yjWECsi3PjaVgWQgsSrirgXqYS+xI82WwV04zzeXcwOdgTf493TlMKya
+smf6SaqK4irJkiUA9MtqwfxUjaI6iZOrlCtHExfl4h4F99CWhxOhOSr5fCu
J/K2pJodCu+6eiHSoRxY9Cwtjdft0ZCfah3OrxyA6Ed80XYH8cmcUXR/VQ4k
Z/bIvCoHZL3A1WCfWw6Hf8f0unU4oRWT5Ubdd+UgP13Z7VnkgmQOkjE0XQ73
X9OcnFx+gB4T3xAlf5WD/bu3osrqbojkVgzHGCqAxfIHHaHMHR049ZrEeaQC
RA7NN/mf90AGkzhVeukKSNbm1xjr90Qx0U4t25oV4JNAomZ47oWE91Tbpu5V
AK+3gpqbpi+6gz+j+R5XAZrPRDVCjZ6g0jvcHW2xFaDdRchOIfojpaHlzoKm
CniogEucF3iKAoLJ2smD//6V7Dyjv/0MvcVaul7MVkAQqafbsC0Qmea/7nE7
VAlLfUlzrI3BKNkyQM9euBKsQuwSfa6Fomm2e33XZCuhd9JjaI0xHDn7qvVj
lpXwtHUxyqgxEtVInzWUfFAJD4tU0uo/RaHdb9yDIoGVUDtjx8ey9BKFGK+8
P1BSCYWEkD+PpWLQwIExk21SJVTQeJ8Yc4xFXE0tw8vDlZCSyY8ProlDWSfi
Rwd3K+G4k7Vc+ZMEtDgRYNbGggeNgj580t9EJPnq3liNKB68qVzHWl8lo6Zd
tfEkPTwU69hOrW+kof2VZ6+/sMaDYQC76eDXdKRzm2fC3x0Ph4ciopfIGYg8
uPLJLhkPMhOc/1V+zUJHgsasrpXjod9hx053NxvZKrdO6bThYeNXaC+VSC76
kRv/5dwyHmaNhZ42x+WjCzee2ohQVUFKrjPP4FwB8mO9/5WDowos8nE1zFpF
iNFHfXZLqQrmjnPM6smUIjGj7/OtYVVQypAuxOlSifieXFS8nVEFBpoHDJ48
wCOWkvQwBkIVUKTSrGv9qtA2vYmE0XQVVHzvyb1CrEGrcsVP1jeroL98+VPK
DwKataUdfH2oGgyqaDkDpOvQAIngNnmhGmoEq9zopxpQ+3eWdpxBNQSo6zXn
6zahegEHLjHbajCKz7P73ElEOY8E6hwjq+GTzDmdxN8k9FgSt/d7thpYvSvS
/MLakLPV+OXknWrQYMZSvwW1I9vwf2WItQY4Np9m273oQJfnZ9WfK9fAoP99
m9n6t0iDC2JPGdeAFkQSI750IUWN+Lne2zWg822/Wzx7DxJN1wlhj64BLybP
BNmkPsT7Lmu8Jr8GWo0PTvv8eIcO7+6etiDWgPTIM35t8QG0ZVb2Ln2hBgzl
N27oZQyid8wcHBIqBNj+HOD0bGYYtWL37AZNCbBOc5KEvR1BtY4dNe6OBMAi
CWxr+FGU1fnIvCGOAIYf06slssdQ/MZgoVUxAUpC6H6IFXxAL46d3qVuIcDj
X8R9OzXj6NGTT6naKwRIvCkJp79PoHslcqtLNLUQXmco9pd7Etl8jFSN5KmF
ptHHNzN1p5C+vNrMiHot8CYfiC+Y/4xEKLmnbiXWglFx/V1i6VfELUjlTVde
CxTymO+D+zOISde8t6C9FrROv87klJlFm7mMzqurtXAM7tk1D86hXiuXKt+L
dVCwv182wWIRtYR30Qpb1oEJFUvBoP4SItSLmLW51oGztsq6qPYyyuQa2WJI
rYPXd8Wy642/I893ChC/XgeXlKq9GGx+oMMS1bNd9PUQp3Xd+C/lB8qOkAzf
EaiHE/jhz4m4n2hQ78QHK816qJy25D5UvoZO93C4icXVw8aHgQcflH6hFvEo
XrPCenhf5Xp8b/4XuhbKSAom1oMWi6b3jcRNFHiJ5tDyXD2kOobwsDNsoalO
Sm6lfAOU3OE4/+LoLvI44ag/o9sA1h+4c7NXdxFT0Nwap3UDqBO9SNEdf5CC
1icVr+AGOKflsWmA+4ui27rH4UMDyMZ44jQSqUFcVAv3YKUB7PpTfcy5aYD0
9M2JLOpG8PeNkpV8TQMrarXudOKNIP9VRvdy2j64+CbncN/jRniRs/Mx8j0t
TAoJV++9aISD06E7K/Z04O6ffF0yqxGUFrPX7uzRQQZE50f3NMKBabuUGTl6
2GnyV7MQaIKHkEpW7WeAV4K782GSTfCspVVkxJcRTvp6RjZp/NNp7/XPnmMC
U+X7E0L3miD/0PEjFamHoKz+use3piYwH+I0P3mFBbT4yAK875sgSPdNL3c9
C0x4GbfqzDWBnNHhjt/CrHBQ4RJL6WEi4G1T7xVsssItglyh+00itORHJfk1
sAN3FeskNXUzvH+dVjhZyA03wneuzHA1AxPnRlQY4oFM29mejjPNYC5ygYd6
hAfOcNbVhV1rhlqjrCMODHyg5mEdy1neDPeF1ral4wUg2ECH6Xd7M1T5fQg5
pi4Ifcdlno5/bIYE2+ZNsR+CULz0tLZ/HwlaJ2UHA68eBblks9yYcyTwI3Ym
ThwTBvPg3i+BiiS4oxTOI/RcGHzcVQU9NUmguclizbYoDG/0TseYXycBo63S
Cy6CCOj92cMdCSJB3StJfjF7UfjPKtcyf5IEFUzKWjkCJ+GZDn9CwgIJWhTl
FY4mn4Rcuajh0HUS5GVUEuIET8Hy4ce69xjeQHgAyffVcXHwaNZXkJZ7A15/
BMZ1jM5AuNAGR2PEGyhfjNLlC5KEUiYHw5L4NyD+SzBxnSwJg78nw1Kz3kD8
MaqIX6ekgGvwLQ2u7g2wBTY3eA9KQQYueVVz9g3kGv1aGpI4DzXT6r39yi1w
1Czz5D4xORjVxv2IuNgCUpd53AlBcvCrlMilZ9wC004Wk+VLciDvrfDf29st
0BnssONDkIda9nO/SK9aQOKc2EizlQLUafAJVc63ACFrkkvguzKMF5ppuqy1
ABdJRUjPHoNtllgHib0WuBnXtzM/hYHiJ+bqQvZWWL7MwepGRlD/kFYnC7XC
utLaNp2TCjTmrrrFxLQCm+z9pNYoNZhgkkgwTmsFd09u49ExNdh1dSSyFLZC
oX2HGF5YHTCYo49oboWzARjdQLU6EMkfUwIXW+H1kz8ttd80oJm+s9NDpQ0C
Dc7cN3W7CC0OKfzmy23AWXKVjk9aH/ALjo5Wv9rAR9DrMkOkPmTfUWy4RdUO
ou9tnvYs60OgPdniPkc7PE5KsWsrNABtG9bEp/+a/KbH2/2mPIbQbx7IUxre
DuJOC6ohlUZAGjO5g49rh51FNVrSNyMoNxOprU1vh6MHfrywFzSGV6bNZq1V
7RA6d4W4P9QYrhptxY1NtMM1Dq+tl3dMYEL7Hue+sx2QcCTuiLGSKfR1KtnR
y3eA17HZI/WepkDUYqg+pNoBk3jBL/FVppCmkXeFx7QDTqR6Wzaeuwo2Kl+i
z/p2wIfYfVR5p81gXt6U7VpfB8TrHN+6rWgOG8cx5pJ7nTDm6qTpVGMJaFqt
M/RRJ8SQsgu/0VvB8xTtJ3eedsKUR2ffn+tWwMVxhXIsoRO+U43L7O67CXLU
jv2JbZ0w+pPjet5Za3j0MT4ymP8tnJx5S/sh+j/YjVxntu16C/dnTNgvptiC
hu52p+rwW0iTjficPmAL4XRU/ken3sJAigbH5f12IOjLuDq+/u/+h7F3gZMd
IAeRASOhLshwM+q5rmoPTzQMo8CzC8RpOQO/bN8Gmq0iFn6xbvi7qGBZV+YI
/H1qa3CuG65t6v4ZXXAEmYwPI7YK3eAZXyGtLuoEdpcOJJXqd4MZRp4+kOgE
bxNsxNQ8uuHu2siqZsg9iFTkVbzb2Q1u3AnEcg9nEPB5fotwtwdMZY/oMXQ+
AFlDQa0Jtx7469UdILTwAAxEq05S+/WA41/+zzcZXeFJ75cVnVc9YH/WVs3C
0BWmBbBHk/U9kM/DfxAmXKGgaS2clqkXDP2cbgztuIHcX+sak9JeYByjOeZp
4QF6+qQAzdpeoHWeKKTBecCtpKOX5Vt6YeRGOzchzwOi5Ce/8Y32Asu4WFvi
hgcsOF/nnf7TC4LVGuYG0Z6Q/NnUx0W/DyzEpavujT4C6hYdtYjlPuCUIQm2
eHtD7zOZdx3i/RDx8HjLoUx/UGTuoXkp2w935+QMMxr9IT/hP/nrKv3w+47V
gD7ZH56WvkinmPZDRXBP6Q8mHCiOzbvy4PrhhMQKt50XDvJPp3A7kPuhwDSE
cfdqAKgtBJTTqQ3Aym/iyTXRZ3A0ammr4PsAvBDH7woxBQPxvycFlWsDcM+r
r7ZNPBiszrObN/wegEbnORW/S8GQPKpY20szCN4ROhXSQcHAIxjqQeEaBLbY
l7/S94UAW+HJNRkYhFieVK5XVKFA22a33Bw5CDiigXQTQzgsbU5Njki+h5s+
ZZEL56Ige7Gh+/CLIXD/quJZ4BYLhwXzKDMzw9DgxUnnZ54E4Xer7dNFR2Hv
gdxGQEM6/FIpmrnzhAx29j3dGTeywV26rYqrdQw+ReoOutHmw1RpW9ig8Djo
+AexUqsVw47DcNKpxx+ho/VCqJlpOZxWPbBn3zABU54/ShN8K+FipvDtCu5J
CGaSs8lZqQJPwZsiX25MwYlP7yVjLxHgzLIpI1n/M9zdN0d6VFQH7Myr9G3b
n0FC/f39UeNG2N+cVHYs+QuoOlIiwz4SwVGm4cNB3Wkw6N7dMh8mQdElm3Ti
r2mgklD8E6/YAhtLfCxzcV+hU3OYOSKiFapNLu6L0ZiBUiSvl0PdDk+0A9Oq
5mZAv98jJtW6A4Q/6YxlBc7C6Q+tq5ENnaAo/yyGV3oOtjNbORvkuuDGkf4t
6qE56A6/0BiX2A0b3RHTLrhvMBy4fUviSC/E77dyNxadhzuVKrQuIX3APlmd
SdM2D+IdHUX+398BrS/uisKDBUh//qFCXWEAqAqsyqbZFmHjcuGfkH+5cE0s
i2BrWYRLyh8imPGD0HQ6mJ71/hKk7mgd3nB7D6w6rmcCDi/DRI2lZMuJIZg4
OzDk1bgMXo09BM/FIShPBdEZqxXYwoe//J42DJZlcqyCeyugsMPH5mk0Av6B
GbiJwu/ArfIkPZF1FErmBZMO61Fgjw04bNtGITgl0HrSgAJBu4/kcZ2jYGu8
IlZqRIFz36kMU7tHQaCxsVzfjAIsxEXrsYFRCI283hFuQwERg2pqvU+jcEcu
4QeDFwXky3KVpH6NgsgzDu0DuRQYMbN/uHaCDHsXfA6R8ymwll6hyHyaDB9W
vr7PLaIAs0XfurgEGaLM8JZaFRRIWbK/aCNDhr/ixm6BjRQQz6y1G1Ahw8Rg
ZOq+IQp4XIx4WmhOhtrnm7eGRiig3MMf036DDDFKN09ljf3zj6GEzzfJoJsj
UaU2SYEXI+dxXPZkqH/U14VboEAj0bUT50qGuLOykUbLFGCaQj7JD8nwYDr5
ijCFAj3aAWKER2Q4qec0RVqnwJS3temyHxn2Uw9nR21SwIZx/SNdABk+Vys5
WG9ToMll9apwIBkaHbLOSf6hQBK7cYdSMBleH2Xc+PuXAo8tOcWvhpHh/wEG
4KgU
       "]]},
     Annotation[#, "Charting`Private`Tag$61338#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1}, {0., 0.3678794299098268}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.827493343502778*^9, 3.827493517019392*^9},
 CellLabel->"Out[29]=",ExpressionUUID->"61e95316-b804-420e-87f2-f52b4b5bade1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexExpand", "[", 
  RowBox[{"Im", "[", 
   RowBox[{"\[ImaginaryI]", " ", 
    RowBox[{"Exp", "[", 
     RowBox[{"1", "/", "x"}], "]"}], 
    SqrtBox[
     RowBox[{"\[ImaginaryI]", " ", "x"}]]}], "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.8274934035758667`*^9, 3.8274934072473*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"9437fa66-ad8a-43e9-8a53-854194067640"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox["\[ExponentialE]", 
   FractionBox["1", "x"]], " ", 
  SuperscriptBox[
   RowBox[{"(", 
    SuperscriptBox["x", "2"], ")"}], 
   RowBox[{"1", "/", "4"}]], " ", 
  RowBox[{"Cos", "[", 
   RowBox[{
    FractionBox["1", "2"], " ", 
    RowBox[{"Arg", "[", 
     RowBox[{"\[ImaginaryI]", " ", "x"}], "]"}]}], "]"}]}]], "Output",
 CellChangeTimes->{3.827493407449224*^9},
 CellLabel->"Out[22]=",ExpressionUUID->"3f0d8dc4-237c-43ce-9a29-58fc7f4aeb47"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot3D", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     RowBox[{"Im", "[", 
      RowBox[{"\[ImaginaryI]", " ", 
       RowBox[{"Exp", "[", 
        RowBox[{"1", "/", "x"}], "]"}], 
       SqrtBox[
        SuperscriptBox["x", "2"]]}], "]"}], "/.", 
     RowBox[{"x", "\[Rule]", 
      RowBox[{"x", "+", 
       RowBox[{"\[ImaginaryI]", " ", "y"}]}]}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"y", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827491605150834*^9, 3.8274916869278393`*^9}, {
  3.82749188159623*^9, 3.827491882043644*^9}, {3.827491931997025*^9, 
  3.827491935380501*^9}, {3.827492233754734*^9, 3.827492239225812*^9}, {
  3.8274926452819767`*^9, 3.827492659626058*^9}, {3.827492731964241*^9, 
  3.827492842389308*^9}, {3.8274930360895853`*^9, 3.827493036232737*^9}, {
  3.827493177867917*^9, 3.827493190499373*^9}, {3.8274932291086597`*^9, 
  3.827493328390142*^9}, {3.827493360918788*^9, 3.8274933697827673`*^9}, {
  3.827493421656028*^9, 3.827493422967626*^9}},
 CellLabel->"In[23]:=",ExpressionUUID->"534a99d1-416f-43e4-94c2-fadc4c9725c0"],

Cell[BoxData[
 Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJyNnXlcjU34/6vTRqVCSUi27Hu2LOdGtuzhiWQPSQjZ9yVLRXZZyr5TtpKt
c5AtiZRQVJQU7ZEk9Xu+zvWZqXm+vb6/55/z6v2Mmbk/9zXXXDP3LA2mzrOf
rqGmplZLV01N9u9vp/NGL8vKaijxe3X8MB2LjkaScmA1y12NjRmvuyHAb3BQ
VWlfVK3kgbv0GR+qdDK7+0NTuqhXY+2cBG3GPZo1MU5yL5Xf/5uPOuO9lhj0
mZCZLw/6m75QAf61v9tpX/cP8ut/eRrjq4fOtZ1Y9lJxVMXlLJ+StqEffH7L
T6nyYdzZfO67M34y6a6qXAl88j6njv1mVJHOqurJ+KxrybZFrQ2lXarnYvz3
nZbrspZUl8JUOjD+2vnD7Hn/mOBvxpVvMwbU7WjG/yb9NrzSXuVow/XE7yPP
CRvHKbme4M8nmcaPr6LF9AT3GHJ3cr3DXE/wZS3v9zxiVsD0BHf+IV+hbZTI
9AQ3q3rq0f7tXE/w7oVTWpv6cT3BD9Y4V9r3DNcTfOfaj+8XLud6gg9LdXS1
tOV6gq/oazIraD3XE7ygxRjP5pO5nuA6I67N8+nO9YROgbk1p9v14XqChxee
CM+P4Xri1zcoJbhjA64nuOnqgQ6dY7me4J4asZ8d/+F6gqdv9s5zLuN6gvu1
CG3/7voLpid4ZvMlwWfPcz3BxzSXu3qGcT3BTy/74eDnx/UE/35bs1vSVK4n
+OKMno137+B6guuqay7Jmc31BFdPyPTr3I/rCT0Ca67ou8+O6wletembYesy
uJ7gEV2+JbbqyfXEr9v4Ptk+dcqYnuDf51qNe3+R6wmeOOKy3QqbZKYneHq1
VQnmA54zPcF1Z/neCY3keoKPNYpfNC2N6wmudtl4l+1jrid4ZhvdoFPbuJ7g
T8fZTWh4nOsJvsP2sH7QMq4n+IdeyXpRw7meeO6G45r+OmLP9QQPGLkldUMZ
1xPc5vv1bdHjuZ7gFjcaz1g6n+uJ36yI3NOGjb4zPcEnjC6Kujv9I9MT/OTS
T85PzjxheoIXxVafH2hSwvRk+bSZWnNYe02mJ7jhhIldLY2rMj3BO9zpZuP9
mOsJnmNaYtXoBtcTPFFXu+2FLVxP8CWTFnTc48j1xPOtXDnxwfpxXE/wsAVV
a4ysocf0BO/5x65g4jKuJ/iQ/jkmrZ5zPcHf1PGVIoO5nvhddvtzuF6XFKYn
eOj8CPPgW3eZnuDXbRuFjE/meoI3b9V8Qcgzrif4kewVD3PWcT3Bz2yfZD1S
x4jpCW6ecU9r+nOuJ6v/9HvR+vu5nqydbT5q1tOZ64nnOG/Wq2vXiVxP8BlV
i8c4N+B6go8Z5Zt2xJfrCd57kTxksr4ae3/g5x6cKxnZ5wfXhXht90s3lCs/
Mz3xa+Z8PFI3/ZQceoJLZVFX4jurSdAT/Hj/u/49SrWYnuBnRzt226mvx/Rk
zxWyoGrV5lxPcNPnRwuOJXE9wW12fF4Td4zrCW4526Gr6WyuZ6I0suXnwEk9
OgQF70ubxPUEz/X69XKTFddT63jeq6FTLe/0eKPjounH9QSvc+OT89w6XE/k
Y/pY75j+Wq4neHIV22ZLrnG9DusVuB86PrSHr9mlwEfej+Rqf/+LvVPHv3OJ
jle3Hldi5h7qNvBpD+jsekTFB05reaN1Kx2mc+kBVX1Oepq1Py/TYTrLXFX8
yz/3Rtv/w3Vu3UtVH8vLtVo+7WIk7SSdkd7s9KqopDSuM9JXO9Q46vMprjP4
EbnZmz1zuM6or2i34DMFuwUX7RZctFuWv2C34OaC3YJ7CHaL3z6C3YKfFOwW
/Ixgt+DTBbsFF+0WXLRbcNFuUS/Rr4KLfhW8l+BXwUcIfhVc9KusXMGvsv5c
8KvgIYJfxW8Lwa+Ci34VXPSr4LUFvwr+VvCr4JcEv4ryGwj9Pri/0O+Ddxf6
fXCx3wfPFvp9cLHfBxf7fXCx32f5CP0+fo2Efh9c7PfBxX4fPEno98GXCv0+
yhHjUnA9IS4FfybEpeBzhbgUvFCIS8GThbgUXIxLwcW4FNxBiEvBNYS4FL9i
XAouxqXgYlwK/l6IS1kcIYybwMVxE7g4bgIXx03gm4RxE3iaMG4C3yOMm8DF
cRO4OG4CF8dN4OK4Cb9LhHETuDhuAtcQxk34d+K4HvyxMK4HF8f14IuEcT34
cmFcDz5VGNeDi+N6cHFcDy6O65kewrgefLgwrgcXx/X4zRfG9eDiuB7/v5J5
J6mSeSepknknqZJ5J6mSeSepknknqZJ5J6mSeSepknknqZJ5J6mSeSepknkn
qZJ5JwnzTmF/849T4Ncm0Sz8ydSrilt/88mTg+/9aRxeNUOTpd+n+pWnfaiY
HvwApV++zLBo4K7qSvwuafhn18ldBuw9gg8d3vjS8c5GLH9w67a1p60zTmXl
gdvZOes3v/mDlcfmFU/d840L/SFHfZB+8DfHtwHX1SRwpC88FJf9K0gN9WT1
LVl/K2f4U1OmF/ivoAOeLbtw3fTame8ImWOoLJwVmH0rKYXVE9yy458Ys1u8
PuAvB2lovr2nxvJpMMekXUJIFeWBzJkZaV48H/Bmn4eevneb5wM+YJPB8uFv
eT5d/tZXpizJM/y6POMTywfcq3ahm5WC5wM+smaeLFJDneVz8K99lShKDI7F
7F77keUDfi9z/AXdJzwf8LmyX5ajJ/N8wlX/X+HRYpn3DsMElg+4fkJi2dOc
H8zO0J5KH58ar3wZzewK6efu0vk2cryGhL/x7wav+epd/+Y77t+I959ye1dV
x3vMTsA3LF/v3OhRMftb87Rq3BG3etLcTj33sfgb/z/y/sqVzqtkEvLBbwDl
g3pifNSuXeQh9UgtFk8j/WvKZ4dKL8Z31e9Qc957XWaf+J1Hz4t6sHIEPcEN
SE+UC97Dw9o97esf9jwo/7fwfsHF9wvuLrzfDir7kYoFewP3FuwN3F6wt3oq
e5b8BPsHby7YP7ho/zqq9iWJ7RFcbI/gaI+Cv5Iq8VdSJf5KqsRfSfBXSA+/
4uSTZFfYMFUh+CsJ/krwb5Lo38Ar8WMS/Bj+Rvpr9SOLCsMZZ99ZpjfQO6zj
bSAJ9VSinrAr/LulLzsavd75Wy7kr0T+SA+/t+nD4SP1jv5m9gk/9ma+2/hP
oZzDL715NfKhdwbn8DMLvFdeMp5Ywjj8QVeyc+iG9qi50qyz3upabDyG/18r
3nhNjyvarN0hvzdfZ27q6Cpj9Yf9ewjlwp7fCvWEfYrPBXuDDoL+EvQXdJag
s9AfSeiP8DyIg/wCwnfvLNc/Ig5qMLVd78hbnCMOWjMveKDFXc7ZfOzUgy+m
3ucccVC19zZzx8ZwDr9bZ5PHWsOJhczO8Rzp5M+RHrwupQfH+xHzR3yUK9QH
8dEqof6IjxoKz4v4CPqE/P37o7zex2o+cxKMlavUdBTNzxQxPqLMLLSszECZ
oDP47Lcgzmf0qDm28SBd5eCdZWeOKThf+fe9aChzC9Juy5M5b/zXHn4pxkeG
zCzr/IvxgL/1zFQ4Kme+dL1ZzPirv/V9pJjfdtDW7G06Ev7G/zc/e61WQutY
9ne7v3ZRIHeefeyi/mmev9ZfeyuTbzr4pMH1Ml6frHjjsyFztKT1caM3no3k
/K2/qe6uxnqS3tRzNzaHcD7lssH1kDlGUp94pazofJE8QsUV+D1sM0gzfMVp
BeoJ3pvq6aV6TvZcIbqvb82boiWBr1dx+W2Bo/yerfsFnf+hISEd3teR5g8N
Nz7LZ/9+mqqeykSHAUOOPsln/x7cluqP9Hi/00YO00wK5/m8V+mg7L67g26i
gucDXpX0QXrYQ49aqdqloTyffJXOylX7P7m3CeL5gEN/pIf9TB21SnvVUZ6P
oeo9Kjb+bO1fZSvPh3F6v0gPe9sbfXBFy8k8HxuVnSjCuup5mxjyfMCnkv0g
Pezz2Oj+TesMzGMc7/eoSXjz6mH8/eH95ugk9k/aXMLaP/jGWKO5Q75psfeI
315VVOlRH/CtZP/4G/9/K5ULO4GfvxXhazgsleeP/x9A9ce/B59I7Q7p0Y6g
D7i5Sk859GTtkLgTtWukR7vzpPcFvlT1fqUp9H6RD3ge+Q2kRztdTfYDPlVl
b1JPsjfkAw6/hPRo17Bn8CEq+5dg/8gHHH4P6eEH0L7A66rao4T2iHzA4VeR
vnSvKt4+79HB82XVJqz/gp3ofTuiXPpQh3H8u7HE3xobOTceVEOJ3+qB1uMG
l1RjfhLcSvPLtss5GQqmA/FPK2auefqc1x9xi7G8xYGwqHykY+XopDc90+jf
+AH5M/98VuOS20wf9jfyk59RceiA9qImFVy1XFXK9IHdJhv6j0sL0ZNgf8in
y94LS8bW4/P74N7UjlAu7LmhWau6Uu1PCkEfqRJ9JOjD/D/xg4fMHrU6WSTq
IEEHxEvo919TvIR64HltyG9DX9RLM+TOzXfWRpJQrhLl4r2DN2r+c/Gff+Ne
5IvnmOjc9uGgBldYvAGuZpRu4pPWm8XV0O2Db7HLVm+uGxtndN3TqvsoJdMB
v3r0vqA/ePfdSU5PV6lLgl1JsCuh/hLqj3LZ9+pd2699/ZHB3ge4w2K3iJor
ub3BDzen9wuO555D9YdeiBMXZuxUu1JUjcX9KOdkZr0rtTuZSUJ6ZSXplUiP
8hBnSgP2XDn2O4XVB/3syB0BjXtHZbD6If585tj9pfNtnh796ebWAxNl+3h6
xKX/rJhuN2AgT49+8+4/KbcOteLpEa/W1F91LtSJ64P+0Wlgy/5f+qaz9Ihj
U74Zlw6qnszSox+MjIxtNOf4Z8bxPbTGQuudtif6MXuAPXYme0D+iGOThfzR
XyTpDuwf+s8XVh/Et9WF+qNfmNu3T9yxaF5/xL2iPvD/uVbaycNduT6Ih0X9
4ectDs4zNA7JUAjtVEI7ZfOEFD+L7x1+fo2sVkh+coZCsHMJdo72A346S3fD
1+Pcz4DD/jHuQvk7aZ6EzUsTxzgO/hPvpW/diLgjvbTYfBHa5Qhhvgh8HM0X
4d+zfoziW6H+StQf6VkcR34JvM4xlf1MuznRwbJTMKs30k/+/eWvv0L9oZ81
+X/4MfB35MeE/ktC/4V0iJPF94K415LeOzji2HyyH3DEpbBDcMSZn8iewfEc
T4R2hLjIkdojOOIctGvWT1HcAv8AjjhkBPkZFjfQPEPUEE3vovucY55h/sz3
stx1nGOeIeVpwoqnMs4xz7Ax/uWi4x/4c8GOkjs6/MzqlMqeE/344RfVF0/t
rc38Nux3vZAP5g0+CuVi3sBdqCfmDcTnwjzAnss3Gt9Nz2DlZeqo1nV0Do1a
v0ijCmtHqL/Xxr0LH1XXZRzt4F1sZh/7NboS/BTs9+HP3ud3rddh7Qg6J48x
OGl+9g779+BOUw4Pvy1/ycaB6Bcu/rk+oGeD90xHvJfcIbF1SlcqWT7go/d5
DLK9EMXyQX8Ru+7t/trzElg+eI/h6aPlC5uGs3zAYzWvnjGe8Izlg34kPatU
3bp1PMsH7113b8TTjSERLB/wdNNpffveCGf5oH/xnaRW7f2BNywf/H55u7ee
U7UYlg94kUtZp0bpZ1k+6Hc6bvscY+0ezfoJvGdvg8h6YZ+5/nhvmkI9wVOF
eiK/+Kmnbmt0f83qATtUCrqBi7qhP3L/0Dj9n0bvWD6w2+/CewQfIbxH9FMr
zA8ZPf7C9Yedpwt2BS7aFfqv4jpBzkax3B7QLszO7oqcU3CT5QPedWbDejWf
83zQf7mvW/J66YT3iov6Q5bLPp5icc6BNK1Oc4ZlM454pqfcJ+VLc87ZeuH6
1/11vmQxjvikbtyjOPOxnF+mOORjr+xTA559Yxz1ndjwTrvjK1IVVwqD3rXq
du3OzP5DLZtNuie/3mdqjQc3w1h6xCPDKD04i0OE/BFv1BHqg7hiv1B/xA+9
hOdFPAB9mmh3Hh9vf1rRrJdjHceYGlJq58cLWzllK06q0rP5yYkDrla5tD1X
Dg49I8/k11q6lnPoWVr76XenGZyz9bGWX8NbtuEcem5qMdhhukUO49Cz7E7n
c/Kb6YxDtzyBQzdPIR/oJpYL3cR6QjfxuaAbdNAg3UZFLnv25NQ7ed1mv5Ou
xD9T6BN3uDApXr74syLoRfu7U4elKJB+iSq94gqlr6Xi8sjr4bFdRhoro5bN
2f9rV668M/E5BuP6npheXdkycdr+Xfty5Y2IN9bd/Ev9saHS86nnWL1tufIG
xK+c3jhozzd95cw3O2b398yVmxIvcLhkNbumobKxwdknDt65ckviNv3WH7Ay
qqo8vuaD7avlufL6xMNT1mSEWusopeBdJYPccuV1iWvtPfvId0IV5dCPZ/uG
LuF85PpV3QaP01R+a+5lJ3fIlZsRf2e5YuuHVerKr6N3n27SJVduQdzi1YkZ
10/LlCWl7fIvjsiVW0GH1XlXk2z/KGYPedz8rEauvCHxT7cz7TW3/1S4/Qxs
YT0wh+U/06KXwdWk3wr7rDXanh9z5HWIFxZ9yW/2Jk/R+trYUefCsuSNiZu7
PWpySEpX7OzYd9DAyxks/11+1kN/z89VbHBq1HVdvSyWz0Z6X5Lpselz679i
+hTaXbSubhyraPtg8ij1MUEK6P9cxeVTnqo4dO6usgf5OeWKD7MDvzAdJpH9
vDRR5d+S+CZVfeSrqT7Ix2N8t0txzQrlNtUORqZp5LD6ZKmeV96Cnhf6TFTp
Ix9J+sAeTrkfC+n/TE3Sv1L1+t1WufIaxO+p9Je7kv4tiJup3pf0h95XNeI7
Op42bbheWwr2SU5OnsnTD1XZgwR7gJ2oq+xHGkb2g+ddVnh+8Z+u+pK3YmB1
2YZcObUjubXKPqVjZJ8mxHNV9izBnmcSv/zeYXbmTyPpz6YHWed25sqtiTdQ
tRdpE7WXP1oV2pfUnNpXB2qnzVX+UPmJ/OFnVXrFps8PL2aHVVfe3LNgwaPR
2YoelH9TSr/zT9f0RQdZPvItlP6Fdtq1g/tz5VqUv8Zglf14rbTqkrP1iEJG
/B3Zz4IlKq5DvHT2X7uVe12eFzJizmfmT7aRnTwbU1+nwdAMsZ4S6tm5Yj2l
SuopoZ6uNWutMck7xcaXDW4m2qyals3qs5faSxSVu6HhJHWv+tfuhKr6O0WN
3qr+juxWEax6L8pJE3VHzOiXrahHHH4sYlLBOI9u2QpqF4o1KntQBhp4v/Su
n62oQrwb+atd0VE75lTNZjrsU9mhMnb6g27X32Up8kiHYeSXJlyy22UYlKUo
I35BZf/KTyVXEk/2yWL5PCb/c2HXvj5132ay9OtV7U6RfrHdD8193xjPJz8T
W+efR3P0vyo0KZ9XKn8lbzDcIeXct28KvPfJ1B7ti/e10r+QyZ7rtcpPSp3P
WTevOyFLUUL516V21yutdlyvgCyFNqUPU/lnaUNptVDdz1kKao8KGbWv6yXj
Z7prZCuo3SkuqfoFKTcsMn9qk2xFIepP7eh1+u7L1Tpls3IjVP2RtFnX4k7E
QJ4e7SW/Wu4Oc/tsBdmJ3BrrE9/qTXjwr/20066QXplN6andKb5TfxRL5aL+
OtS/3KD6/6D0ltRfSKTDb+Ku5P9Hk566lM9X8ocv6b2UUvow8m8XhfdrR/4K
dgI7h//ZTfYGe7YkfwK7xXvsTX7+EPX7iB/w3Xj0/JOxHrtz5TbU7q5Ruygh
f4X0GJd1/WM9aOuWXLk5pUe78CI/ifQYf/nErJPvXsT93m5qFyHkn5Ee46zx
toudO4/gfvgstQv0C0iP8dS4oY7+qd94/7uG2kVP6o+QHnH9D79BdjVnZbF+
1p7iojDqB1l8RfMr7uZPS6v6KXmcSfM8nWqrOPwS5nUaFG4ZOrrKB2aH4Oet
/KzWnvzEytVW9ftyT+r3kT/mafKonoiv3lD7nU3xBtJjvOZIOqBfjqP2izgH
6TEug87oL+5T++1N8RXSY/yF94j0QdR+XSiuQ3pdGmfBThBPov0inkT8Dzv8
c+vc8DuOvP2yddnUfqEzxlvjBJ3Bn5LOSI/5rTOusyOiXpwFZ/P5Yy42nZx6
lI/XoL/HtJHF7rczkD/7PqK7ZbhJn0dfWLngRV5OLT7f/sbKhZ20OL/249Yw
hdjuJLQ7xOc1KQ7cT/0p8sG8vZFQLnipUC7G+45uFZ+XzYddUj0v0sPOfS6o
6gmO+dQZ/c6sSJzI3wu4hf6XR0V7+XvBPH8l6ZVieszndHg7Ok+9P08P/jy0
0WF7H54e8za5HcYEFdfh6cFbrx4y5dcKnh7zM99/hA1YGZnF0rP5f7fAoEwn
nr4azcOc2Fti6V2bpwff/Sul7ixTnr47zbc033EhbGXhV5Ye8zDmBl27rFiQ
zdKzeXuNbeG6EzNZevCQ4jlnmuzPYekxTzLWP8PAfDOvD/i+SLdTQb15fTAf
4tTwc0DD3zw9+Lq+7Re1mMfTY94jwNTgTWFHrid4zOu9A4d78vQ0DyzFzBg7
8Nsonh7zHhdOFdjf3PmfOE1CnNaJ7DyKxpUbqR9HeguaZ34l5A9+kfKvTvmQ
/1HmUfyAfDAvfUR4ruHE8VyIW8jvKTdS3IJ8MI89XtATHHo2pXwSaFzZieIl
5LOC5r3F94j5cLxH1CeRxpUNKU5DPmyeXLAf8FCyH0PKZxGNyz5RfIh8MN9s
JdgteC2yW8Qhp2lchrgU+WjTPPxxob2Ao70gjt1J4zLEw8gH8/YFQjtl8/nU
ThGfL6dxGeJw5n9onl/0D++Iwz/gfV2hcdlEiv+RD74LtBf8ErjolxAXHV0i
v+LXk+fTkOKfn4mR5hn6nLP11Vm2tvMvcR0OUTyTm2XvNfYpe79sPvKtxuV5
Frd4f4R+P0dIj/79t5A/+vEfQn2qUH8t1h/91IzQAyOCx2UrrBbHmrw++Fp+
MeJGUeSbTj2w7qLXt19R7t9OyK/Gn597oV0HxtG/tr1Q4rK/5z2FyDPP/+Vy
8Mryryyf/6tcMf/sPdXiytbwczAuba1RkLpYT4JfQLxR1m5OqKWzNuNIb9f8
rG2dJdrS/dia4WVluiy9wnl1gNskdcaR/oW37OhgD+zHkLH0r4cfaB4QWCQH
R/r82/LhE+OLaD3ZHzbOHdnw4TrfVlmMI7399WG2T9ZlyTtTf4P0944Ft9wT
G8040i8OfvR1ossrirNT+LrctfffqkfHKTqqOJtf/edosfYiy2IaRxUwvsrg
QviidhrSMFV9WJyW2vRE+xbddBhH+hAHn4zeg3Uka7JLpE87aXHHwk6fcaSf
3yGgkd0kfemeSk+WPjeg8NQ/F4wYR/ozk0+mDw4xonL5Out8q7e/t7WtwTjS
O/ZskmtgUwP2wNJvr1F7uPFVE8aRfn/O0U97bzPOz/G4PlpLx4vbD/j4e7uX
pWzjdgLevcrKSeHbuT2A20nbAwaa/GLvF/xgq90+sb/5+wX3OZq3PXdgjBzv
C7x0yXS/K234+wKXbCdadbPl7wvcq050r+gZ/L2AR5mvenJ7FdcffNBVl5y6
D7nO7Hnn5XR1HcD1BB9Yt/d4s8dcN8zDj9JJCC4M4LqB+3VMK+59lusGvjJP
P9EniOsG3mr69RPWzlw38JJmCy6oB2Yz3cAnv/Hb8zowlukGfv6rX/1XA7lu
4NOX/QiaMoPrBt4odmXT3F1cN/ClOT6Wi85z3dj6E/fAc0bvuG7suWIttmqN
5bqBJzzYmLkgluuG7xRX6/We0f06143tg3w2q1FYONcN/Plow06pr7lu4Br3
vLRtI7hu4H3r2YUVX8lhuoG7tH177oTsDdMNfHno9S0Ja7lu4DP/zJ5w+QzX
DXz7syTX9h+4buDH9YfcHJPJdQN33f3ysm4B1w3cbXdpM8/ZXDemz+7dw9M/
cd2wPmfjg7XHBjzmuoEfjrdZkZDEdQPPSjWdeuwP142tV28vb7mydzHTDXzr
RtsPed65TDdwvfwLY9IK45lu4DtaNE81r/eb6cbO9xg0bUistYzpBh78uUf/
gxN0mW7gRZ71ag0aaMB0A9/tnnrcz9iY6QZu9+ReUdQarht4DTv/+Ku5XDd8
5+oz3O7dw1iuGzs3Q91Vw/g71w18s8sEF796Gkw38OoOe65vvcR1A7c74jj5
zYg8phs7T8L/+8V2i5KZbuBzj8Z8fZbxh+nG9mn5Va/e9bom0w08ynqL2vGG
VZhu4LeT65+xD+K6gWeUpqhvaM11A0/+c8W07Q6uG7jfs4LFpcVcN5yPMeHh
5sNB77huJSdU6zqa2dpqnPrNdcP5G1YnjE5bteC6Beur1l0cP+gS7JHAdUP+
thbWPQKvcN1q2h8atmbJ+B6Zb+s9HTPvE9MN60m2d3PW9ZoPHQrk3Yn70zoT
6Naj7eYbLzr265E6afANt/1ctz9GqvrsHb90TP4nrlv8orZ7r+mO6jExc8LZ
+d24bkdDVPk7TJs57Ng+rhvO2Thm2DcooZTrhu+ntoK9gYv2Bi7aG7hob+CD
BXsDPyLYG/h8wd7YuWWCvYG7zCtb3b4p143tnxPsje1nEewNXLQ3cNHe8H1Z
9G/gon8Dzxb8G7iR4N/AvQT/xtIL/g18p+DfwG8K/g1c9G/gon9j+/IF/wYu
+jfwmoJ/w/f3y0J/yvb3C/0peJTQn4KL/Sm4rdCfgov9KbjYn4KL/Sm4r9Cf
gov9KbjYn4KL/Sn4NaE/xfqE0UL8Bn5QiN/YviohfgNvI8Rv4GVC/AbuLMRv
4GL8xtIL8Rt4YyF+AxfjN7Y+VojfwMX4DVyM39j5FcJ4AVwcL4CL4wVwcbwA
Lo4XwL2E8QK4OF4AF8cLLB9hvAAujhdYPYXxAriTMF4AF8cLWN8SKIzTwcXx
OPhLYdwN/l0YX4OL42hwDxovQzdwcVwMLo6LwW8I41/wBcI4F1wcz4KL41Z2
/qIwPsW866Xzyw7YzPjP/IaE+Q1hHkPCPIYwXyFhvkKYl5AwLyHMP0iYf4Bu
bH+xx+F6qbW4buBtxzdMHdH4P/MJEuYThHkDCfMGwvyAhPkBYR5AwjwA9MFv
npvWwEwPrk9d7Ad0CX36ZgHXZ3Brwz4Jnasry3Im1Mp14/rgu1X+uYVNFeFc
n7MPDQNDsqordWMuPl1kx/V5g/0p+U2fPczl+qA+k1dYFx6pz/VBfRaVrZud
15rrg/r0sdk3/nE/rg/qM/ZuQlSHMeX8GNVncvtsp0lBXB/UZ7lZ5/Ul7bk+
+TPMhjQeZKD0bjVST28L1we/dZqsb/5nS7lx+v7ajRNCqint9QznxHhyfWhe
UbnszMBGPX5xfTo6G5QOrG6kjEhaWXwuMIvpkEflppt9bGPXmutA9VXuvWl5
o41UbjxO5TrHLA0xm8h1qErl2loUeJ2by3WwpnI/B8QMW3eb6zCVvjcl5e9w
K+vB29eOEgPXxk+NlIWWT5o+u8Pbl+7JGpkDd+koR63uHZZymOsznb4LbJ45
bmzi8XLjcfqdYXF+ruEprk99mh9et7jL2K0S9+crtUwPh8ypqlzQYHBCUu9s
po8Oldtm1YAOrftzfZypXPtnBUvGTSo37qZy199tmFKygetjSeXaxa6W1d/N
9VlF5bo4PT959RnXJ56+r/VcO8Yi3o7r06VzLY85CXrK8C1HBs1+wvVRfa9R
V+7RjyvqepXrg+8gmWv/rOqp4Pqovg/KlI0CNyycESH6H5my+e4DdsOOlOvv
+hj3SAjRVA5pYeBvY5HD9KlH5S5NXWn6cznXZzmV63isub7BQa4Pyh2idJtX
+x7XpzOVax7SJG3mY67PbirXttbIH7nJXJ9c+p7o2+/mzvDxXJ+hC6vX3NVY
W5mts+TKs9dcn5l/31eRIrA4P3v7Q65PQ/qOM9r+YNv0eK5Pwl/9fyt8jpWO
98kX5w9LFEsyxo06XoPH7fj9ubP3n+7tcpk+M6jcbbpZ2y/p8fjcksqNqrVz
kJYpj89R7pb+1Rtda8Tj8/1Ubru720d8NOTxuT2Va3Pf0XnKb66PPn0/Pe96
aWe9eVwfVbtTU94c282tXirXR/U9K0PRxaX6Sr8Yrs8B+t7dpk5ge59cro8q
/xxFryeNDCQTPh5U0neTnxuHVFFs5vqo7DBf4VL4NEL2i+vTgMpdlKRhvmM3
H/ftpXK93abaPm7Fx30od3eodpNu0brCvFae4saldlnqrlyfVVSusbbZynlm
fPzShfqHlFd2zuvWc31UdvVDsc5qT+m2PK7Pjr9xZojidlKGpm25eYbD9H1f
y3njNKdirs/Nv/WJVgTN3/BDrSnX5yR9938y9qH2zEiuj+oczfcKy/eL99b2
zuNxI5XrNMjGstoEHTafcJXK7UT7jCrO/0crXLLGpH5ZzsfF56jcRfHhj43D
uD57qFy7l4Udbdpxfe7Ruo69yt5fO+wU5+1TFM3SntkN+831aU/1TbNOd2//
WowbP8ptPjY/Nu6HOD//Xv7nwFezMEuuz2Vav5Hp12Xa/jtcnyeq55LP+1hL
x20J1we/dkcG6s1eVCbEhx/l9Y98uXxioRbTZzuV+67VSv8lLlyfC1Ru/JQY
646xBsK8aLT8j/ngxbc6c33C6XvX8aNvlvvv5fp8Ub0vufEP1wTvcvMtqu+q
P+Q7zoeWejzh+nSg+m5WFg6enML1WaayW3kXzxF3f2lpCHF1nryZbHNc/5lc
H9X6nxz5nNavFzxMyRXGI5nykrVv7i2alMjjH6pP9bFT21v35X6J9f+T/Nps
3M39EupzfN6efT4vdYXxb568JFQ/+sA2rpsm1WfWrMvNLlpx3XZQfQYUNLuw
chvXzULlB+TNc0rsG5Wbb1F9/1WTNqdFmX0P5rrp0vfu+FFV5115ynVDfdv6
Ne3+K5n77T303faQrntivSLer6m+U//7/OrN5NesuV8iPyk9uDFn0BUv3q9V
pXIz/C6ZRz/h/Rp+77hW3W5WS1cYr5XIXV/Hr7nbmOvzhsp90NsxR16F61OP
1qXo5VXf0Xkl10cVbxTJDTx/3l2Vw/UZourvJHez/o1+HeX65NB3/F6r7Y/e
v1RunKvqT6Wmfn5Hqt7m+qC+2rtPTWrhy/VRxasy6UedoMh7vXm/j3Kf1l9w
9PIQrg/Kddj1+c5+j3LjWSp3RlJOQ90g3u/jt6zftYKpL3i/H0flrsxsPb3Z
N96vLcP6nIbOlo9mcn0oDpGODj/m5fuR69NZFS9Jpj2zS2r7cH2wPsFtm2Xd
Abu5PhQHSiPfJ0b1PvCfuFEqbKP3taBrue84VF8r61tOhTN53EhxmqTWf0dn
v3ZcH4rrpJcOVgtcB3N9UG6LDi03hC/i+lhQuSWdvD8b7+X64LfLo0Hfl7/i
+lBcKh18EHpi72iuD8Wx0iQHq9L6MeX6NVW8LXU1rpWVvJTrQ/G5tPXhzT3q
K7k+NI6QQre67+qx6j/jDil8tGeEayEfd9B4QWqoPj0uP4qPO1BuX5edZpsb
cH1Q7o3AMerbrbk+KPfDkdT5xaO4Plj3WNKm2RSncuOOC1Sunke3rV8UXB/8
xt3ccGepLdeHxkFSxtfapikPuT46E43Md538dzzbovObBi5cH6zHO5/n1NHZ
hetzTjXuk3zVGjd9MuM/41Ypbsr0kT3LjVuHqMaV0mHZzJKP07g+ulRu7uDG
ck8zrs87Kjd+ferYE1ZcH5Q7tt8Bxcle/xmfSmW1Pxp1Hs31ofGs1CXqYvu+
V7k+WFf2avDjWUe61BB1UEIHrGfQIv5kZJLzgCc4xzBFkUP/rsekLZuuLoxT
CPVXov7CvIQS8xJ4L8h/8sVYn6bX+DqBXMq/cG12/YW3TFh9ftB4VrNfSUZg
zGtWrjONN2FXSK9H47vvCRqb6yljWfpEGn+hnSJ9AxrvDE17f/DstVcs/Xca
j8DvIf1civ8fFV28u/90JEtfk+LzdOpHkL49xcPd+93pte3tVaYnvn+NfRhd
b3nHEyyfXtTPD6X+uuJ35I+KeIfoXmdbfWTxQALFjXdO1l0ie/KRrUth51DG
V78wYW4wn38jPvdj1tMXheoSW/9A8dJS4rDD4xQvzaoQfxbI11G/70PxPMqt
R/1+NeF50yg+yV3zpG3kpSdsnQzWCRca1B9dP/M3q/9E6q/tPE4ZdiqLZvqY
Un/6ksZZSD+I+q+Tif9snjmPv/dF1L9g3Ir0Hcmfj9Ie98X2HLeryeRvR9I8
ANJvJ/92uMR+yAtHbv921M4wr4L2lUl2nU/zY0L7ksT2xc4hpHVEyL8OtV/M
X6G94PcHtRehfUli+0L+wvoctp4K85x4L5gHy8uWG56vU8zsB+v08vKvux22
KhbGfVWUl6MatznYjXOs09uSajMvfyLn2HcQMe27m28o51inV0D2wNbhkH2+
S995rNFzLVZPrN+LFPLB+r2tQrlYvyfWE/uaxeeCv4UOeF/4npgWrmq/LI6i
ecU1Lv4z19Tl+Vymebbg/IITms04f0T9zF71EPU+PTh/T/MqLtMOKz87c55C
8wnfLhzw2hLBeR0aRw8zH3a0mX0J46k0fqz969P6c55ct/kU/8fluG5f9uQ3
S9+f2r3G7uNfPgXy/LdTvHdldExj8/GcL6U450eGV5XgLpy3p/49PSEw2qsJ
1w2/asnx32cs6cP+vknj1juN7Rt1XHyGj5dp/tCW4go2TqR5yAzKH7w7zaeV
9VPFaeCYDxTrOZLmlxD3snJpnkp83pk033KfxhHg6P/VBN2KaP7BiMZl4Jg/
iSH9Vfd9XL6TkapeYlPw4o6f74/lHZw17iI99h0UqV9a4X9HW0J6H4OydVO1
X/ZYv6Ni+j40bnWheQbwO+TPmwv2YEB+exnN21RsFzlye8GunGj8sp3mwcAx
/soU7NOM4vllNK8IjvHILMHOZRTfYp6WrZuieEdsL1kU72Hem61Po7hRbHfw
z/heILRfSWy/A8hO+9K8BPgBslu39r9diyeos/5xKs0ndKX5HPDjAkc+WG+r
q6F6v+z7LMWBBp2tvqmV88MUTyoRTwrplUiP9lVdXzXvtC/CdufsugrGw8k/
ONUYtSjo602Wz3yaV1lIzwWOfVgnDrRKaDVRjfVrWOfZ59vDS/ddeL+GdYxz
796P33DvNeNYp2d/Yt2N5wGxjGMd2tiFu5cPmPOKcayzOhdXL31o12fM32K/
UoBQH6xbOE7pwfFd3kHIH9+dxfrgu+ocof74bojnRbwUQvbwtsJ8VAGLu95Q
/wX+iupvS+cjVVwH+FHRjzjivWtkJ2EU74EH0nt5T/Eh05/6TReKA8EbkX5r
wyv6YZq3lDdsUtEPs3Pa6fsje1/kZ04LdnWY/Mxqsivw0taq9VE7bNrMablb
yfr3/ErmP9djvre+4ZMdgbpMB3xvmnyqwS5t/1dMB3sazx2bO+B5cM0YVi7i
FqPV+gXn6nP7xPepfFnrzV8dysVj1L/sDTo7eGW7OAXyx3echm9uleUFxLBy
Xej7kZ7zqehb42JZuYiL7gTKjS714/aD7z5HBzuaPTjJ+Vrqp3bMGJQ4Yepr
Vi6+j6h7e5qPtX3Nyl1N32VWb38ecHBenNDPypSJt77WOHkjhuWP7ylhtxJv
THbhdr6P+jubom+uiVkxrFw9Gtfs+uWqPqnGW1ZuM/recXHy2J8XU9+xchHX
nQ4yaSTzfMnyn0b9plpUV8vkwmjGx1K/uefH2zdhxS9ZufhNPnM5plvYe75u
ir4jrHZa+ihbliT4sTyF7rL3ScM63mf5Y/7/bnM/80+JTxjfQHa1fPkpm27b
wll5FjS+CKTnAlenecIdpAOzH4o/TwrPi/k9tzIHjcvnIhmPpv7RNfufCSf3
vWDlYh4M7xH8G82/adB7Rz6Ibz8I77cu9bMF+oO3+d/m/i2G+tk/OaUfclz4
+8X8UjWyW/A4mteCnVcc31WRbgn2jPmoKtGt5OcfcrsKo/7609XzB69bcHvG
/ATaKfhkmi9Cu2b5U3wutl/M81zze7i61xten7PU798OaxL/uQpvv9h/d3p4
h5/u/V+J6wok16VPfIILo1m5iP9rTp/x2Pc4Lxfjqth+1YbpLubcjuIH5+9D
lvXfG6dAnDaLzgt6TucFgd+icxVa9q7IMw+r1n/O6SPfsaRgRE/0rxi3zT/1
+VGXsKps3wV4SPtqW926GbH9A+AfWiapp2vz+2vAvw+I2Be8j9+3wtYv7Blc
alqDr6sG37vm1NFaJfy+FXDPDhP3XT78kvW74Auvqy93P8XX1YEPTrmsk72E
36vCvjsFXJg+vje/VwX8QnWzVg7r+L0q4G07WPXJn2jC9plgPs/TcZeH/guu
D3ijWcazh0lcH/Aj43PDetbh+oAHXjlVu90jrg/bN+Dz4ve3/lwf8AEnikZt
e5DI1mWCp50YZxgcynUAn7KiXTfDnVwHcL3+jp5tx3MdwH8qFnYy38Z1AN8w
2K/4jwu/Xwa879KAapF9zPh9pjTezP0uS5j9kesD3uZxzZfLBnB92Pp05y3z
gjqUu+eUuNvZk4si1crdc0rcbtOX57N9uD7gBqG5P5PSk/i9pcRv/FrT3v0N
1wc8oM6AkgfBXB/wFymP+hxaVe7eUuLngz6f8TlU7t5S4j1bbrDe7FHu3lLi
s3+FS68Hmwn3FsmUo+8EHVj/nesDnt55pMWhYUbCfUYypYbpiM5rhmgJ9xnJ
lP22djy/vn+ZcJ+RTJl3WE+t8EuBcJ+RTBlgH+tT92WycD+RTDm+vsXDt3qa
wv1EMuUW7a7TO2SK9xPJlL4/jnr4nRfvJ5Ipnbo2un/8ong/kUx5wyq6Xut1
4v1EMmWL4efqtx/D9cE4t6rFr9e52npMH3Bn7RLNTmO4PuCHujzfnTaD6wP+
4qLRk4TdXB/wfs19Jps68vvy2HfR8e31utf8xPwP+Oic+97O1x6yeRnw2HpT
E4sG8/vywL2e+3TpNJvrydZrLxxkMLc7vy8P3F954VvHT1xPcEW/TfErFFxP
8NuD9SMNt3M9wb0Dp23tOJHrydbnjn2U8tqU6wm+Zdo+y8uOXE/wB9XrtstZ
zfUEd2y7e7ZxMtcTPPLh3qCst1xP8ONn96sve8L3h4Ab1vjsOK1WMNMTfMn7
ljWOTefrzsGfdKj2x8GM348J3mDLwoZ+J7me4PvHps5SGPL7HMFrH+/W+3s0
1xPc3d2up+IA1xN8q7R9csF0rif64SXF407pNtRjHP0q7nWFzki/Qs9Ac+5E
I8aRHvfDQn+kfzUtbPHFHVqMI714PyzSr/xQw61PNTV+vzWlF++NRfpamp1H
VrH7wd4j0ov3ySK9fV+l5/4TnxlHevGeWaTvsc98n27qZeGelxRFz0EOOvbx
/P5TNi6ZXX1fSQt+fySLr60fOz010WMc5Yr3zCK9/5jN2R9bGDGO9Lh/FvaA
9J1dSgK3Jldn99IivXgvLdLvnX9p1tjjJowjvXhfLdJf9myrP4Pfr8rS4x5b
2A+b7yS7gp2w+TyyH9gDm7cjO8F7Z/ORZA94v+B473iP4Hi/0Bk8h/SHnuCH
SWfoCQ49oQ/4HtINOrB5a9IHOrD9AYK/At8s+CvwcMFfgTsJ/gpc9FfgJwR/
xeZLtmy4pe17jcWf4KJfAhf9EvvOIPglcDPBL4GLfgncS/BLmM+oIvSb4NOE
fhP8sNBvgkcL/Sa42G+Co9+EPuBiP8j2FQn9IKuP0A+Ci/0gWz8j9IPgPkI/
iO/bYtwF/kWIu8BlQtwF3l+Iu8DzhbgLXIy7wB2FuAt8qxB3gYtxF7gYd4GL
cRe4GHfhO78Yt4OLcTvblynE7eBzhLgdfIgQt4NXo7gd7Q58yfXCrG72USxO
AD/RNrjgzV1+zyZ4iBDngx8R4nxwMc4HF+N8cDHOB3cV4nzMP4jjRPDGwjgR
PEAYJ4KL40TwB8I4EbwfjROhJ/io7j2+1zDg95aC35R5tZh26rfQfg0kcVwJ
Lo4rwcVxJXiRMK4EXy+MK8HFcSXmQxbQvIQw/yBVMv8g/fjf5x+kSuYfpN3/
+/yDNHmK7fvOAVw38Ag30zTPfVw38ErmJaQh//u8hNThf5+XkCqZl5Da0LwE
dAOXpbfq5GFjJmF/CFvX5vwlunaYloR9EeArZk1cpSlTk7AfANzEu03XMxu+
y7EOHtxq3Dwr80+45yyDcU2l1tXp/g8VmbQOA3zLVpPgg181JKzLBH9eY6GT
Tdi//oDWVbB9eOYrZNO3VJOwDg+872lJrVuT6tjvwdcX/Hmh2VBmImHdFfjD
usHD/yTWkrDfA/MVNo8lh2/RahL2OYCXjt6+8VnTQlpn8IvNtwS6LFpm0uqz
3I/mhdl6rjVXkp5NvqLAulLwJpOP9+5bV1fCukbwelm/p4SnG0hYRwh+4tky
l/xYrLM3Yvz0yC0Lj1ypye5xYfXM1h5d4F1Lwr4IzDP4Wy80C0j4Sees/Wbz
IS7WBt1Hnkpn6+DBl74pW5LU9iRbZwn+vcWUQOVIAwnrC8GdxpeNTtr8bzxH
393BZ35autd2ak0J68nAA88Y7HG0qSVh/wPG+3UOHJduT8qUY90/299M59LT
32x+oA7t78B6Srb+tJZUVtzLWMI6Qjav0r7ZoxkmNen9Vmdcy17naIOvpqgf
Gy93p30Q+I4Lvrmm9mPzZzUkfK8Fdys6kqZ+yJT5KYwTsS8A87/gLb7MaGk4
xLTSceL/Nb4DryuM48Br0XgN56GDf6JxWQj5MfA9ZpcCH3k/ovUAb++Aq36e
9Agg/wY+cFrLG61b6Ugnyb+Bn/Q0a39epiPd+T/GZeL4a8f/Mc6qbDwljpvQ
zjGOwD4C+D32Xf3g+wcr+2gzvwe+et3SVq/vcr/H1lN0HfpPytFCtg8HPO5a
8ZOWrdPZ/hO2TuHqKDfjIiVbHw/+aYF909xQLeyfYeMd5wFGl7esrcr8Hrjh
1+T3h64aMr/HxoPnfONPe3G/B/5zV+i5JXbc74HXNzZu6V7dDPbJxjubaL8A
9qGBt/f9sO7tCHUJ+6/AVxl6e2/d/pPtOwKf1Ub91fyqGXQ+USbjJ6v2PbTs
0nV5FfKHbD2Crc9vjSlVsP+KjV+svn2uaxFVDfvWGJ9TN7v/sMbVmT9k40F5
N/MOGdwfgkc/nb/gxDXuD9l6/m47RsSvL2L7o8D3bH0UnTPzK/OH4D+O9yr5
dPc284fg9XwXZLs/5/4Q/PU0dTfrYO4PwQtX+iS5r+f+EPyD+su5vUdyf4g4
3KFg4JChEveH4P7kD+H32PjiUMc/BX2432PncrWOrD3LrCZbvwue2Gihf49M
U7a+GfHq+qKc/i8u1WDresF/r7T5qL7JlPkx+LmnsW2D4+qbwt5YnDBt46Dk
dncMJWNa3wM+Irtztcn6fJ8wixMoPnlB6w/Qr+3wqNs9LzJBsZHWfYI/SLw7
sdX+UrbuAf2L4/2H7wNWJiuO0DoA8LalfnGTbL7Li9qq1hWBxxrXvfbqX/8Z
Resk0C8U0H3Wm2gdA/gmus86hNaPgg+n+6z3U33QL7zueSx+3dAPis+03gW8
Qcs0n56fUmldSDSbH26Wb9t4a7Pv8nm0HgI8oO+uGYnTfsqxPwfcut6HtO9e
apI7ratj+QyL8d9VU0PCeg70OxLdL4N1D+D36J4mrBNi8710DybWeYBPoHtC
K947n6K4+vj3sWVaz2k9RyZLP+OgfopiuprUitonuB2tN8Z6ZeSzlfzndaGf
2k79FMoFj6J727GuFxz3sGPdGPxh4krH7k+DtSWsJ2brp6ieMaQbuGOKSYaF
PJrF+eBLaV4adoh2rZZqEBE35oMigN4veH16v7BD8Pb0HmGHrF0Ldgi+WbBD
8BFkh/5UH7TfvDvxXaevSVYkkx2ycwuq3HA+tDxNEUr1BO9M7WUR2SHbJ3Lb
6syVnj/l2JcF/pba0QKyQ/CnZ9WWxR5SZ3bIxoN1Vff1wA7BTek+Mtgh+Ey6
nxR2yPbB0/2k2A/G/BL5B9gb+E5aL61V0V9Jk8lfYT8AeCGtoxa+d0vB9L27
XkX/Jv1D/k2r4rhDekDjDmGcqMQ4ERz+DeNucPgrzG+Aw//gnnSsu2Lxm3Dv
Oewf8+poL+Dac1+NyXjKzz9i/Rp9z6po//zec5TLvstvzZy/pNz943iuYxH7
vBaUu4+bnf/x+EuU2R3O8VxeZOfs3j7yb0O9ZlsfecQ5/Mm2BP0uOz9yDn/S
VbZ0Wc2lP5nfYOs0yV8hPXg3Sr+vQrsrkIv5Qx+xPtDHW6g/a3fC87J1KYI+
sJ+NpOcyao9sHP1i+rkJ7X7Kr1K7YPvSqF1so/TsezS1X6zDA99G61pPC/pv
p/ofrMSusM4bupXeuHhzaNkrti4Quk2i/sKX6gPdzlC/hvqA/9qlWs98WtDT
l+qDddt4v81y2rzvejRcYUbrTdk6rzBn/3ttk9l6U7YOMVRVz+PCuGYAjWtu
VtKPYL0ynreHqdflPvvUJaxXZvsVfOLMc9rKJA9ap4j3tVau39J1VJ78Gvlb
du5Cani0V5/v8gXk99g6DfJ7uwQ+nfhiyh/vsV3MpPn1uufJexFn68PPVD86
/0MuWx+M9hJK/XuY0L+70Pt6QflAtwnOcw1/OWfIsc4S3HXgBTufiagnt5Nf
K1R2clTQGeNHOeXP9k9Q/lgvzr5bUf44rx/54L5vPBfs7SY913GBI57B+lHY
W1XSx4Q42mlL0rMt1YOdJ0HtBeWi/U6i9xIm9FNJ1B4TK9qDtJns4XBFe5Bq
kT2gXYCPpXXjOyv6AcmX/ADWc0MfnJ98S4iXIiheQv54j71onTnyB6+dcq22
35xitg4b+STSvdXoR5Ae/Qj6R/De1F5+UvzD1tlRe7kv1DON6ol14WwdOtUH
dgWO78jw82hfPdf98K+tnsr2p6EdTf7kkeT7nO9bQzsaOOKMunw55/CHJRSP
gaN9rTMwq+J/46NCdY5DCOP3/byXOwz+xtKjfZmvi+pb/eAHBc5fAI8V7kuF
Du4LVPcOIx/Yc23KBxz2jPpUTC+TioX6w57xvAuo/uCPByzMc/DIFPI3kKaQ
bqg/uBXFb4L+EvTXI/8MfjVRZlj1WSbzz+Aup153tMtOY99Vxfkldq4B2Y+v
7EDgrNGa7HxPNs9D6w2wXwL8H+ov2L3slP9Uup/3diX+P6FiPZVOVM9PpAM7
j4p0eEzpYVeRFG9Hk87gd0jnQMHeNPNV7wtxMt67kuzkEeXP9jfTuNKIdAa/
RnYYKNiDjPKHvaE+7Qfk5dVfLN7j/N97cmHn84xLP4Qb8ft8Yc8RVE/cTwA9
xXtyUc+5Qj6op3hPLuyznVBP2CHus8Y6aZSL+3Cx3hr1dBqbtKDXPG12Hy7s
anPTXksO7NNl5yaw9SFHyk7MVGpLWFcNPmzG/sX5avxcWtjDaPq+hn0FbD7c
yzepm18kG+eyeXj6vvlEmA//ItzTCv6K7mldTvnjvWg0bHZtxI1X8ro0rwXu
c0I1r4V17dDBetmjSxPkN9j+EPD6NG9wupL26FuJzljvjvdrQfWp+P3xz7/t
UbWODs+L954kPC/4a3relZQ/7GEt6WlGz8v821vVd42T9LywE3f6XvNKGJ9+
pftk21f8niWp2UzPXbT/Ids3CP5d1qxaW5OPiol6Ffyb8gn5t/uCf2hM9ulD
6eGXZlG8elVo7zHUjn6V/c9/MRXn59fe7+FW4d4Wfj8FOHTDvRKh2Vb77rc/
zeLG9t2LqsV45MrPqDizk+wOo8z6ZGcqZlM+sIemdP/IFcqHrffw+h3nUCVX
fpnygf4W50s2/izLYvmw79p0z8tFSg8dutq6f10b9FFxhu5dYutR6d6r21Qu
21cRPrzmi1+fGUc+a4gjH+iAfK5TerzHtJeFbbf9z/1WVB/k353qo6D0bF0o
PS89F/MntekelpuUHjpAZ6SHDrjX5jiVi/q87DMqY/uQbEVERa6MIh5csf7K
L1R/3APC1pmTzoGUD967pfBeYG94v6gnW49Ez3WC8sF7zyE7mUz3eojxZwO6
H+T/l1eWD85VxHONmlo6slEPfYo/+fj3A8XbOBcJfA/N/+AcRujwpZWp/1mZ
Ab738XP/1hiZ3BijIy2leAP8Oc1rLaP96rDPFT0VncZGGGAenvGjBv3nnmuo
i++VjJ9/Wrrl+3INCecxgY+ieTycNwQe0rnum3u/tdm5kLBDd/O9Ezdtr4bv
DowXjTSu2jlLF98pGI/+calHwnCZhP3G4MmH9d/Wmv2b7acFXxr3LMTLV1vC
vlnw5qfWV20/Qp+dR8n2w/X0sfEfZsjOZwT/dP7bY+erVdi5hOA96ug617fQ
ZOfxsXO+P/v7LmrxR479YCwfjSkD8rrk43xA9l211bB/3hX90GPn14DbJrZ1
nn7XSNKmeT+0677Z/QLeaRpJO2k/HnjZg+5ju7pXZeckgkcqxoXU/qjJzgcE
N95kFHP+Yakc+83AXzzzayvX+i7H/ii2X6rwu1NeqB47T4eNr2t+vx++1oid
IwMe1z9vrmvXcuc3Yt6Dzk9Du2Dz2J9mfPVbpS+FCfMws2hcD/tH+51g5LQu
tiG3f/DzsuBJx9Zy+wdvTd8XcF4D/OqpzF1HJz82YOd4gl8LvzllrIUuO78S
vMhotkakB7d/th6P7B/nXoG3z+k2alAJt3/41an/1EoMcavGzgkF7x6/opNz
GD8fk33nOni5u3Y1GTsXErxmsVnLg1eK5TgPEbwFncv0ltoFO1/K4aRdlyq8
XYCvjr24I+CjHmsX8PNLIkKKPGvwdgGutVOt6tApvF2Ad52z3sP1ooy1C3C3
jLQdIz7/luN8RpZevcae8Cm5cpz/xcZlii/a61pr4Xsu+35nH7vdabmMtxfw
8bXO+CqmG7FzVGF3JnM+FGrpVMX3aMbHpn0e3mu4Jr5fM/505BenJlZ/WLsA
7zWwZ4zhsTw54mq2LmuDvEnjSZrsHC7wnBkfZ6W2q4rv9YxrL3G8u/+XIb7v
8/O8B8yd1fRDdUlO7QT9Y0s6Rwj78Nl+NDrPJI/2baJ9FU6Tr7g+OkUeKKyj
SKR1FGkV1zVJG2ldk58wPx9D8+TgsOdY4go6fwH5SyPjWhhvS7hzVfj+5UXf
v3BODeo5hdYPoD7g86/0tZkboCXhPAjERZrOqufC+QLgc06p9mVr0Pd6+M/d
N7fUHW9XRepBf6M/vUX7KJEPGw/Svtq+xNEuImg/JnSGbisbdrvZveVb1k+z
9zKw3eZfHnz/FXiSQ+TjN/P5fiTwBTeGeBbG8nOx2DqxzVMe3ljMz3MGPyNv
ZeQ+mu/3BBfPmwJftsnUr2Nbfl4WuG9RqvPcQfy8LGZve+cMC3fi60fBD9wd
MiPjOj8vC9xLv9m14HJ+HhznU0EH6GQXvMUlagvXAfzTwm+T++jw8+XAa/b2
Ci18z3Vg32XoPeK52HnR+76lqE3hzwW+tW7ouQ6L+XOxce6S3Sb97vHnAn/f
r4ldXl/+XOw7/ozXiVbhJqz+eL5WV01begz6z/l4ynMO3/dYzslm7QfcdPx9
r+9+5e4hIv44YttCvehy9xARn9DiVsy8keXuISK+5fzsmoNfmLD4BvWyu7fG
/XH3HFYuuHjOMLhZO81hvqnieeYy5bvrTcI1p4jnoMqU3lcm9nJNMGH5oHzx
PF7wnMabnn+ez/Nh5wa3TY8N/mJS6To0pAd/fmGs9Zd8fi4T/Ix4Dw64eA8O
uHgPDrh4Dw64eA8OOO7Bgc7g4v014OL9NeDi/TXg4v014joxPC9487ynI4PL
3V/D/Ocyn6KTFvx5wbc07Wk59Ap/XvCbSWnXt4/lz8vOxSn+tCjzZTJrd+y8
JVnzrQU9+PoecI17PhFeoVwHtr4roOizY1uuA7jaAYNXpuXO3QXPv3h78tp/
40Y8L9tHI5wfC+5R/CWgvYw/L3hd85S1U0bz5wVf3WbwkBpB/PxY8AmRhi+U
tfn3P/BRmQ2iu5/n552CL69v4pFX7hxm8PU2s95qm/PnBR+0rpv1xI38ecEv
jrbqP72A+xmUHxyy2OVMJvcz4MVuSjNNo1xmh+BdG3XZfsKU1wf8yN6tVSao
8fqAd7+/5f2Hhbw+4DviDmQOSed+BuX83Njjl3Vjvq4C/GzMcn2vL0bC88ok
w2s/szynis8rkzRO3/yTm8D9APLb0Wn/nWn2PD0737q/0uzyCxOhnv/GjUap
Dq7hvL3AXmZPHJiy35Ovw4a99Ll6vc7a/eXuuSO+dnHXjpOO8PXceA/+h6+p
FZ0T77mQKV8aD7bfc0O850KmdNmidUfnId8vxMbRLU4Uf7jB4kI2nrX4esXh
7G2eP3hBtfXNY17w/MFPD9dKM/nC+1Nwx/pWSjv1Yma34I0/RcjX6PD3BG5g
HOZaqs37dbSDued6LIiM4PUBb5irFzr7M68PuMe7dP2aOrzdgcsS+h30d+bt
jp0jssJ/xdnYXFZP8IFTLPJ37+b1BH9bu+n6JuO4fbDznps7JTY15fEH4qNR
8vPNXMv5Sbb/0fjArnrlzuVm5/S8bG+xvD6vP9vXud+ySu9gXn/wL7rOj/s4
cz8JLvpJtr918zvrjG7cT4K3qD9onsY1/lzgVQ7K77q2Ec9vT1F0T1qmdmVH
5eNr6AB/4ulvOrNLBLd/1OvF3HnOX25xfZg/qXm3zrTn2kI+MmnmFpc6NuXs
n+3/ytKMnB0s+mGZ9OmuqcMsJbd/dn7topv7+4Zy+8dzd3ut0+fjPp4/+IbJ
G7zD/Xn+4CW1wo61Os7tH3zjykVm4X25nwTHecWoDztXWH5157x1PG4EH39y
8HXXg/qCbgbSm1p9gy09Rd0MJNc5R9dnbRbP5TaQdE6cl+5tVhf8uYG0OWLr
9Xdaoj83kOxuPb2b/iGL1ZPth6qnbzlwEq8n+OeTr2rql4tvwZ9tCVA7eY/v
x4C9OP5wdzvz33GKtKNK1dv7/ztOkdyaPDWM++84RZq9TP3NyyX/GadI29aX
5M50eMX6S/BKxiPS/Fvja94Z+J/xiDQmM9vC87/jEelN2zMXCv47HpH22RZe
jOvK11XjuXHuKNsHS8+9YO7akAmOGizOYOdF0HmYSM/i4QObne038/NO2T0G
NH5EevDjS2dYWbzn5bJzfWgdKfLB/7/3MGR/ckP+HQU6naB8UE+2v1KoJ1vn
JtQT+qXQeJaVR3w+6VCx3P+e18r2ndE6Q7Zfmp4r/0RaUpwnP4+U7b+us+pj
Vg1+jiLKFc8nRLlRnq6zzrTgnK17FM4hxPt9IaTH+xXzR70KqJ4Vy+XneVb4
XvXv75b3xc9PmQzqyeJU4tvovkt2XidxXzq3reL5rikK8b4G8PWOc7/P/sXP
B8a/K05UzW8gPfIX79MEx32ayIfdGzD24n6NLH6uFPSJVrbw123Jz2EDj7q7
9lPT2jw9u+fE55zTr3f8fC1wnK+F9LD/caPSVl/dzM8Bw/83fRVw3iCEf3dn
31WF9GzfwaF+j2vIohUV43OZpBDqw/YLCPWBvcUIzwt7u3FhUatdua8V/w9m
f4A2
    "], {{
      {RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
        GrayLevel[1], 3], 
       StyleBox[GraphicsGroup3DBox[
         TagBox[{Polygon3DBox[CompressedData["
1:eJw1mwf8T9X/xz93nHu+lJGUloiUFhqioT1pkd2gKJUkpZKKSkRDU3tLe2gb
TQ2tX3tLS0TSQHv9n69e5/94eHu97vncce6557zXeX83OHJ4jxPyWq12eVmr
FWAt1GqNges5OLiq1UbDf6Ptd3D9rFY7HtyJc98Ar+KcY+Gvw48BT+f3/khz
ZJ/C1x5C+55cfwB8C+53A3wqfFd4jfNaIudDt6mM24KDaOuA5MhS5HYkQwYi
7ZF/OW9YZT4Q/IPjv5HTkSMq/34C2JBnXwU/kr6sA78dPhx+V+X7PQ0eWfk5
J4IXg2ORxkiBbIBM4ZoDonlvzulE/3ehbSP4EnAd2rcCV3DfIWBn8FHaHkGO
5fjENCa/wJfz29FgJ/An5Ci9L/gjMhjeUX0rPc6ngD9wPEhjA17D8W/wfuAC
cC3OWRNcDN6G/AO/RNchzZD9o/vWnX4O5ZoX+H0y9zmbttWRJsgw2t+h/Xiw
EcerIf/j+EnwojQOJ/Cb5sfu4HxwTdrqNCaVn38r95xM20nIGsgi2tYGNwTv
rNyvJ8G7kZL2LuCL4F2Zj4cjfZAVnDdOfQWXMsa709YX+ZnjzWj/HjwUbEtb
N2QhxxeX5heBbZCHaDuD/mwJfwY+ET4Rfgj8YM0F5Dj4v+DI9Cw98+7S3+hq
sHnle/cD1y49V0/gPj0Zz+c5ruPlexaeq9fruZy3VPMcvIzj7tznUrAlx4tp
7w9uRluPzOddwm8HwCeDm2TmOm9zsFfm9/yV+w8Du4CzM4/F+xxvrHWFfKX7
cN+t4UeBXZH68H3BfZB68L3BMWBDZFXkS47vBe8HuyEzaj5/EBJo3xncij49
S/skntsZPlfPge+sOZ75vEORPTKP3S6Z+1CHbMT5D9N2JuefWnkt3gA+Efwt
9oNfWLr/F6S5rPt8KN0DnqU5g9wT/B3V/3uRqPcHX8rcfx0PrvzMPcHdkCqz
PvmLZ5/MtbuBfyAnqo/g78hw+M7gLKQN/E8m9VR4PfgS+DT4KvBl8NnwjeB/
wZ+Ebyz9kvv7rsuzTgbfo3132puBbyJd4KuB79KPnbWueY87OF4V/gPXfgDf
U2uj8Br9Av45cjvH9TXnOefm4j/1W/sKfgtcKvJr+N3w1XQ+/CY4j699Ab+x
sM7+DH5D4XX6Kf9FbtIM/jx4D+1N4F/Sfl/p9TscvKuwnp9P+73w1eEL4O/D
95B+AZ9C2sL/oX137rWf+sC1H9LeW/Mxvbva1wfnIf21XsFPkH7wTcGPkb7w
TcA3kG7w5uCX3GsZvAf4Ecd94G3BTzn+Fn4Q+DTHm2jN5h7772q2Je/S3h1s
Dc6n/VNkS70zx+3BEpyDtIMXhded9OFJ4Kscd6J9VfAVZFv4KuBcZBt4PfBl
pCO8PngF16zHtSOlLzk+iPZW4BGF7cONtD8GbwH/mX4+Ad9A6xjehN8ulD6h
bS345fABGm/4RdIP8G+59xLkSo5b0H4dOIT29eHXwo+G31TaBp2mviBX0z6Y
9ubwa+BHwZvBL4MfrvkCvwDeVxMEfhqwF/wfzT+tPfBvZKR0OziU73sG/Hfw
N45PgO8EfiU/QPZO3wvpAW+jsUcfHi69x/ntK+vYvprzpXV2X+lg6WT6/BT4
r/QC7XuCjyMt4b8wPo35bRK8j+Y+/Ex4N/gDhefwt5zzoMYO/h18Onxt+Pe5
9Yns4Il6jmw87T/S/iFtH8gecfwJ+DHSOtkL2aYR0lWcvy5tyzn/Pfq/v8aE
/jfit4nw3lq78PM0P6Ub4OPg3eGnBZ+Ty2cq7efsq3VZegy7wq8r7ZMcDlbI
WdKBtEf4GPj+8G9kL5EJHPeKnld7c+8bSvtFp4L1kXO1Fjj/dWRf+LqFbZJs
082l7Zx07FTNF66/Bd6R+w3lvbbnPlfJJ+L4Pj0f/B55Ed4IHJJsal/pauQa
+E3g3pntjWzN2hyvB77MvT/S/WRP9D24fqbGBlyK3A+vA1dE+16bgZtw7c2c
Pwd8AOnLeP8BXoRsA/8dPAtpDv8FbI3cyPnPgSchjWn/Gfw52odrD17B8amc
Mw18DJkFf77y86Xb/5Au5fhr+AzwM36/Dvmm5v5uDUbw6Mrv2Ad8HDxPekT6
tGZfR37OeOn71P545Xe/ERyneaS5Rfut4LnJV+mf7P5xmlOZbbyO96DvdL22
iL6N4beW4K+V/Wzp4Xm579cU+UjHmb+F3qFr5m/0/36J8BjwlsrvNEt2n/s3
gP/EfSYmG/1rzeMj3AqcSdsTyEqOj+d4C/jh+tal7eBe4B7yh2ifC+6E3Al/
CbwA2ZJ7/wZ+yYtsx7m7gF8h28N3BRcgO8B3Axciv8H7gV8gHeE7g4uRXRQT
gN8gO+uZ4BJkV/he4LfIbvC9wa+RHeG7g58j28B3At9E1oBvAT4RbQ/WBB9F
/if9Cj4SvWaagA8jr0kvgo9F26Gm4Kxo+7S25nK0HVoLfDxa168Bzoi2ec10
P6ROvpueg9SDbwpOKb3WzgU/43hrsIv6pdgBvhV4NWN3Duc8VNkPkz/zYGUf
Tn7UZeBhlX3BKULkB77LyeB5yEaM//LKvqt8wgmVfa09ZRcU0zBhM57Vlmd9
gmwB3w58D2kF31rvh7SFdwLnIe3Ub/AtZE14O/BtZF14B40B0hK+Jfg+0hq+
DfgBsmFpPfMhsjF8W40r0hS+Ofgp0h6+Azgf6QDfUeONbA7vDN6ivqc5+Sjv
MEFrtbLuUhzZA2yV2ceTX6jnPAKeVfg9HoWPgf9YOp4YpG8je0z72MLPmQk/
Fz4ijafG9S502YPwFbJXpf3Ko8DWmf1n6VP19ylwQuHv+Rz8Avhjwe390tx8
DX5F4Tn+PPyiwuvgVfjl8D9K++CKkTWvFXNdV3i+vw2/Vnorcwym+Etr4k3w
6sJr5S34NYXn/hz4hfJZSsd0Fxf+hrPh5xUe7yelt+C/547DFB9VheNUxR2r
F45hFad8kzuOk09+Reb4cCOkZWE/S3mBvQv789dqvcEPhU8rHfvpWt2jQWlf
SD6R5t0s+Dj5cul8Xae5qbhJ8dNhPKMd8hfHsyvHsHeAh3LOKNrO0Pulfqq/
M1L/9R7Hct62mXXgcKRL5nhf9k3vq/d+K/Vf7zGJ33eQT1BzfKh5dGvpmGOV
zLGTdNgrtF9W2DbuCm8K3lrZF20FPifbmPl448q+qPIAb3PegfANZJMr+7Rt
wWvTete6n693pr0deGnmeajzDknx44ZgO+THmvMknTPHjUuTXyX/SrHs9ZXH
bYDunXSFdIbyDP0yr5nXkdFJ/7fInB/R93sncx5HOZwJSYecAk6XryhdJP8l
2Q7FZx0q5zCWBOv7lzVn6P92mZ+rWFVxtfomH75R8ksHFdaLl8IPLawvL9G7
6trK86QX2AkZoPlYZz9HvuthhfWK1ubphfXNA/BRhXXY/fDTCuvU++CnFs4L
qC+bgjtW9ouUq5Heuhd+Cuc8GbxelAuR/yB9s2VlH06+XK/kP8t3GlpYF94s
O17YztwEP7awXpwGPxG+PdcfwfEaddZ5N8ouF/bP74CPgN8vmwTWj45HFCc2
Bp+VjoA3LJyvUUyoeFC+xsjkb8ieKD+i3IhyK8qxfAK/svL6q+rsA8kX+jbY
vp+W5vmUdM+GmtOZz3mvZn2qOXJu5fmieaPcVP/E9dtB8uW4f6izvzAz3VPr
RbH6SzW3z0h6e6r0VuZcz26Zn6dnXZl8JP795yeNSL6N+nVJ6pvs3tDM8bzy
eUdkzt/JBxZXjkXz/fCkK87PbCN0f73T+Ylvmb6pbMcDpc/RO2gdTExrQf7d
+DS2ym8p36cc18qk36TnNH6T0vvuka5VjuK0NA56xsS0vtS+feFciHJHl1b2
wf9h/DpXfg/lIxULqP/Sn4rjBmeOGXeonHtUDnKvlNNQbkO5T52j33apnHdR
nkY5mGMyH9+V3u1O8KXS6/Rl8MXSfuu90p+yg5nzVuq/bK3yX/2CdfI1lb/p
PUkPyre9OrNvvw/vsCfXDYj+XppPX9D+cOlYqmtpWyGb8W76tvre8l+Vd7o/
c+5JPuy1mf1Y5VYfSGP+Os9+D3y1cn53Wuac7Ezue1vN60r+p2y6coczSsfH
0heyFVPTfJvF8fSa7f5s5Oma7bj8WNl05ZCeKB1jHZb6/GDmHOjYNAcaZI4P
rs/sTz9WOh5U/uEH+WfYk68rv8fL6V3eypyTium6V9K1Gr+5aQy3Sr63dOyz
3OsY+HbMl4cr27hfg2MX5fiU39N1T6drN0l2RPbkzcw5U43Fs7pXZp//kdI5
j/3kB5XOOx1QOoaSjZLtml5Z33/Hs/oH26DXKsfmD+t58lMy2zZd8wK/PZ85
Z/si8kLmPPkzkszxlMbsojRu8j0vzGwvlO/TOtJ6eqNy3P2eYsbUT/X3E31X
eBPO+axwDqE9uGPhnGd/6XWuezuzz6Q8w5Oa4/JRwVac8xvf493M80fv87nm
ZuZvpnzD+8h0pE90u3Jxb1bug/pzC9d3zz2HJoI7I2fqncFNkQHwP9Nc0pxa
zvGKzPscb1XONX3Cfd6uPObi76Z1ofXxPtIBHpTrCL6P7vedYi7uPwl8o3R+
4iH5j0hT+EJ++yrNPc3BD9K30zf8Ls1/rYP3Of46s4/xceX2+uBHlfMJ4p9U
zik1BudVXlPiS2T/4APp29fw8bLh8P9V7v/r9PeXtKa0tn7gHj9mfof5aY5p
rikPqLxfi8JrWWOuefUVuCCzT/BTWsta0335Fsu0VoJ9btn30Vz7vfxI+DD4
d5nP0bM/514/Zc79Ktd9PHyy3oMxOji3vrhU/m3u/QOt6bOTLpIPJb9LOk4+
mGJz6boe0fM91vn6N5LO2aHwOEuXjud+XXLry1PAjZFD4E+ldaH18VpmH07r
U3Hx0Znz54r/z01reaPUH+2zKO8q2yOdLPsjPi/Z+vGJK/ctXVw/6WNx2VnF
6Jqbf8K7lI4PphReH2PSGpGdkt82NOlh5Sb4V5tD3zsgR0k3g9vl9iHuB1dH
9tKap9/7w28DZ4Itcu9VLOO4F/we8HFwPeRA6UmwW26dt4Tf1tbaAceBq+W2
/5PBVrn3M5by24Hw26VPwK1z2zDlf47NnMP/Humj/HTlvIR8delb5YUOyuwb
K2dycGYfb2bSRdJJV3Hd3rn17nTFMsi++t7CPOlscNvcfsZdYL/cOuYK9Te3
LpMv3VvfTH6+9BHj16hwDkrvpBhcOku66wO+Q/vc46uxfQF8PreOHpT7WPwQ
PQd5Cn4k+FxufbpV7rHQOKjt2dQ+F3wpt13ZHHwGOVLfnmffK90A7qdcf+4c
2QHaD8idX+ukfYLc66Q3eEfuPI5ybnpX5Rk2o+3W3Puo6+gb5s5Rdc39XfVN
FYvNARdq7HPrSunJZhrL3LmojrnHVOOpvJ6er++rnJ36pbk0OE/vw3FTfZ/c
OcUB4Izc9mbd3HNL86oRODL3t1euQ2tuPDiJtlNzx4vyqTQe0p9TaRude69Y
7zQqvZfu/US6f0/Nu9w5rPVzz2/N7X+5flbud5ye5sto+MPwh3LPraf13XKv
+UPBB3Pb5r/lX8IXgGuBjyD70T4QnJ177A4HH8ttp4WPJr5P7nmpOdkjty6T
HmqX+30GpbWsPTb5Db2D91O6yo4x9wbKzwX/RM6RrS8cw0nvSOfI710O9gEX
ZraFsoNfVNbfskXKGyg3cjbXdoI/Ll2p/EblPLb2/PeL3gecwfkHR+8dHBds
62Xn5fe2qOxrNKpzvq0rbespD624CN4AfAnZDb5G4dzbPvB1FLtVjuu1N/05
xwPgHcC9guPoVyrvt0iPS4fLj9We+hzlDyrb54nyG0vnTUYrbiudJxpV2neV
ba24X+9on2E1+DqV/dZV6PNalXMX2sduhjSCZ8H7YtrHWZnbPslO/cA1d8LX
h6/QfIneO1gleN9He0w5eFvp/NHp4HqV/bIGdd5z1L5SHbip7iXdXzhPdQf8
JPj8ZKNlHzej/S74SPlIle3h3bTvLx0Kfyo4ptxCfVZMWjnvcaB8QuW84NoY
XL9yzuQgcJr0dG5b9RPHI3LrOq3pY9O63jX4O66j/GvwPt268HFpv0Px/S7B
exDKl+q5C2rO+Wtsv6x572Ct4LFSzLtO8HhqnPQtXlesEh37y39XjcDanNMc
Xi86PyDjpb0D+SjyVRZyzZTg+Pq/PGpwPK585jXBcbpykldp76TmXOWk4JyD
8sMXwCfXnJMcG7yfonzDGPjZNedyzwpeU8rlbl543X2hmC44p6GYftVUG6M5
ojmwL21HgW30zWhfFb5+8B6Evnnn4DyScsgbBn+XBvCNgr9dQ+VNg+fPnLQu
VFOifRnNH8UZ2sfYNHjPorHy5fC9a85FNwietxV8p+D1pdz1lsrX1Jzrlg8q
X/Rt+nogx1eCRZ3nvGLx69M8WVTzPo78Ofl18zhvm+B8hfZ4OwSva+XStwrO
XSjHvnWwrVQufbvg9a48vPSD4iHtUVwYnAtSbvmi4DyPci07MO+m5PaDtLci
Oykbt1duuy6b3jm37yK/ZRfw8tx+jzBPXPfYPt1nJdefndtXbJvbfsh27Jrb
3svWtwbPy23vL1Zbbn9ug9y+i/yWUZX9o9Mr264hyX7JTshenFG5VkS6X/7P
zfw+PLePciM4LLfvsiN4Se5cxZ3qb26/R7Z3aLK/e+Tuh/pwSXDNknLvO+WO
T+T/LaocuyvP043fesunjN5/VQzVGn5YsC7dEN4zeP+9Ffyg4L31ltF1VsoH
Ku8ln/tW3bN0Lku+sGqjlENT/ZP22gYE25020fuDsoGyfT2C9/Q3oP0AeC/4
+tH7RvI75Mtp30i2Vz5kG95jQu6ck2zKczxzMjiCa0/i2o3hHSv7ucoDax9U
+6Hr0b5P8F5/c/gR8CPkX8P3C65DaAF/INr2aA1+k+J9xf3To/05rTXt+2r/
d4ziksJ7fNrz0t6Zcm9az6qbGgsui87xdof/GF3zofqDs0vXLSjGWVA6xvxM
cZL2g0rvPb8JvlN67/k98LJgPS8dckWwbm9Sed9a+9dngZcH24XVaH8w5Spl
q7Vvof2LIYr/aL9b665yTdt/tW16ZukaiI9L7zMqR6jczejoOpXPue706LqH
z7TPH13n8QV8VHQNxHz4adF1D5/Cx0Tv/S+AnxW99/9VcO2IakjOBM+Mrmv5
MtkmxTrKr0qnSLeoZky+xHHgomi/RP7JJPDnwn6E6tymB9u1NSvXCshveaW0
vZfdn6u8Ddd/zTULOffitMctHSK7qbjx08rzRzme5dF1evpeqtlZVHqvfXHp
vQN9fyXJtL/QKfP31n5B5/R9ta+xTXrHxYXzsNrf03689uXPK72vr/39caVr
8uQXKX+u+odR0mfg0tK1HctK10P8Fx+CvxTOwyvXoXWo9ag6SeVdlcdT3n1y
8NpsVLmeTbVW55euSdtJvrHmMOc8IfvCObcG+3JNK9epyH86R35RsL8nX0O1
WarROrq0X6HYXrG4aiJvp31w6To61XtNKL1ftmvmfQfVCXTMXD+gPReNQV7n
/Z3t0rO0f9ET/Cm6PnPHzHuR2mfXeGpce+n3mvWX9jK076B8keoblYNWLd54
rlmq3IBsNXwR/Bv4lOialX+1DqL9JL37FdH1Xn/TfnR0vdQrwTq8CTrnr8p6
e43c/v7g6NqsucFx/RG0ZbKN0TVk/9A+JLp26lX5ETF9M9mx6Pq8P6Sno+tp
VKh1WXTdzJ+0XwNXzU0u2xFd+5LBL4+uRfuLcy6IrvtcEezTbkIfVCDQP7qW
62na16xzfkRz+55of11rRHkh+fcfKi6M9k3lA/wRXas0Vno0eo2pdve+aL9Q
/pVi58N41j9g4zrn496BD4zWiaoZOyS6tuwZ5Ymja86eVe4wukbtOdmc6Bq1
OfAjo+vYXpRujq6rewE+KLqu7iX4OOll+GL4hdH1ryu1lqNrZ3+BnxBdl/M2
/MToOqp34cOi63vego+Mrgn7SHYjuj7vA/iI6Lq99+EnR9eufSh9FV1v9A78
mOhat9fgQ6Prit6Q3wdfCF8EHwtfoNwY/LjoOqT/wSfAv4P/AD8lus7sY/jx
0TVJb8JPja4hmwe/KLre92d9X/gy+I/wSdF1vctlE6JrvGQLpkXXckn/3xld
ByY9PzW6Vqwh/LroGqNSfnt07VEBvz66dirAJ8K/5/4/yc5ExxvSCbdF16I1
gN8SXXe1ivyW6DqneoqnomvUpHNuiq55qpNuia4nWxV+Q3Q9U6VYP7qeKVau
kZZOWhmd61suPRddK659bdmA7sE1z9Lh+wfXPGucDw6ui9b4d032XbamPbJX
zTarXXD9pOxUF6RnzXZni+B6RdmsXsE12NIV3TQva7ZfqnFRHu0R8OXK+6Ba
O32Cc/Kak9Jx0nWyTdrHVRwqXabaMOU0le9Ujdar4FPR+6/tUo5CNZ/KQWsd
7RBcIyebe3bydRVrnBccRyiGOjXYP5F+0L6jYquBtJ8TXB+oMT8lODcrvXFu
cBykb7RjcD2ebPeZWj81j//pwfV+mhvat1bcId+lY7A/Lx9+VHCtnebM4cE1
ftKxZwTXIuqbjg6uV9RcGhhcN6s5PzK4Fk66TjX37VMMrrrilVnKb5eu15e9
U/5ZfmXTOuelFcM1qbNvtjjZYuXSlUtrWOf6s7bJr1Z+W77VanXOq89LfpS+
gb6F4jLlor/M7Hvp2erDX6VrjpSv/730vsNnyS9SPvlXsFmd6702Tr69ctTf
Z56vsoWyiSvBnpX3zlVXo70MxU+r1nk/bgjtF1bO26vOUDGt9jK0J6H5odz+
R8kPVM5ZexTae1H8JR9evrxsnmyf9t6/LZyn0T6H9gGPU1wCLim8PyRfSPXn
2jPS3pH2GYdlrhdSTlj7WPeU3mPS3x3It9YesfwQ1RGpfr5nZrugvcInkk+l
2vXuyUc6Obi+Ubb1mOAaUennIcE1orJTynco7yG7WT+43lK6vRmyac16u15w
faZsQcPg2F/xcqPgmk/Z5brgek7ZiMbBtbKys62C63KltzcJzrVKxzYPjmFl
C9YLru+VPm8bHJ8qdm4ZXK8r/b9BcE2v7EJrpHPN9mLd4FhbuQjVCLaB7186
N6QckezCGsE1z9LnqgvS3ofmjerM5R/9Gp3faZ38MdX2rEhzT3moNulbyA+W
P6y/rVBOqlXyqdYMrmeWLVOtvnyx37jnRI6vr1nPqzZR8f6BWj/B9eeyUw9G
1w0oh7A4d31sN86ZEFwnLP18fnD9sPT86sF17LJfLYJzUMpLKC+m/Jhsdwje
e5JNPyG4NlX+yfjgumLZiOOD63Ll81xZuN5J6+uR4Loj1fs9HFzzozrAR4Nr
kFSz91Bw/KJawWHBdbDykTYPrp+XrTwquG5fNnEwMqJm+zUcGVuzX3dkcD2/
bKhykcpJymc4KTifI5/t2OAaY9lc5S6frbm2cFZw3ZRqC4vgenj5NlOD60NU
I3dHcG2JatXuD64rU73ivcE+s2r57gyuRVEN27Tg+hPVzp1fuB5MeuN22u+p
ubbtxmC/WnVxNwXXjajuLg+u55ePNzu4Zky1jjODa8xUG1kG1+TL73og2IdX
PPh3dJ5R+uHm4LhSvv19wXVxqo38KzofKh2lvw1R7Pg7bfXrrGuWaWySn6OY
/ZXknyjGL+sc8+hvcOYkv0h5g+eTH654/5nofLTi8ZeTX6Scw3PRMZri8bnJ
h1de4tDgvV09t16d9Zr2o19Nvopi+dnRfzOg3KPyG7LLss8PReeRlft6MTp+
UD78yei/N1B+8unoPLJyBS8kP1N5j9eic+XKLfwfVX75AQ==
            "]], 
           Polygon3DBox[CompressedData["
1:eJwtm3ccV/P3x+943/etkNKQSskqqWQklYwUlVUkolKR7FUUIQkh82ePhFRo
+BKypRAyCtmhrKyQkWT8Xk+v+8d5fM55v9/3fu59jzNe59wWw0475NQsSZKn
8yQJ+q0r4TooTZJukPhJoo3EXyn6R4OulXy4+BvE5zWS5F/9nqhrDy6T5Arx
PdXXUvS1xl0m+XLRGvUfUSRJZ7VdJBql/pGi32KSTMj8X2eKv010qfiJoh3F
X6l7dteznaXrj9f1f6l9D40/T79tRZepfy/1n67+Yeq/SnIPyWdLPkHybxqz
r8bfrN+bRLuKHyeqIf4k0SSN30fjR2n8CI0/Un17Z37Xp0VXqL+b+keqf7j6
a6uvQ+ZrdxZ1FX+F6HLxo0X7iN9NdKb4q0WdxI8XfZi47XLdb2/d70zJx+l+
80X1xK/QmIH0ST5C8gca8yTPxjNJ/kjy07yr5MMlvy/5Cck7Se4l+TXJcyXv
oDn7WfJhmvMXJW+s3/7qu1xtF2vslvqf00WrGaPnaSj+eNFKyb0kbyC+jWiY
+PaiX3S/sZIz8V3E19L9+uh+EzT+Qt2vvain+MVqe1j/tzXvLvol8R7ZUPwO
ouGsp6i1+NGiv9R/tORC++dl3fMEyX10fQ3JCyU/qr65+r8aGtsi87O2EW0k
fieeWfxOrIH480VF6rY9xU8UrU+8R7rp+QaI/1DP95Tu31Py0ZI/lfxs6f32
q+THNfYR8b3UP0TyZ+p/Tv2/6vd/ep5J6r9D/YXu3Uh0gOTtRFF8E9HBvJvo
J405WfIq3WML8c3Fc8C+k3yI+kvxzTLz24vWiy7JvHc4Q1Hv/5j+bwznS9cf
qr43RW9Inia6Xs93m8Y115gZer439XzNRPurbRf1XSe6Rfzm6p+m/omSr5Rc
T/JUyeeyRhrfV22d1XeG2r8Uv7/ufZX4i9XfSf3H0yb+/zTmVvHN1Ddd8lWS
/09yI8n3Sr5OtL/Gn6e2k+mTfIDk8yWfIvl6yQdKvkDyqZIvit4Xp4kOYW+p
fxv1H6L+Luq/VnJvyWMlnyR5bOFrS/3fZPWdU/i/Csm3I4s20/geamunvjGS
G0nuLrmt5DrV+ZrJO6lvE8mbSp4j+UTOh+RNJD8geYTk0aJNxe+jtjbqO1ty
Q8ndJG9f+Axxluro/+9S33mibdV/qNp2L3wmOBsbqP9O9Y3nGskbSp4i+VLJ
kyRvIvkeyZdIvgK9K/lu1qfw3EXJd7B+oj11/9PUNkR910juJflcyTtr/kYX
5nONv5X7ibqq/xS1DSy8Bly7LvfanCV5tGSU/S2SRxbWrf+o/ybJowrrzn8l
31xaJw6X/HNuXckanyr5j9xrj04+TvKa3Lr6LD3TPlrbpzif0WvIs6zNvbY8
8zrJv+d+l7+DzwB7/6ZgnT1C/C+5dfmZhXXz35JvlDym8N4IGnub5NML6+a/
1H9DaR19rOSfcuvuTOMOEz+R8xH9zodKviTxXPDOfSt9xlyUOn/tJA/ivJa+
58GSxyf+L+bkkNxrylzxTOjDixI/Kzr9GPE/5tb1l4r2yD1ng9XXu/BeWcmZ
KK1v2PsrODOSrxbtm3uNDuW/9Pw/cD/k4DOErfsz99lqKd0wUvS72o7SPL6h
tqOYW8mXa+wavfNZmfsuFv+m2loxn2o7WWOXSN6O9Zd8iuQ3JLdkPrFx2B/9
5/uS6+v6U8W/rv5tJa/PfH4+Z89hm9T2iPqWilqzf9B77Bdds4murSc6RXwn
tc1U/9m65kPxz2p8XcnLNf5IybuJHmBt1P8B64c/kHjNWLvOolmSR0v+SHwX
0WzJYyR/LP4L5lz8M2p7VPf+kjOErken614L1NZA/Jf6v8HqW4xNZH9m1g/P
S64v+XPJgyT/omc+Fxugtk90/XOVvviUOVX/W5J34PxxRiWvFF2MrVHbXPUd
r+s31LvXFp0Ar/21VL/t0dHq30Dy65JXSG6s+z+otsfEd1TbA7rX24XHBnyc
0tfwvEuqe+2ntoWSr1L/t+J3F82RfI7k5eJXiCbgS6jtYV27h+S54i9Q26f4
G6X7eGaevVvpZ2dNWdt9RQskXyn5G55HdIL4O9V2s+7XgzkTP0ltq9BVokck
j5P8mfiHNGaR5N30vOskvye5I/oRn4r5Q4eIn6y2G9X3rmhX8bXwkfB3RE8k
fgfeZZn6O0iuKfkMyd1F8yVfIflr8e+IThQ/RW23aOwyySdJvkvyrfy35Gni
z1Db++I7lO47WfK7pfcUe4s9Nb3wHDKXD0q+r/AeY68xxzMKX8O1d0u+TfLd
ovuwFXrf+9U3WfLDkreVvJbzVPqssEfZq11L958v+RPORuH32Unj/+DZJM+Q
3FryfZJ3Fd2LLtL498S/oP5Gkr/VfhyKfkXHSH5d/Y9IflHyZpK/x6eT/Krk
FujfzPbuKN33T8nNtT976pr91P6KaFFqnznljEpeKP6ZiCHW82f23SZKfk3y
QZV+PF/3bqr7HZvbB8EX6aWxr4pe1vhbU49BN9UIvjZT3wOi2eq7QLS/+MU8
g/jbRePwCVhvdE+lu9EHX6nvC7UtLu1Pj6z08zxdu059d4qeF72p/oG57zGJ
+EHPPFtj9lXfmGifCd/pDY15tPR/HFzpc/67L76X6HWNn0rsobb+6ntPYx7X
2N+Zt8zvdotoidoGYRs5M8QLlX67X23Hqa+T5D6S35L8mOR/9AwP6/rndO0T
0T4Zvtnb6p+n/k31joNz+1z4XkvVdgy2WfK1kl/VNe/o2h3U9lLpdz9I95tS
zcFa9U+RfCjzK/530WTJfViL6D3H3kMnzNL9Lom2FdiTo8X/K76fxs/Q7/TU
OgPdwRmfzV7NPIa+F1Kfec7+o+qfgy2O9tNPJA4Tv0htTbDPuu5YjX1F8haS
f8s8PzM15j6NvV/UXfyuev8Lc+tEdCM+GL7YS2p7SOML/e4o+WONX6ax/+BX
ZvaV72XPZm6DZw//oXtO47+I7cSv1W/vzHvtNtHfoj6Z1/oe0UOZx9DHGv0h
OkBtk4kHiBkyt8HPT+07E8vMRdbzHBns77wleXf1LSTYzvyOL6bm+2d+X9r+
5P0lzxI/J3pPc7bW597rL6kvFc1U/0uidRozQ/IJ4q8U/5LGN9b41Wo7RuPr
Vfrhwdz2/G21b66xA0QfErtU8/9YZb9OVNumot6p4wJimcaiA1PHNGdpTF2N
7Sq+la49KXNMRCzEGHwCfINtEvvaJ4gPolap7/kauiPz2XxV9LWeeXDmuZvP
8+OjiA+cNfGvq6+76FrJi1PHqvVF+6WOWc8NxiZOYY2DY8+tmNPUMSix+cai
Lqlj9BHi88z4BPc4JXMMR+zGmcAHwhfCR2qALyy+pqid+gZhw9X/R2Yb3L+0
DkWXMofEEvgQ+BLoWGIP5hxfCp+JtRgjvhYxse41RHRe5hiZ2Jg9+Qw6Wu/x
tvhX9P7nZo7JicWPIW7KHEMSO/53prMqJk69B/Dp8O3w4eoXPmOcNfZErcJY
xFGiZ1JjEuj6gaJn00rn679PUvtYziAxJv4P6ybqonX/ij2ito05B3q+m9BZ
7A31hcp3Hi/5J3w68YvUv0RyWZ3ns3Tte4nveZ/40cHYwrHoq+D/5L//wH6L
P030Ef6J2mbhE4nGpV5z1v5s0b/qH8oZBJsS9U29nvXQuax9ZqyJ+5zD3GWe
e64Di2iVeW3BJJZwbjKfTfbhUvRU5rPGe9wdrMuY77HEPOr7M7V/zh7FF98m
8/lChx4RvA+J56eLf0t9e2W2dUtFU9Q2IvX6n5obuxgiWpAawwB764ivXr3z
5OC5Yj8MzY3NtMu8N5jHVZrjYZl18Yvir9b4g9IKq9D44Vq/NZl1cK/SOhfd
2zyxreoaffZ+0nW/l/bJ8c3rqD9R/2dqX6n+oyS2ye0j4ysTY4fCGBZYFj5y
Lnkd2B/7R/INGv+j5O9T+9P41R9Hy7Q31P55TddslfiMcdaGiFaJb6i2Rhq7
VLRc499jD2p8H/0eqL7P1PYx86v+T1lr8XXU/yb7LbXP/4b4AaVjA2ICYoOj
RT2Cz8JkXdu98P1Wqq2urr+dOAMdorZN1T88OJb4Sff8Ldi/591+QXeLXyX6
OrWP8nVwjEGsQUxRFI4ZiB3wCTLJP2jMtxp/Az4a+7/w3PwuflP9/3v6zy+Z
L9HLYFVq/zH1M/AO6yX/Ffz/j1X3+058KvoOn1FjftX/NdP4DYlNg+//Q7XG
H0X/P2Mb6P8e1fhM1FZjGhf2sfG1d8FHlPyk+BqinSU3K2wziH3aJbYl73BP
3e8LbF6w/GHqNX07GFveXXR2aox5ga6tI9pd/S0Lx4zEjsSkDQvHCMQKxAQt
CscExAbEAFsUfvdfU8dYzP8o9W+YO8bYsnD8zF79XP0rgmMoYilitqbq/0Bt
n2CHEu8pdO7BXJtbF38QvZ5fqa9eDftY+FqDNaZvaYwDrONJ0aPR64WtP1n9
70bfn/2Kj/J+8H58P3W8R9yHz47vDiZV6nkGRJ9V8MXNxW/J+iTe2z+WtunY
dnz6moV9enx7bHyNwvue/c8ebk4MFWy30QHXiL8yGOvDHq/LvL+J8bPqfBNz
Xq22Fyp/C/+L2HJh5c+BSQ3IjWGBVbWq4t+FuX0D/DP2yqLc2Bkx0PjKfyM2
al7hB09V8VuLCo94pooH21Xx4au5sb0tKjzi6SoebFvFh6/kxvq2rPCLZ3Ov
fZsqPnw5N5aHP72P5HdyY5/1MtsEbAExAOdjeXUe0X9gesdW/jVYH/g5/vZN
kicUxuiGV/EN2B2Y6ojcmCxYK5jecbkxU7C+maX1R53q/A2N1t3g67ux1sH+
Mv70FPU/GO37sZ9n46uK7kqNUV8v/ofCeBq+ZK0KK74bXZTYvhAjXlj538SO
YI5HV/EDWCQYa3fxy3Jjr2CoR+TGIMFWB2S2UdgmnuP+aN9+RuWPobNydGVu
XYbOL3j2yhag8/UYyZ25bQE6j7Dxrty6cIJot9wY32Hqu0hyx9wY4qGSLyQm
z43hHVh4T7I378hti8YTA+fGJPsW9nE4C//L7fs0rOKLh3PrEjDZHpzF3Fgt
PtCGzFVu36hpFQ/Py60bwOR2Fj80MVaHfeH8EUs9Kr6F+g5CV4uW5sYgD8+N
CYNNgsGSb7ksMTbLGd1A/LTcZxeMb6fcOQawv0s1OQNT+1yjos9wLfH35j7b
40S75MYUDy5sA5eLvye3bURn1JQ8NbcuwYaR53oo2LaBmR+ZOwcAlk7+ZlAV
DxPfglEPruJVsOtJ0f4IfslfxMPR9hNdBVaFDcIWfVvtv4ei/T38PrDT73TN
/sH6DP+f3A65lXmil9Al0f4TftTfGrswWnd+o+tr6vqHg+NobAj2Al1LfIs/
/AnzGo094KsNEf+MxixjvdX2XHD+aKx+x6itX+l5YD7Qudj/BaJ3E+eXXgjO
+fB8PCe5qAf1e0Xluw0Qfys2PLX/vx+4QPBZO0LyjeJvD/Y98ef7cc4k90vt
n2+RO4dFnnJs9WyDg5+de94W/B/815Gp/d3DsZmJc6Bzgv1x+s4Rddb9Zgb7
wo/h3wVj5vial2bG0jO98zuZc7LkZq+Ljo3wHYdX/jr3IgY8Kfp98bXJb5Hn
Iqc0KjeGRa6J9WVumeObo9+HuWMOB0fjE+Br4G3gHeSczpQ8PTH+80rw+nI9
a7W28NqAcYN1f1/YVnap1p/9QKyxNrE9XcQapY6p2T8LouNAMPHtonNSI3Nj
ZOSqno+OKzmzW0XjUWB90xLjJeSswOvuSoynDIv2vclPkt+8MdpXx2cfJH5A
Yf2KniU3hw5AF3yR2kecG4wN4ENg3x8JxgJWiJaLv1H/NSd1zNIV+x/tD+Eb
baT7PRkc9/+c2ufjfedV88tePTI6liG/SD7xiWB9vJprGBuMU6xK7W8+Hox1
4APiTzao8ICHcse2x1TvyxnfS/yfpfcsOq2Hxq4unKsgh0QuiTVn7S7S+FvJ
n0TzzAlzgzwwsQ6gP9M7Xaz7bSH5sOgcH7m+ztV+Oz06TiHu+7X0mZsdvN85
i2BOnAfO4O3iz1dfh9Sx/uniT1Rbx9Rzwtycp7ZdUttzYkVqBqgdwL/EXpKz
ZW/3oE388WBKqX0sfK1Ldc2eqfPHY/CdgmMccu7k3mvr+d6VvAf7rXDMgZ+I
v9hc14+NzpvzfEdExwyfB/ubxBLUPuyd+kxztomROcecQc4i5wGsiD3+MLpV
9FBqnx//kRjoNXRW6tgIHfts8JnkbI6L1jesIWtJzIMPeID+r0Ph+OCpYLxo
RXR+t39wjcA32FeNfzz3nJwQ/Q68C3M+QvzPpeN44vl2scK4xa8OjtfqR/t2
+Bz4Hm2jxzZNvZ8aSJ6X2AfEFyQfB+Z8bmUfqQ8hr0X8fIbGvqy2T8V/JtpM
8rPRsQz5b+LZNbrHoOD46uzCOY+rKn/1ackpPn3inBXx2knB/uyL+BOSvyts
aztXeAV7kL3YQvc/qDRGD1YfJXeL1vedK31ALD9e1Cl1/cQo8anuMQFbJnnX
aH73yj6h63negcGxfIfomJq4i/jriNI1MdTGsB7UbnAP7gUmT76Sd+bdqQEg
tmf/48/j1/9Qeg25lnu0V9+Fat8tdb3ByGAd+3zwHmOvTRS/V+r6l3PwbQrn
XvEx8TVHRtfisF/biB8dnRs4J/H5Ib+LbsZnwXdhPlhrdMDHmtPW0bgU9m9g
9JllP1ETNCn4/7fCVqttx+B6AGwRuGTQs9YAT0jsQ+BLXBf8HrzPNhrbIxrn
An8BW95AY75ibTXme/F7RuNo6Dh0HTod3d4+cy3LMOwitlvXDMt9/rfkLHH/
YJ1F30bBuowcKrmp+sG51SG5Y/VvdM03wTkFcmENgnMNE6J9A3Lg+HPYRGxj
w+DcADku8p9bBOe+LozGKi/W8/0cbXPYa7SNj465iL06BGPr2DBsWZPgXADr
3SS1/l6SO+dF7mrL4FwYOTrypS2Cc3fYEGxJ08y1Krwj79pVbadJHiI+SZ0v
J28O3raN5NcT2y/2A7oUDK+f+Pq6/ttgnXB14TP4lvhuwWcTDGNtMF4CtoH+
36NaH2wve4y9ho7k/J8THZehzw+PtrnTgvcX9gYfBl8GPOyaaBuKLf0CnSP5
6ui++/V+v4rfRP1fqv96bJiuf0q0lP8LzmeSQzu98g/uVN8TojfF7xmcT+Q8
MhdpddbxebDN4MknR+eHwWTAlMgP4pNy9tEBp4jfmDOK764xq8V/EX3tKD3f
j+JPjZ77//C86Bw1eNkfwfjU1tG4NPbuqOgc7su6X6fgfCg55lfQZ8H5W3Lw
r/J8wflbcuCLeZ7gfOPTusc/ifNZL0T7XPhe+Fz4Xvj0xJZgGPj6i6NrIfDB
X4vOSR4XnLMkV4m+PDY4J0mukxzviOCcLbnfB6Jjx3v1vj9U+piagLcqfX13
7jpB8PjjuH9h20Aucn1p+3SBxm+m/j7Re4K9sUs1fmHhWAOMkHjon9J5AHze
a9X/b2kfohE+VPT/4TM05MxE6w30x9bo3MwxD7HPVMl3FN4/5BnJN75f2Xf8
Pvy/ZdExDLEM+uMBsIzoPnzEqdHPMzVY382r/IeD8DkSY5l1onUJGBxYXK3o
/wJzAnsCkxuKj5e4Hwzq6GAdRP+s6NzRdD376uh9xn7bSVRWeG+vYJuKbeW8
orf4zw8re7Qm2J8E+8UeXhJ8RjmrP0nuiw+j63er1pdcfi3198b3ieY3EO2P
PxaNXc3V83wjvq+ocepnahG9hqwlc95M/D2xyqVp/LfROQVyC+gc5os1Y+2w
CU2i6/GIw9pV/iFryFoSExMb94+25ej43cVfHo21PKf7fx+t3/FN0XGdovcY
ew0bhz47VNQsdc5u52q/k4uvqbae0WeYOQb/bF3YBo8L9kmxzWB0nwT7/2B3
zHnTxJj78Co25l0aVnsWm8Ue3CYxnvpbaRsF3nSN5PNy7y38EfwS/LF+wRjl
vsQzscr16l7fRdtLciB7qb9jYTya2IAzD4YJ/gu+T8xB7LGucD0VNWXUY1Ej
QW3DVsG1E7sWxtbBFN+O9mnxbckBvCM5RGNHh1dYSBGNDYIpgS3l0dgImAjY
yIbR2BgYGljayuhc1Cw9//po/AIsnrbH0P/R2AWYI9jjBtHYGxgdWN3j0XlZ
YrAp4kvRVYkxj8lVP7aB+oPnsBfRWB0YHVgdOUdqDag5IBdZNzqWJIYllq0R
jZ2BkYCV3BmN3ZIvmxftk+Ob/4eRVPpyWWof/kj1NYz2PfFBwVbfwT9NHQMS
C4Kp9A7Gx7n+8+h7P0g8H53fB29ZVulfan6o/eEeb0TbtEsS6yh0Ffg1WMmg
an/UjLZ9YIBggU9Gxy68M++Of02uiJjyPuxldOxPTE1sXQ/9khgTmFFdT66W
GPcu7F9pnwG8C3yUGiBqgRZIfrLweQC7Zg8dLr536diK3BH1yftEx77sx5mV
vgFXA19rKXm/6LOHz4h+fUa0beqaMvz52wv70uSQlkdjXmA+5Ht6ltZpq6v3
A8vEXwZLIE9PLIRPgm9CToX6LvwV4nCe6dPonAq5FWwythlMFmyWnAPxFD4P
84tORbdOj/b1yd89Jb42z5gYIwYrRl/gu6MTD6zsMXUJxOwzxH8Zq2vBcMRv
Gz0X+Hic542jfS0wDLAMfOZlmWtq8aX3jtYV+LR3VPErdRHURyzhbBXmyUlg
f/CfDgjOT7Af0VkrqvW9u9LH2K7Lc+d+WdMlkvcKXmv0M7ZzVm5b+6AozZ0/
2lZjbxJfN7VO34N1KW1LGuSuf/lf6XwT+SPyP9gYdBt7gL1Afoj8EjkGcg18
X/BfLjB1PAEeViOxDSA/TH6D58HGUM/8M7mV1Pavp+Q5+BS6Xxtsvu4XS+f2
wOjB6r/Sb4PUOqh78Dvz7vMlHyC+Yen6E2qCqc8hH7a+yu+T26hd+t15J96t
rqiT5I1y18dvVPq/mSPmapbolyo/1whsWvL2iZ+RZ61fOjdGjoz6pE1EnSXX
zl3vv6loP8mNc9cjNSldz0RNON8L1BN1kbxx7nqwxqXrwzbPXQ/fqHT9fpPc
3xNsVvp7gqa5vz+YXTp/SH6YfCD/wX9xDbVQ+CPYFexLR+2FHdV/R+KaPuKb
sjSWgA/G/kAnoZvAFLBlYATEj9cH4xevlMbHh2rM0ML5a3wZzgv5q8tyf3dB
DEv8SM6cWAJ/ZTPJC3V969w1//0K5+iJFcF4iO+2I2ZKXLNG/Rk6C1tbO1iX
tS5db0MNGLVgzAFzwZzxbQaYNrZ6du74FHyY2JiYHTwXG45v8ERu215TtHni
NWat0XnoPnKSO1T+HblXMI7O0ZgKuXDqDcFaXi2djxgm+RjJO5T2bfAR8BVe
YL/k1qn9iQ0k71jlF44unK98OtiGYEtqld5rrClriz/G/IIBcZC2L+0bDanm
g9w1uhQbtzg4P/xbVe9CvpcaLPLB5PzI/f1buJaammhqo0n+XJy4xppa638K
19Yxv9RW/y15XOJvBKhnpiaY2mBi1mngV4Xr4fnGgHrzvwp/D8A3BtSz/1q4
fp1veKhPJ592ZoUHk//6s/D3AnxTQP3574Vrq/lGiPpyaoypNSYmn4r/Vbj+
nW+OqGffN9i3/ES0H3NSuB6db4KoL/9Z8hmJv0G6rNIV6EtsFn7jqsLfUpDz
Ivf1U+H6bWr6qe1/H52XOGdN/vLHwvX61IxTO76mcG0jNY7Uk39dOHdGzozc
GfUI1NaA74HzfVk4N0YOjVzaV4Vza+TMyJ19UTi3Rk6J3NLKwmeNM0du6vPC
e409Ry6MGlnw8+mJ85PUZeCr4H/gh3xUOL+KPiTfC+YIVvphMBaJjqSPMeRi
Py1c7843KORjPytcD883IOQjsTnYHmIC8Hu+b6HejHtyb2wGtgMdTC3lzqXx
F2p+wTvqlD5/7En25i6l8RdyFPiz+OzYnxdz+/I7lcZ3qGkGHyHGJtamhgi8
iZwt52VGbvuAjkZ/z819ntGJ6PtHcp8ndCy6Fp1NLS6YMfXb2GBs8SeS9038
zQr57Y8L52P55oR89fLC+Uq+YSG/jY5H16PD+dbrPxuS2wbw7dUH1XwzR+Tf
sRHYCurzqG1dIeqX+BsV8p/YPK59rrIv2GjuPb+yR9hgnv35yn6B4YHl/ZfT
io5piW2JOci/LNKY9rm/qRrE3Ei+OvE3COBlW5fuQyehm6jJYn6Jl17IXc8E
3kbMRv0Xe4xceKvgvdey9Ldy7H/qH6l5AisBMwG3wsZh68C7wevBcKhlbRmM
7WxVulaDZ+RZycnxPmCk4GXEfGBZv+WOBamRIjcAHo5ORCeAZbQJ1hXblj4v
nA9085albQ06GF18jX63Th0TEyc/r7ZWub/Z61PY5mJ7sdF8mzafd8xdU3wA
tqW07uY8YguJAcFWGlf6vnnpsdyTe2Ozsd3YbL4NbF/anlGzAD5IDQu1LNQc
H8b7l36W7dS2oHSMTawNZgJWgY+Nr31PMLZB/R/5OWJi6vXalq7fpqYavBMM
nnweGDdYdxodj/CNDN/KNBMdlvgdeVdq6vm+oF1wrT2YGdhZ++Ba+1alsbMJ
Fd6GD4sve1cwNkN+hroW6luIP7GR2Mqtg2vxycdOTBzjUw/YrnSum5w3+CuY
H98yLEyMBW5eut4afcT3fk1Lz9VWub8PpI0+dBb5emwS30u0DbZVLUp/r4nP
ge/RNvd3iuQIPq7uwb34D7495JsB6v93CP6WgLww+eH11RyCOfItw/OJsUjW
iLXiPw4pXKNN387BtdvUYBNr7RJcm/3/AC2lOg==
            "]], 
           Polygon3DBox[CompressedData["
1:eJwt13mgjdUexvHtnL33MZMpMweZiZDMQ0gTlSJNyk2qm6IQmUOJhlsaKLrd
0ihu4SapEFFEGjRIhDQJ4aLBcD+/+/rjOXs93/X81n73+653rXXy+992ya05
qVRqE2XowWwqNR4oTs0KpFIP8dt0fJ6bSp1KXWTa8N/RJr48dcXa8hfTRVQ9
L5XahU/wmaUXtQ8ar4pcMf2r6DnsZ6wwVpD/lN7ADmP5WGW+F11C+cb4Qd/d
Pj/jF2sfkashV4Uv5RqrplOpG/AnselYfWyv9mC56jSW/wRfIHOAr6zvVL4n
9aCqxt6pb5zPE/wx7bNpmNwd/Cnqq/iOAdhM7BHsDmyf9p/uU0lj3s5XVL9Z
pj5drq+T3NP4DJkF6s+jinxpqqY9UO4puUflvqaVfJqaYPX4rnIF1Y4zfnO6
n78Qv4Cq+a7vZcf7vIa/mmpp/4rd43MHv137NOplvPOiX/1u7XjoVWgM/ylt
di2l5Dro+4y/VrYfnWacPfi9PgvSPO0/1dWSqyT3jcwarBC1wBryheQW8ilq
4KMCdp9sI3Uj6QR2Fr8rk1z/irxk3sT8uYqupJrYbn2T4zdmkmezPC/53fH7
66rfY5ztrnsnbeLL6N8gV4XO09dMbjLe2P0r5Htr0yT+EH5ApiUNlLuJ300/
8Y8Z63L5iXI7sR1YbbpU7ny+DF5f5g7sJexfWGnfu56vTOdiZ2Bl5RrIDcVe
xp6NeSr3EV+JumNNsHFy0yOXTuZrA76s3KcyNahn3Cu53ILmiEwf17bJ78iR
GS87RLsgNcQn8HXwv9T1iHmhdojaE+o+l9lMfeUe5y/DL6Ua8j/KTvS5Jd4Z
fYP4Z9V+y79Az6pZjF9NLfi+sr9r/0Hr5P5jnHLxbqqrSRdhrbBOss9p34Zd
L9s55gD1wPLjnmKN+drUESuDXYzV4U8x3jq+Ip2jr6nxSmKr+bLUCauPPZVJ
rnW/ugPx7GQKqD8R6xLdqW+YTHn8K74u9cbaYw/Eb1MzMp28Y934b/EPZYrE
/JBrzG+hD/jCdCbWiC9mvOV8cWqN1Yp7oL6lsSZgi7HXsApyX/P1qA/WESuK
LeOLUSvsNKw4toIvQW2w2tg/jfek61pozAuoMr8VXytTlM6SO50/Ve2XfB26
DOsQ79LJe7oq1jS1F8r8F98fv4Fu0HcjP0XudN9R2NyoR/fy39MA7aN4I7qF
Pyj7W7zjNEDtQD7PmK/yf8jWlRsodzblaR/ynUdoGz+NntEeQRl9HfnCahep
LUANjVfeeEWwJXwenYFVlTuA7+ObxxzCBvBv0oZ4hsa7Oe6Nukr0Taw31Fdf
Z5nR6iu4tptpV+wV/Ln0pvbd8e7Hesx3U9tJeya2Ud9bsd7g89UdLpCs3Yvj
mulR/dfK7ZL/ii9CJeO9xKbqm6x2NT3P71FfFCsc+47cIuOskl1Jl/rOz/Gm
se/KfoJtkGmG19C+E3tV3xOxBuFzjXUo3l16g28uVzPuqdw8uRlyLbBaMZ+x
+djMuHeZZD/4IC9Zz2Ndfynea+Mskb2OWvNd9XfUniH7sdolcj8E973H08na
01OmNTXWniT3ltzzMS8yyR7xob7rtPtTK+1GchPxJXLPYWdhDdPJvY9nMAc7
h67R3oqtjXVJ5gzK1x6OzdX3WOwprqUodknsCfH8sGewWX7HIrwHVYu5rLZi
OllzYu1pi7XBTscmY0uxF9Q2iTmDDcbmYA9hXbAO2BO5yfyKeVYCez83WZvi
fco3XlOsutww7BXscblfaHicl3KSexb3bm8m2cPW5CV7c+zRP2SSs9F7ecnZ
Js44LbXrGm8svtB4T2NX0OvGW4a/G79bZg32gsw+4xeTK8L/mEnORivzkvU8
1vV1NBfbKVdG7hT+fZqD7caKYIX49+IeYt9jylNZ/l2ahW3J+f/2ncrh/x3z
z7UUwC6n+fwyfLbAVj4dWz2/ItYsbAeWjXnNL4/zD/ZdTnK+TPuTE52KuuEj
NIfHmkav8NvlSmMl+Rfl5vjeN2X7UcvYy11ouXjvZZ+WmybXECuD3YjNwqZi
Z2J1sDHYAmw29lg22ScbYc/HnOY/xF/mt/neUnIl+AZqi+vvH+eB2Mvkep/c
yyrEPIr5JlOfCmlfJfeQvjFqG2FlsZuw2dh92OZMcq6K89UX+jYa68yT7Ft+
a6wf6urFGUv7SrkH9Y3NJM8unuE6/CPqLbMf2xvvi/bftK+ngrEW6b8YnyQ/
AWunvxk2Nc5O2FzsGP0Zc5mGxN7MZ9VmYx3FxmKjYn2N587/6r5UiL2Z/4t+
x9rTbdgg/ij9wXegwXGujPHpCN+ObsVu4bfTF3wF6oa1yyTzLeZdF9/dlbrH
fuJa+vjOT2ijZ7WG/1juNXV7sYryZWPPj3Mw/xGtlVvBfxXzV+4EVl+uJr8x
3iPsN6wSVi7eA9me/Hpap/Y9/jB+MPZUulHu5ri22Mti74w9FBuNbaKl/FG1
dbDqfFouHXsJPhobieViudi52ChsBFbZ79vGN8lN1rxY+6pg3/FNqR/WHRsZ
5zjXlRtzkkbw58h1Nt6TsVfILZXL4BnsfGwMdhd2PJ4J35mGYrfzo7LJ/pw2
Vlm6i781m5zDh8daHusl/4Xs2+qOxX4ea128sPhxrAsNZ4dibV1LEzX3YG9j
L55c82Ptr52XzM0pPl9Re1k8R/rY96/mV9F67Q3YdfQO31m2jfEeiT3EeAtj
X8Bfj3seZ5WYG9nkmcSzWc6voF7qfsok59dV2r21+8R7lU3OGWOM35SmxrlE
f1s10+O9McYiufZYc2watgJ7FSuZTc6TcQb+Rd9mvoNcC+37Y93WNy/2jzib
aM/H59FFMkXj3BpnULlp+u6J680mZ48hsb7HuhDnMtlW2v+IvUHf63J149wa
54Lc5Dw2SK4YlcL6YvfL3Su3nubHtfld5bHS/MPZ5H/1KbHnxbj8l/g7/PE4
18nV4JfhH8itxa6mJXzx+F9UzRWyD8hNifMC/RzPIp3sQa/J/I4dwoZhVbFe
8bvoLeMcK5D8j7CUL0HlY72WnW68BzPJPhX7Vfd4H0J+68p4h2Mt4Avpy+M7
xfmCfzjOK9iCWFvoMH9F/F+C/Z3/H4tD/JA=
            "]], 
           Polygon3DBox[{{1517, 1002, 1212, 1873, 1371, 1372}, {1367, 1366, 
            1866, 1109, 1110, 1867}}]},
          Annotation[#, "Charting`Private`Tag$39642#1"]& ]],
        Lighting->{{"Ambient", 
           RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
          "Directional", 
           RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], 
           ImageScaled[{0, 2, 2}]}, {"Directional", 
           RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], 
           ImageScaled[{2, 2, 2}]}, {"Directional", 
           RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001], 
           ImageScaled[{2, 0, 2}]}}]}, {}, 
      {GrayLevel[1], EdgeForm[None], 
       StyleBox[
        GraphicsGroup3DBox[{
          Polygon3DBox[{{1682, 728, 1795}, {729, 366, 726}, {726, 366, 727}, {
           1797, 728, 1682}}], 
          Polygon3DBox[{{1795, 727, 366, 1682}, {1682, 366, 729, 1797}}]}],
        Lighting->{{"Ambient", 
           GrayLevel[0.8]}}]}, {}, {}}, {
      {GrayLevel[0], 
       Line3DBox[{404, 1, 387, 217, 1281, 15, 1293, 29, 1305, 43, 1317, 57, 
        1329, 71, 1343, 85, 1358, 1359, 99, 1382, 114, 1393, 128, 1406, 142, 
        1418, 156, 1430, 170, 1444, 184, 1611, 267, 426, 198, 402, 292, 911, 
        199, 912, 200, 913, 201, 914, 202, 915, 203, 916, 204, 1129, 270, 429,
         682}], Line3DBox[{732, 2, 1134, 276, 404}], Line3DBox[{734, 3, 732}],
        Line3DBox[{736, 4, 734}], Line3DBox[{738, 5, 736}], 
       Line3DBox[{740, 6, 738}], Line3DBox[{742, 7, 740}], 
       Line3DBox[{222, 8, 1221, 438, 220, 372, 642}], 
       Line3DBox[{745, 9, 1095, 222}], Line3DBox[{747, 10, 745}], 
       Line3DBox[{749, 11, 747}], Line3DBox[{751, 12, 749}], 
       Line3DBox[{753, 13, 751}], Line3DBox[{405, 14, 399, 279, 753}], 
       Line3DBox[{1303, 28, 1561, 224, 405}], Line3DBox[{1315, 42, 1303}], 
       Line3DBox[{1327, 56, 1315}], Line3DBox[{1341, 70, 1327}], 
       Line3DBox[{1355, 84, 1341}], Line3DBox[{1379, 98, 1355}], 
       Line3DBox[{1391, 113, 1380, 1379}], Line3DBox[{1404, 127, 1391}], 
       Line3DBox[{1416, 141, 1404}], Line3DBox[{1428, 155, 1416}], 
       Line3DBox[{1442, 169, 1428}], Line3DBox[{1456, 183, 1442}], 
       Line3DBox[{917, 205, 273, 918, 206, 919, 207, 920, 208, 921, 209, 922, 
        210, 1133, 275, 431, 211, 403, 294, 1469, 197, 1456}], 
       Line3DBox[{444, 272, 430, 917}], Line3DBox[{398, 277, 742}], 
       Line3DBox[{398, 579}], Line3DBox[{444, 602}], 
       Line3DBox[{730, 723, 1796, 725, 1794, 724, 730}], 
       Line3DBox[{1795, 728, 1797, 729, 726, 727, 1795}]}, {}, 
      {GrayLevel[0.2], 
       Line3DBox[{1281, 1559, 923, 1280, 1882, 1470, 1282, 1883, 1471, 1283, 
        1884, 1472, 1284, 1885, 1473, 1285, 1886, 1474, 1286, 1864, 1887, 
        1693, 1718, 1762, 1787}], 
       Line3DBox[{1293, 1798, 1963, 1292, 936, 1294, 1894, 1481, 1295, 1895, 
        1482, 1296, 1896, 1483, 1297, 1878, 1897, 1484, 1741, 2059, 1562, 
        1694, 1719, 1763, 1789}], 
       Line3DBox[{1303, 1489, 1902, 1302, 1488, 1901, 1301, 1487, 1900, 1300, 
        1486, 1899, 1299, 1485, 1898, 1298, 2027, 1800, 1563, 1615, 2047, 
        1799, 1639, 1624, 1659, 1658, 688}], 
       Line3DBox[{1305, 1801, 1964, 1304, 1802, 1965, 1306, 949, 1307, 1903, 
        1490, 1308, 1904, 1491, 1309, 2060, 1742, 1492, 1743, 2061, 1564, 
        1695, 1720, 1727, 1721, 1790}], 
       Line3DBox[{1315, 1496, 1908, 1314, 1495, 1907, 1313, 1494, 1906, 1312, 
        1493, 1905, 1311, 954, 1310, 2028, 1803, 1566, 1616, 2048, 1641, 1640,
         1625, 1565, 1660, 1769}], 
       Line3DBox[{1317, 1804, 1966, 1316, 1805, 1967, 1318, 1806, 1968, 1319, 
        962, 1320, 1909, 1497, 1321, 2062, 1744, 1498, 1745, 2063, 1567, 1696,
         1722, 1728, 1767}], 
       Line3DBox[{1327, 1502, 1913, 1326, 1501, 1912, 1325, 1500, 1911, 1324, 
        1499, 1910, 1323, 1969, 1808, 1322, 2030, 1807, 1569, 1617, 1869, 
        2029, 1642, 1626, 1568, 1776}], 
       Line3DBox[{1329, 1809, 1970, 1328, 1810, 1971, 1330, 1811, 1972, 1331, 
        1812, 1973, 1332, 975, 1333, 2064, 1746, 1747, 1334, 1879, 2031, 1570,
         1697, 1571, 1729, 1698, 1770}], 
       Line3DBox[{1341, 1505, 1916, 1340, 1504, 1915, 1339, 1503, 1914, 1338, 
        1975, 1814, 1337, 1974, 1813, 1336, 2032, 1575, 1574, 1335, 1169, 
        1573, 1627, 1572, 1661, 1782}], 
       Line3DBox[{1343, 1815, 1976, 1342, 1816, 1977, 1344, 1817, 1978, 1345, 
        1818, 1979, 1346, 1819, 1980, 1347, 1247, 1748, 1348, 2065, 1749, 
        1576, 1699, 1577, 1730, 1700, 1771}], 
       Line3DBox[{1355, 1507, 1918, 1354, 1506, 1917, 1353, 1983, 1821, 1352, 
        1982, 1820, 1351, 1877, 1981, 1737, 1350, 2033, 1582, 1581, 1349, 
        2042, 1663, 1579, 1628, 1578, 1662, 1783}], 
       Line3DBox[{1359, 1919, 1508, 1357, 1920, 1509, 1361, 1921, 1510, 1363, 
        1922, 1511, 1365, 1923, 1512, 1367, 1867, 1924, 1513, 1584, 1872, 
        2053, 1716, 1690, 1585, 1683, 1701, 1514, 1766, 1871, 2051, 1794}], 
       Line3DBox[{1379, 1994, 1830, 1377, 1993, 1829, 1375, 1992, 1828, 1373, 
        1991, 1827, 1371, 1873, 1990, 1738, 1740, 1739, 1370, 1874, 2055, 
        1713, 1687, 1689, 1688, 1369, 2054, 1684, 1685, 1629, 1665, 1664, 
        1777}], 
       Line3DBox[{1382, 1929, 1522, 1381, 1930, 1523, 1383, 1931, 1524, 1384, 
        1932, 1525, 1385, 1933, 1526, 1386, 1875, 1934, 1527, 1714, 1876, 
        2056, 1715, 1630, 1644, 1764, 1775}], 
       Line3DBox[{1391, 1533, 1939, 1390, 1532, 1938, 1389, 1531, 1937, 1388, 
        1530, 1936, 1387, 1529, 1935, 1587, 1619, 1528, 2043, 1620, 1655, 
        1654, 1692, 1012, 1691, 1631, 1669, 1668, 1778}], 
       Line3DBox[{1393, 1831, 1995, 1392, 1940, 1534, 1394, 1941, 1535, 1395, 
        1942, 1536, 1396, 1943, 1537, 1397, 1944, 1538, 1398, 2034, 1589, 
        1702, 1723, 1765, 1791}], 
       Line3DBox[{1404, 1543, 1949, 1403, 1542, 1948, 1402, 1541, 1947, 1401, 
        1540, 1946, 1400, 1539, 1945, 1399, 1026, 1588, 1590, 2049, 1832, 
        1645, 1632, 1672, 1671, 1792}], 
       Line3DBox[{1406, 1833, 1996, 1405, 1834, 1997, 1407, 1034, 1408, 1950, 
        1544, 1409, 1951, 1545, 1410, 2066, 1752, 1546, 1753, 2067, 1591, 
        1703, 1724, 1732, 1725, 1793}], 
       Line3DBox[{1416, 1550, 1955, 1415, 1549, 1954, 1414, 1548, 1953, 1413, 
        1547, 1952, 1412, 1039, 1411, 2035, 1835, 1593, 1621, 2050, 1647, 
        1646, 1633, 1592, 1673, 1772}], 
       Line3DBox[{1418, 1836, 1998, 1417, 1837, 1999, 1419, 1838, 2000, 1420, 
        1047, 1421, 1956, 1551, 1422, 2068, 1754, 1552, 1755, 2069, 1594, 
        1704, 1726, 1733, 1768}], 
       Line3DBox[{1428, 1555, 1959, 1427, 1554, 1958, 1426, 1553, 1957, 1425, 
        1052, 1424, 2001, 1840, 1423, 2037, 1839, 1596, 1622, 1870, 2036, 
        1648, 1634, 1595, 1779}], 
       Line3DBox[{1430, 1841, 2002, 1429, 1842, 2003, 1431, 1843, 2004, 1432, 
        1844, 2005, 1433, 1845, 2006, 1434, 2070, 1756, 1757, 1435, 1880, 
        2038, 1597, 1705, 1598, 1734, 1706, 1773}], 
       Line3DBox[{1442, 1557, 1961, 1441, 1556, 1960, 1440, 1065, 1439, 2008, 
        1847, 1438, 2007, 1846, 1437, 2039, 1602, 1601, 1436, 2044, 1675, 
        1600, 1635, 1599, 1674, 1784}], 
       Line3DBox[{1444, 1848, 2009, 1443, 1849, 2010, 1445, 1850, 2011, 1446, 
        1851, 2012, 1447, 1852, 2013, 1448, 1267, 1758, 1449, 2071, 1759, 
        1603, 1707, 1604, 1735, 1708, 1774}], 
       Line3DBox[{1456, 1558, 1962, 1455, 1078, 1454, 2016, 1855, 1453, 2015, 
        1854, 1452, 2014, 1853, 1451, 2040, 1608, 1607, 1450, 2045, 1677, 
        1606, 1636, 1605, 1676, 1785}], 
       Line3DBox[{1469, 1613, 1131, 1468, 2026, 1863, 1467, 2025, 1862, 1466, 
        2024, 1861, 1465, 2023, 1860, 1464, 1868, 2022, 1612, 1463, 2046, 
        1680, 1681, 1637, 1679, 1678, 1780}], 
       Line3DBox[{1561, 1480, 1893, 1865, 1291, 1479, 1892, 1290, 1478, 1891, 
        1289, 1477, 1890, 1288, 1476, 1889, 1287, 1475, 1888, 1560, 1614, 929,
         1638, 1623, 1657, 1656, 1788}], 
       Line3DBox[{1611, 1609, 1610, 2041, 1457, 1856, 2017, 1458, 1857, 2018, 
        1459, 1858, 2019, 1460, 1859, 2020, 1461, 1881, 2021, 1760, 1462, 
        1275, 1761, 1709, 1711, 1710, 1786}], 
       Line3DBox[{1781, 1650, 1651, 1580, 1649, 1160, 1368, 1583, 1989, 1866, 
        1366, 1988, 1826, 1364, 1987, 1825, 1362, 1986, 1824, 1360, 1985, 
        1823, 1356, 1984, 1822, 1358}], 
       Line3DBox[{1796, 1666, 1618, 1643, 1686, 2052, 1515, 1667, 1652, 1670, 
        1653, 1586, 1717, 1731, 2057, 1516, 1712, 1750, 1751, 1736, 2058, 
        1517, 1372, 1925, 1518, 1374, 1926, 1519, 1376, 1927, 1520, 1378, 
        1928, 1521, 1380}]}, 
      {GrayLevel[0.2], 
       Line3DBox[{732, 924, 1882, 733, 936, 756, 1965, 948, 769, 1967, 960, 
        782, 1971, 972, 795, 1977, 984, 808, 1985, 996, 1920, 821, 1008, 1930,
         834, 1020, 1940, 847, 1997, 1033, 860, 1999, 1045, 873, 2003, 1057, 
        886, 2010, 1069, 899, 2017, 1081, 912}], 
       Line3DBox[{734, 925, 1883, 735, 937, 1894, 757, 949, 770, 1968, 961, 
        783, 1972, 973, 796, 1978, 985, 809, 1986, 997, 1921, 822, 1009, 1931,
         835, 1021, 1941, 848, 1034, 861, 2000, 1046, 874, 2004, 1058, 887, 
        2011, 1070, 900, 2018, 1082, 913}], 
       Line3DBox[{736, 926, 1884, 737, 938, 1895, 758, 950, 1903, 771, 962, 
        784, 1973, 974, 797, 1979, 986, 810, 1987, 998, 1922, 823, 1010, 1932,
         836, 1022, 1942, 849, 1035, 1950, 862, 1047, 875, 2005, 1059, 888, 
        2012, 1071, 901, 2019, 1083, 914}], 
       Line3DBox[{738, 927, 1885, 739, 939, 1896, 759, 951, 1904, 772, 963, 
        1909, 785, 975, 798, 1980, 987, 811, 1988, 999, 1923, 824, 1011, 1933,
         837, 1023, 1943, 850, 1036, 1951, 863, 1048, 1956, 876, 2006, 1060, 
        889, 2013, 1072, 902, 2020, 1084, 915}], 
       Line3DBox[{740, 928, 1886, 741, 1227, 1228, 1897, 760, 1232, 2060, 
        1233, 773, 1237, 2062, 1238, 786, 1242, 2064, 1243, 799, 1247, 1248, 
        812, 1989, 1109, 1110, 1924, 825, 1216, 1217, 1934, 838, 1024, 1944, 
        851, 1252, 2066, 1253, 864, 1257, 2068, 1258, 877, 1262, 2070, 1263, 
        890, 1267, 1268, 903, 2021, 1272, 1273, 916}], 
       Line3DBox[CompressedData["
1:eJwVzV0rg2EYwPFri6wkScvxvgsnkvQ4cEKLpeaED+AL8GEob3k7Q+aE1aZM
oVCjNnmpUdsO/Hbw6999Pdd9P7mltWQ1FREJ9XTEeF/EBPmBiB29ocw1g5mI
Sd2lyi0VhsyndI8a99wxbD6t+zzyxKd3H3SGA14YsfeqzyTMssEmc2yzRb+9
K72kxBkXnJPxbV3n+fGPBT3kjXfqjNrJ6xFNPmiQNV/UY7579/n1xpcWOOmd
GbP3py2WOaVDlzZFVvgHxKA3Tw==
        "]], 
       Line3DBox[{745, 931, 1889, 746, 942, 1898, 763, 954, 776, 1969, 966, 
        789, 1974, 978, 802, 1981, 1226, 990, 815, 1990, 1212, 1002, 2058, 
        828, 1114, 1014, 1935, 841, 1027, 1945, 854, 1039, 867, 2001, 1051, 
        880, 2007, 1063, 893, 2014, 1075, 906, 2023, 1087, 919}], 
       Line3DBox[{747, 932, 1890, 748, 943, 1899, 764, 955, 1905, 777, 967, 
        1910, 790, 1975, 979, 803, 1982, 991, 816, 1991, 1003, 1925, 829, 
        1015, 1936, 842, 1028, 1946, 855, 1040, 1952, 868, 1052, 881, 2008, 
        1064, 894, 2015, 1076, 907, 2024, 1088, 920}], 
       Line3DBox[{749, 933, 1891, 750, 944, 1900, 765, 956, 1906, 778, 968, 
        1911, 791, 980, 1914, 804, 1983, 992, 817, 1992, 1004, 1926, 830, 
        1016, 1937, 843, 1029, 1947, 856, 1041, 1953, 869, 1053, 1957, 882, 
        1065, 895, 2016, 1077, 908, 2025, 1089, 921}], 
       Line3DBox[{751, 934, 1892, 752, 945, 1901, 766, 957, 1907, 779, 969, 
        1912, 792, 981, 1915, 805, 993, 1917, 818, 1993, 1005, 1927, 831, 
        1017, 1938, 844, 1030, 1948, 857, 1042, 1954, 870, 1054, 1958, 883, 
        1066, 1960, 896, 1078, 909, 2026, 1090, 922}], 
       Line3DBox[{753, 1096, 1097, 1893, 754, 946, 1902, 767, 958, 1908, 780, 
        970, 1913, 793, 982, 1916, 806, 994, 1918, 819, 1994, 1006, 1928, 832,
         1018, 1939, 845, 1031, 1949, 858, 1043, 1955, 871, 1055, 1959, 884, 
        1067, 1961, 897, 1079, 1962, 910, 1131, 1132, 1133}], 
       Line3DBox[{911, 1080, 2041, 1127, 898, 1068, 2009, 885, 1056, 2002, 
        872, 1044, 1998, 859, 1032, 1996, 846, 1019, 1995, 833, 1929, 1007, 
        820, 1919, 995, 1984, 807, 983, 1976, 794, 971, 1970, 781, 959, 1966, 
        768, 947, 1964, 755, 935, 1963, 731, 923, 1091, 1134}], 
       Line3DBox[CompressedData["
1:eJwVzjkvhFEUBuAzY4JGpdJRKBVaiVovChoJiXbGFvu+x75kYl/GlmASKvED
6P0APY1uGmJ7FE/ec8/73Zuvqj3TmE5ERAfZooj6VMQ1Q5zzUxJxJhd0tXKe
QU751uXksK5azjHACV+6Y5nWVchZCnb98ohD2nRlMlkaMSP7OGCfJl1CJnTT
spU9dmnQFbgz39LCDldsU6dLufcms85TNHPJPcW6C1mjf2HS3MsWn/5xU1ba
PzNh7mGDdcrtHhk3v/u2W66x+v+u/QPh/THnLlZY5iMZkdf9ujPq3MkSi7zq
croRc4Y8NzzxByJ2ON0=
        "]], 
       Line3DBox[{918, 1086, 1130, 2022, 905, 1074, 2040, 1126, 892, 1062, 
        2039, 1124, 879, 1050, 2037, 1122, 866, 1038, 2035, 1120, 853, 1026, 
        1115, 840, 2043, 1013, 1141, 1192, 1191, 827, 2057, 1001, 1225, 1213, 
        1215, 1214, 2055, 814, 989, 2033, 1108, 801, 977, 2032, 1105, 788, 
        965, 2030, 1103, 775, 953, 2028, 1101, 762, 941, 2027, 1099, 744, 
        1888, 930, 1094, 1095}], 
       Line3DBox[{1277, 1174, 1279, 2051, 1172, 1278}]}, {}, {}}},
    VertexNormals->CompressedData["
1:eJysvHk41dHXNi5NKlPmaKBoEEUoCqvSoJEopcxTxgwJmceQmQwhY5EykxBt
U4lCGUKZOZ9D5iYV8tufQ8/3eZ/3ef/79c+5rGvbe+217nWvde/ORUDPUsWQ
no6OjpuBjm45/vT8w5xekEBAjMxh773rnJD82ycaiikEcMgLSXfjz7KS+NQD
O9yQWpPs3TV43WOrz0/WZhBwtUP/VqCNBzL+UC5ZHU3A7RtGmyLzCKhWPVzt
luaJ/DWSI7eEEOC27r7glTIC7rYM6VQ6eKKHSm/PnvImwIm3gyL1hoAzdYpd
hze5o+0GfIUGDgSUMttOfWgmgP2aXOobCTtUNbc9qNEC709IBPR2EChkf8zh
16a66LT018N11wk4PGijKN5MIMejm0rPrbNHB9qyEm7cIEDduGe7cS2BWH5M
SNWou6P86C0B+24ToCihsjz0BYF+fGATfervibxmJh3ZfAgwKfC8NZlLIO33
jx6dvO+JNBh1h15j/98xDRmHPCbQ1suBrvsveSDW4ZhDh2MIeMW+TNUvhUBj
0q+dK/pckaxkBb0Ojk+X9jQqu0+ARA3SHpB2RfeuG6mIphMgCBtXRj4ggPGt
L1eqmCeSGXpisy+VALbASyvFHhLgcfm4Xre1DxKQW+NtEk+AytwHx8hsAtJs
RNmVFP2Q03XDvIYwAqixu7ZolxPwNvLUwHyoP5I8VZ3z3pOAAnl+q9gmAhrj
87bHp/siVr7ROw5WBOxslqT37CfgvNaZBw1cOF8MCdujtAhwzRb4pD1GoJqK
su5IHzN0SbXrd70qAckT2S2GfQTy7A26lpLrgS52fz+bp02ATVt1/7lGAt0S
dxUyG/ZFLYco0q+tCfjC/EBEvoxA57Mi+y8E+qMX3UId370IKO/sXKjMIlCC
6O3+qk1+aCSbg/FROI6D5ZWSR6kEovY+sZ2Q8UEKex8pzuD7GoQm7T76AOdR
6/iq9b89UK1CyJwvjo+kYJnAN/x7x4V8q0UV3NHmr2xCQ1kEuIQeXOsZScDM
x89s3mHeSHn73xX8TwkQ5npobBBHwP1maRXnan/EZ0YpGMPx1TvZ61iXRoC2
ts6ri5ohaE3zWnNOnKf83SbEnlICTEvOH6scD0OPrzDs34nxYMy2dcHgIwF+
p14tS2QJRy5559b5GBPwTDfll/ZPAq4kdh7/yxGIOpPtG+0VCTj9rWO8dh0V
SQVbLQRH2qMMn8vRchIE2Oq/FIfvBEoxXWvGMB2IHGN0DaJP43wbzHbIthIo
9ho3+2WhcNT7gU+kwJSAc0dYIbaYQBE7p0KONIUhOXuKz+s7BMwKEIrNj3A8
BVUPZc0Fo3HTm66csQQom3Nl9cYSyNvuOt2Qvj9yz5n/Zv+IgEO10juORRLI
X1Z+35nD3mjX4GV5PRyfiMS57+p3CehefeKXiLM7Yt6w4axFEQHBPoFhQtge
zr2VbmzOB42cVH6uhu1Nn4S+0wcR8Gtr0AU7zyD0dsx9zc98ArYdUJN3isL4
bdxrJ5IcgeT8O77GPyYAim4zPswkIDUqnyOE+T5iyKCo8GDchl1JsM3E8ayw
7kzckhyP+js0rjoZEjCZIDH/hY0KRnOPzQu57yPbKLUc+50ErIeXKfePUtGD
pytVU7LvoHPSdjflf1PAu67slxUzFS2TCnCOS7+Pio4U/fwpQkDetr5B/hYC
ld86uG3aNR5JsGXt2GZCwHCetf6TJwQ6o8lhT5cbg7j45Y7ticA89cqkLArH
J1ftg37isQh0Ped86D3Ma/ZmlVn5gQSSmDLtXjUViFpE20IvFBDQtkIvm+8u
gcLn7+ayhPmgNtmpeSMcnwIGI70gd3xOzs5kFR1XtEeSe6N4BQFWn0ZqPzsR
sCrpxOwxDR90/GSZhk8NAT+Kx/5KYp4z3rrsW2BHMFKn9tHb1GK+VQ0XP4f5
6YqaPv++F1GoIjW2tA2vD9Bu2jLuR4Dh0HGe7JIkZJbQws+M439BVja4GfOq
Y9BHpufr0pGwMJHugPd9KFLZcHkvFeyylboFKY+RfyWLjTQdAXYKk57HM6mI
KX2e+dXf+yiYoqjB4k3BOJfpkRSios/Ls863rstAt8X8zxStJaCwmPqj6TmB
vB5bsZfFpiFVzvoVcy7Y/9pDZxV9CaTDumPHrvNJaPssHftfHJ/Sm22/Vt8m
kH1LM9vq7VGIO1O4Qf4VASk7G74bORCoILcn8gR3MDrNVTmgjO+rIuRyX8SZ
QD13fO1Me73R1/09b2TxfZmfrbVYZk/A5+AfrUn19uiM8+mi8joC6Fvo1maZ
YxxypL3R8/VAaw//pWS1YH4LnRLbjPkpUV/ztCVfAKqSurRbr4+A9Ol1fyLO
47r58Cb5omgUKjmcrN02QUBHm9yejMOYJwq4OsIhFdE7mtz/hut52GGTsyPJ
f8yWe1mP5qFJnq+rC3EfonaPH786i/uUUI6Z7aUXSOl0lc4kjue3mKT6Rq9h
9MNIVvHaQAGK6o+QyjEdAv0qurEbwwRi6tM8xxdaivRb1+wz4CHgjahQwYIy
gTKahD44ROciC9ZUW952zMuXynh9jhAo6JBN0rKgFKTAZWeZh/0x/8ml9VaJ
QJ8Gv2zUso1Esk6xps3juB9MCwRv0yHQcjmz+KILd5FiP9MR614C6lxOpNta
EMikSjexhM0Dleemn5vE/g9ZD4h0WxKwW33odKquKYrau33f8Hucx69rme7q
YHwqa1MyOWzRsrtvFj7jfV41F2/6jvksyHWDWJOqO5rsMJZ4gP05lHPl/vmt
uA/Ysym0rAxC9UxNOjx8VKBrmHFn7aFA1P4FE7YDD5DDpRT7k1eoYHbiYoOE
JgWeFl62PBaah67GyK38UUyFv+HHV3MFDUHtXdUjdCfrETiF/hlNpsK9+Jhl
z75SkaenW4kaZwdSFlduMnPsB0nn8G/c+UPI07ypKcP4DXqsc6k8B68/6yLZ
a2RCQeefWd9XeJiLMoKfmMTnUiF0TZpM9yAFGbvpaVmNxaGilffuy6pSYX3B
ankHIQIZO6zj/jQRgB4nJPcK8VBhLYuP3sfTBJLsLYguuu+GikbPTDR+x3hI
q/Uq1yVQd/7y7mGvm8jt58CmvB7c746fDhLH8wjd4j/3wgFho2iMQ/qyrQpt
1/5jT48a7Y0ZwjwY44K64D/2OrVy5roFAqLC7BV1mf9jbyy00DuC6zaiUVoh
LIMCyd2PLgcHnXy5+EkFC9mQXuOHQ/Dkjyu14Ka0/OLnMDy5Nvfp0tk+CGmU
vPrZf7f84ucoTD5QFDv7ph0IXuWRXab5smV72CcNno2DBk/ej0tyo3B7i6Si
p5iJ/CyHg8+yt30wJ/5Eii6wDwUxCgTW6V97ufg5CoM+ucuVXwyhf35ab6lr
P6MzDAHmrT2QT/kv+6nprXtDfKhgv1M3y52N+C+7SNbDxxd3U0H1FF8O/9H/
2APojzRFzxPQOnx6q5Tmf+yhmTJbjwwSsKXw/F4St5UlIWm3dE3BddnvvSRu
6wWcmUncxvtftk3msIWDIb5/SdzuPymwkcStp6ydyjtVd/D4ziFF4vZw4WYa
btf5B67pXBkEfL7hNNyyhft5krhlpeZmrT/wAMzaDe1I3G77cJ+GW42fmw9j
3MKV93dpuJVoDmcgcathsfMwxi2svO31m8RtTsTWhUKM2wtq7m8wbiFWy7vh
f8Et/MNtVOrbIRK3XB++f8O4BfHCBH0Styylkgokbj/aT7mbjsXBYRnN8P8F
t/APt5G5qdokbtmHH3BW3XeDppyOqf8Ft/APt/94lVjkVfjHqz6qtutIXuXL
Za7T8vUAUfOqIZJXOfLT9pG8urZpi6IFXwDQtzXuInnVcegM3T3Mqz/9Y/kw
r0KXaZY6yauMHx+JkLyqti9ZPQJS4QT4xZK8upM45ELy6pRe7WbMq3BXkZHG
qxKGCjRevb3Z1xzzKkwJWemSvKpCb/Ka5NUd1jznMK/CX9mwgySvXiq0GCV5
1edI2F3Mq/Bx3kmc5FXen7FFJK96yn9SwrwKzKdLbEhefb9akI/kVe0z0Yl0
QSnwhaOfxqv59CE0Xv2jsJ33qm0kvO7kNCN5lcciy4/kVb8XwSmYV0EiRv8E
yatqq7oekrx6nsUvsZzNAyr92pVIXt2y66Um2ffLOLf9vKzjCi0Rkfxk34+O
8n1N9v04NSflExo+kLh5lRbZ95u799NL4f7M9C4mNqAjGIbV0YI17oMRMRZ7
yb5vv1xBQOJFFAgLOZSRfb9v4v5Wsu+PiOZUZpUkQcL4uc1k32/h5gki+36I
Z6ge7vsgPFD0mOz7IWdc35F9/6SkTj3u+3DJ6vZNsu9v/eTmTvb99j0ybLjv
w2zrDy2y75ddCPhE9v1h1nWquO+DPb+u0n/v+3cX+z786/t0VXLKZN8XVz8n
iPs+ZE8zsJB9n51n52+y75dsYTVbsT0Knhu70vr+c3O+r2TfH+PXvY/7Pvju
M6GQff9vxPcosu/LZ5+ysun1hqSakXqy7/cGUGhz6W3vF9Nizu4g07GMNpfK
Lf8STs6lFrnudKNzPkAdWVFEzqVig1dmyLmUqdLsHJ5LISlCdRU5l/bEyh0h
51Jb1CsumhwBe5rrJ8m5lErlYSHnUvrs1+vxXAr57MeUybm0Ks7djpxLx34t
68JzKeR91LxCzqUlv6P/kHOpPXrDhudSKD++I5+cS2+GXnhEzqV88Qff4rkU
DgcUWpFzaWCZAJ01nktRbfYknkvhYfPQBDmXGtzS6yfn0i0PhTKmXOOB/7Km
MDmXvrhyxZCcS9GZY9/wXAoHA/YdJefSIsZCRM6lZy4Y6Ccci4C093JB5Fy6
IJxFm0tPeTR2MkwFwtP6CtpcGpzjmkvOpdY+bg85w3zgGrjMknNp7XgGTTf9
FD83JabgDj8e0dF0k/DfPgZSNxWXCPVi3QSnO0+vInVTHJO9IambNq9rvYR1
E1R+Zn1O6qbmqc7bpG569Uo07JJmCMhuWKDppvAWLgqpm+I13thj3QTPglUP
kLop86nsHKmb7F4e3IR1E2ysPsRM6qYMub+/Sd2kOy/GhnUTZMtyNpC6KS2t
jaabbLsPB4VG2sOqKxdpusmib06U1E35qiaPV08HgoOzkjGpm5xcBlpI3ZRv
PZ6vJhQOh/foiJO6qced/RCpm55Zt2ocbQoDybtV/v9dN6Uu6ib4p5sswjpy
SN00PjT6oU/fH3Spt6ZJ3eR1IGkrqZuiHFzenT3sDQdZ2o6SuonB4hdN1xty
HnjRK+0K0w4WNF1Pb2K6itT1QhFOL7Guh28PLlqTuv6e7JdVpK5f4H6lg3U9
yPHYepK6/pbOeydS19dw9ZSfV/QDdyezXFLXe5jb8ZO6/nbv2z6s6+GH2M1s
Utcb14vfIHU9r1r1TqzroSC+3++/63rlRV0P/3T9Qel7vaSuL7MUSw71MYOv
y898J3X9L+YCmq6/esqzMDnXA2yJXzRdz+8n3Evq+oq/7U1Y10PssMshUtfz
PXggTOr6LXcXJFQD/WHXebZPpK5nvDZF0/VvDxpAxSY/uMC5m6brX9Q+eEnq
+k08zy2xrgeNcC0FUtfrqeXRdP0aR1E95t8eYM6cRNP1/+PdCf4f707w791J
xK6V9u5072FwVJCNB0BX0f/27gT/3p161CNp704XFeanKh08YUt6Le3d6brq
Z9q7k8BLp7OHN7nDm7DNtHend/GL707WGx2uvZGwA22/HbR3J4WHUrR3J3uw
flVpqgt249/+t3cn+PfuZHpgmPbuZBbtcKdK3R24ju+ivTsdqTtNe3cyf3bu
XKa/JxxJHKa9O3EqONHenZZnmrxWvO8J1DR12rvTui3dtHen2FvliQcuecC5
v2G0d6c9QRMq5LvT+g91x2v7XIExL4v27hQwm7Ss9Xg7uKsU707I+4z2dN/W
pxp+gVUeeq10tp9RCFfsJp1nn9CsijrfytQR2LqBno5cr/bw8QG8HsyKC3TI
9WFbuirI9bKJAwJ4PTR/vrWFXF9i8ULgID5HbOOAzE9xN6Sz39QyE+cp5vAO
Jkuc5zbDx3kP8pzRY+7+w94Y9+bj55hS8dxhMZpWl7f2JroweNu7QZeAvS3T
ToMDuE4Tzzqui96OSge/jN3TxHmP02Hv6STQaoGnPPtXb0V8Z1OM3hlhHj+1
en5VD4HObeesFTxqi5L1ZfKM9bDOfeg8d/Aj5gHeIY2balbIKDj2jQnmgT/+
4lrLMA6b1VQlYd4DvXu58vkbXJ/TLMccxZMItI1btWbnM3d09btS0uMkApzD
fDR88dyU9N3lT2WnK/rG5q0oeIYARXann5lzWOeOe2VxfdiHbB/R87ArEJAz
MdOg8Y1Aj9KF6rx03JHSr4jas2dxHUqLsEhxU+HxjqMnOBQDUN4fPWX37Zjv
7POTPu6kooqgfIZQmyNoeIg3bxMnzqMxb3s+BxUJjKxz4fkciDR3M8bM4/7C
4du1RVSZCiu3MKuqKMahKMo6ZVUqBfbUpdy970JFz27LORlyqSI5M+Gcz6UU
oGPYK/b5FBX5JQ4w/UmKRyHSQpEPxilw6QMRXfWICoK8P2NSzueiZo2zHCZ2
FHi/raxJSn4YMVcnarB3m6GjH5OFWQaH4FicBrtnOBXV0w8JitfkosSXjBe3
3aXAL2HJI3+NqJBhva7Lt+UNGmpcpeEzNgQSsbdMHpp+QQO8duucX4YjrR7n
e5OMAxDS+exj3JshEC5nm7sd+hHJlhj97g+mgKjbmlO/JanokOLT60VfalHo
YeusPEkKqBt9LbHrG4SMOh2hucRCVPFjm8Dc9DCk+Nv/lqntB7ujpvQqW1+j
Q51W8g6rvkDGW5kGVvMxtM541+xRw8/or4JsSK32KwgVLL8V8uEdCGj9iMn5
ekzeQu8SU6boJGw7/Xawkb4FeR28x7NW4AviVPuadjK7F9aXs3eS+1y/ll6L
9wFZk11x5D7Pl6PH6wxfoRPcZ/0qAy3lFz8nwcbccZTc53PlWXa8D4jZVRSQ
+/RcftA8vHIIiR5jTs4PLQCtybxHhu3DcObVeiXyvsxXeGXxfaHBfCSDvK+w
iw4tntfjrrTjeMJtyz20eK6c4DQm48l8auSO08tw6JlOjiLjeeuFncLnFSPI
Uo/rZcndGjAtzrthcnIQcuOqaPm17yVycX4hw233/5HfDYv5hX/5XXPw1loy
vylP4+bEanJBLl1Ri8wv63kxARJvgkzK6zDegC6m+Px/x1vpIt7gH97mLi+j
4S0GXdk+mxQPJRJ/7pF487z6kYnEv9E3DjeMfyibrbpA4p950/oEEv+WOVpv
HtgcgTHjrgIS/+2nBZtJ/G9/98oL4x/kPPc/IPHf7OtLq8cYlZFjuB6h6Y8P
rR53aNZ9I+txKjDkquiHfcDvU89L1iN9zTdaPdboVbt667jDz9EQWj1mClXR
+GpjRl/dN3E3SJu0ovHVXTYBGl9t4OwRSMpzBkPqJxpfRfWdofEV81WRv/lr
b0Jmv/3/xlfwj68k5qxf5eA5Z3S7MiN33g0QUVK9/wPPdVx8K2l8daooZVbo
qC0wHzlA4yu3jEV+czKcP8y2eivIX13kt9v0TjQeS0tpdLJVs4Kv32JoPHax
fheNxyK2sZgfnveAKbq/RSSP1Qyo8BzH84w2mgz4Y+EOC08/HorGc1u9usyD
EMxnBwfkKdt5XVCiiKOqHv45usKG5ufgabNxzrwbaITlIs1P0Qbd8qB+AmXv
lPxbX2iIYt+yswzj+cFZ+Sxt/x/bz2bNWrijOxvf0/bn4/xSwPmHQFU1gqe0
GqyRF2XsfOpxAu4I3ejm20ZFV+uihWvZ3NFp4QTNSl4COn1i7Q7doCJCtXHv
iWeh6GVH50RrHQWsdjxhmlk5jJq6B+xHCx6hr/uEz0fwUCBSS+oYiXPnhNIe
jHN0vyPIjMS55+30YxdnJ+HkcePqvE4H+e3tz+vvnEoGhS2nCAbBAXSaIXWD
tcIrCGSiK2j9MAJjrJyxOr+G0Oih0nNZuq2wxTP6Kd0oBeJKWdaQ5x4qPeKC
zwWNBD1V8txv4kE0Pxu/7X+B/YQ/NxtofhIPrWj3euYSVvaazR34g5Jo92q/
MkaLA+ejCz0aDdZgxz1Ji8NzjqO0+K/xu+G+jdcFnKietPi/1NOjxfmpW1td
XaEhtGly0OIc0y1L60ecGgfmdj1zh8+VirR+FH0m2UdqAvfBg0IHXD+KILdX
+z1/XyBgd67vlRAWKnqQmOr7fL8M8mkPCvXcS8AJ34rYZ2eoSDc9m35E8BRa
LnksXXmKAhKurA/k3mD+uUOZP7BeG609fLyIyYQCHMu+h0mvHEG7GIsfW35y
Rl/eSAWVfh0Ee7+KZyPNY2hS+imj55M8VCeR5zRh/Rn2NKa0k3xubvr3O+Zz
MPDU+EPyuWBTfBG5vmJV2qTHkzwQL5K/Ta7/t7/U4v7wb//XIk9iSX+Ksp/Q
ya3Xhv6G8WLSH/bnw4mk/7dK8s/3C56CR8P1yaT/g9zdl8j7Dpsqz1Tvl4Fi
QdUI8r6C8ovx2awpxhjxUQSuFy/G56SaldxrKoFUQuZLH8lcRRe/cuwIvUKA
mcddw4gVuK/ZaRlYshuhZ339zN0HCUjO0LUv309Fn0usa6RKbFFXyg039VV4
Djz77OpEDBWJMQe/OjxzB+1PvHvZJJ4Cq+0evN7oOIw6j+baLu9IQuUrAxtH
I4egiZ/egPXuF/QxqddRb8srdG87G10/Rz+scuwoeN7YAlOWsl0L+eMo2Yoz
Ocq1HiS25p9vSO2Dtzva1/UcGgRVuS3Pa8wGwW53p6zAlRGkcipAkVcqD3ac
aWckTAchYf1eQ90pKnqntyHDpzYc2udKf3McxP6sN2CgalERi9jwrw2srhDe
Sx8d8JmC561jjSMbcJyXrRynVloAe1BZeZog1t3zfL6aWE9J9Z1rGmjWAamX
j/UTMK9aHepIuHdiADY7xC1bta8Ffbh0OT/h5jD8hJxzpJ+nTdVYsJ8o2vRO
IeknUWR0SVQ4H9KlosLl8/oRnaFwjnzYF9Af09i4B9sFi/dnYTtwdJyPI+0a
YYEDKw4NoE6Vpmemln3wRkU5c953CO7McWTM4HzFntJoMhxTxfPty83aOF/P
j1Z9T8F+nonJG7LxUwe+59Mx6thPFt9NNP/l9jGW9zTroPlDT2j+/8r7yfIL
59dT9G3ngVIdUOBXdL6N8xud8CXAg5eK5n2ywoQ9jGBzm+sfVhwHSdWR92R8
FnZnioxWWqBMr5+lZHyqRQauZx2gogw+F6EkBUvwfPRa22Il5r3SoZbbOlTU
dXaOKTvGDm6qvXtN94kCh2JOLyfjX9J4nY6X1RW5BNvFk/HvzRW7VRdHRT4N
5sP5Ih7wO1imJOk+BdIopWZbf1LRiYwMtZy+AKh6tnfeG88De1VtrpP5jdv+
QPVObThaR88wQ+a3SuOWprfvMFpZNzTW/DwGpM94Bgj4D8FGod21ya4jSORu
643Od49hYR1H/aqT/8HPqUX8oH/4CfRedkaFfxStp6ypsnlUDvpcZbbU0D5o
fXRBEAzG0MjAxy0pxW3QL86pu2GhBe6bv7koe2EEiQf+6VoIGYRoVpE7koXh
4FG41Xu3WTs4+PXeyVw+gh56PU7au6vv3/v1//g3Bbpm03kk/m/9yiPxD13f
/BNI/Nu4l+wkz5WVqVqFz0Ut+8/rk+c2WD+pNOT+CBuSI8XdGG7IL35OAOEY
fJ70f+yGgzr2H5Uf7LAm/VfTFDUk6+4ww0N1XHdQipppdbfW7OgrMj6dGuo5
OD5IxODkOzI+u/lvaZPxvFElWtTyPAapWg74kfF0LWt9Q9b15SpLwHUNw5yc
78i6jqmzNSHzFfbhBV12XwA6eK97gcxX3spsezK/f34Hl+WJeCCFnpAiMr/H
NXdokrxxXzPp8pGZO2Ck1HaR5I3Hce8bSfwQjb5rMmPskG6QwjsSP+phmXok
3tKertVMULBE7odOGpJ4e3lz/jbJSwMenysxL4FhW7YzyUv/8LzsDg3P6B+e
6Vf9oOFf/tzAGdlSHUTvdYKG/0EGfxrvEdJC12zYjWD9rT4a73HY2M2Q9fVD
USnmlp86eiOzM4qsr+qMa2lkPU6ldn7A9YgyP/gLkPWo2TV4lOTVa64MBUky
V8H2p5sAyav/r7zHeb9jOzfwAY1JdbwyfDyBPv3O+DF/IhckmqtFSHtL4/tK
bIeui5/Y/mJ7dvy5a054Tltd5rKwm94FCU6+HbTDc5qQwINeri4CGp5IRpyo
MEGuGz/vvW1AwDHpLWVfuwn0JMAnbyRbCc5eZU5LwvNVV7zB1Wd4vpLk7nvs
Y3EWDmvtav+O56vk1Q/NKrBeNo+O/7H9oTuq2T99kBefF9TGxcX3qhp1ZXJl
rFRoQBeTTjQzVU1AziP39aQ9rINx3SqFBmhIT3lH2i/kW880UobRby1Gh85H
vWjs4ZhV2dsOYDX+I5fsPgmCFjmSA11W8mKycKLD6TU8i08qm97QhTwmd+TL
h76C8KyzWr5yY8ByUNCYrCPKF9cAXEcQzPwolayjP3yt4cq9VOB3l09U8v0A
a1fL3IwxH4SxFDVafK60iDjupHeB3z9bafFp44+nxUfLgeWCYoUJmAt8osXn
596phEYcn737PA0xBKGC67h3DY7Pu7JiWhwY18xbbXvoDtnUlYfIOKyIeBtN
zktH9pjr4nkJcQZLZJDzUo/Pg88kb3888b4Y8zY6+4U1l+TtUfbrVgl4Ds1n
1Ilm7HdCmoOuZ9VTCYjVmaSdy3nRREOt7SKqOHOMdu6RmIlKATwP9z99ckZ2
myASKHf/Y43tehabdRhOfYbWsxcDVu+uQQlHYg6Ou4/BL4adDbd/N4Jj0m2P
N5xNyP+DSp4vywREWTn9YvZ+j8SNBHdcLm2BFkm5UwNnx+HSbxAMXVYKuyM/
pvXYEXDIWnzeOJgAVp8Tc2S+njuMmOB8gdhMiCWZr1cuY2nvdw2hGxJBl3bG
DQBrLIVy1KHvf+IK/cPV45JF/9mM2Zd/3SoILd2L/rc4JLNt6CBAuiPtzx+B
68hYUssq2BjXrzlTVxue2y+sL7y2c8ANOdRq3GPE8WKqGqHlN+CMbDrOL6oY
ULYm86vkwCtE+m+5aXcy9h95MbfQm2D/w7sSLe8lYr2y570udb0zeOxUztFL
JmCfkZPvjWSM5xvaE3vwXPqwT2fEBq/Lvf2Itp7rlvtmynpntP71Jdr6rBe2
i+tb03jF8Hz+bP9V2nr+mXBOo2ECdu71+CS+3AG9+zHnU3aZgN8SjmuFpvFc
f2+47meCLbqcFPS38TwB3xdehNYtp0JmQWtf12Fv9FROU0voEAGhHMpNguxU
+O4nkzE864FuLItvVt1NwHXbolxBMSr07lKJ2Todjjgrq8NN1hHQSPeoaud5
KjSWV+eWPwtDGVYjgeMYb08ieW9cc6BC3RvvCjX/hyjp6LZLLUUUSDAvz7j6
ggqGUV4Hds48RBtFL2XxWVDgSJ32o/oqKnxi0PASDX+B5rMGFUt3UIDNrEeX
QXMYgqvdXJYVV6BYnlZ7UBmC2dQ1h7/NxkBtc5uo2UtJ+cB9qfkh85PQe3Y4
hsTDrvZRY4wHFJUh0k/i4dnZz2nk/iHdBgZ4f2jv+HSS3N+P/5JML9MwrPsz
uXr2cx5s0lZpNp0bAmeP1TT/x0PnhrH/0BO3nub/vZPT1UecqbAiuqKiyikW
qoV7rikWU+C6pnUOGZ833l9lcXyg5ZLoPTI+jE1a0+oiVPD/K3pQ5o0fvN7g
XhDCSoCqvHkEGf+mLZ6ZOP5gWBR9jYx/UEzk0OwCAeldL5VUKY5g+OLS7uuA
89tlTqtTJZ3r8mv7nWBtljetTidUu9nIvNcG28qKLXeAtTxv/ci8s/bGa9yk
ECBwR8v+g5AVmEZ6ifdc/b9wDv9wLrtymXgU5ttdZy3jXHJUQKKlq4H9OgHG
jKtp+NerCU8QHnADRhM1Gv7pKw5/JN9JzBj3LCsILUCfrt5LJt9J/oeOQ/90
3MKqQY+apgFUN74+npL3AWk0xC+fVh2Gc2LtpeR7UV7aW8G5xEKwiLTkJ9+L
1Ews/5DvRazMvAwqW19D5jZHOfK9iFi1IZGcb4V8+Ffg+RaElR7nkfNtZhAd
zf8NozZcnjkqaFZz0f+puFZtkpdERV4+xrwEBhMaMiQv0TeyrGqa7ISw62eb
BI7IyS9+jsMzu4k3JF8Z587kYL4CZvnobJKv6N7tnCT5X+DWACeEvkLJO36d
JfnfXKl3OwvmMZcfzZcxjyHTLx4HSR7TtVzsXwtZ3dvuWpxFGeKL/euyvro2
mZe95ZVDTUJW6PWj0j1kXhbOUfrJvNcv51PFeUfPD23aQ+ZdZtuLCRI/O9sD
8zB+0Es1uSISP+yH+mg4LKn4JlbtFIs0jBppODyunbifxLOp4sYzGM9oYciv
lcSzxcoyPbKOHFwdvXEdgczdG3ZkHf2rR7PFeoR/9dh/PYFW1ydyD3zFdQ3L
ZQdpdZ174xyNH7q2VK8fmfWAnXb3afwwuXzzGpJnzKgLDjMJtlC9Z3qB5Jni
lOXpfL8ImD7amZruZI8YLr3bFnOSgPnffOOfNlPBAI7bKa7yQSGdVkPTm3Ec
PE+cNNCnwibmjB2KPpFoYfjFe5NWCkQT7eUWA1Sgjogv7Od8ip5m2K+/j+dq
O5vY0N3qw+DevHG+pKsWHVjgYro3OAid9V6i9qs+oQ4NnugNspovFz/HQe0t
OyL3iWdtouB9oDRVkpXcp7LhNO3c4rtoBT4X/L4g2rmsp6smST+DDsXIYj/h
mlJOP+nnv3t9X7wX/LuXStC7au8+3E91ZxkEas2hOe0E06Q2AW9zyny4fQfR
Mf0hpzZ1E/nFzxG4wnX8x8WvFBTQd3mPeGop0jdNrQ5hpMJq3uKYDkYKmj3K
z6xGfYF+9N7SYuukQkZnSYkb6xBqZ+hjVHapRCyi9TUFd4fhbWOmnHcvAabp
z6zaT9xFRZt7pll1CDggXZPGMIp5KNozLbnQB2WFfbOMuIh1t7jnB/0vBPSG
culsDXFHj0UtBbwuYZ53/Hnl0TgBnSlH1A+4RaI3I2fZZpTwPHeE7UDxcvJ7
Kyk/XwSGowC1rrjPMnjdp/etl1ZSobTy6fT43kDUviUnkw7bgwMj2Zx+YJ7Y
U/BnqCgF2dt8k0w5innnrojcu61UWFfaEFltnowG7B22R3BgPXh5+8liUdwv
OFj83INjUTpllncB86dgEj/fw/cEZL8ocH33NxeZFx04YaCG540yK9V2XBeb
JhhWXD6Zj4zkTG4EfaXA13bROndtKowupy+Szs5E6+fETHTeUGBzyHel5GmM
o9yefRkcZajuzl2kvYoK63claFrgednEPe7+Tv4aNO1TciDbkICHsUbs/duo
kCdXs3CXtwoxFYtKmqVQYGh958xs2gCyVunym12bi9SVR4eSxkZA1aKOh/Rz
xlT5GvYTzMxWnyL91Lh1RoX0k1JTNKZ2Mh/PtWOWpJ8fB3tFfI2owPZo7Gy5
YRE4VBQoBj7Cc9pfhfVk3EJeX9tCKUoB+9di+8m4ud3TkyHjVnNOYi+OG1jW
VAqTcXsd/zmQ+yQVymO4nudvSwW7tCPPesawns1zukbmcUDSwwbnEa435rCQ
edzmZC5N5pH1YksnziPkfHSKJfNoQOWai+OmwsVxfXMN1giYSSwt5xAi4OKf
aXkSV2OjL+IxrqDWKXjqv+OKZRFX8A9XzPOsA/Y/cf75HZbNa/mAk3O30kdF
PK+OFRqzthCQ0MFyemKZBxTPGVWpWmB+vqKqe6eTgMjS2WofdSeQ14/ZMIh5
0vH7+XV+uI4a0pvOrtnuCKPU41yVuI7Y9z3a3oJxW5qjOTv/3hqVsB7OVcO4
lTMZuPeEgQpDa3vz6Qxckd1Fu7rL+/E8vCFoyPgQFUz+/o3OnA9Ee+Tjv+rS
ETDqz6NIH0MFdefWKKdrSch5r8DW+WgKiFIeEnX7h8Hre8yNbMlitOB5L9e8
YAgidhmwX5UioFl8or3/9CcUKBpZ5jo6AA2aMR8uFX6BVmH9uaeHM9COtRWu
YSH9cHdp/Z/F9XB3af2//RMW94d/+08u+RO26A/YL/mzesn/qTma/7Bryf8T
S/eNZaDdFyyW7su5FJ8fi/GB50vxabMKYVv4hOtJWC9eqNAAOGXSlsVjnNvx
F8Z+HCeQ0oJyzk+LK2CV+PvlZRU8/3/26HrHTEUs3Gvp3ZcbQj48mzkqhuuk
jXEt5RQVpcazppVctYWdv/ZO8WA8ux1fr1VVRUWrpqTXriv0hYljWpVqNyjw
5fDobs+xYbS6asX2w6tTIf/eEH8PwxDsu/h7ak/5KIp1drm+Vb8BzuaGx/Cr
dv2XvXPRjuSW7GNL+3As7oNyl/bxWjr38ATtXDS6dK72kp+Ri34iySU//92L
m4d2L/TvXqZLcTi17AIZB+SyFAeP2Sw5//ctYKYU+YBVaAS6b+Xb6G/th9J9
4xxWNwYhVMJ4U6boAJp4EKrg9bof/i6tv7C4Hg0srRfjqgu/9YVAUrk2Aj9D
tWDv8QaiAedFJyzAQZeC7SfY2Zn3aUCv9xWj5dewvgjqX9s0Q6A6t2zJyIf6
ULeR+wcLrqMFwaRJrjVUNBS4Zw+l2QTo6QrDduO8O/GE9z+ioyJjifLxSfvr
ULR1bP2YPAFUMR+tuS1UdNWihDfIyho845TzTuL+dbKdlWs3UNFZhknJ/Zcd
QAIF7TKcp8C+/FXNWXupyPlmB+Sk3QLrzMe1NUwE7HpsGsdkRkWK+3O88nI9
IGmqydOokQJagbHZp59SUdHvRJY/6wPAz+CE14IvBayVBteF3aWiklYLOqYz
vjBozpjMkIn7qYSmdwPTMJqLOVp3TzAKdhvwclG5KcDrrRTxPnMYHb0iskKn
IRXedZcgbbUhqJpabe14ZRip5fdybdiUBCFcYCv7cgi+nvw8uez5CEo+QIlm
mCuAe9GuNon9A+C7otw98OQoim4IdRC2rYUy/vp200u98K5D6O+G619QEFOg
nEFGJRyfXdhg5NcPM+si9YM9R9Gli7ImbL8/g/98dHLl6HvgTRJ6kjXaA8NH
hxM+V4/Cl5SDqwtXvIQHyYt2t0U7WrFkV5GSXqj7+AXB1wDhOekOhHhFpuhY
OuHr0v43F/dH1kv7f1jyJ3vRHyS75I9JUu3aMYwb1SgW0xTpHKT9QUufI28Q
Zpfu+3zxvshv6b4VS/FJXowPCluKzxOtAP7iT1SUr9F5Ne5+OJL/w/v+pgoF
uJbiv/k+Lf5o21L8VZbydfcjLV9opcVivqwOiDPRX6Kinwwpe6KXuyFN7fxm
ToICO5bwULOIB5SyhAeFJfzctqXhB+ks4efX4XCV5xxUZBTVo3jfwBLJ7Ht9
lEX4/8In+odPzSU8n13EM/q4hOcda/dKXJwm0CEv89Y/f3URX2H5tXI8Z/It
1UueC61eUOlSvRgs1Ze+Eq2+0Oel+nq3xIcvd9L4EG1Z4kPGgzLGJ3qwjg4R
9nxdaoTiXCQYjuhhHbWuyXpZF4F+iMmxpX9Wg5+OHd9iDfD8kxDzaKqXQLzn
Aun2yV+B/freBZG4P1bw/Vxx6lAbWiPFONDBMoAIrZPV+8SGgbpkN5Ck2eGK
9qLdRuLZkfuICt5a250emLVADB3n5pItg7BDygq+2eD5bvp+Hr9pA7BlmizL
PD0Id8y+3rAhv788HHHfecEI6hB9LTv2U3TJT39xmp9oZMnP3iU/HRb9RGJL
flLbt7Rex/1XZM0vO9U111HcPNM+GaybPJbzN55/g+fqZ45dXyTeIq/Wap+r
6wfBdqnfWS32O8hc6nfNjHf0yiYI8EwTTpDZYY1u3HyQdvECAT4/voevwfPM
BdGIl+sTbVB0v+nt1tMEZDG6Ltdgwf3L7fDNK/UuqO3Jz23GewnwF0LMe3mp
sNBN+Rvj7o5ClYGbfBfl95swZVOkQu8Yo3akaBASq9O3mMF87nPKlT1KA+tr
bqbdvhmhSHP1dFZlFwUYIldFcxZQIXhZJV/17mQUU8/bmHibAkrvq9PVeqiw
f1NTWXbsQ1R0qO6Q3QkK3JpKl8ywGgbjch/JaasXqJ746RitNQS2dBL81aXD
EGp6r+HpXCXyCr1dvLJxEFamVtRelxgGt4NKg8dX5YHyanUYbBmCQb1j4ld4
h8FAu0T1uOZTEM22fZzxZwh4fMPuzAfi+R0tk75xOgZMYtd9eZ1GgXTnQRZD
RyqI73qy8X7MPQjSUH07+IICTy+dHI+SpAI34bNqVOUOPMyLDGNhwPrqfZ3V
xC48t/AfV1jw8YK7xW+dbrBj/neyOeK7ggosH9XWVP2yh00qK4cqDmKef+6j
IvyXgCc8qmYFhrfAq0NAXOcIgX9/zxexYQJsi1ccFY80B49SL02OK3ju5bCV
2jmE57Eu1xe5AyYgu6Y+SUaDgK6c7W4nPxEooNN89bOrF1BZg46kNp7TMp8z
SrgNEnD0fGRdwYgpOlO/xoyC1xstnXuPk3Yu0l8613DJ/9Vbaf6jsCX/ny3F
YXQxDsh1KQ49S/H8q0WLJxJbiqdp3BHhkyHDYKcwXceSUQHTrzem7OUagtNL
+V2zmF8oW8pvwBJO3i7iBC4v4cR3CW/ve2h4g/AlvAUt4VZ4Nw23ELKEW7UO
0Y07Lahw5Hv4zbrSLnBul30dZdgHncN9M5sHCERpHchiitKBY8GRA5e1CPiU
V8CUP0Gg5ZvcNVkTDUFZYc8uS1wXx+rXV4nNEqj82Zmw0wfNoGfKgjngGJ4X
vx6vXGChoggOH6HUxzZw0FIxcGIP9uccvVy4EBUZcDksLEt0gJJdGuOqPFgn
XNQ9Y3CGiqQfeoRPCXrCKV779r1TFDh2oGbfF1squv+jm2l7jj/MqYeuOVNN
gTD75v1jeF46lPooXPJAJIgZpo6qm1OginKLMrR5GKEvbvObu5OA4Vz6Wzc6
vI9fyNPkj8Ooa+gnl/fqPBj5+OnIZtYhWJtNt5shdQSpHWsb2tJRATaaV4/F
ZQ/A6+tKFnuNR5D5lvia5P2dwDT2Vs8vpRv8Td++9cqvRClByu+CCieg0qet
KsGwCQaqEjtJu99xhzpsR0bVQVTS/iay2DVsaADu6R7J2E9Pge4NFx8NruuB
COaRxpXHCWR+bdZDVXkQ5fCkCxygdoDWkZT26V8jKHRoI5OUdgu6FbFTtO13
LwSGCguTfsbrfKBgP9GtWevjpJ9ZENP+Lm0YzYyLPvX8kIkOxUs9GVQZAgp1
5QAZB5kfW3i2dCehZdHeTWQcBj7whXVmU9GsnF2AXm840ncWOMzhheec1afF
yDivYw/8I5jjj8oklRnJOOdRGl9OHqEix8TzD+qj3dFdnXaVU38ocDg2Bcg8
Hvx2tYM+0QF1c8Z8IfOoP6DnPLIW9997QQknNayRIneMxSFJPIcT1TUkTl53
DwVhnKC9ZY/WkTi53pAnlDlKoKo0E5OyqwaIVypgWwDWX3yvQqRi+wloORX8
QEHTEDW/P5/yGePwoX1C2plOApW1xkQ43L8KTNt1WjUxz3t6K9mTcdatYi3A
cUYqKb7xZJwdB+JekXEWfuIWguMME8Q8DxnnzIyXhZYz3eg8dyEPVzGBxrTT
BaXa+kCidubcq4BR+Ng3uyN4Xx9cvx+bWcDyFHRWNQ077xyBkafcJfv0a2Bi
duUpB75BYBnW1j0hOgJemz5krbFpAv8PN4XSNw/AfTd7Ty+GL8j69IaQL171
qEM1ZkFavx+4vVgDRHJz0MYDodfKWcfBRiW4MMjxE4TYLdbdvR8yA8xROiho
82LdvdZuuFsVPAxRju7DL7w/oj551uz47f1QFT2mQ55b3hP7Cp+LWO+4bSPP
/SCu5UGeWxLP8hifC1Trrr/kubuvaIaS92Xh3SuB7wvU97zryfuq3VccqsH3
vX9VrwvfF9V0jx4n79ttf+QR6WfpEw/ST/SlWZnm51qdmh8ruwl4r6TGMcqn
D4OsXSUB+gTEuUs+dOgmENfwl4XQVE2Ut+L3pw3YbpW4uJ6d4aXbFz599Ov8
/7oe/q0/e8eydegrAZcHDP0+F91AaZPvL7CfI0D7nUF82TcCfTtcueHe5+uQ
VTKXJHeWAHrjDpv3XFSoaqp+ceurI+ovzL9euIOAmW1DoTE8mE92UI3fztnC
quuPC78KETCtfG+X1GUqmKnSKXi13kXn3ysYMw9S4HX6M/eMa1Qk2uLKNbjg
Das8zmoX9FCAyt155207FQTPrz9qcDQJnZdbpRh0gQJS64wc5QgqmgpIjKgq
vg9Jne9lsxUoEM1bv5mpbxjYvsok/Xn4Au1VtRVtax0E0eHJ3Zd3jSC5MIcT
Xm5F0O7/QPtH2CDwDBcEWp4chkcq30XE1TOhg7tiF8+rITAPflv60HAYXTk4
LfgzPQ1tLj8hHv94CIrO8Os8C6BChHjb7ky4B1v/GlZIZVDgzlFbc+MIKvKZ
v/hNuTUEKU/Wc5YlU4DlQ/Xcb3EqBL16oP81zROiZCRvrFqHddANXd4SSSo6
fZ8rW2CTC4rb+SlSFfflGvZ9PbfpqfBh9AnvLw5bKF97bMuULAFabeePZS/H
8dHTvNF2yBJtHWM6gw4RUP/qwYMiAuu/3qAHPXTGYFd22+mBOgG+yzwZVKgE
+hwx49KRpId6Xt27vBzbX6i5nx/uIEB+WDsudIcusE0c8anA9Su9/enz31jv
J9q1/hJWM0WtkZH0slhXxgyqJZH7X9L9+amXzhg18mQ7kPt3j9auJPfn9Xta
0ZmkBx27ta+S+5eXvj3ltoYKW2zv8B8zsUP6ORe3JEsRwJK14xN5r9NFrb9+
c9iioiizbeS9gloeHCHv5VC9w6TjkCUc+dp8jrwX45Oe6Fh5KiQ3GCTCJR/k
G9UsE4x1ZQzj+r9kPC0D/eNxPNHd0GZzMp5SobMbyXhKT+WGb93kAgyt3BFk
PG/2KRuvfESFv3NF4/tZY1C+Mod9VCCe98Lb9Mk86vFonMN5ROqKamVkHk/G
GtHyyM5ns0mlNQQ0r7+k5THZ82hCgfMw3CkYlL25kIeMpxPNxByHgFvU3p/E
j9GMGQ/GD7LtfihK4ufr3h9lJH7WBe7YivEDJX9e7CHxw6UfbmSQMgy6mysb
Dog+g5pvQc/cDw+BYPTvTSRuhZbtD8e4hfEVb/aQuEVv1guTuL06I3IK4xYV
t8zokrgNau38bfccz4Es4pm76ePw/eL4jO0p4PWXx4+sl6HsXE5cLzByrurE
f6+XmcV6Qf/qpanKSePhSSqUpi9ciFfyBS7jv3pd3yiQqy4gQtZp0/HlHrhO
wTv9jiFZp0KPwYus07JKtyhcp+hWdLAGWad+6JyCNTMVVhrFqtBxOMB6jvUd
9mIEHLzRRuOHj+vEfth9dYTRzpz/gx8OLvID+scPO5WSKqbGCfhgIFos+8sM
dL8dK9yjQkA63bs2kpfGQxyaOopuAAvXDWWSl/6AEY2X7EQ69MI+X0d5W//S
eIk9v3mT2B8CjJ2dvzl5WqNC6pU5v+MEHBqXbtPeRgUYmZfsDHND+3wLAlx4
CSh+dmT/ZksqtOcV2tVphaLzL0Icpt9QIDb2qPi1tcPg1dKyU/HAI5QV7rtq
PQcFMjWUMs7hfmSrEMKoZFCDegOmfVNxP1LqN6StpxfhHzh54BHkuafR1ovJ
+R0g919R+FEF7w/D0gfsyf3Zvn5uJ/3pfcsojv2B8IUpP9KfU2OtNP+JP0/8
HD2t4TrrNZr//R3v6Mi+rBE2R6HTNoRztfEfyb6stkb2zs75STC0TjJlNHCS
f/Ek78XuX7Hgue/vwsLCJKya7Hrg6NQmP9MY/JU7UlXu+6eCHVe/jyO/7Gs3
LDw/wp6tDad96d3+n9/f+P/LvqHs1Vby3ESjWD98LlKzDj9Oniu5t0WS9wH5
fVL2VZsaPZAUC8vq/FSs4wY5It3S8Zw7keLx/o87UjrYwXrpPgGyN2sa/VMw
X8mnnw1J9kaMc+ynNiYQ8MOdkqqbjfnwHWf/CglP1MAloacZjueWqla13CcE
sIUGaVEO+KIvCgmr6yIJ2F4/eWKmCOue1CcbkkM8UXbVZ85n/gTmhSuxs88I
YPKMGE4f80PPMi2clMm/gyDsfOxdBdaRuqYT1lEeyFt9n1+rG9Yp9llHD9QQ
4NLjdM6p0w8J2EW6TTsRwNBz9kBPPQF7nVt3tBW7oMpXp2wrbuH+++riRu5W
rJ8YEvaZLb+DFN0+ZdCbE9CZL/OprgWf8zw36bezLTpR8aSqA9u1x5dnfhwj
kPsl+4wAbkN04W7Y78uqBByo5+s0HiSQ9LbyPZm/XRDBe0OgDOsm5/gnO269
JVCsX7e5LYcLOquUkySMz92YNrOXt41Ad14a/fWM8EE+QjYPl5nhOcc/mN2l
Euv6D2G2xdYeiJUtxnUbvpfLdbHfJ18R6NIy9SSdUj/UICps2+tIwLdr8Yb3
nhOIT3qd2h0ctwsaZcVcOG57DDvfvS8iUM4pk7Buen9kuuIYrwO210/cfNue
jet0f06qgqIn2i/1MZwSRsDVWIGHh54S6EPHX49GA18UdslK+SDOS9bVK9Sy
dALVnFDsuM7ngXxGJJm5cN7DFJdHdaYQyPb1D+aWD96oEtlk1WHcBCkIBYnh
3/vtyJZQstobaXxXH3F4SsCco1vXGP69a9+H9BfssP8TUvcc0whY0/Ajwgfj
53w8k1iaQhAyeuyw3Q/vk7JnSsYtl4B30jLs0o2hqPZOT5tACAERflpGtTi/
qv4bkP2fMFR0cGqPJY4DW0/mPtMeAurCVn++xhyG7g0VMfnpEJCmeGOinJGK
tJMqtNZw2qBN/IdbVfYRcJz3Q5ToHwJ5d1qc9kn3Q8eLX79+h+dw+ev7tY/3
EUj9iklsUE0oosv4dDAX1/XnfaX9lq8JxODiUK6Ez63/M7ql0oGAr116a8Lz
CMS+NdJ3dCoUbec0oKwKxv5FSolxk//PriD0wzkqCP3mzMqYjMf3fHWrRSSW
QKtucQZaIz9kfruwVQrH4eexcwUiGNdrvx/NbD3rg9rrdPiv4nroCJf1PhdI
gIMNGwdXcgC6eGCtwPsCrK9V7cK/4npS9vrmINUQhtTPK7/3zCRA8jd7eXQy
ASs3VVdRLkehkQNdxQP43JR1N3ttygjo3dXbFm4Yi5i2ztPXuRPAq7huTwOF
AJHtj/06X8YhXeNXfGfUCBh4ckF46hgVDby6vuz+dQ9kxsf8dP0MBewbN55J
4aOiI78MlbPZoxCPZZ7qHn4CmJN0/9qMEGjHY4Lx1I04NFvfvy0N94sf9XlP
p18S6JDqbPed6FjknIPiJF0JqPXMU6vH+NmUq65fnR6F7iy7OBUXR8AClPLr
RhDIgs6c32l9OAoe3yq7Gt+Lz+9Dj04ggQaT50/vWhGINlUoX3iG4yAhvqPa
xhnPy3ULslVR3sjcZX3ibDUBj2q/5QvcJgA1mdW43g5E6w08KCWvMY/Vak2M
4bw9jnSJSZ6PQBxCGQqdrwiIfn2MTsID85DOFnM97niUqT887/uCALNZJBKE
4+exI2fyHk8qMvcQ4k7CP3sJXtbP6SRgeM/ul0qe6ajzVmlrylUCUr8d2R1d
gHXiiwnRxNkIxG1vVxvrQoHOctuayJNU5Fb17eDZNWlI0iGQJ2mEAtIh6WN8
/QQ6Oko9bOGTjtbbOJxZhfnkDyfjy6JEAtF9czoabZuKeAR94nfg+qnfaeu5
3JNApsI3y5hz49Fe6e4e/1J8H5vl2oQDgXqSxnbaat9D5h1erPX4XhRJA5V+
bM/5cljq3FQgur3mNPMUjgMDPaf1LwsCig6N8wu0uKPAa8EvrZoJ0C28meCj
h+O2m/eYVZEf4n4WT5HGukVL+I9EG9ajO4IE+H2mw1F8yp0v9iMEbFj562HD
SQIaZFnBRS0BiVnsnOH4RkAf2wfei4oEKKklKMz8foxGNu5KnsPrzw13y3fj
/Ce/MDq9800BKqJ/j3ISCRjJvnZJP30Yfa7lD9N7mY3UNfyjrioNwQ11uxPx
KlTUdjzx8cHhYuRn+seTNZcCB64+EDIJIJA+p8crEbVCNL25XmE/5rEa06bh
T6cIVJJ48+GTngxkVJbxxJNKgKke3xaGkwRa2Jd6ZbNsIlIdTC/wxX5OFgXr
jaoSyGBlM+sd3Qjkl9V07Riev5VGfpc06RIozWzfic5d/mjzqjiuQRyHgYgb
B27h+LxwLduxT/om2jJSrfwX27tu13J2nyfg6NsPDwhPF/TmIJPz1BQBg/1l
+p/I/2e7FlvGr+CHqlZ9t3JgooKUVO0JMzoCbmzr1JbpjkTB94hfEzJUWGOS
+3hNDgVUzfQCX55PQy4jgUJTLlQoCDi4aaUEBWZCjCunr5Wi/JmL8zIvqRC1
K7AwxWkEPeGbPX7EuAXdO+moKIX64MJC/G7+gSFUbOY5ynnpPXo0czrbEvc5
hj2zmuuEKOgXb5diC3cJkmkzOr/9PRWmkraZdadT0D3j3trnSenoyAOn0aNe
VBDKfHP5yRwFEXTW5dW5UShMomPmlBwVjn5ZmOjcQ6CNEz71hoQfKn03lneV
hQrF/GOiz84RKFukyHqByxVVNHntYsLzInfKMo9lWv/5Xmoes5PJ7QH8c2jr
n+4T/7Fr8p/cT/ebgJABXZdZ/v/Y5fMkC9w3UWHT98gtIl0U+Jq3YuuroAMv
A2+UyCRoUUHA7cmZOkUKbKUvfJx+QvLlQGrs+x0UKsxHlcrfihuEyRQz9tCP
UvKhLkxKPKdH4JXM5EwVZRye/orSVZ6zkB/3Gdzd/P4jUJa+Z9K+9D2T9qXv
mWyMrpZTaBtEewecf1qv0JcXeG6e37VxBKxZHD/2H/ivv7NBp33jWsXu71S4
f9Em0+vjf+w3Q2xbqfpUePttq6f15v/6exp0n15cz5rYQgWLN6unvI//x87b
N15yHs+dDT8XpEm88WaEnhaSvgn08kZKJN7udn7jIPH2UHDjrV5PFzj/aYGG
N3U+BhrepFnvHd+m4Ad1V+2tSbx1nNc+SeLNR+7wzYPdkTCaw0nD25bw1xkk
3sQv8e3BeIOaHIogiTftlZ9oeLsid+sBxhvcljGi4U0jz7mAxJve8JwSxhtI
i4ifJPHWxOMvQuLtrZtdP8YbtM3K55B4kw7v+bJ6LwWt5nsgJV9dBlEU3ROJ
RVQwU99wk8TbRQHdp0VJ6WD9/BiFxJujXIomibf6oD62itwoKLCS/EbirVX2
KA1v7Z/kDl4n/CDC5m4+ibcTAca7Sbz1zFPc1nC7QufDit0k3hoE1W1Ifls5
eTJ5U4s7yLHeLif5LdqIN4nkN+v1vlUWRX6gu194iOS3m1y+0iS/zUl0mnlP
h4O8myxB8tvEo0vpJL9JHwxzwfwG8u9qv5P8tstMnMZvHN7r/DC/gemb2zR+
G7p1F0h+c3PYLI/5DZIMlGj8JqsmrULy20kZ2xjMb9BseS6W5Lf++sljJL+9
e1bcjvkNpJhee5H8dig/fwfJb3CqIgDzGxS7+Bwl+e1O6csvJL9dO1eYkvH/
0fXl4Vh13/sqVCIpUqQQDYoklalWkSGpSBIlVCihDJVknoXM8zwkYyGZom2q
SIhQKTI956Fo0hz12/vp6X0/r+v3/eu9Otd5j7XXXmvd973Ofs7qywH5l69z
SH0rso9g1LdswbBoQaUU0AlfWULq2w9ZT1NS37Y4XeL2Mo2A798vGpH6Vm9D
KyH1DT5GNuP6BqX1VwRJfaO6j9QSPJVU7q2qj/aGMo/aVIKnT9l5bhM8HT92
ih/jKUT1Og4RPJ0Tqs7AU/2Ll75hPIXcqVwGnqYohTPw9MzzD1EYT+FJ41UG
nh6P4ZUieDrX3+A5xlOQrh/iI3jaICZxnOBpzYYf3zCegsOewi6CpzsedKwh
eLqOz2wXxlMY8BV+SPDUedaSWoKnezUytmM8hVXSgssInrrOUn5D8PRKqa8y
xlM4sZ6mRfCU/S1HDcFTc3munRhPwW3CN57gqYjIch+Cp3ZBbJVchYkQfybw
JcHT+fNCjxE8/fLEZ52dcST4ZFvwEDzlbC3ZT/A07Z7f1n3vg0C58sUCgqe+
opdLCH+7a1G/B/M3sHilsILwN7a6H76Ev1UX8bTzpQXCCKW3nPA3ZeXLUYS/
3VR0Hsf8DW7Tt7YQ/rahpgsR/lZQt3IFpR8N2pyzSgl/o0ybBwh/E/0Y/xrz
N/B3i2Uh/C1e+RGDv808qpWC+RusuvpNgPA3n8ZAScLftryqUcL8DaxZUq8T
/sbNpaVD+Nvb7Pu3MX+Di0miewl/m2ub/JvwN+pCyxsNmwRoaswSJfztxOBx
Bn+79pr1FeZvkLeeO5HwtxXjKwwIfzss1q6N+RsIXBgdJ/wtPkFiJeFvsvcz
U5x4wuF3f6s84W+RSjNfEf7m9Vvn/jrWIJAwfqdN+NvWTZ8CiV7guXKmtHK2
N4QbOb0memHNxP3nRC9EnM+Lw3oBduiORhO90LdJNJzoBVHOpkKsF8ARlNcQ
vSAg1CBH9IKayqgx1gvwYt6vbqIXmkMcThK9wKkcNor1AshwPJMmemHG6ufS
RC+YpawbxXoBfkqHcxO90HK0dpzoBfUvLyo5+Oxgq8o7hl7gWPErguiF+geS
r72v+4OYUVkT0QsV5cmGRC+wrG6Xx3oBmualANELLt1SvUQvtO/pmsB6AYwk
ncWIXjC8M8xO9EJnTcbssfeh4LeklU70wtH5dIZe0L3itxbrBTiyiJOhF6gn
e7qIXigwKPxig/zBMoTzCdELIuXfNhOdXjO/xgbrdIguHWYjOn27qfpjosfZ
hr3OYz0OY9ZX1YkeX2Q87zDR3WZleWuw7gaNX6fZie4+/9AlgejrF9yS1Vhf
g2uthhPR105n6xk6evkuXaKjYZuCG0NHF8sPChC9vDdxnSzWy9CZq5tH9LLi
7KWFRBdXHDDl9uc3A9n7Jz4TXcwf5NxDdPGtbQlBud9dwL2VS5jo4varhlJE
/17OUZTwivCBp0q8WUT/nvw99IXoXJ6hymTTSn8wLrG6QHTud8P0ZqJnLz5Y
eQrrWdAychckeja2z/Ma0a3rVm30e3TSD5YGSO0nujU7OD2e6NOLb4VKO9q9
wfTq02yiT1dxLe7fjf0zNyz3xscMV+AL2dycgv0T2czN6G+wiHsZtv9wB+VV
Txj9DdH7g4w+BlXvs5dtkycIHZNm9DE4340z+hWhL0pN00I8YfXYc0a/wn73
ZUZfYv77oIV20R6gcGkjoy+xTGM/o/+gbLxhe2e5C2is1mL0H8r7TLgUn1Oo
5YfPQ/c6Q1jkVHfbxoKCvOEvFVs6KcRVnZ40UGgPuqF2jVbYz5PchYx+gm6o
v44drwscKCxh9BPkNUIZfQMf50/ry2094Ov9OEbfIPRdJKM/sNr90gU/bOey
3yWM/kB7shWjD7DV4mrDLg1PuPa2ldEHaF2U5nMX+4lDN3VXxRUP9HOn6joe
HFfycpWOL/F/eX5Jz9z3wwsF7HqT14Hj8yrnkQAvnN9d4veF1pT7IItHwy/n
ReL4k7s3z6WMAglh6fxaQV/UvnQjx09/ClJ/tiyLxHjSMNUte8jSG/Fsb+ft
w3gj/1n0ZmArjisa1+ysI+7oRHLVgwlbrB/VRtCi1xTyLT0wJatzEnUd4toh
heub+fyTv+VeYT7/OJBW1n4ZCTd0+3GbUrBrQDG9qY1Cp0dOzrRQ8UKC1yar
A89hfq65M+Yp9s+ppYoruCe8UWAF6axgfm5fxm6G40rSf53wljRvFGRzrWgd
jv8ZYq4/kwoo1JRot9Zupxe6YGDwYVEEjp93Vr/mRlPwtUZs5+CgF4rVKtVK
x3mlMrnJ6SOuf2fOLZ3b2OeHdknVzXfPpGCJrwZ35zUKgsVa5nJdC0SeEWcX
GcRTcHA4+OOpEgroi9hrP/BcRYPpTjkegRTcv/TFognjCaec/ykT32DUK6y1
ZxLXDU++BXc3zKGjhsMfRzL32yI7pbiD3FsxTmcoLe6aoNArvX1LW7J9UZu7
8TfHPRRs3NB38sUzCuXHGctOaQejsy2nDNPMKXj+SrnYuZ5CavMWW3nWByNN
tR3UPuz/85qcvs9vUYh9Y1e9Y3QgSt96q28Xxq0DggEfOXJwfvkotGmd9UcS
Udu0jsRQoH5RgLMnjUKHLE/5Vwr4oA3m+9ffI7/nTxVatAOvI7n35GSJqg96
WrN4y25cX94MJ2aK43psvOijxja1QNRvfevirCIKLv2U0TaMpcDKakb/qaVh
yHahmqcyzkMVhfDY+zkUFEac/5J7LBLlx3++tgrn9b6qWW2fcV2q4lVKFPwQ
hSyNuunHMC85tTJI95YSHWUq00QyfdzRTSm63pPfNBgQeH4/m4eO9EyEqq5z
RCKJ/UU7F6zDumtWk08xjp8PJUYSN5Vi0FXL/rWdRhREb8oK90YUUjD3vXPH
MgoFfPZ1noHzyL9fJcEN15lrX4+v1jwSjt7DnHM9OB567HlWBWNeUarrbuR3
6SpaziaobpFKwTfDD2KNsTje+l39roz6o0fNIS3ReF3vNq9xz3ehIIhW3aNc
440+rpbUrq/D19/xTZXgfVB4zpOUkxaElt28yrcB5wl/ZlVONcb593N697tX
R6DD6LeG1F0K7vGtT+jG/vR18mi3uhKP+J3FVjoW4PofdmrfDIyrYoWHTNdc
SkVmB8ZKVuO8Q8/fJdan05HA0LUG3epwlLqv2uR4KA3e99m0DGylo1sukg0O
NzLQHvPlE66TNICOfsEiHD/7F99UuvA+HSmen/140hjnv0zgbH2cF6l6Wssf
Bycj1WatvmKMX6lxZ80F8XojjB1Cdapi0Mk5K87MxDglQAu5o32VQt+W1qw1
2xKOTOctT5mL953Pdd+zjCsUyp10u/V5PBCtkogcOYfj5MeRWCGJsxTs8Rg6
6azkgW50PzaAdoxPs/d/1sHxqyQdWp6TF4CGhuutzj4n33k4v20Hxlvj3i2q
U5kRSLgi01C4H8etxFOFLXg/93LV33FOSkbGpZpzRTDe1xn8dqvC9fJd228H
Z/Pr6GzNR9e1iILR8w8Er7qPoBuvHz+T1c5HPSXnt2d4DMOHI57vBYCO7r1a
ppWfdxuJz9gX/aiDBrlm+idTcfwfzRj3Xb/yBtKTDEhxx3E/eCDXldWFQjdZ
m9dvjMxEr3Zsul6E+aTUlvjTyXYUMm3XCfSxTkTtH1coPGnCfG/zYqmX+PoV
idG3D6gIVLGj++2zZqwjolYrcF6k0I7vxpcqLgSh3Z2CWo2NeL0XVioYnqAg
SehHgFWgA9Jy8HJdink7i0KfK10H15X768bKUt1R70OhXGocr7PXokFKnoI2
CRdBtn1BKEhkxezVbHToNlGnxy/GOF+wkNu/OA6N64oF9qykQzB3l/WrMRp8
quJXzNucg7oL1Z7s3UkHw6fhiqqnRlEz26HOnWfbUf/2ffIHTg5A7RX+wbGf
NFT5Qr51TKYR2XAZl9XZU+B6KoRjZzsNrZZcM1IlVo4q4084tGyhA8eJZS5l
ghQyuNzYOhFxHcV0a4h6LaaDeGWB3NGtFEoI2xXujv1jMOGhn0jOtd8R2521
j0Kz9iwI+7wgHG15N3Qi9x3WXUKmnEdNKOR8PIe9AfxR7+/JuGOvKDCqdWQ/
jOMhf6/T8WumCuhxSUO82CDm5SGCKeT84NhkffEt3oOoLuteeNdXrNPmwA97
MVyfEs4e7nI5hSSUpa8JC2Bd+S71sxFFg7bFPiHm7C7oFatXZONBOjQseHWt
wJIG+3ySt+vuCkeZnht/ctyjw8bL9Wd4MD7b//jtkjs+gK4NiA/5qr6Euczf
GbEyf2eUzvyd0cWebRZntwyjjhpu/RyjAjScpsvqWT0CKXUlU49Daeij+u7K
8KxUVMnfpXU0mQ43h+NPDXymITMFmXMbHcLQzKG1QZ276MAZP958dz32W8eD
c9sxrl1JqPmYwkMHA3X52tVYF/PFtCT7Zl1GXdW+w+lYF7/QmdQUwfr3hsrA
Iu5wWxB/PNygh/NCRyLIrXQv5jny38KrXRyB13nMaxW+/+JBL7krkhTUhn2a
vL/SE4pzBy/PxM+/Ucy+svsLDYwtyp4Pbg2Gfayzf1lie54NnPjKievKw9By
0y1H4+HxnJPrd6TR4VjhyoRHgSOIdf/2d5EzXsIHnVXhr9j7gCdH3OvO2QGk
d9755ILSJ3Byn/3L159GYJbZSJy5yTA6Y3Boku9pMVT4l+ZmhYyAd5vIQIUO
DQX1pwZtfRcIpi3puWte0mEctG2e9NKQ1axNc10nHMDmhEHE2FE67KlZei1X
mEIN2sesXsUZg97854WNQnSY+6TUaoka1n0ag3ilKhBEd9yGvuN6cfaFMZ81
+T1Xmbr7WnewWpLqr/8E16vhhFJPXP+WQ8Xwhqe+EKnz5bgmrjMRkYUGsVqY
X+wzMVs5FgrbWo9fGfiAeXL5yhu0jRRsftI94ecRj/Wp6iP7uXTYcr2G+9Q8
rG8WBL7n4c2C156ew6Gr6XBmXUT34UYahP+0nuhnLQEBD+3Ctn10mExUunvs
3QiyfVOSey+oGOgaJjD6ZggEEpuKz/HSkcnW6tSZyXXQ/L6UPp5HA5/95hxP
a2nonMbKjdHVVcCxPJHrgDQdfiaqPhvspiGTCWn982M5MDPAtWS9Hh006ryy
Izkp9IP2dH2+WxwoZhhzXpDE8byK9aa0LIVu67ktS/cLBHH/Rz3sHHTYLVHy
c/1+Ci3ue6y67Y0bHH4bMRz1HuN4kpuKMtYHvHdFJU9LesOSjQu3SmG9bCo+
YGOA6+1yLidlDe9AcBYtvOyHebCIn7VQMK7zd/pEAjZpRoAZ57JtSm0Yx/PD
lV9jHdD1o9Mv8HECfNYxXJP4mIKVRbM7w/H9MfxNb+zzM4G1uptt4AEFIeFZ
3k6tdLTNyEZQ80Q0NA7ths3GNNhxO36b6VE6crUyGa3TLADanvSs0Yc0OCCX
xJHwiEJbNEIe7JtTBJZyVZVmhpivDogLfrWikItKadd5lA2jOdrpxzEPU+A6
Oex/iEJi6y6+a3JNAeMv45aGwxQY7NnE9cuAQokXVrza0hMBDi56y7bj69b8
g/Ovn6BQIGf483MZASBrt20N10vMg2kXcycwDhtv11h/cKUPHHDuWRmB+fHK
02HxVfj6irN6rm8dA0HrfuMBI3xdnf1h1hqMJ5zRqclHucKBq5YzTRbzRcc9
+lvnYN5Bz2ZL+DAcA8KabDfZsV7ekPo1fivG2xc2utdvZ6YAa7L2rUuYLw2O
uDc/0KajGEe3N0YvPEHv1yib1WuM70ud5mxbT0ehPIdOm4slgMoD48UmXBQU
Jdr1GX+kUM43nhVOWunQ2bNKX0oN8wehz6EBWLemJ/9eEncpDQKNvk71Y7sL
l7G+r8e6XqLtYFtEQgIcWN4xJIt1+J0t5gM/MQ7O5O0qD1KIhKaup51EF60b
dbye4kSh6HKuLV7swZBTWftoM46TgsSoLCGsG/atfPiuZ743DC0c2n8F6wob
x0SLxZhvzpeJHnze7g+HZ357q4F54SCndJoo1ikdb3vK1PKuQs5AHrRgXddm
2Rt9NBvri9xtIS4PwqGI+xLPa8zXv3mqmhhVUbBtV0wn29lo0AwTH/7gQYHF
3uWDPQvpKPvmrPcqivaguMxa4BPmh5Y3akTcWOmoX7inkZ8Kgu0rzts8xjja
sWrsznqsR0LeDEZrfomEpKaKzdlY52q2n1L9gnXrlEJxhszqGNC+dVOJi3zv
XVgvjJ6NdcTGTjObbVFwpshp5RO8L4Y9ls1voylUE+Fu/TUlDF6YeClEYLvd
WJOc7gfj5xs16S/qCYRDxz6p6xXjONzjJroT662EaoG8zx894NKVGJYArC+k
HVjsfTDfvOl/TKhR3gcqXk7NX4L/nfSqm8cM883syxfZPbv9QbOWU/sn5tn0
JcKRS/DzbrTrLt5wMQimPgzs/RqMdUG5ThVgHkolrVy6RCME3tr+QDaYp3rm
c50wfk+hMo3FxxXWm8PnB/2Hbu/H+5tnbj80SiGbkY83I+d4gBPfghUzsC6z
fvpQNuwlhWZsL1YsbA6ANvbjekKYr2zTXT5TrRHHVSlvT+Cbq9C11sjy6EWs
6/1FdEJKKNSvmXBVZV8IHBzPEST6oUNk3yHNaxR62j8neEZQEHiPSC1vx7pp
Yc3ehZIJOE81vQv8LviDQch+dkWsr+x5jwaUpGG7OqIfUWvdIGnskKFMCgWC
ib7tkuT7qPUuoYvSPYAl1jQiBT+nOtTBIRTH1/u6/on6Yi/YHhgZtAzH3/7J
RP1LmIcu4+4vv2LiA7sOa86Yj+0pubb5h30tBayT+z/Hs/lC3ESR/RjWjwX6
Dkf0X1Do+DDVcrrrCJwxC1+tTuYmcPGyCmH+3JlkX1iZdR7O9kx6W53CPNNi
7c2HjymkVWp753CPO/iUtlhdw3WNfche6WMDha4u8BPmxvvIJvEw4Syup3q9
/EdmlVOoTk6IXeaDL7gvzNEyx3nnL3+R5WI+hR5cnV+RcsYXDj8OcObC9tPM
DRl+KJWOOUVf64Yqt+sx/LDMmj58vwv7e93uEK/T55HqUq7PrZZYp/04rPAI
49gaTxvHoZOuaGiF8YgZxjktOT6G/TyD6xdj+5HfrymG/df7vzL6EkfiJecP
FNqjIj97Rl/C0suLY/11Cl2Und0o5+aBbLxyXdPjcN5FL550zqDQ2Ru6n+uw
3j8tnz+1DuetiHWUwrvPOK7dqjomX/sjbRGQXLObglfP/8TVnYmcbBxXaA78
ias076zd3Lx08L86+KNHIRo1JZeOcqyhQP/zslUkT10sWlctoYKQqN3oaZKn
tCh6TtdWzNdOTb2R4MtCAWfE2lV+0KB43hArqXvQFZxhJpaAek4cFyB1j69B
+epxjMPjtgX3dkWVo+gY/rrrr2hQ4PhBheDI6dsB3PWaBcj7QkYKwREXaU09
wz00SH75Iix1ogltLbCW/TlJeFT2w2fZw/D9xfGjLxa0oW1XWrwS1tHBbHhf
IcHriQCb6xivUejor1GC1ydC31vopA1DZdlBA2uBW0iLs1LN4vAIrncJKyTV
hyG4W1W5LTMTtc3z35hSPgIG0Xt/OFn0Q+Lr5DH2mlY0NKl16KHJa6ju8NvZ
ur0PaTiOZy05P4IeVA84t/O+BPkZpdrkeqOFUDK+DuE1ioHkuu7OMycJ/5Rd
dv1+tlEB8JvvnU34p+MRoBE+f29BSDnm83Cxovo24fPXTu0+RNb7IPB+CF4v
GA5nbSLr5X1ZNSkrSIcnDTue2TvWwPcNjy2ca2hwSVsosMxqFAU7r9Pjm10D
bD23g8JnDcH29opLBnvp8KtyiWvGk1x47b4HxPtoUJb28A3RWeNXYw9hnQVt
zyQSiM7aMLVBYK8oHfokE+e/y4iDlbd+nYQlOG63OzUT3Xph/3nO8zcy4JXx
209Etx5Plvsa9wvnO83VvGkgEK5bmLn9Alznw3gaSR+gpOHY1+sckdBRe2wH
6QO83JI7tYvCurmBPUw33x1sqgd23zGgwJnvMC/pq+z5/HBhS7YvBNQf+EH6
KrOKk3xJf2xQPsah4gquw0FqEqQ/ZrDjT365+UZn4fyCznFORn6lP/lzjihu
b8XV784OENL/5xyRjtSf/tWx7/eelbVfBtahP/2rKus5LC44X35EB0K9pTfY
L7n9neTLGVNnRn4JzXjxVt7NA1LMMhj51ff2ION8juny7lOnBD0g130j43xO
f80iRp9zpXuf30SGK3qmvInR58wJaJk3PEChZA23+Z/TTNCMlweEI4+R798q
vKr+QaHXK6m3sZpnUOelHQEzVDEeaPrvDRejo4WLeDweXHdEPLsPPjNeSsHp
pbEcm+3oSMvRr6I2OwC9Dtm4Y8t9Gkw94/z4iXcE7esaV+IoS0UGdYscZnLS
YLuMQBCJh1m9I7Y4HlA7f38AiYfevhKVsKX9SM7pcq5Fbwckt37RFfk9Cnx3
E96S5xgv+7oDPwdySlkcyXM6rUIZf9daNPtKXXYAaFlJMP7u+hP9WsTOIotZ
mthOiOFle07s3CQb0kfWNSNngXeM5hm4rzLBWFfSqz9+mCElt/pTmgnMk9Zl
+EFsfnMzyV+278/0cf7CS/91jPxdtrXMMneYQpvbvu1oO2WKVld3+lQdwXjD
3VSs9xvzPcMlVvxPrdAPynLPzh1YL10QPP0e1xnxPUcOmJ91Qu4H1X6HLsB6
QUiX95oXHQWKZH3+Lh2EdDMduKVu0cCqvEXjwo4RJLBNP2avWgZauSivMPHp
MIxuNE9SahlFKyUcpCueNyDFBUVL5GQGQZTrmJee4GUQPtd4Ku/mOHo+0LC8
d+gpzH/lTEvcPIqsZ9fbektWg1S4yrrUY0PwceiZW/pPOur1+FqgviQFFrx4
5Vu1lgYiAcEq6eZ0dOVKXfcxeX/YsWafSA3Ou5NmZ8p8l9NRWZtW7i6vi9AQ
79hQtgLzhGOPmhW+Umjb/pkpbVsswYYt/lca1tXKAtknv9kNge9mhaljMo/R
/U1vly5ejPXa5Wb2Rp5BOB+FOmz1WlHTgUWb1LRGwVPhkAnhFUsylb5iXoGu
bc4zILyi4M6f52uevM2Cn48mjf88/+A32yHC0/rXsX3HPA3dcJ+3lPC08ro7
5cTOTA+lEVWvi6jzyaJ6Yqf9/pwHhPfO6FUpwrwXTQTN4iC892Ic+06y3o2B
cnvxepG7BZcYWW8sxy9foiPGgecs1hFoi0KsEtER/lzKXsRvtcmdU9hvqGkm
zZP4Le6nZg3RZaKFStlYlyHDa91KRJd9nD+LIv4POJIUjv2P4HvrWuL/Yua8
jzmZ390dC8eVmpjzPr67yiwSGu8CqdLE9raaN+jlifeiBkJPoZ15fytzPkg9
8/7qV1eMSZ9B19gkInd8AHTbip6QPoO4teT2gzge0iRMLXA8wJHCLnESDy/a
rzH6NuEObKRvA7Klaoy+zciNHEZc/XL248ZxBc9YCgRIXEVFtAiQPlhU4sJ6
We18CNh7F0gfzMsuW53Ep3LzWTccnyBts7iYxOcCy7eMvuLhvfdf61aHg2hc
KaOveFLTj4/E+cNMgYc/pINgnT3ffBLnl+TFDpE+7dI0Q6NMH3eofr9Kl/Rp
x35ZWpJ8KVTmGDI76wRWU/Qpki8ryrkYfe9R/SDrrP220PEpmtH3jmT9k3cG
3NnOOO+Ao/dP3tUvPnKPvC849X2+0EadkyD145ICeV+gWW5rTfJX2efRyZZT
pjD8jcOL5K/cZrV40pe4MyVJ+hLoae3cKNKXmCzLXvvw9wBin6e2+/tHGgp5
fixZJqgXqpjfDTvB/G5YGPO7YTXTvicWwry+XX1yFtlfawuRTry/YCSsJk72
9+X4p6QbuP6f0W/mrOA2AXMrzrJuEwr4Be0ZfHJZmEeDbdcRtGJDGINPZiz+
cz+HecnJO9wmqCNuHuN+PZP0Jq0FffDZrerylh0l6I41Z1eH6BhY8/a50D1f
wdUPVsK7ttxDbl8ulzfrvwGloUtSZF3jzqtV8Lrg1YvHmWRd16QvbmLJoZCl
9duT5toDsDvNU+P6nF7oT7DhVxrC/PTrwiMzM9xQImdcY/9RCjozxDZUf6dA
uKJ7xfcVV1B/U8uYOK6rwduyhJUF6PDZo+v5kqsxSODKM3clEazLHL8MVuyk
g4Zmyx7d1uvI87W2/a9xGjh+ezj7nSQdGsOFPjmb3UES75Lu7G+mwb0ELQli
j9nYBTtsD5o4+GwXsUdCpYBx/zsLtnF8P7zfNMC4X2/X7wHy/J+6Zer4+SDk
fcSBPH9WpMlyYk9eRpQbtgdGGvd7EXu4arqkif2bameNfVtxBeTqFr4h9n/W
rl1M1ntpImRiRoYbWBdrNZH1ck5KJpB+1LzN9ZKLnxajl/ULckg/KknbXIPg
l8yjudkYv1DrDncdgl8zZ//5PlIt8/tIR5jfR/rF/G4SYl4/xrzeJPqNwffq
LwTbYb4Hu1wXMfheEs3nFOGH9yctd2J+CNohvgx+WHb9B4MHLk1W/Ip5IGyz
EtQjPPCYu6MZqcOxr+V/4ToMs98LMOrwwgDz2aQOl/1e9gzXYViWtU2G1OGB
XmPG+0e/cSkvvzpDtMW1lvH+MVg8jRFXPM3S13FcAf/1kE4SV7H5t1xJXB1a
NEcGxxWsHj5RRuIqmXOrlKBOL9g02T1yDtq83W0Ju+MP2zHgYvY/RZn9z1Rm
/3OtYhj3CAfWF3LzvXeKlCNOe49PYix0WJugJhD2FOu8CY4Kxa/+aJ6r5EU1
rDu+cYWZfO+h4PITVnmeTSFo4C1H9v6TFPwyiZltOU6BjFLoj2JRbyTs8nWv
/AEKetzsTCZoFPhUduh963BHRtxN/FyGFFjZBluVkfMvp21nDIl4IRUPfVtO
PQqiahc7cQxifWZyuP7sgwhkatm5TQXv+1sJ33pZfH3b7UAnuQVx6FfGi0cN
+DkHzv7clTiHDqe2yK2KOBCGljw54TB3M9bnwR6bXk5RMCHzs/iiaBBqm8px
q8Z1ye2RU/wVVjoc6syccfRAKKoY3hpni3WK28hkzmrMP6e6TVGjVypa5Sq+
QfQg1iNsZ0D1Oca9+DWdpwcy0bsPj+TyjHDdG+H9JCtFB+s1h0uynVKRhnRp
34G5FKj5qh86JEwHD/3PlSuexKHNnZ+HQADznMIFsH8NHV6Xr1/IV5KMnvEm
uOvhujolNvKG9wEFn2RbZZb45CNkcSbmPt73uV4RSmbhFEg0Xgm+KVyEbu/3
FBnEujLc8NoNwz108OHJ0jJtKkJr2Wy0G5/QQLRo83pfdToEsX8MfdSUi6JE
4+pPDtOgqrbez0yNDrunuL+Y7i9ECXM9Xuf30iDQO0hmYiUFpvy/kh7mlyLN
2dfHfuL9M51jXySWQ4ONEx9aNDpL0Yog7XQ/Uzo8vWIt8Rz/faTY5H9i/z2k
b9E38yVe74Fzu1ySF9Ah6aYx6/X7CAW9N1NLxTger/zoZG051rPSnPLqy+uR
84TpuuVsFOzQ+qhI1lW33cMerwts7e1EybriHIVfEz+4ON+Rx34Aha6NccQP
SiI1BWS9HofFduL1gtYafx2yXqiTuXJ2Ix12cQ93CfeVw1jWW8nb+LrtnrcT
P3bT4Vm+rsKjQyVwdMvcct1HNLgltnE72cd7i18ssBzIBKO3nfJkH/W378ol
+156DfXjfQfe7Hopxr4fi/hA9ncfp/UxvL+QvTtugOzvvLTXxw8o0uFoVSKP
D2sWnPLS7Mr8QoNVPH5bJ2XpELvgxGIVjXS417f1Th0LBbMtK++RuN1stuMa
jluY5Ln6kMRtvtDIJRLnQutLenGcg7DOL0ac36Zlq5J4Rm2l/DieYVtVsT2J
5+X9p0Q0+ejAeyI0YT5vNIx91457tArr8UAbp3wuOlRz7Vx0tTUczuocP+9E
vnd9otaY5On8ha6WOE9hZUwPI0+noj4uJXn9MI3/Mc5rSA3wYOT1IGssI3/p
D3qHcP6C6bJvjPydurB1wvoLBXcFUOnvCn+QOWXMmoN54Pberey17ymI3fVx
7uMAH1jdeTTx9j4KsrtX2uu3U3CSdnHOg4PekPQyXGzEhgLbyegXGS1kbpJc
a0yIOzzqqR97aUfB9eecSq3Yzq6Rns521UvAGe5rkoxxVl+6pYZtgIJemx9y
T9a6go6p0cH1ZA5LXq/H7F4KJuWb+h8gJ0h3GzU9cALjGvP7CZ7M7wWtZH4/
4SLzuijzuwo5zOsHUpg8cHbUogNWxUoXmLxu+3Gx7duxPjO78UFvZq8HSmne
6x+M9Zv8vEfGp+MpeEVv3sXz1AV9+hUr4JVFQfHdNWXNmRSc42uLn/jgjTot
hPi7EihYNBXM8+UGxq+GGR18kX4oQ8YrxDEM45zLVkWopmDBrPfHvxb4o2vG
O6pYvHD8FwmvuNlKQXun/qROqS/S9a9Wv2hLgSjrPih4heNuw4T+Rn13RP/6
+Iwr5hsNPcleqX0UKkt2fK7yxh1Rbdc2XsG6da2wpoVdC4VYufJ8Y774Ildn
0Z8l2M/eMmZH11ZR6E17J++vPH+0N4XXbak3Bc9K1fasuYH1VHKfoKy1H7pt
yTe0G+fn+/xyDZVMCv0O6nigX+2NNPbo1pgkYr4Rn6/kF0OByA5+Ba3vXuju
Rhde8RwKnhyqabiG8zjK3Chs6qMbMq1blr8lH9cHfsttsVg337cKjeO76Y8i
bt3teoT9WdrpZHo3mwLZ9aadfLHBiCYQcFw1hsR5vtevSqw/MsI17TND0ZJ+
thdR2E6O3OuNZZ0UzFQ6WnzDPRQZWmzb7od1/XdOib597yg0qBFS+1n4CqKN
Xysfwvolcb/B6fsdFJriLru6MC4UIdFb4i6Yr0/NW5TlW0GhgPQB2lRQKIIZ
+q58vjg+c/zZH2P9PqW8YfLTrmAUv9tTWjEW76vHnoULkyjEZfot1MLAHxlR
V/IOZ1DAeqR+8a4YClVmX5ztcsMLRa+4ucwK+6FJy2OSfFc1Ni7uzjUHHyR+
XmdCtJiClkH1BxHBFJz9cSqwxdwdSbIngcItCo4XG6w4jf296/76mB6BIKQS
OCBRUkDBBQ+fS4nY34/jS1q3rwpHlQrP2Fqx3/RUf5yqLaIg4MnDBXuOR6O2
kGyv60FYD4akG2V243hMm4zNyI1FUe8WHyoyx7z9pKJXGSsdBaWdVea4EIVu
J3xyWCeH6+DPZXuSnmA/RA/ctEyKRcvqomsfnsb1/47n0vGbmO9d77OsFYxG
Jmo3FoXi9ShpplQWJlAoZUbXlFpPGJL8ZBfZiP3AstBoMVs4hTbd5sm7nBCI
3p9rchfBcf97tVvonqsUelWxJPf+Qh+kuoR1TBX7oWq+RusMHO+fLl+OjMv3
QYNZnlJncT54Wh5QdfDB/9+lUWH9fDfUmLqmbT85p7pDzSzZE8eJq9CAt+RV
lMSl6LgF3y9woc72tR8FrT2h4pulopBttmMSKqVgVsFw4Aucp09nLF0/f2cS
EubbvzkrDd8nrZv9rQnH3dZjGgdupKMcHZNdMmcp8Dvjd1lFgI4EDBS1JN+n
o/2u0UeUl1Hwrp3TouAehdYFNEqrWqej1q7O9np7CqQvXHjOEUehIysvRUJW
ItrncfH2deyHvMcOa/X8KCR0hC388O1IND/kW8DZMgq+iu0XDPGkUPE99soc
r2BkMPEoQBfbv6cyXk7ci0LNZTpLtsv5oIvHen8cwNcLD0pwrL+A+ZErz13b
MS/E6nHUZMtDCrTVHjz+7kzB4Th7/o0jlxHtxYb6+/X437f5FB/j+jqUI/Yo
yzYYOX749abtMQXr3ZR/aeP9/LlQ49gc32hU+kibPQXnj/zLYcsP1hT8OLNR
72deGspSjjw38xHG9Ue1Oj1ROM+0Azd6G+ShbUvPdz7Ffnx8Xf9uLeb5OsNO
D490FCK/zGVR2zHeTSQqifa/o6PXh3M+zffLQEvXrGW7u4kGcpUtdQEL6Gjx
m9kJxs1F6Oukv+wrHgrKBpNu3AmjUJD+7NhX4bno8KunQQMp2O7O2AMK1hTi
Dl0j3iaehkIuTM0UwjgxR/TWSNxpCoFj5vpzQ1HofcuZn67Y/pRPNqo6ZykU
aSy5YXNBELI53JhvgtdrkWChm3OBQtr3vqTk2HmhL+rl52vxftsFHK/Own7Q
2PWwXVnbDV2+//31HZwnU/VObvLncR5Y+AlIiZ1HhWP8zgHN5L2XhmucAd5n
LbuU4NP+KF12/vAXzF/L1+nuDlfB+Lw6VbhRORItjkxW/4J1S4tom8jmNTjv
5fcaVixORxcb2O44c2MeUHecal1MgbOiULfOoSLks7PhhCzGaT/piDcF13D8
n3n8bBW9Bv0e3xEajPH9rbkN7fvDETTakPib1/suSvTaZ2TcNwTj96T0yo9T
qFymvfglXw2aF3PXIQ3nw5fkwmIaP4WMl82coZpQiKwOs3Bqz6dD3PK1O3dL
UEhuea2TvUUaKi/yl2HF109r6G1WVaXQdiOuEqmoCPRo5b2jF75h3F9UiboM
KSQclxbrU+iHugQrNFuHsc5S/S0dYEmhpPJ5bYtcXFHcGZsVg10Y321e2HzG
OKwjMNi9JNwW7bmskH6+f/pc1x1Vf+e6Oj17HO5PzhEdK6k9y2eBjgpt+7K9
ffp8WOmqv/Nha+I4HLvVcT18FaJfFO6Msj+GLW/8SkEmcz7sDMb9GlUPmfNh
9+wZbx1YgXFy1We59WYBKI5DVfSmEB1imHNj/9yvXdXGnBvrRDvw/P5TrFNZ
fKw8Q+OQm0Cxq6Lxv/NkWVj6/zNP1qio72ObOg2i7jU8f3f3BlrDEpW6pePf
ObP44dT/zpm1DbcKNRkcAgTrVp5Ra0ILw2fZ71UZAZGizJRvWyh09fecALO+
PuR0O+B93pIBOJw/87oM7zCqTE18/P3aA7TRWH+em+wISDnxv1ivR0MtLGvQ
VZECtHjnqKZGI33anFnHqr9zZpcdCc0d7aWhyKr2z2vPxqLqC1rHmw2wHmDO
n/3jB5MqTeb8WZ3T6a/XrKSQ/SbeRQts/dGdYA72RIHpc2m1q/7Opa3LG0po
2I3r21TMsE/WZfRl82Hh8c/UtHm1GlV/59U6RB49JGVKoePqRVLWi2yRa/Wd
2aqvCM/7M8d2BjNOwphzbFX3LjtH4up86bcn88NtoefUijQSVyfLxiJJ/LT1
0drV+SzAvODAJxI/88QzL5A4yU+4oZsf7gyK6ezCJE7WUDWMeKhZnKe20SwA
3txazIiHfeK3e8i+D/RlxXqExoHz11QXsu/fNnBOkP3d7wAReH+B0/QBY381
L8zvJ/53eFdkFCJSADJTxarE/wsfdBcTP7PcpT0ROxsLP48PHyF+/utPnz/+
hEqmP4cem8YRvzmLN38MyboMWzujRYnf/vrH6o9/wIXpH6N93XdJvXK2E/8i
r+0GgT7Vo6ReXc9f6k7qlesaFvM1Yudhyi/0MqlXKzjXu5F6pct+1DzwtD9o
5+sNkXpVyf5+L6lXXysaHXC9Av2mRSqkXo0emsWoV+cSxjNwvYLcJyGMeiX0
WItO6tW9ivZqXK8gY4Eko14tGrku7oXteT/ztLvg8xr4opsZNIb55By3nIOk
Lt1eWdWE6xLECmxj1KVOm5xSUpdUrDNKdyUUwsIdc+aSuhRxrleF1CXlNutf
thZpsE5m/kZSl/KdrjPqUgf7h6J1URGQH7nUiNSl229plaQuSaz5zOlX6Acs
iw7vJ3UpePnGDaQuyQpqtC11cQWZubwipC5luDyfS3DzyR2nRRg3QcD9NgM3
LVL7WghuBoeHWsmOXIaY5b/vEdy0/NK4jeDmRhqn7DXbYBje5DhKcHOd+o7f
BDfTbNweYdwED1clNoKbxlILrAhuUul5+zFugu88u7MEN49EWTNwc2HrVwOM
m3BML5aBmxITBjUEB2ftt7iFcRCUzz/cQnAwVuH5TYKDbg++bcE4CGpa3Awc
jOvcoUdw8EU7V32reBrMsMxlIThILeMdJTh4VrhmpvVQFGiXtzJwcP7zkp0E
B3/wFGzCOAiG2+0KCQ6KhL/RJjiYxim8rNDOCzpKOi4SHPT5rMrgXR+sVBHm
XbBe6g/vmhU1oUx4V8O23gajfDeY6jraTngX9w3vU4R3fdV/JoN5FyifW3Se
8K4dOeJ2hHfJ5/TM2iIVBffODiYS3hUQEXOV8C7ry3M7uXYmwXz7ChnCu1Zn
3mbwrtrcRg/Mu+C6+yMVwrsESo+4EN5l0C15BvMuWHsj3IDwLi2hx2aEd+k+
3LUQ8y7gW7rhCeFdb+JPvSS8q6elpA3zLmhmcSgmvIs9Snkd4V0Xj49VH7od
CSc04/wJ71ocOLaU8C7+kz8qcr2CwW0zfyDhXR8NzBi8K+CdJLeqnA+wKOYy
eNfBlOcM3t44dvYU5u3gG/PrI+HtT6/JMHj7LbRMrt3cHQYz/Ri8/XfdamHC
2z0+vI/CvB0EAnkZvN1tZMKJ8HabWfKWsCoc4ubtYSW8PbRXyJLw9mezdoli
3g5lta6ehLd3OFcyeHt+9WAj5u3gfuSDHuHtGS0FbYGz6XDrRfwntw2RMFdK
SiMA84S5lRLqM9bRkYqxoE5dhQfYhbzSMV9IwTcbR1/C86tejZthng9PpcJs
Cc/Xqs5UJzzfTcwbMM+H5Urb7xGefyZShsHzr3zRZqsTjIaOec8ZPP/G+7wq
wvPjjUKMMM+HpjTfcMLz84SO8BOeHzh2ogzzfJAubHYjPL8nmJ/B8zctPz35
cKEPTPRIMHj+EokpRaITOx7tmcI6EUQNRPiITvzRWMLQifc7T+bNmHCDdHEe
hk7M6rJWJDpReg0tAetEKNavfEp0og7vVxOiE3vVR/QXxwbDMeeZJ4hO3Jcz
k6ETv1v9Ood1IjyNzWXoxBXLWO4TnZidueUB1onwtmh8B9GJUVvmjZS+p6Dv
vV9+x7A/nLHpWem/D/Ouh6lsH2bS0eVFmUWORQ6gtqAn0k4JX99k8ILoSnX/
DjasK2EyPfYO0ZWRU30nia6seT5wBOtKaN69R4LoSr6XUelEV0ob9+T8CgqF
92vKPYiuVHQJYehKNt88XawroZsvgKErDRoK+Iiu1B/vXW9m4A9+FQeyia4s
WXBoEdGV1u9FwrGuhNViC4WJrtRt0wDSl7Bio4/M7PWA0EOifqQvEVkfUE76
D4gts3rigzcUdVTwkf5DiqvVQtJ/YFE86scX6QdiNtlXSf/h0BJDJdJ/eD6S
af+1wB+iby69Q/oP4oHnhEj/ofOR5JhOqS/YlZ3fTfoP+a4L73lhXOrfOmKx
R8kdVj+v5sg1Ib+/M3+dN0ohr5pZEcY8lrBid+7D8EMUNO9LZ/Ql3PX2qau8
cQcn6RxGX0L7MZsZ6UvIn2+mxXzxBeGB01OkL7GkJdOQ9CV+jX4z+Z3nD/zp
de6kL8Gaf5jRl/AdWPlxo7UfFGquZvQl3kkf3Ev6EouFMuj61d7AZVByh/Ql
uI884/uF/XnxmYohX7YHNEssUnqM/TOzKVqfHfuHvqe4ka/UG00s95BOxvcP
vOATouF85fb2LI2x9kNlbd+PBuPne2pNrKLj+tdwOdz65i1/VDeW034E29NQ
YBe/CddjCSn5TXUz/JB8gsz8T9h+kbJTgoZ9OO93u8kmfXVHNskjQe14vUqs
2tyPX2F+bnRok1ucG7JqDuU0xX47aah+sKUV4+ZwqzrfUV8UtBRtP4b9vDbx
+pFr1RTaVfmCd6a5PzrT1uNI6i9rFX+bM85TuV+8n3ac8UO1CZwPJkIxjrhn
ue2/RqGd9CuCPTRvpHrT/6EO3vef7pqCxckUYtVILlj2wwNxPtu6bwn2g1DA
TctVWThvXv786TQYhDp4gqrHyXzqRqmkvbhecpod1Tp2ORRZiH9JPORPwaM8
n99rMZ6oFipeeFEdipI2Teoux3V7Vb+f6ufXFIz0H058KxmIvorcOa9+kIKI
ia1Kuk8p9CR645RCZgiaJ2ad+MsC/73fCalcdyn0Lq/onefhULRxTONZkAcF
ICG891wehWazxSnGpwaj90k/j4TiunCxvLIxLgXXeY3Z5kYLA5C6e3JNQyoF
wj5uZ3tjKXT5tklHias3ClkhatZ4nQKe+yHj7rlYT105+DjrShRyLFFnX4Wf
M3dz6GY+jM/yfg90PiXFoqXjyQX22M/HLjcX//qC193ue/SYWTSaXbF+fLka
5ovrP23SqaRQkXA/2wKlaDQS9uMJN973vKjwirvpOD69Da+nlYejCPWcCfK7
Wa13syZFoink2pbT3VQSjDzaBtz6cJ42NnLtsAilUOpwhb0Iix+K6fhsw11I
waYyZynO2xQs/5a35k5TGqrVPlC7BONuCPN7/rOZ3/N3ZH7P/+/vO9Km/b6D
XyiVbQTzh4joZdqLzsQglt/Hzqji+ikmaV7PjnFQ3fl88Oo1YcilXeCWUzkF
9Rca5jp4U2iP0syCaro/OrlmY1LznX9/B2E87XcQtl++TdRhXrFcNVJU/EE4
eieskyLahuvzdcMyXQcKrYs4mxW/OQAVgMvsEsw/eab9LmAr83cBzU9aOCJM
KPTR2di8TdIX7Srxs9R8NV0nyvyjE/+r75T+0Xf/1XG7/tFx/+q1x//Ra/+j
y+j/q8vyj0z26Gn1k+cceBGwbntIq6zhi4A3QDHf789kPN+9CjH7wEeXFH3W
2/aGXFfylD69/Sevo8+M5n74uTF3M0tQP9Y77iFNJ47cDeYUCWo68WaaLvP/
R5f9V385/qO//quzTP7RWf/VU4f/0VP/1U0a/+imv78jKJz2O4JgNTnxQ3tw
Hi+e3ED0kam1SuXxT7gON5dvW7gK7/NPVVkprI8ERTsW1PLTwUHJea/xMA1u
Sq1+ewbrIx/d59fP6tIhOeRrlcwpGjyyV7k/B+ujHKGWyyK36eC6+KtCvOUw
XOHauuDOgftAexpbJ8Iygu+bUqsTHkIdNy1fnZ/5GL7yxW9wNR6BcNfbghsW
0tCra2oDD02KoN/ioZbCJB1KqbIl1YiGQjedOpuP9RRH+WmvkfN02PYuyHsb
1hGrtLTZxLCeuiSe1jdjFR3qfTqKn6pQ6NbJNXejsJ7a/TJ0Rf5PzGtHfnG3
Yv8MKL4MsMF6ysG+TjZ88N/fC4hM+71AbqdYv+pezCvSPocH5YdD2/X8kQHM
D1adlB41laeg/PfR2bAjFWZWwrL9LHSQ41IpltyKcVY58ZNsYAEIs02+2ojz
dldG41YvzEfMZvtcmDVSDgPbOp8SXGNr/8qjOEFDtp8T3tYVl0Pj8Se5h3jp
oCFeuiCUE+OX9+Je/m1Z4Hjzfe1+vC6pU8klMzbjOqlmOB65MAZev9jLaor5
3/mTBia+OjgezrRyLai4Ao5OcZ754xQMpya8az9JIW9vo8Wate7weLb9BqsX
FAz267XKYL788Ax32W75JAj/4hnDgvPaqHPHsSRcP5zK2xxcU67BIuFHi5Ux
r6qILn+SMoJ5tEPG05Gym6BcGDAgvhPXW8XhObfsKWT//UmSZkYWGJkvyP5Q
i/l/flj2afx3rcLd9B7UJsADE6myqacUyNyeaaSIdcrY5tbJCbswiOyWDHiM
ddnkmPvBG7YUenZc4bjOa1+QPZdafB7zDJcN83o+3KSg1F99gy1HChSfC702
Gkj9M6cjcNqcDsPvm+pCMM80mbDYmPI+DiRiRitGMb+xz4/OGMU8/1as8tf5
+8PhjcHutINVuE7O375GzYNCuYq7n2/qDIB3hvpd/XcpmHCwNorD/GqHbVdF
ekso2OdyLOPBfpDhiiwaC6FQcYbsyVU3AsBm4r72EVy3j3htXuWE+bDtBWsJ
qQA/uCpn/2gK84llch0bXmK9Y+f18vzqi66oYbfIRi6Mr85VtX0PRyiUvVbc
btc9GyQtdD/BXp+CKVoLg5/QPx2dzZ/tgfSL5zD4yToV8QEnvN54vqNfvtT4
oKrqT/O6dlPQusoVRf+m0MaFKVna65yRZo6HVROuj0fe1OnKLqaDItdW2kyP
UMR1vFaeezUF7TUfxtWk6cg15UT3DLohFG+3k9XkwriTIrN8qzC+PshmO1s7
EJ0RCB7jF/p3fjrftPnpG5jzrF84/pmfvn3a/HTfafPTf13h8Wz1xM95FWXy
/doNZL2R+2twCg1u87sWfSqkw821j4RzH+Yi/++z7i23o8FRo2A+f4ERxG/y
ULNy1AHsLAyPC3DSILgupCqFfwR922fsckHFF9k2msa9mE+D3V5FFb1xdHQH
ukeVLPLRFnEU4xBAw7rqkmrERTqqc+G5jk7fRNyXi9yu5dL+mS9TyZwvw8mc
L8PDnHcWx5x3lsCcd7acOSd0KuDPnNBfzDmhl5hzQuWYc0JXMeeE1q1+6g9F
gxB9Y5Br39JniFvg3W/lmbheJbe3KNPpyKKfzzL7cw36MBQetO758D/njWde
+XPeOIR53rgkql6e1M+T0RI8uH6i6l2h9aR+5jJxChd5rf/FqXDm3HZc/6+S
ue02zLntVcw57Pi6z//OYb9P7x20vDqM2tp7uOc2NsAO6sPs21/pkPTFuJXY
qUcp6GE7oU7kN8POlx8CzzVupQOdU8pVYVc91DsGvqI54/316xwkfenFp+UH
eL3vwj0BDVPSl64Mi78a4k+HsLLJtejmDfBddfSeUhwNnq85xUv2Nyy661P5
qAOiXG+eIPureNG0mOzjtvUPCvA+wqx2nlSyj3/nqotOm6v+Nw5FmXPV/8bh
FHOuejBzrnolc656ZXdzpzXGMZuw90u2GoYC1+nfKW3iFFxYwGLxUATX3Wo5
EYk5V+CjgGDTFUEKksTYX5N8yaSxJk9ShihXMkKO5EtlZ6RA2wY6Eh8rvnSV
bg7DraEWNeR6tYggyaMlLKKROI+AbxN6R/JIXUjeZ9MiOkp32HB8uVIYSEqv
sOaUwLqCOa/Hjzmvx5k5r+cqcw7dDeYcOnPmHLpZzPmkYsz5pLOmzSd9OG0+
KdtJJ0Z9qJIVX3lgnTOYs7ky6sPf89Ly085Ld0g/Z9Sr2enn+8QuusKE6hpG
vWJlnqN+xTxH7cQ8R12Q3cZ43300047G/dQFxpITGe+77aSeDZL65jc5a8XO
ezYwfj0uhtS39FV6DN0hsu8yi+APD8jwUGbojpzD2hTRiQ17vFtO8Fii7ZXd
rUQnBo390d0SIuKpWHejRKk/unv/oKca6W/s4Aj3qavwQK8Egg+Q/sbfOenj
0+ak/517Po+F5S6Ze76JOff8KLOvfvdPXx2kmH31l9pN4af3DCGr0+/PaS3v
hr3WeVZ7cf6y/JBYTt5nOZ1b/H2+XwZs5q2eS95n/Z17/nDa3PPWC+6hpm8o
JHucTzpdbR0SZw+h+rEOij73SVGYnY5uGd3iH521Bd33VujWwnzCYZttd8RG
OmoQefFUwlgFTaYUpL6bR/0T53cv/bfeihXrePwSHkElZW2S2xtPIb8556wf
sdLg3Jzq4+5Voyi8obu85HsA2s8vpbN51hAcUIwoMVAdR3EyNZOVtxuQZkOs
yHDxU+jcZBlA6tWzzvR5uF7BCav5LCp4vYseJZWS+zdvUu7G98NY95sV5P5z
7DMYz29TXCWLnw+8b7YeIM+Xe1TpTuwp/7y+FdsD1j7LbIg9f+0vnZanTbkN
XWS9WfJpCpuMVUCt7HgaWe8tDTV54p+ba3iyfszaAhyCM54T/6hY//HneaG+
tiK1ddAzeZXhT6Q2fOnXawrJsGzUuNC5F0l8EzqtqvfvvPLqafPKtS7GMPL3
rqBuQxDdHI22hTDyt455DpydeQ7cg3kO/K/9iU7/9f/fuGJncWfElQYzriYC
tRcUjAwC79wuc8vuPhiskDoTUzL8z1xpJeZc8jVMvLhXbHWH4FrIyNOO8yq+
sI2rMp7g2t9z4LHTzoH/tWe303/9+XOeztL94UNwZuCEW8lYJ3KSP7n7FRcd
qKrolDDPQbj1Wk5JImQQtVmwfOM5MggJOw25iZ0Dht+ssZ2oa5fFaWLnYaau
YWNhUSa6ZgbfH11zk4kjs1hYPAmOqDNxZMa1B+J3gIYM9v+WUy16CUMqGc1z
Vg2B6s+nF1LKhpDt8IJZI409UHnP/jZlQAOTkza1STjfFV6EHav5Ygg9q/nO
5+N8t0q/sYkf7++GmQ8uRuvsgMstbSPr8T5+Z84lD2TOJd/FnEv+9/r5add/
1o/FnJChI9sh2bciSfZwe29m9kcOCjRnD4c9ZxtBHy5VqVQbRUB4gjctQ4QG
Qkx83z1tDvhF5n5ZMfH97349CEY/vnq/RpkNh9m7VjyD9FkVeZcu9YBqylWh
LLVxZHWkYIfz7Vp4+XHm5aNqz/6JE24WlgckTiSZcWLI9DMrCwsQP/9i6sdc
3w/vNczeoO+HnBs5LJ6iQ6nWC9YaP4WW9zHLyfOjUmwk8fNRSqjPJfL8Jua8
b4zv6/933vff+d0Uc363FHN+99/rxdOu+/uIMPxTItY/F/sHWU/aUMQ/w7PX
RhN/Pn/yKRX7E52od88l/vx7Djx72jnwvzi15//Aqe/TcIr/GrvtGZy/hRwv
78p0m6DkURapp2SunMIBGRIPCwQyXkXo7EBNFza/JvHw99z4jmnnxo8dS3Im
deCE9cse+869wPnkgDmpA//fzyqzvAePf/lSCOFLZ5l8SYl5zrydec68innO
PNFSoupL0BukwTWV1uzageSk+BrCHvb8M7ealcV9A5lbvZU5t3oial4EwRFp
IRlXjCPogOqu0wRHxj34xEi+fOrYuhnnC5ph966V5Et9GqsdyZejktXcOF9Q
suA7Rr7E/2tnOLHTmmnnadWMu8SelCdl0dge4O0oqiX2cA4uyyTvkY/fkr1s
1tcHB+Z8Z7xHfua+8ONnGgUKeV/tF967gFxDzEx2GlLwsSFgQGKSAs6Uk239
3R6ot31IYrUKzi/fI5kXhTAOcCSL57wNRmZTXqy1K/7VBdzTdMHc43Pf3o+n
Q1/OigQUW4DKtD9cfu5LA3UtGTPfDjo8E7r7bUZlJjqxyc00TJcG7+aLbszC
96t3H+lm061HgU/2FStz02ARk4eHMnl4HJOHVzDnDmM/CJC5w8HMucMDF2bI
kOeIWux5hJ8DhRtGishztj4bHSf23Pq2ugnbAy8TOhn2/OWTy6fxydUb5maQ
9QbaBori9cJ9RGMj6z03a+fuWgk68Efs58zf6wOr1+zpv4D5RrXl0CDx2/qw
bj/sN3jr77mW+O0vf0uext92aM19T/zPsjDkCs+9C1Ap63ac+H/Nu2RfFToF
7oWeklS3NdyOuMLFbkDBiybOC+MUBY/n33f34HWAxPV9i/fh65P/9JdYrv5v
fykv0Pxu2Zsh5ML3uEmA5wk6vHIp19E1dNinmRlGzhv0apSS8wbwkeunLTlv
0Helh4EXb/Q5XTBewHjARQZe/J3Pi59f97/zee/9oyPcff9XR+yzvu9I7Cxx
dPXFdqI7GxbxEjv/ztXtnDZXN5ztsDnh2+DmsgPzbbQ8vZHBt1XPHdUgfj6h
UiaL/YxY0uUGiJ//xhvrtHizYs7VdWDO1VVgztXVlT/L0JWKv2vksK6EPscv
DURXKjPjsOpPHII5Mw7/xgP/tHhYdeeORKI4Hcbmz3ukTPdFd0Jp5+v4/52T
KzZtTq5BKQc1rw3rp+xHOfrs2eiS/ZO3U7r/xnPctDnaL5jfL8X+jCffL33O
/H4pnM5mPCeHJpCEnwN5tzcynvN3Tu6taXNyH2SYSBI7K1l97LGdcGrJKnti
5984zJgWh3/n4bKwmPxnHm5e44sleTYU4rt3LXN9QiXa4HhJ5V4EBSdCJZdl
PBpGOjr1QuFPKpDvwYLsMwIjMFfETmPyxDA6ejorruZzAxoSf33KeOkIUHbX
xwVDh5E2x6wQSXuEqn0Pj0ZsGoE3W43o5P1anczR+x3D/mg8NFCMvF/ri1vH
/h7Hv/ynbW8r1WPQkI5Xpwmu23XsBxjvN4dm3hR23xCJag96Md5v/u2Hs0/r
h/+db7tg2nzb2/NXv/3YTIF2t/jBiztvosd8LjbrjCk4/aC5i/S1vLwv8IyW
3UTURd5XpK8FHIpXJi9SEDaz9DVVege5iFVuWO2D/cjsG5Qw+wbzmX2DqX/y
sSaY5GMQMx//9bPwf/zMv5xvjNjTkbRZFtsDSqX3zhF74qPWVpNzdAcWJ5ce
6SiEzftio8k5ur/9rqD/Yy5t7bS5tKfP+88h/jRXkFtwRz0G9AXmdxB/Juuz
l5D3GlsOTx4+ZhYNJpMjb8h7jSmDZ2rkfU3hNb/Yt5KBMLrouAN5X/NXn4ZM
06dvXVa5U73kPOGoXTSPB3wO4rZWO06B087TFy4OU9B+tmtzEu8l2ORvJ4uO
YD3oI6AkOErBZz05aw9DKzRvPpiJ6f9bH+5Pqw+G14dkTbRxvm55bSWyuh96
ZW6xJYUPgA0z362nzdFmSf7Tn5/FaM+XK1Uy+/N/51O8mzaf4u9cCfZpcyVw
AYg/gfXIzlQb+UOSjuD0JqF/HOuRn91+xetf0mHOy2/SSqIZKPn16U5lzX/n
5ohPm5tTHGma68Aygm74hTvfMYxBLXlKNnWraLDlKdfb6+vpsCT2+wJ3BS+g
FUWfjl7w7/yaJ9Pm1+ys4N0ehnXJwcGiyBNV/VD/JeddJGc/qDLniwVNmy9W
wHst5rXHCOKhXtJbJnrBj/ur1Wm5lxAyK3XzD8z30M1tsWv1elG3zbvrizY/
/2d+Vu/C/87PKvt/dV15PJXb9z6SRImKkhKVpERCZMgWCUWGCJVCSsilUIbI
fMzzVKlMGTPPHHZE6YpG4RoynX1ImVIk8tvH77juPZ/7/et8ej9vrz2s/az1
7L32eozidkvgOIoi8EVrX8MluDZphrgOx1cZ8aRmQ7UBkKPWm2EnjO16bFuN
/6dekEvrr///9xe8o/VXlKYfdJimH/SRph+0xUD4LnWcdfPYvuiLOMH5qsA+
6jgv6fXw0en1uByNGc3H9vyk39fbbLU1sP1g6XbXENunLLe3P7arjdekuBaC
LOGRkeniMtxOle+3sy5jfpHrPKNvaGUC2sfJTINnlvV0NOj0dEiV7ovzYjN2
RADPC7zIybc4L0v6Mlto+jKjdPoymnT6MnUrvi/ayRnxqR3YToAjx/x7qp14
0/REuAhDi3oiG7GZ6sWcPvK/4tIlXRIegocNVZekiaZL8r/el6lPaYiIxX5y
L0lZUdIbCj1XthDIWua/XXT8d6kOYSddHULf/lvmDiEIFPLLyR5v84bMegYe
IkUIPKrYpyQVjsD5jY7v+YQCoYX75xss+Rg3czcTqftahzh6lbbLR8AxVglr
6r7WH1ymLLzeCGg9vtcm+8ULptTJ+LpWI1DTWGsl7omA3P7PtXVWgVCOUBw6
XIOAhIqH5CH8fpDRDKNSTSS80tsp+K0K/b2fHEe3n/z9/SQheADBAcvuqISy
JOj462NpP8Y32dRhp63OCEiOuTj3cnhAr4m4PV4vEOj6KLSH5zoCDTJ5f856
E6HGOpaq+Rb8/aRUz4yrCBySvqRYMRUBK8OzPFQ/Ynz7zLlO1RyB4fg2pZnU
BFh+8ZJPRxv1fGh3Tu5HBC0fhAWe43kCMxjdU69gO5TNe6bSGISgmO/JsgGu
x7DIoBrEZGP/2/2AdBn/3ZPjxQyC3TfhNLHIWfU1tsPx2ulnl/Bzhi1vPGU9
ocq5CoJtFwLTWqTZGS0EtuZ3lPLEBsFPmbt6t48h4NZ0qDBTHIGhv+RXrxiP
gx3mIRQrFuyHDp/gYWBB4OZkwC9RmXRo79rkUoXjveJXlQq5OP7vqGvT7TJ9
Ahe0hBQEphFIdKu/0SSLoHB6m2W1ziMoXZdXeRbj7yxHyw9jGwSO1TbetuOy
gPqNtptN3uP4P8y42ek8Vf9QYC1P5HXYvq9YqGcAgWSRzwW52E+2RL8WKIu8
DdMyWQTgPJ7vVUryFhsR2HM9T0z5cgBsNk8D9/ZSAO8txRBKGRmknnatFIm4
C2cEM1S6blPAUzXTQ2/sydDBkmmuiT8H9lS++pX5hAIcYyfDx4fJsOBL5noe
23jIp8NzxusUfr/LdIB3L4JRrVW96677ww6xVyZkzuX6adx09dOebBRZ44b7
tXB5zzmlODegrqHnQcD9WtqHMaDtw+yl8fqzYVqlbC7YT1HGlXJee4LC+5rG
7s8R+HrEgfWzPcbpmKRrAn8FgHtVwnc5XmGcoXw8Qj1fiOTLt4aWeeAFj4Y/
9Xzh9VHxVedxvND4fCA7JNYLPEzceOc4tud7uzd8s/fBccpRl7xLtgHgXGuW
dh1+Dn+mmpkQsZ+xucP+1C8CtN+3amQvR3/vY8fR7WPnvg+8lDWHYPvlUx1s
aSkgy1fD4ipe11tXWZ8ODMV+fD/yOrjSC4wY9WYdLERgTfIvlUd4/RZ6335+
yYII1p2Y3/Y2D4EVc4KEAowb86wXPoVKhgLSFasrKpkI7GbpzSSnIEC0l0/7
PB8JXo6MiRneX67LpEBXl+mau2RLxQyCfpUd77s+xgLjbDdemWMIlJZcC1N5
iWCM2gv+PW7xwFymXd3AAYETpHLxhBj8/342cIXWeICRnJvah/F60UGN9qJ3
sZ+R8em4/9IHrNDdpmOfjvlXFZ+yeCICY9P+xYXmAQCETgcL4n/Lf7rJfeMJ
nl/9SJLy5xAg2V5tQ4yi6sJwxYVDPI9cfAbqFuHgvdgWZkYPBF4aVY+9xH7N
brJ2Zig3COzh9VhtheOcAk3VYOUWBOtekPrCmsNBf4wdYsHr9mGY37bhEgT3
hJDkRC6Gg2xBr/XPAnC80vB83cpHCMR4r5Lv4/YCbOxB3fVJCNSmlyt0P0ag
QrNT4ga3L9gxb9nx9B4CAW/XfDmF8XLlYIDshVAiULECR7bj+ZjJ3jVXhfGv
Wp0g5m/mDx5UW+73xePZvEG1RLUbwbnZGYYXvp5AJ2LPygEcXymcb4yebkKw
TNZYJUaeCCJ/uhw4iMczs3VXXGslgp9uZEh8y/EH2Wwvz9lh+2Otu5yyLQfB
6w/P8OcfIwL1P8wtjKKW6whJ0NURWqr/40BX/6f5pNSdwYVBMJIrDpB+ITTU
zXSwYBn6Zx7F4D/zKDaP6izmNTkGUXzd794BhlmRi3lNS/vzn+j255f2z2vp
9s/7aHkXLxxGahZM38k/pcV1Wct5GgrU869w2vnX20PG3NT8gZB245I/TQrg
R4qMNjV/YFzAJ2tT4wBUvjKwjWOiGeo0ZbZ7MA4B64aUxX5FXE7civsFXKVL
F/t1mXYv2592L5uJdi871aVusHcngi7Hr96LfVgC/+A9zc/9bfm+sy/dfecq
2r1aPbp7tcl09zHtaPcxcwmRN5zfIODs3sYl/tsXvDJ0+Zhvi0C70fw+Cbwe
+daN5Ixq+sCelirPW3heopNn92vgdUN4MV/+q8wPXvgaXSOJ15Xoqsvy50sR
SJ9/lfLHYX8YQVAz/4XtNiFD++Dmeow3vX7ODj+IUJ+UdWHHbQT+queyFca4
eJS5zJ1/gy8UymlkZ7BZthNhOjtRNHfcqNOHoFBKplwh+TaUtpyZJV/Afk1n
FbP+ewQNNsVlCLT4QME76QV/XcN8ZE7z6rV6BK8IlzcHNxKhY3bwjhZXjI8/
M/6sKkWwuxM6Buz0h7YbucMTcDutZRWbk7IRvBjwIwQU+8HDRSZMn6KX7fM6
nX1Ws79nq0xFYPAoRVXxQDB8emX1l6sYr4hFFeUOhdR7ftltB9vC4IAVr6ku
9X6d4mxjbAPGYbKb/N6CcJi98XRsl/PyPHrSzeNeYMum34ngnXb94NUVoTCt
7c9Hc9h/s5Slsc3gfsUdy4Qsf4TD/P6fTwOw/1jPSdrlVojgr+samprGYZA/
XyJGD//dzXoN2pyP8Tgwnqh81hMEORi2Q07czqbil2wXExBMZO3vnyomwk8j
KqabcH/YD5pmVmH841l7zXS2KxoOb2i6Tq2vd/7q1h8RtQhoKscc0KqIgwoL
OR+M8DzGWUpZX4LY71/9zjlZEgt7pe+8euuOcbbE8wpzBsYTyxnotjEaDrDP
8c9g3Lc5X6TvfBdBnQ9fmXakh0O+qr2OMmnYHtIWvhZGIOg1eDHsQV4gDP49
g3xyESjjKbP1x7+Op3k7HRYSYd1pJm9q3emlPLQUujw0Li25+OIoap00i9j+
inj405oB7cBxqaZRo6gYEcHD38LHakcjYY/kcePpMjx/U3psLN7Ue0kH0vPO
B8NTfQTVSdJyHpoZXR7aqUnCeKkNgkfSvNui30TBHP+p51/x+vnhRtaft0Nw
4uSuRgPfIPhaNtHsXcv/zkMT4ZLMLjZGUPb7QtO+MT8YcngoaW0/vQ6OOOm/
dXDkSf+tg3OMRK+DQyBo/0sHZydNB4eBoJhJ1cEZoNPBwR/h+KcOzr/1a5xI
/61fY0L6b/0aQ9J/69eokZb0a5byxPLo8sQc1t3ccOIU9s+h9p2nCK7AqYr0
Z9AEAka8p/bVYtzy8d+Um3/YD4zc5F+ZsY4C/nR5LMr2mwzknnjD0bXRILeE
LTJGngIusB749juDDLS1edaEu6YC3hrLy8K+FMBUeqhrz8ggMCcXzhwllYLt
PK2r7NcOAa7dc8rtI4PwSF5nb/TNCnB6Q+NDCmEIqD3aNvw7kgzDub0lNzml
gFa3yWKpexTw484jkdQfZBjw8PiohkQUkOpLTq9XpgApV9NB4n4Ed/bn3oq5
6gs0dt2cb15PAWYmH1ekaGAcEzyDWne5AK5XNtP7vi3ng/HR5YMJPwk+bojj
88zgqta78RGgMa0jnRPbz7c7LH09mEceE1tvxnItAWSnCdWr/8Z+f+OFl+uo
elKJske036aDG7bfjcsx/8yVebMjSQmPm5Zi21hXEUhl6AzMxbhDlD57WHcV
9u/sjKozExWArf1oUdIcAgz6zH3JHAh6rzbW+ETOBFIKNaMPt1PvHwm8qz6A
oK3V5rGO8QRwXJ30pomVAtiDFyJM1TEO9BRe0vKKABbElKjBKQTE5jWkPc8j
+D2ZaTTD3w+on1qwAziez6lI0VDA8U6x3O945f774ORk5oJhEwKfJWd9EnA8
UjJ5c+ckayrg5wkYeoT9CkMCoxp0RhDJJ7m0XUsHnA2pVvup8a1VE9OMBYJy
KswSZy8+BElhjTnZ2K9sUrx39ZYl7leD74GObdFA5UCgGUsrAiObe6SbbBHk
QNyM8n44HmNVc1ig1pX13fYgF+OED6OP79b4h+DFnx83n4tAoM0wYP4AxiUR
weru1Q/vAdW3Rvk8OP5TquML4PdF8LJld4+EVxSwSa6XGahAwPyrhO4RLwRZ
k0WTm+OCAd+hytNlmIceaT8Hf8QjGND8pkl0TwQI23uhMwXj3mzyB0dd/P3i
Ly3CrNOB4OX12/c/Ybw7UbJ973GMz6VrYLn6BBHw2serCGN83h4mHrAW43H6
1lPHn8d6w+pnkw2pOH4+090Tthnj33XlijOdn31gm0v4kCv2Q7VHqtgmcdxn
cFBJ9UJLIHx9PY2olEfFw6mu1Zj/nj8Yustrzgeyazf43KDed3ZKZh3G4z+1
4f4jAY1gmPClMZ0Dx4ts292vXMI8YpUOvys4GwV1Mg7vTa/E/bUrNOXuwu3n
56SwkJNgUOvr/gvG2D6ZUhvqbiKgV12WNSroDXlumZs9eUm9h9OzhYTjCw5h
u7nYDUFQgyV5ZhPGT5M6EesxzIvHCHO3HBujoPr18yeS8HydjfG/IHcFAY+O
fN7fvx5AD6LuRw/8PPFY+yapKgQLHjuKDrllQ247cuMWRxxneOr4leJ5EfNq
fKSlkQpFg4XT9fA4SD670jFhhUBP4frnNRQ3qH2f95Y7/s5WjW+OC5hvEgcc
fwat9IOdnBf5X2G8nYvmyWpWR4DJ6pHr+KoI6BxS+yES23MxWxFBBeMP0bLs
RdzKBOhi9W5HwBoKeB76YdRzDR5vAo/0+I5MKJcRMXFWgAIg6V6lIObFTcOW
DHPdpRC8uf00thOBopXMd9vF8brYLGxiUpEBS24d+msD5sXXuq2m4uQR7DJK
LmEzfgCrdjM+VsLrWt7ltmOvKQJCRZykByV2MDLKuiUO42TAdEFCjSZe70/U
k3/YOMNnmelBPJiHujxM3G8piv2Vt3eHTbIPrJ329WfloICBvJEjq2bJgLnk
e5CVVCRkLk+zaVCkgE+9JAUYTwaTfHcO/ficBD/tPGsiGksBbxUedFJxsncm
dZMSqRRauw4t4qSDo3ORz+Ag/DZXzXaRsQymBvNu3rt+CNx3MfQ4lEyG2zdE
M53ofwzNBlI7BAMpIDsis8l6lgwNhbSIXyaiYRefm+g7QAFKOtvXN4sgmPTM
qO3dFz94zWcfmzvHMr/eTMevww7aMURa43n80H26xt4dWJ6n6PR8QCDVYczz
1i0E3lrvYhU77A2uzhSp/2xEIEme87L0DQQuJDkYP14bBCS4o/TTmrGdSLIU
xmP7d5zVZt9M8QGt5RpGZOz3ww3SRQPx86TYnWKOLUEgwy3ziht+PlHwOdMH
8+Ugh+IfD+0igXu9v181jh9Stn2R/jmKIMw5ITFskAK+fp4afKWGea+PwLwt
Xo+cyh5BofU+oGfWXVYQ2+GJ1shxHOeA7B6XX04ygWC2e79nCF7vlF/p0xyY
hwYyZHqp6IaDr7rRzAUYHyovfJfLwb+/eKK17mZHgQTbE5xW8cu8GNDx4gzR
mOThYQRtnoeWlQXHgbHGqHnV0ziuEzjcJ4XjxrfIPUSdMR74OHK+jcfxp6ph
XuYhjCdrtFdUe9l6g2NdbwfcMJ4MSPbp8ydgO9I7bxlvhnmflJ/xWYw/1QKC
vs74tzxCbfayexAQ6RnfV4bjSRGZZC7NAmq98/qAtyxhwLv7NQzB/V+j2efL
/Qz7r8Rnc77W4aBUL+2lLY4bJWufP33Vg6CM8z6eELtQcDBUj8sJ87W9hYc5
z79AULd1/4s15eFglfrKIXYnjPODnb7hRQj6b0neyMEVDjb4nTYQwXEgQfn0
1d2YpwxF7Sl5vMMHxO3UrCXi+Fw83qmSA/OUVD2bnGxvP5Cd0Z5vj3lK2y/e
m51UvZGJX18TWfyB4a4Pxz0C8Xq8r9B5Erfz6S0FstgQEexQ4Rcex+3cMv3k
Rtk7zIeE3h/fst8XuLh0RjpinnLp3W5OKh9JgofMC8i3Qa2W2iIfkZW5L6bw
AfuFXWU+uUk+YJ23KhrD9vooxnpCvAFB5n4tG7a/iEBLMILCiPmIYpqGkHQZ
gn3Ju3dq6fqD4yZrGHkxHwEzLy52YD6y7+NaEakhP2BEuDeZEr28j9pNt4+6
Y9LK+tI6Cpw1UqXUp+I4c5Xfnga8/q1odTj1aHU4R2h1OM/6+mcJi1Mge1v9
mquJiVBJV9uIlQn9XZdJh44/rnYPi3fTp8CPz+ZvH7XIhz/VDNjVm8nAnJZH
OkerWxtJyyMdSCnYtBqPm5jRti+KHHWAIWOngPRPMjBOT4mkfifshNZ1/B1Q
8eoNF/U7rbS6nVa0up2atLqdvGSDbGo7mclGprid4A44ZEht5xKfLafjs6V+
YHEcpCZmmRtSI4GB2pPFcVjKP1Smyz9cyjPso8szXOlke2A/5zA86/Shqqan
DDo9bB2OSRsA2kPW0h6SA3DqllqQI8c70Jv23m3rN8rfeSnFdHkpWVcTVZ4x
UqCzXfioeJUtMJWyas+QW84nMaHLJ5HxSVp839w61/RglS1UV7VefH8pT0yG
Lk9M0YNXlNpO3333n+B2gsHhlhFqO5fyuBpoeVzraXlcw7Rzq1P+dewWZu/k
g2j7G/U0vcuVBMIZqt7lFE3vcqluGw7aa/5Zt+0ALV9lgJav8oGWr9J/VOz4
ye4BeEeksEma+S0UIvD4nr1L+Xt/I5q2v7GCtr+BaOfRBNp5NL2eJoHA/y89
TbPWEMctOF5e2VfhR9YlQka5c7sPaCBwQ7B3XAT77SprZzHWmjgY9y1/g9A5
zPdtDfqur6WAludswUbfI6FFiAVrBY6Pf7nufVX/CQF94tCKx4XJ8KHGUOmU
IQIxtPpp9rT6aeq0+mnD73n9V+J4Z+SnmdSpqRyYuHb3EyF7vN639PEcIyMg
dXMmVcGzFt45aMNt84UM3kw88KO+z0kKEcXvg1He4hzq+9wqZiQpDQqo6Tqq
o6eXDyx2FZ6ybiODefaCJmp7ZG9PHMTtAeGS8mXU9izV+zpJV+8rvtF1ktpf
cyZuA9xfYHGWYT21v73MZTvj8fisY0onDu0ggrebH03kYTv/P0sdn+4=
     "]], {}},
  Axes->True,
  AxesLabel->{None, None, None},
  AxesOrigin->{Automatic, Automatic, Automatic},
  BoxRatios->{1, 1, 0.4},
  DisplayFunction->Identity,
  FaceGrids->None,
  FaceGridsStyle->Automatic,
  ImageSize->{333.1684660200303, 232.66417503602338`},
  ImageSizeRaw->Automatic,
  Method->{"DefaultBoundaryStyle" -> Directive[
      GrayLevel[0.3]], 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" -> 
    "Globe"},
  PlotRange->{{-5, 5}, {-5, 5}, {-1.78317191774893, 10.521122133645196`}},
  PlotRangePadding->{
    Scaled[0.02], 
    Scaled[0.02], 
    Scaled[0.02]},
  Ticks->{Automatic, Automatic, Automatic},
  ViewPoint->{-3.0805265197629583`, 0.3495271567675202, -1.3557975983601265`},
  
  ViewVertical->{
   0.3981203849070422, -0.045172111096923005`, -0.9162203007467778}]], \
"Output",
 CellChangeTimes->{3.8274933701200447`*^9, 3.827493423229261*^9},
 CellLabel->"Out[23]=",ExpressionUUID->"841b2917-c78b-4172-8955-8980d32fc3ec"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"itest", "/.", 
   RowBox[{"x", "\[Rule]", 
    RowBox[{"x", "+", 
     RowBox[{"\[ImaginaryI]", " ", "0.0000001"}]}]}]}], "/.", 
  RowBox[{"x", "\[Rule]", 
   RowBox[{"-", "4"}]}]}]], "Input",
 CellChangeTimes->{{3.827490361437801*^9, 3.827490363781784*^9}, {
  3.827490571145834*^9, 3.8274905761138678`*^9}, {3.827492149105356*^9, 
  3.827492149464531*^9}},
 CellLabel->"In[91]:=",ExpressionUUID->"9c8e9828-9a2f-4f15-b149-d240b7e77eeb"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", "0.1440638531600313`"}], "+", 
  RowBox[{"5.8680622917611165`*^-9", " ", "\[ImaginaryI]"}]}]], "Output",
 CellChangeTimes->{
  3.82749036399016*^9, {3.82749057132627*^9, 3.8274905762640743`*^9}, 
   3.827492149631466*^9},
 CellLabel->"Out[91]=",ExpressionUUID->"4629de9f-997d-434a-b579-502d66aa00a1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"Im", "[", 
       RowBox[{
        RowBox[{"-", "itest"}], "/.", 
        RowBox[{"x", "\[Rule]", 
         RowBox[{"y", "+", 
          RowBox[{"\[ImaginaryI]", " ", "0.000001"}]}]}]}], "]"}], ",", 
      RowBox[{
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"-", "y"}], ")"}], 
         RowBox[{"3", "/", "2"}]]}], " ", 
       RowBox[{"Exp", "[", 
        RowBox[{"1", "/", "y"}], "]"}], 
       RowBox[{"HeavisideTheta", "[", 
        RowBox[{"-", "y"}], "]"}]}]}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"y", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827490171099155*^9, 3.827490179042816*^9}, {
   3.8274902806768513`*^9, 3.827490282900653*^9}, {3.827490316733444*^9, 
   3.8274903427976217`*^9}, {3.827490375462688*^9, 3.827490428967375*^9}, {
   3.827490562601927*^9, 3.8274905680577393`*^9}, {3.827490625163025*^9, 
   3.827490625802943*^9}, {3.827491008171384*^9, 3.827491019978979*^9}, 
   3.827491719728731*^9, {3.827492207866467*^9, 3.827492216009801*^9}, {
   3.8274934584087477`*^9, 3.8274934808888817`*^9}, {3.827493584603359*^9, 
   3.8274936145714483`*^9}, {3.827493646668025*^9, 3.827493667980644*^9}, {
   3.827493770966469*^9, 3.827493828662982*^9}},
 CellLabel->"In[52]:=",ExpressionUUID->"e9b86a63-3e78-4de0-8cfe-6232fd09eb3b"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVxXk01AkcAPCZylHbuqaQCr0oKtXLw4r6/lCNWynank7X6jIxOuTYrESX
jGtJVmPkNq7IiL4/xjREOWJcxbQ5GqmtkbOJ3f3j8z7rPBmuPosoFIr7f/4/
bNRJurBAIy2Si4PCy6jESIj6ZL+MRrYI6V7PSqiEs8rg9JNZGjmhW2E4z6US
uuYXfjAmaKQgfWRXWAGVqL8VrygeoZEiveg/grOohOLWbm3yJY2UfeYzzyRT
icSgkw7X0mjkF6/QIqOrVKKAysyimNFIg9t7NplZUQk5H/qOVcfUSJ7NYr1T
fApB6xGcy2SpkvGrK5y67CmEK/++l+ELFXINJvQZcBYg5J9d5+LeK5PGlAh6
ceI8VF2+f6bYRYm86dc9+jTuBzjHu+nOpy4nPcOHyzT8ZUBPr3W2HV9G9usJ
B9/t+w7ZwmAR02Mpae59N7LbcA6OX09c2ZqrQDpYldrqSmYg/ORi7k80eXKt
cYWMUzoNFCMdtIlaQmZ3Un8rZU5B3+3U6IKuRSS7/mOHdNkkrFnml/fNmkoG
DKscKcmbgLMmm+T61yygIEO4VVtdCl5mA7l8/nfcLS5lUAO/wKYrOxf8s2Yw
gzIlAc4nYL892BBsNYmFOdUvVw9IYDRipSVdU4p/SW1i49RHoDrJYO8H90/Y
6VEgtCh8B9slvd+2pY9gn1xdbhWlD/ZU9y/94S5G3mH0lojagJv/yFxoIUY1
tn/NOLcNNNMYp1m6YhxJO50zcaMNRNPy8Q6dg5jz56O6n83aQD/EXSV9bgBl
00SibGsr1EdMLifob/EX5p0y7/IWkMUay98Q96JjzFHnqZdCaGMIfbTye3HH
jbKommtC4Oz3EHCZvcgIt3ArNBaCvVrk9W75XhwpcXmodP85pCZ1LDI06sFW
4k224mkBmD4IWGgOFmHQDFeeUOXDhbziGVXaa7QyCT7osq0Wtiv5R1qLO/Bv
S9tGreIa+Bq4RYlZ1IHmm5MOpGyrgUDLvPWd9A48oSWprNrxFC62Zjonh7Zj
1JhL5awVDybGNtuZtLRizZnoMXF0BQQ9zj2e7NuKpTlV+9NWVMBUmH7QNKUV
h44rc/ZmPoYZFZ0MnskrXCy1PhBMloPMVG1yV0YLvo2kVQgUy0A+cubhvsAm
pFvYBWqkFEG048XKnOVNKKqavfmhoxAU1aXNijmNGM4MGZFTKYRleR+nXvQL
cWeY/VdzVj4otw44uux9jv3eou0KJTkQl+LhWTIoQIamnmLNj2xQ8+y5rHpV
gCtYG6MHnLJhxWR75mtuA44lzKldnswCzdWCmcOafNSlcRSMPDMhdchKiVdW
j+nxL41j+GzQ4j5br+VUj+fpm0yPbWTDWqsq5zcRdfgukVCVjGeAzSt3uzoR
ova1RQ/veaeBu+96dkcoD2ebnlsO706AWwHMmPiKKnTtHq0rOBQPtaF8huvn
J8jNusTTYLBAL8Frd8eJSrR4k6Yk8LoHUuT0t1uXI7Vh83mdwRjY0DxRzwop
w/yaxO8st2g4IrLJP/C4FK915dxO7ooCcvz9lXb9Eqyq1nAqlf4B2sa2WzJV
85GvrG+x1i4Eouw+zK2LzMVwpaNjNV1XYPxETBP7WzY66o1Ndl++BNV3Gn3Z
3Rx8JH6yKm4+ANZx/EzW2WXieOCDpMZGBsTwFJewqx/ihE4s37XhLBS1sKyt
LNLQSTu/0trVG0Jm2wcJ7RQUGTX4qUtOgt0GtTCCmoSS4f2nKgM8QOOgqxYx
xEIe1cDH/pYbNC/oMX6PvYu1w0+/zuvtB78jj/LCD0WjQo/MtCBtHywp1x8K
04rAliW3fG+6WwKxynHXHHkRO+/mhbaXbYGY53Ntv+qcwfSNBxwKCrXgXzLN
yZQ=
       "]], LineBox[CompressedData["
1:eJwVznk01AsbB3AmZC35uZVQiVerIreF6jy/ct1UyE0o5HbH8laIJEuWsjSU
bTIZe2YLP2sRIT1GUdfSXEWEkqIhW5YsdSuv94/nfM/nnO/5nkeL7nXMlSYh
IRG2cP/P6KffWk6sOQcSm/N7qtln0drwdTVjfyRclWYVLTrrh+WdduFRQTdA
eDXOvCEhEJWEw9p19kwQDj4I+GwbjMDKZ9T5s0ConbjN/3UoXnBz/1R3iw3M
zRqLdROvIs9os3n9vVQQhv57LoIXhm2Kw0X1ogzwJjscl3HDMePkDmPnSC60
BJjt1roYiTtMktz7VPgwHiIt63r4Goq2TGc4cwUgVLhadHcFAyUkyuadMQf0
HQvbI1KiMPWTqkG/OQXKWh6GJRbRuL3Vl+7SnQf6rd5eZt+j0SX713qXuUJY
22EfLjp4A1107eu3q5XA1c7/aFfzY1FfXb7Hp7cEvE8l3DbVj8MfS6tmSnJK
YfBejYpOZRyyv6ptMNxZBr1dJ/mlwnh81tx5w9C6ApiPs2XnbJh4JqDrmcPm
SlDWllk9douJsjrdUpGLquC+KfRffsnEw0FvQttKH8LrE88cMw7dxOaN73wu
qdZA/7WjzskbE9Hj1bvizJEaeH2R/ovYKREZpPcMnS6E/iilK7tYibh+xNsw
xrgWMg7Yjcp+TcQzJj6F3UOPYTCp597xKhbuTp1s+mz7BDTWVdoVDLJQ9rPP
0KInT+BvC07y78tvIZV2cf2W9DpQjVHQdfC6hUMTvtzgI09Bscl1IFMtCT04
/kmaBQ2wcnuHZMIxNu6dmS01WNkIiS1pdXR/NiqaB7w0jWwEc6aqRU06Gwtn
A5aed2yCHpc599V9bByzvHwdFZ+DStPyb0KPZKwIRSze2QKrrNKr8zxT0Fiv
tsQquRWK7pb+LmeYhjva2tnY0AriS/bnnY6koX7QyOUt31uhJXXUOtQ5DXUb
VpjI/tUGKW1fn2ix0pBwPd9as+kV8By+SywZT8ORDPUvW7Ed5Kslnq7jpmOW
ot8OpY+d0CF7KDWnPwPTSmPUglZ0QZYs0ZA3m4Fse+6PwUNdYPZQxjNWPhNj
c5vr64q64ORur7qRbZkY8Ju2bXBAN9z9kaSjF5iJx4Jb/IYV3sKqbTaraTK3
keb3yxsXtV4wLu4VWStkof3pvJcVv/ZCpkm1tLZGFpYchgZFq15Q5W/T6diS
hfQ1Z8vvM3phKpZ2/LNFFj7+u5op9aUX+nhxXQPxWRih7mIqEL0Hryq9zRoy
HJSqLSnqi+iDnvHo2/JBHHTMP3hnV1Yf2N2qcaaFc/B+0pv0mKo+8J01iRiP
5qDLOZnrhhN9kPeiVf8um4P1hL1zhFM/tNlGttTc4yDDTXKlttFHGFvv4W4o
5uBiRasw+pgYUsw/BMyacfHEenvhTrkBeLmqifnMkot5B1zm5XUGoCrqWjnz
OBctAwNCSk8OAEvayW3JaS6yxZxAqfoBcPPcM1Thx0Xd2okL2emDMKVldaOd
x0VTPxZ9yGwIOmv+cY6d4WJEb7uJD38UhnvljI3iedhTecQzoHoUtJM5DqcS
eWjMErJDX42Cus2FRyFsHo6b5n26sXgM3Aj2ydLbPHTKD0ngu4/B8oEnyZNF
C30/ne42w8/wYva3NU9FPPwqbVSpTh8Hx6PDvmIFPt5NZ1iFTk4AeBcoqoTw
sYlgDCyVmIR/TJKty6/yURxzLZSrNAkOa83i7CL5qBEcWVC3YRIGpZ8PMWP4
GO0YLqvw5yR8+UO54V0qH09rhgqTmybBJ9qicaKMj8pZl/TvCabAcMvzD7QR
PnrxXJT7baeh1XrrSq6VAOMDUzPinachZLxojae1AIusRBuMvKdhOPnygV22
Ahz7uWt//PVp2Epv+1DvIEAPBwWf3dXTsC93qKnZTYDnVEtaY7Vm4NCp8NUR
wQJ0Y8yzd4zMQJhb3WJOtgCdzqVpRoXNgb8urZk2I8Drf/gZGWb8C/xUzf9G
h91BKdUk8ZVvP2Fu+Y+4/dLZ2NF0bTxyqSRZ4JP71vtCNtoE0XemPaGRvr4N
4prObPRQGF4nspcirxg8MFhhkINr8p+yZYakSR6rbOOL0BwMqjCxXpq+mPw5
WpCa2ZSD3tke5Tu3yZHNvGjLfUq5qEjbRd/6UZ5k1vUXU5a5aOp5PGkTS5H0
iEXO++u5uLJS08tUZwmZvthdZvujXEz0ib6p37GUPCwellCayMVjjKN6meXK
ZJVswvCR1RRucoi0EYQsI/U0fZk/D1LYLpbjsWxUSLey2kdxPhSK6B/3q6wh
SHvaFe6PZArfS+XMJa0jyFzxqbWcFAq/ZJ8pVtMlyJnym/4HUilUGx7W0NIj
yFA/o2JGGoUuFydnt+0hyC1dVqZKmRR+i5gvtLAjyPPch6sIHoW6d9RWXU8g
yPC3VzolCyg0OtjdosgiyH6bL2FZCzb/lBHFZBNk11S51L5CCi/orZ1OzlzY
93JO9S+isLpMtyU7nyCLNklKDt+l8NhTQ0bdM4IUVF9obyyj0PXM9F6zJoL0
ke/Y5FZOYYD8g6kmEUF+6wy0l3xAYaal8V+trwgysKjkyK4KCgfbyb0f+ghS
2eCGP7dq4d8A2pTrAEHmNPrm7HlIoZJ6HfVpiCAzvJeVvlrw9j8PrpiYIMjy
mLRTco8oNJWUE/lOE+TDWv533oJP8Bsj5+YI8s21FP+9SOE509g9wd8J0lsn
SvRqwSEDFpPz8wRZ/z5E0quGwv8BoJIl9A==
       "]]},
     Annotation[#, "Charting`Private`Tag$67634#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVlnc41Y/jxY1IRhmRj7KbihQaRrkk3VIJSUTcUlEpMkLKHqFIxI/MzMoo
2fd9rh2XcO3syEhG9sdHfP3+OM95znP+Pq/nSFIe6FmyMDExfVrX/zuzyfOs
WRZO2r+zBRwm6ny0lGrntkcmm2g8OlZlm5x4aWberwUb0jbSFJnLeNJZeWhP
zVkzuQTYaft8WicMfTbRmGTFoemzgWbDc1GBTGKnfQ+M8nvfykKrPGZX8Pcn
C20H5530OQ1m2hT1cbHQyBruKsmwde1YQ+rOjirFP//ixtHetPLy/yBaqh67
GDwHmcfKazbvltB/a9Z2YnYKCT36Fc6kefAXV1PYBEdweOjwcoviPApHrLPF
F4ZR8YtPXn7veq7SGj/bPozhxYbo4c3zuJasrdkSNQwZfp1H+t1zYIhrH/ss
PoxPp09JyTrNITOeZW+a3E9UZCm693+YhXvCtfHYq4MY8RBU1RaewVoF6W5e
bR843bKmwjhnsD2X3fpOaB/kHpOT+lf+IEjfzve0UR8cbdw4XQb+oNgo9Z7f
cC/YTX52fMj4gyNphSQxtl7sVPziwK/2B+azU6OfznaDMmyQ1WMxDdai10IC
Sx3wHZikyBhMQyLKc+ejig5kdPsLOZ2eRqKM8T8soR2YYZS48e6fxpm/skIf
ZTrA8owc6Ts6hcH7/zd/3LwdJw+NNV3imcJzb2HDUy2tKArfqzVqOIE1e4eJ
6n4GOExGbjCrTqBY8CArRy4DhhIpniKSE/jwKpX82I+BmQxpms74b9Bp3PQx
OQb20cRUcp79RuM3dz0B9yZE/tp6yCVtHHdPOChH7G+Ew0lmUe7lMbz4ofJc
WJeOsg00lV19Y1C/E8bNzkoHb+1T4xMVY4gQdDtlnFeLDwYrbx6+GIPhd813
R8VqMWS1yN8qNYao2KoG+sxX6L2e4Ig9Nwqmgwx1v6wqyI91zh18O4yl07c8
cx+XwX5adt8272H47KsXllIrQ8Gih+mq9TB0wv6mTDKXgcQuU1V3bBi+Or/O
JQeVQk/a5Y1Vy090cM4KBafQ4GAqopzE9RP2s7I8jA4qim7a2DyfGQLF+7hC
zn0qVu+WJdp2DmHr4xxpfVYqfF2sudRTh0Cqb/Dvly9B5Jui7m6NIVSMcZL2
hRehqMn4mZDLIDYNnurL9MzHakfm57/mgygO1nPrks6HRj/L6JD2IJpzdCUa
KvNAn8zQ/Sw4iAh71Rvc3Hno5vpPUjfnByJK34v9TMjFmlZ0RcDoAM5YL6mr
zebg1PmppYcNA6hRDXaZjc+Bv4GmrFHeAMyfpXY8upgD3hvj4bu9B+Cu3RTW
nJkNKXeV2+XiA5D1eCuzazITp4q6Nv017EcU27eaMyYZyMxIPl6t0g9xQpXz
fkU6hKMfWIVK9MP1W03Ug4PpaFtkf3WupQ9GZRJRW7jSsMvVkPftci+mCgPG
CzqSsWTy68Ghil6QPkR/qNdNRp3q04bK4PU+frAMte9gv5r8YlKiF+f9dUuV
K5JQ5jHPra7dA1v7FReP+gREUALutfD2YFGNI9bRIAFWmqJ1d753Y5OoZYJW
Tzx42bQCQ+93w02k3aJnNA7X/V9vGgzrAt35ZE+WbQxWXiiw+/Z3Yv+xt2zm
hyPQ+KDaUiSjEzLWoc3ZLuFI0jWpzHzUibsfCeewqtc4y+/l3c7eiafO+VrM
VmGICmew7JPtQLVnPsv2jhDcc7xFoS60gxgwL3ijGgL1K8ull2jt2LabcpiX
/BKjwlIeLvrr+WL23ht/g3AkxnaN7tyGbHKJnnK+/zoP2K6ba7YhSknp3LU8
P/SYRhFz3G04662cwV/iC2/xUjfR+FZMFA+HcHV5w4jpck+OVSuOkFY8FOe8
cGBgVPW0Qiv09APSCAEvNCfyrthUtYDJQTqYsPRAitc7E9aQFmxusZDaFukO
l5vHit9cbUEIJeWgbMIzSO02d6H9boZrPxM5PPUJHqZnLfEJNOPJA4lVMw0n
yG+28dJY3/2xtRvXXEUc8cfuwOZHHxmg2n77fX3FHnaq6dIt2gxo6EgGMPXY
QSHhduYGQQb6tMDj0mWLObbdx5V+NOHQiHvukcGHcGhIvBDxpAkHlXKPtm+3
wRFFi84qchMcx+VmlCzuYSFS/OaiUBPUs+0sF/Ot4USJcTbKaUR+yxbf+5G3
cazaeEPA00bo/DrT6iV5C0v7/3lZeK4R1E1m+2hFNzH7az9Zqa4BAUFmFqY7
KLDPTTOLuNWAA29N2wWGzLHgtst+kakBf2K2bD7qcB1LvOJxhUrfUD3zPtB+
lwmcv0fnijTWY3Ct/+vRPVexnCRc62pdjy0uQRPVmlewcoR/Xi2uDlc/6Kaa
1erDjeklZ9zxOpTHSNJGDuthtYZLgqmFDnfBsG2an3XhHuavZGFDx6cjPnHG
4RfAbMp2royDjmFJRa7y6XPw3O1pLp1UC0vGKqeCExkbplcdvNVq8ay2c+OO
Pdpg91qKP21Xg6TzLkFCfzXgp+OQl8pdg2TTLZQNEiRwCM3QOVK/Ikz5Rxu5
7gQC+mwGrEhfEd4YT62LVgFn+vhCbVc1NK0S9zx8fwyBdne4DzhWw2w22Vho
SQncqj8lg3mr0RmSEp7yVAEv2ChHJzOqUDHP57lZ9RC2NPTqXNSqwu2pwZt+
xnIIiTShZPdVrvPhtfHzWBnwUzqc+FwqUXRZm035xB6E7b8cbLe1EmwSP1rK
FXZi63xTYnNmBQLmzjbbOksinLhQoEiugGnM6ISJgBiE/On14YPlyJXhm+Yk
/sGbS2cGF9zKsaBtrmk0Kgjh7ZVLV4TL0euiJb/mx4+oIdLmwk9lkPwvVVZm
9xaIZBLSIufLIB/z9ag4EydinFSOu46UwjdQTDA8kA2ipIIL3R6lSKqvyBDJ
Z0Ysp9JNtR2lkCdt9FUfWiHEW3KcY/NoiPu1fSuz8SIR/1bu5ZouDX1jgT68
n2YIzW+G5NI2QFanRmAmYYI4baFr78UFnKSombopjxBn5shxWuoE3j4XHatZ
HSDO+mnWbnSgQiyR0V/q10XoiKjN16SXwCfdIC20soW48PGIRFBvMdTpb8R7
Br4Rl9Tlz10QKMakmHPPWEQVYdC8z5H3TBEKZ+tv31SlEYa3pBMYTwqxnHJ5
WednHvHc9pH/qy8FKLz+lD74PYugPil/oDeZD8pL+SmZj8nEtJ/AFf49+ZhM
OiFzlB5D7Ay7cYJxPQ91992ffI59RRjFft71KvILQkdlfttb+BGB6ydMrykX
OtWtIvesnhBErv4cH2cu2v3d28rfPSRmkNTVpPEZl9LkWtkKKMRu+mxZqOsn
8Ak/1YzYbkBcbdPMuJSbg/DQkUgWz1NE0EBYKN9ENrwXLfUOFSgQtN+Dj5t2
ZaM8KVpJv0iSGJ26TZOiZsLAUpajyJ2HuMjO8TJR7uP63pr2RNstUPN2pJlK
xb/HTnrKw7bKXqqYwpkDiXwZ6CblM0JTy6g+5NFlSa80xLEHOTICk6i/r/vX
JMylwDH7QOUFeQ+qvuPeSMlbyfD1e2Xz0saIWhT09VZCexIi4lOHXb/IUCWT
7ihJkhPBVldEXWGdL/Ev5NiQUBSPO2bhITYlX0p64y4lk4xisShLDXFisi75
WBeqQVKJRp6xvJNcD0+J679NfepikRBd4Fj0bI8sJu/md1NnDseS8ZITsxhr
MX1t54NnL4LhfTYo7I2waKF/1XKjkbg1bGzvylv6DST+D5pIDd8=
       "]], 
      LineBox[CompressedData["
1:eJxTTMoPSmViYGCwAGIQ3XHs14UI+Sx7BigINr6xp82xBc4vTMt+eWTKNDif
gWHr/+R9y+H842dudhkH74DzMypuHY/W3gnnc6jcZmlh3gXne1XfqbuyeTec
f0bzflGpyH6EfueitbdfHYLzcxaUT5VdcxLOt9I9uClg+mU4n6lM9E6K5AM4
n50noDHp3TM4v/nBNeeixW/h/A2z2wLqPn2E8/MXpQg8CfsK58dlzZJtb/wB
53cGllkaz/kN57OITH1W/+sfnH/9dOuHFn5GBxg/tDrJbNZhJjg/h/u10rko
FjhffvWxaWyvWOH86h3Owfyz2eH8gmU528z0OeF8HibzJL2nXHC+a27IVK3J
PHC+xE7ZfFcVPjh/UlHHRIPr/HB+UJu/7txtAnC+VnRL6JJaQTj/2jPORZND
heD8c0lPHYXkheH8hyzLf0xVQvC/LMtYL6mG4Eu+fi2jqIvgpxR/+q5vjeD/
av6/1jccwVdbKinV2Y/gW7rfvsAzGcH3eTmnfcI0BL9QV+Hr9LkI/p6taheW
rUbwg44Ztx05juCnZny18TiN4Fdwbf98+hyCP9fPKvHyVQT/xTUHm0ePkdxb
wfQ59TmCzyt9ZOXLVwi+Uby7+MePCL4rI+e5kq8IfsTiUy0/fiD4Wa491jV/
EPza576f/v9H8AFRFcl0
       "]]},
     Annotation[#, "Charting`Private`Tag$67634#2"]& ], {}}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 5}, {-4.312847267426144, 2.212155257805333}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.827493655651678*^9, 3.827493668239517*^9}, {
  3.827493771473319*^9, 3.827493828967701*^9}},
 CellLabel->"Out[52]=",ExpressionUUID->"5cd5b531-c23a-42bb-bea0-db89ec6f1525"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexPlot", "[", 
  RowBox[{"itest", ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{
      RowBox[{"-", "1"}], "-", "\[ImaginaryI]"}], ",", 
     RowBox[{"1", "+", "\[ImaginaryI]"}]}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827490076041252*^9, 3.827490130315631*^9}, {
   3.8274901830512238`*^9, 3.8274901845467873`*^9}, {3.827490769653777*^9, 
   3.827490849440147*^9}, {3.827490905273271*^9, 3.827490940233993*^9}, 
   3.827493554442696*^9},
 CellLabel->"In[34]:=",ExpressionUUID->"110a6801-f97d-466b-81da-59937fec81c7"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJx12z/IUFUYgPGPaqihwClwiWh1dGkQmxorbAlqsWhoKqTNpaFGhxoaBWlw
CZK2QrAcJBAicIlykCii/0JBa9/nPb83ei65HB4U73d87jn3/efjL79+5tX7
Dg4OPr7/4OBo3X7dvWa9cOX2rQdv/jZ8/Ownl4+9/8vwIZw/fvan4ZPXzz37
xIkfhz8/wr+/H37mkE5e/27428O//dSFO8NfHeGV28M/v/b2Dxef/nr4gXu/
fWv41Au/H/6JL4fP3fsBb/z7vKMf9/ynw2+cP/oDl4avbnwav7n9+eF3tr9v
+LntecOPbD/P8F/bzzv8zbaf4Tvbfoef3/49hm9s/17DT27/nsMfbv/ew49t
Pobf23wNr7U8Xrvyi/nF/GJ+Mb+YX8wv5hfzi/nF/M7zll/ML+YX84v5xfxi
fjG/mF/ML+YX84v5xfxifjG/OZflnUfclV/ML+YX84v5xfxifjG/mF/M7zxv
+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/Obe7a8O5f1iLvyi/nF/GJ+
Mb+YX8wv5hfzO89bfjG/mF/ML+YX84v5xfxifjG/mF/ML+YX84v5xfzmu1ne
3bM9l/WIu/KL+cX8Yn4xv5hfzC/md563/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+Y
X8wv5hfzi/lNHFTefTd7z/Zc1iPuyi/mF/OL+cX8Yn4xv/O85Rfzi/nF/GJ+
Mb+YX8wv5hfzi/nF/GJ+Mb+YX8xv4tryLg7qd7P3bM9lPeKu/GJ+Mb+YX8wv
5nees/xifjG/mF/ML+YX84v5xfxifjG/mF/ML+YX84v5TZ5S3sW1jYP63ew9
23NZj7grv5hfzC/mF/M7z1t+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF
/CbvLO/ylMa1jYP63ew923NZj7grv5hfzC/md563/GJ+Mb+YX8wv5hfzi/nF
/GJ+Mb+YX8wv5hfzi/lNHaG8yzubpzSubRzU72bv2Z7LesRd+cX8Yn7necsv
5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+Y39SFyrs6QvPO5imNaxsH9bvZ
e7bnsh5xV34xv/O85Rfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8xv6nzl
XV2odYTmnc1TGtc2Dup3s/dsz2U94q78zvOWX8wv5hfzi/nF/GJ+Mb+YX8wv
5hfzi/nF/GJ+Mb+p25Z3db7WhVpHaN7ZPKVxbeOgfjd7z/Zc1iPuyi/mF/OL
+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5jf1OHLu7pt63ytC7WO0LyzeUrj2sZB
/W72nu25rMd5XtbJjxZPfrR48qPFkx8tnvxo8eRHiyc/Wjz50eLJjxZPfrR4
8qPFkx8tnvxo8eRHiyc/Wjz50X95V4dv3bZ1vtaFWkdo3tk8pXFt46B+N3vP
9lzWI+7KL+YX84v5xfxifjG/mF/ML+YX84v5xfxiftMnK+/6Kq3Dt27bOl/r
Qq0jNO9sntK4tnFQv5u9Z3su6xF35Rfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+
0/cs7/pk7au0Dt+6bet8rQu1jtC8s3lK49rGQf1u9p7tuaxH3JVfzC/mF/OL
+cX8Yn4xv5hfzC/mF/ObPnZ51/dsn6x9ldbhW7dtna91odYRmnc2T2lc2zio
383esz2X9Yi78ov5xfxifjG/mF/ML+YX84v5xfxmLqG862O379k+WfsqrcO3
bts6X+tCrSM072ye0ri2cVC/m71ney7rEXflF/OL+cX8Yn4xv5hfzC/mF/Ob
OZPybi6hfez2Pdsna1+ldfjWbVvna12odYTmnc1TGtc2Dup3s/dsz2U94q78
Yn4xv5hfzC/mF/OL+cX8Zm6ovJsz6VxC+9jte7ZP1r5K6/Ct27bO17pQ6wjN
O5unNK5tHNTvZu/Znst6xF35xfxifjG/mF/ML+YX85s5sPJubqhzJp1LaB+7
fc/2ydpXaR2+ddvW+VoXah2heWfzlMa1jYP63ew923NZj7grv5hfzC/mF/OL
+cX8Zq6vvJsD69xQ50w6l9A+dvue7ZO1r9I6fOu2rfO1LtQ6QvPO5imNaxsH
9bvZe7bnsh5xV34xv5hfzC/mF/ObOc3ybq6vc2CdG+qcSecS2sdu37N9svZV
Wodv3bZ1vtaFWkdo3tk8pXFt46B+N3vP9lzWI+7KL+YX84v5xfxm7ra8m9Ps
XF/nwDo31DmTziW0j92+Z/tk7au0Dt+6bet8rQu1jtC8s3lK49rGQf1u9p7t
uaxH3JVfzC/mF/ObOerybu62c5qd6+scWOeGOmfSuYT2sdv3bJ+sfZXW4Vu3
bZ2vdaHWEZp3Nk9pXNs4qN/N3rM9l/WIu/KL+cX8Zi6+vJuj7txt5zQ719c5
sM4Ndc6kcwntY7fv2T5Z+yqtw7du2zpf60KtIzTvbJ7SuLZxUL+bvWd7LusR
d+UX85v/51DezcV3jrpzt53T7Fxf58A6N9Q5k84ltI/dvmf7ZO2rtA7fum3r
fK0LtY7QvLN5SuPaxkH9bvae7bmsR9yV3/y/lfLu/zl0Lr5z1J277Zxm5/o6
B9a5oc6ZdC6hfez2Pdsna1+ldfjWbVvna12odYTmnc1TGtc2Dup3s/dsz2U9
4q78/t//S+IX84v5xZ2r7hxu5zY759e5sM4Rde6kcwrta7cP2r5Z+yyty7eO
27pf60StKzQPbd7SOLdxUb+jvXd7Tuu1q/0+9cqlt/54+PhV+8X2i+0X2y/+
c+0X2y+2X3xm7RfbL7ZfbL/YfvG7a7/YPsPXHrp85YMXHz037zP2PmPvM/Y+
48/W+4y9z9j7jL3P2PuMvc/Y+4y9z/O89T5j7zN+6cTpj3794uJ6v/26e+3Y
9vvT78f2j+0f2z++vvaP7R/bP7Z/bP/Y/rH9Y/uf5639Y/vH/wDqNunt
    "], {{
      {Opacity[1.], Texture[
        GraphicsBox[
         TagBox[
          RasterBox[CompressedData["
1:eJx83EeTJOmZ4Pc18sIjvwK/Ba975HVpnCWGi1kAAwxmIBtooBst0KK6qrq0
1lmptYzM0FprmTp0hIdr+Qr30BlhRnfPzO4GwKXZ/3Vz9+vPnuP7/G8/+/1/
+bf/6T/9p//04f+iP/7LTz/+z3/8408/+T//V/3j//rdh//xy9/94uf/x+/+
9Itf/uKP//vP/mf955OrY7y3et1WV09rXtfoqpfVu9gM1S7TYPUqUDFSykay
3rkm6Z1pot6pJpjxJyqnd6yyekcqc6TSh0ZUSSX1imqnoBIFtZ03auXUZlZt
ZNW6WS2nVnNqxaycU89z6lne6DSvnuTxsdlRAR8WcKmAiwVcMMsXca6Is0Wc
KeJ0CadKOFnCiRKOl3DsEEcPceQQhw/V0JEaOFL9x6rvVPWdqb5z1VdRfVXV
X1P9ddXfUP1N1d/S/G3NT2j+juYntQClBWgtwGgBVgtwWpDXgkLXSOyGpG5I
7oYUozDohqFRBHUjWK8XVXtRzSjWNev14r1eQq/fTfa7KbP0wCgz6Gb1ht3c
UNPLmxVGRkWzktmhidVtGl1iaddYV141PU3HQtdY0MQC5Wuvc9PrzPQ61VMF
vRNV9+KPTa8j08vEokuml4lleF1jtbKmV0atZ9SaXlatZtVKVi0b4fMcPsvh
0xw+MTvO4aM8Pszjklkxjwt5nC/gXAFnCzhTwOkCThWNkkWcKJpeJRwp4XAJ
hw5x8BD7D7H3WPWeqN4z1Xuuesuqt6J6a6qvrvoaqq+p+lqqr636CM3X0Xyk
5qc0P635Gc3Pan5OC/BaQDATu0GpG5S7QdMrBLoh2A2hblgPd8NqN6L2IqZX
tGtkenX1Lr2uyK68NL3s0Oh7stE/kF1j/dBLu/ZSaxo207Eu07GgiXXldW4k
n6l60qkqmulYgolleJlY7KHpVTK9iippYnXyptc1VjOjNtJqPa3W0mo1g/Uq
GVzO4PMMPssanWbxSRYfZ/FRFh/mjEo5XMzhQg7n8ziXx9k8zpgZXgWcLOBE
AceLOFbE0SIOF3GohIMl7C9h3yH2HGHPCfacYs+Z6imrnorqqaqemuqpq96m
6m2p3rbqJVRvR/OSmpfSfLTmYzQfq/k4zc9rfsFM1AJSNyB3A4pBFgTdoOll
ZHoZad1ItxcxvLrRXjdmesX7PyAbaHpp0ysz/Fuy0SWZqlfUG6ul5vde3Wss
zcDSdKwrr6qR4WViwbKRQWZgqYqJJZ8aXgaZiSWYWPyR6XVoeplYdFGlCroX
7uSNiBxuZ3Eri5sZ3Egb1VO4lsLVFK6kcdnsPI3P0vg0g08y+NjsKIMPs7iU
xcUsLmRxPotzOaNsDmdyOJ3DqTxO5nEij+N5HCvgaAFHCjhUxMEiDhSxr4i9
Jew+wu5j7D7B7jPsPsfusuququ6a6q6r7obqaaqetuohVE9H9ZCqh9K8tOZl
NC+reTnNx2s+wUzU/JLmlzW/0g0AM9gNIjPcDalGule4axQxva7I+npaoq8l
9a690qbXNZmaG6l5s7/z6l1jda+xtLqm1a69qtdeFbPytde5CkwsxcS68jox
vMRj0+vI9DKwMFvCTAnTRUwXMFXA5DUWkTW9Mrj5HVYSV80qKVxO4fMUPjM7
TeOTND5O46M0PkzjUgYVzQoZlM+gXBZlsyiTReksSuVQMocSORTPoVgeRfMo
kkfhPA4WcKCA/QXsLWJ3EbsOsesIu06w6xS7zrGrjF0V7Kqprrrqaqiupupu
qe626u6oblJ1U6qHVj2M5mE1D6d5ec0rmImaT9J8suZTND/oGsFuAHUD2PAK
qt2g1g3pmV7hXjdy5aXF+tqlV2Jw5XVFNlQzZpdef082VoumV69x5dXVpS67
9KoaGV4VIx0LlVWoZ2KBs7/1OjG9jk2vI8zrHWLOxDK8TCzDK296mViGV+ba
K4XrSdMrgSsJXNZL4vMkPkvi0yQ6SaHjFDoyO0yhUhoV06iQRvk0yqVRNoMy
GZTOoFQGJbMokUXxLIplUTSHIjkUzqFgHgXyyJ9H3jzyFJCriJ0l7DzCzmPs
PMXOM+w8x84Kdlaxs4adDdXZVJ0t1dVWXYTq6qguUnXRqptR3azq5jQ3r3n0
BM0jal5J88qaV9F8QPNBTffyo64fG2QB0yvYNQpdeWl6UdPrimxwSaam9IZq
2uzSKzv6W7KxUdHE6l1jXaZjGVWvvUwsXFaRmY5ldGZ4GWSnRrKJJR1jUe8I
CyaW4VUyYouYMbHovOmVwx0Ti8iYXmncTOFG0vRK4GocV+K4HMfncXSWMDpN
oJMEOk6ioyQ6TKJSEhVTqJBC+RTKpVA2hTJplE6jVBol0yiRQfEMimVQNIMi
WRTOolAWBXLIn0O+HPLkkTuPnAVkLyH7IbIfY/sJtp9hxzl2lLGjih017Khj
RxM7WqqjrToJ1dlRnaTqpAwyF6u6ONXFq25BMxI1j6R5ZM2jaF6geaFB5kOa
D3f9qlFA6wa6l2RaqKeFL736RqaXGh+oiYGaNNO9UtdemZHhlR3hnFleb4wL
Y1xsXHppvWus7jXWlVfFSMe68jo30rGuvEws5UT3wvIxlkwsw+vQiDexuCJm
C6ZX3vTKYTKLOllEZFBbL41aKdRMokYS1ROoFkfVGKrEUDmGzmPoLI5O4+gk
jo7j6CiODhOoZFZMoEIS5ZMol0TZJMqkUDqFkimUSKF4GsXSKJpGkTQKZ1Ao
g4IZ5M8iXxZ5s8idQ84csueRrYhsJWQ7QrYTZDvFtnNsK2NbBdtr2F7H9ga2
t7C9je2E6uioDlJ1UKqDVp2M6uRUJ6+6BD3NJWpuSXPLmlvRPEDzQM2LzLDm
U7s+revX6+pk2qXXFZnhperFTK/vya68sF5mZJQ1y5lYl16Fa6zLdCyj6pWX
ZmCpqollZGKhs2uvUz2snBjpWIbXkZFoYgkl06uIuYLuhZg8ovVyiMoiwytj
eqVRO4VaSdMrgerxa68oKkfReRSdRdFpDJ3E0HEMHcXQYRyV4qgYh4U4zCdg
LgGzCZhJwHQSppIwmYSJJIylYDQFIykYTsFQGgbT0J+Gvgz0ZpA7g1xZ5Mgi
Ww5ZC8haQtZDZD1G1lNkPUPWMrZWsLWKrXVsa2BbE9va2EZgWwfbSdVOqXZa
tTOqg1UdvOoQVKdo5JI0l6y5FM0NNDfUPEjzYCOvqnk1nUzzd40MsisvNdxX
I9desWuvxBAnzVKmV3r0PZkxYuNrsobWv8bqXWNdplVUzcS6TMfCJtZl8BTr
gRMj5dhINrGkQ8NLLOleiC8irmDE5g0vJoforOmVMb2usQyvBGrETa9LrAg6
D6OzCDqNoJMIOo7Coyg8jMJSFBZjsBCD+RjMxWA2DjNxmI7DVBwmEzCRgPEE
jCVhJAnDSRhKwmAKBlLQl4LeNPSkoSsNHRloz8CDHNzPo/0i2j9E+0fo4AQd
nKGDc3RQQQdVfFDDBw180MTWFrYS2NrBVhLbKNVGqzZGtbOqnVftguoQVYek
OmTVKWtORXMBzQU1N9Lcupdqpulkmu/aK9BTgz01dO1lkA10L6wXH2DdK3Ht
lRoZXunvRmyMcmZ5PdOrb2IZXWN1TSytbGR4nRvhMyN0ipGJBU0sYGIpR4aX
fKh7IbFkJBQRXzDi8qZXDjFZ0ytjeqURkUJtAws2E7ARh/U4rMVgNQorEVgO
w/MQPAvB0zA8CcPjMDwKw8MILEVgMQILUZiPwlwUZqMwHYOpGEzGYCIO43EY
i8NoHIYTMJSAwQQMJKEvCb1J6ElBVwo609CehtY03M9CSx5aCtBSQpYjZDlB
llNkOUeWMtqvov0a2q/j/Sbeb+GDNj7o4AMSH1DYSmMro1o51carNkG1i6pd
Uu2y6lBUB1CdQHNCzYU0F9bcqubWDC+DrKuTqf6ueullkPV1MhzRG+DotVf8
2ssgGyG99AhlzHSv7N95XWNdpmMZla+8NBNLNbAwNrGMTgwveGx6HZleh0hP
0rGKRoKJxedNLxPL8MpAKg3JNOykIJGE7SRsJWAzbnrFYC0KqxFYCcNyyPQK
wpMgPA7CoxA8DMFSCBbDsBCG+TDMRWA2AjMRkI6AVBQkoiAeBbEYiMZAJAZC
cRCMg0Ac+BPAm4CeBHQnoTMJ7SloS8GDFNzLwL0c3CvAvRLcO4R7x2jvFO2d
ob0y2qugvRqy1JGliSwtbGnj/Q7eJ/E+hfdpfMDgAw5bedUqqFZRtUmqTVbt
imoHqgPqaU6kObHmUjWXdkmmertGBllPJ8PBHg71jcLXXgbZUPdCeokhSupd
exlkY6PvR+yH81VVjSpGOtZlOpZmYqlnWD01vLCJhUwsw+tIDymHRnIJSUUj
sWB4CXnTKwfZrBGTgXTa9ErBTtL0SsBW3PSKwXoU1iKwGr72CsLTADwJwOMA
PArAwyAsBUExCAohkAuBbAhkwiAdBqkwSEZAIgJiERCNgkgUhKMgGAOBGPDH
gC8OPHHgjgNnAjgSwJYAB0lgScLdNNzJwp083CnCnUO4cwR3TuDOGdo9R7sV
tFtFu3W020B7LbTXxnsEtpDYQmELjfcZvM/hfR4fCOqBqFol1SqrVkW1AdUG
VTtS7Vh1YM2hak5NdWmqW1M9l1497DcL9HHw2is8QJEBig5QbGh06ZUYXXld
kV17Zccwp9dQ+3Wzmvq91zVW18TSzrBmYl15mVjo2AgeIR0LmFhKCclFI6lg
eIl5KOQhn4Nc1ojNQCZteqUgmTS9ErAdN71ioBEF9QiohUE1DCohUA6CswA4
9YMTHzj2g0M/KPlBMQAKAZAPgFwQZIMgEwSpEEiGQCIE4mEQDYNIGIQjIBQB
gQjwR4EvCjxR4I4BZww44sAWB9Y42E+A3QTYToHtDNzOwe0C3C7B7SO4fQK3
T+H2OdyuoO0q2qmjnQbaaaHdNtol0C6Jdym8R+M9Bls4bOGxRcD7It6X1ANZ
PVBUK1CtULUh1YZVu2rk0NQrsi72dLG3h33XXoE+CvZRaIAuvQyy4Q/IRlAv
OYIpvTFMj2HGLGv2P/LqmVhGJpZ2amSQnRhe2MBC6AjpXvDQ8AIlpJhYcgFK
BahjGV45yGeNuAxk06ZXClJJQCZBJwGIOGjHQCsGmlHQiIB6GNRCoBoClSA4
D4AzPzj1gRMvOPKCQy8o+UDRBwp+kPODrB9kAiAdAKkASASVeFCJBZVoSAmH
lFBICYYVf1jxhRVvBLgjwBUFjiiwx4A1BvZjYC8OduJgMwk2M2AzBzYLcLME
Nw/h5jHcPIVb53CrDLeqaKuGthpou4m222ibQDsk2qHQDo13GbzL4T0e7wnY
ImKLhPdldV9RD4B6AFUrUq1YtX3vhV1d7Dbz9HQy5Oshfx9degUH12RDqBcd
wtgQxkdGl17Ja6/vyS7+xsskw70K7pWNuudYxzIysbQTA8vwOkZGR4YXOkSw
ZGCBou4FlQI0vPJQykExBwUTi89ALg3YNGBSgE4CwysByDjoxEyvKGhGQCMM
6iHTKwjKAXDuB2c+cOoFxx5w5AaHHlD0gIIX5L1KzqtkfUrap6R8StKvJPxK
LKBEA0okoISCSjCoBIKKL6R4Q4o7rLjCiiOs2COKNaLsRxVLVNmNga0YWE+C
9TRYz4L1PFgvgo1DuHEMN07hxhncKMONKtyswc0G2myirTbaItAWibYptE2j
bRbvcHiHx7sC3hXxnoT3FGwB2ALVfaQe6GHVqupk2K5hh4ad3Usy5Okhr5mv
f002gCGz8LWXQTb6AdnY8LomA5kxyF6AbAP362Y1oyuvS7LzK6yuiWV0jNVj
pB4ZWPjQwEIlwwsWIdArmF55KOdMr6zuBYQM4NPA8EoBJml40QlAxQEZM7yI
KGhFlGZYaYSUekipBZVqQCn7lXOfcuZVTjzKsVs5cikll1J0KwW3knMrWY+S
8Shpr5L0KgmvEvcpUZ8S8SthvxL0K4GA4gso3qDiCSquoOIMKfaQYg0rB2HF
ElF2I8p2VNmIKmsJZS0F1jJgLQfWCmCtBNaOwNoJXDuD62W4XoHrNbjegBtN
uNFGGwTaJNEmhbZotMWibQ5t83hHwDsS3pXxroL3AN6D2IJUC1b3sXqgYquK
bZpJ1kXOLnJ1kbtnkvV1L+jXG8DAAAavva7IRiBmFh+BhN4YJMcgZWZ4XRj9
nVf/H70uyQwsZHRkeKmHhhcu6V4QFSE0sQyvPFRyplcWiHoZIKRNrxRgk0ZM
AtBxhYopZEzpRBUiorTDSjNkegWVWkCp+pWyTzn3Kmce5cStHLuUQ6dScigF
p5J3KjmXknUpabeScitJtxL3yDGPHPXKYa8c8skBn+z3yV6/7PHLroDsDMj2
oGILKgdBxRJSdkPKdljZDCtrEWUlrqwklZWMspIDKwWwUgIrR2D1BKyegdVz
uFqBazW4VodrTbjehusEWifRBoU2aLTJok0ObfFoS8TbEt6W8Y6CdwDehXgP
4T2MLRjvq9gg05BNQ/YuMsh6yNWD7h709KG3D33XXoEBCA5BaAjCQxDRG4Ho
tVd8fOV1SZa+MPoHL9Svol7FrIx656h3hrp6p6h7coWlmViqiYVNLMOrYATy
EOR0LyBngZQxEtOmVwrwScAlFDahMHGFjpleUaUTUYiw0g4pzaDSCCr1gFLz
K1WfUvYq5x7l1K2cuJRjp3LoUEp2pWBX8g4565AzTjntlJNOOeGSYy456pYj
bjnkkYMe2e+VfV7Z45XdPtnpkx1+2eaXDwLyfkDeC8o7QXkrJK+HlNWwshRT
lhLKUlpZyipLeWW5CJYPwfIxWD4Fy+dgpQJWanClDlebcLUNVwm4RsI1Cq3T
aJ1FGxza4NGmiDYltCXjLQVvA7wD8Q7Cuxjvqdiion0NXXtBRxc6e/A7L08f
ePvANwD+AfjO64rM9LoiGysJs+RYSeldKOkLJaPXQIMG6teRgWV69X/odf69
V/fS69BILUE9XDRCBYjyEBpYQE/JAjljJKWBmAJCShGSCp9QDK+4wsQUOqpQ
UYWMKJ2wTITkdlBuBeVGQK775ZpPrnjlskc+d8unLvnEKR855EO7XLTJBauc
s8lZm5y2yym7nHTIcYccc8oRpxx2yUGXHHDLPrfsdctuj+z0yA6vbPPKVp+8
75P3/PKOX94KyBtBeTUoL4fkhai8kFAWUspiRlnMK4tFZfEQLB6DxVOwdA6W
KmCpCpbrcLkJl9twhYArJFyl4CqD1li0xqF1Aa2LaENCmzLaBHgL4i2EtzHe
wWhXRXum14EGrV1o60KDrKeTAVcfuPvA8BoYXgbZEASGOpkSGirhkVFkpERH
Smxs9D3ZheF1Rfb/5wWNzmD3FHZPYPcYakdQO4RayUgtGuECxHndC8CcEcgC
kAGK7pVWpJSRmFSEhOkVV9iYwkRlOipTEZkMy52QTATldkBuBeSGX6775JpX
rnjksls+d8mnTvnEIR/Z5UObXDyQ8/ty7kDOHMhpq5y0yQmbFLNLUbsUdkgh
hxRwSn6n5HVKbpfkckkOt2R3S1aPtO+V9rzSjk/a8skbfnnNL68E5MWgPB+R
5+PyfFKZzyjzOWW+oMyXlPljZeEULJyDhTJYrILFOlhsgqU2XCLgMgmXKbjC
wBUWrvJoVUBrIlqT0bqCNgDagGgT4S2MtjHaMbygRYP7GjzoXpIBew84esDZ
vyYbKN6B4hso/qESMDPIrr0Msmsvg+zC8Epee6VNr4HhBY2qsF8x6pXhP3r9
kMzwMrCAHsoBlAVQL6N7KUpakVNGUlIRE4oQV/i4zMdkLiqzEZmJyHRYJkNy
JygTAd1Lavmlpk+qe6WaR6q4pbJLOndKpw7pxC4d2aTSgVTcl/IWKWuRMhYp
tS8lD6T4gRSzShGrFLJJQZvkt0s+u+RxSC6H5HRKdqdkdUn7bsnilnY90rZH
2vRK615pxSct+aW5oDwblmdj8mxSnk3Ls1lltqDMlpS5I2XuRJk7U+bKYL4K
5utgoQkW2mCBgIskXKTgEgOXWbjMwxUBrUhoVUZrCloDaB2iDYQ2MdrCcEeF
uyrc03QysN8FB11g7QFbTydTHH3F2VdcA8U9UK7IhldkwZGsFxrJ4ZEcGctR
s9hYjo/lxIVR8kJOmaUbcKBXh4PvvKp/5wV6p6B7ArrHRtoR0A6BVgJqEagF
oOpeOYCzhhfKAJhWgF5KUZKKnFSkhCLFZTEuCzGZj8pcxPQKy3RIooISGZAI
v9T2Sy2f1PRKdY9Uc0tVl1R2SucO6dQuHdukowOptC8VLFJ+T8ruSuldKbkn
JSxSzCJF96XwgRQ6EANW0WcVvTbRbROddtFuF20O8cAhWpzSrkvadkmbbmnd
La16pCWvtOCV3vulmZA0E5VnEvJMSp7JyjN5eaakvD9S3p8o78+U2bIyWwWz
dTDXBHNtME+AeRIs0HCBgYscXOLhkgiXJbgioxUFrUK0htA6ghsYbmK4repk
YFcDexqwGF6KtafYeoq9/0Mv2TOQvUMj31D2D+XAd15jo8i1V+xCjl97Jf+H
XqBfAf0y6J2bfed1SXbtpV17qVnDC2cUlFZ0L5hSQNL0SshyXDa8YrIQlfmI
zIUlNiwxIYkOSlRAIv1Sxye1fVLLKzU9Yt0t1lxi1SmWHeK5XTy1iccH4tG+
WLKIhT0xtytmtqX0tpjcEeO7YmxXjOyJIYsYtIj+fdG7L7oPRJdVdFhFm008
sIkWu7jrEHcc4pZTXHeKqy5x2S0uuKVZj/TOJ70NSW8j0tu49DYlv83Ib/Py
26L87kh+d6K8O1NmyspMVXlfV943wfs2mCXAHAnmaDDPwHkOLvBwUYSLElxS
4DJAKxCtILiG4LrhBbZUsK2BHQ3sdhVLV9nvKgc9k6wv2/uyoy87B7JrIBtk
33mNDK/ASAqOpNBYCo+liFn0QopdSPELKWGWvJBSEyl15QUGNSMD69qr/72X
0jtRunrHSvdI0Q4VraRoRUUtKGpeUbOKjoXThhdKKTCpe8kgIStxWY7JUkwW
o5IYkYSwxIclLiSxQYkOSJRfJH1ixysSHrHlEZtuseESa06x6hDLdvHcKp4e
iMf74qFFLO2JhV0xty1mtsTUppjYEuPbYnRbDO+IwV0xsCv69kSPRXRZROe+
aN8XrQfivlXcs4o7NnHLLm7YxTWHuOwUF53inEuccYuvveLroPQ6Ir2OSa+T
0uuM/Donvy7Kbw7lNyfymzPlbVl5W1Xe1ZV3TWWmDWY64D0J3tNglgVzHJgT
4LwIF2S4qMBFAJcgXEZwFYE1DDZUsKmCLU3Z1hTda08n68n7PfmgJ1v7skE2
kB0DnUxyDSX3UPIMJe9I8o0k/0gyvMaG13dkl17fkSUnRqkGGOhdew2uvJR+
WemfKz29M+XvvLrXXtqlV+7KC6cUlJRRQoYJGcRlJSYrUUmOSlJEEsOSEJL4
kMQFRTYgMn6R9omUV+x4RMIttl1i0yk0nELNLlRtQtkqnB8Ip/vCsUU43BNK
u0JhW8htCZlNIbUuJjbE2IYQ2RRCW0JwW/BvC94dwb0rOHcF+55gtQj7FmFv
X9g5ELYOhA2rsGYTVmzCkl2cd4jvHeJbp/jSI74IiC/C0suY9DIpvUxLL3PS
y6L86lB+dSy/OpNfl+XXVeVNXXnTVN62lbcd5R0FZmgww4L3PJgVwKwE52Q4
D+AChIsQLCGwgsEqVtZVZUNVNg0veacr73blvZ5skPUla1+y9SX7QHIMpH/0
8o1E/0gMjMXgWAyNxfBYjFwYRS/E2IWoe8UnUuL/w0sZVJW+3qXXJdmVl6zX
PZa7R3L3UNZKslaUtYKs5mU1J6sZGadlnJINr7gM9WISiEqGV0SSwpIYkoSg
yAdFLiCyfpHxibRXpDwC6RYIl9B2Ci2H0LALdZtQtQrlA+F8Xzi1CMd7wuGu
UNwWCltCblNIrwvJNSG+KkTXhPC6ENoQApuCb1PwbAmubcGxLdh2hINdwbIn
7O4J2xZhc19Y3xdWDoQlq7BgFWZtwju78MohPHOLz/zis5D4LCo+T0jP09Lz
nPS8IL04lF4cyy/O5Jdl+WVVflVXXjWV123ldUd5QylvGfCWBe94MCOC9xKY
VcAsgHMQLECwiJRlrKxgZU3VyeQNTd7S5O2uTibt9iRLT9K9DnSygWQbiPaB
6BiKzqHoGorukegZid6RaHiNr7wMsgsx/AOv2ESMT8TEREzqNcCwoQzqioFl
eg2uvGSjc7l/JvdO5b/z6pYkrShpBUnLS2pOUrMSTks4JeGkhOISikkwKoGI
kRKW5JAoBUUxIAoBkfeLnE9gvQLjESi3QLqEjlNoO4SWnW/Y+LqVrx7wlX3+
3MKf7vHHO/zhNl/c4vObfHadT6/xyRU+vixEV/jwKh9c4/1rvHedd2/wzk3e
vslbt/j9bX5vh9/Z4Td3+fU9ftXCL1v4hX1h7kCYsQpvrMILu/DEJTzxiU+C
4pOI+CQuPk2JT7PS04L09FB6diw9O5Wfl+XnVflFXX7RlF+2lVcd5RWlvGaU
N5zyhgdvRfBOBjMKeA/ALATzSFlAyhLWyeRVVV7TdC9psyttdaXtnuG11xct
fXG/Lx4MROtANMiG12QjnUzwjATvWPCNBf9YCIyF4IUQuhDCZgbZ5Mrriqyh
6F7D771ko4r8t15S78TsWOoeSd1D6R+91L/zikgwLIGwqIREOShKAVH0i4JP
4H0C5xVYj8C4BdrFk06+4+AJO9+y8U0rXz/gq/t8xcKf7/KnO/zxNn+4xRc3
+fw6n13j0yt8cpmPLfKRRT60xAeWed8K71nlXWu8Y523rfMHG/zeJr+zxW9t
8xvb/OoOv7zLL+7xcxZ+xsK/3edfHvBPbcIjp/DIKzwKCo8i4qO4+CglPs6K
jwvS45L05Fh6cio9LUtPq/KzuvysJT8n5Bek8oJWXjLKK055LSivJfBGBm8V
8A4o76Eyh5R5JC9ieUmVV1RpVZPWNWmjK252xa2euNMTd/uiQTYQ9geCdSDY
hoJ9KDiGgnMkuEaC4TX+G6/AxfdkkYkQNYtNhPhESEyEay95WJMHNfk7r4Hh
JfXPpf6Z1P+BV+9I7B6K3ZLYLYpaQdTyopYT1ayopkWcEnFSRAkRxUQUFWFY
BCERBEUlIMh+QfIJolcQPALv4Tk3z7h42slTDp6084SNa1u55gFX3+dqe1xl
lzvf4U63ueMt7nCDK65z+TUuu8Kll7nEIhdb4CJzXHCB8y9y3iXOvcw5Vzj7
Cmdd5Sxr3O46t73BbW5ya1vcyha3uM3N73Dvd/m3e/wrC//cwj8+4O87+Pse
4X5AuB8WHsSEBynxQVZ8mBcflsSHx9KjU+lRWXpclZ405Cct+SkhPyPlZ7Ty
nFVe8MpLUXklKa8V5Q1Q3gJlBsqzSJ7D0gKWFlVpWZVWNHGtK653xY2e7iVs
94SdvrDbFy69DoaCdaiT8fYR7xjxzhHvGvHuMe8Z894x7xvz/gs+cMEHL/jQ
BR/Wm1yRXXoZZA15qPc3XtKgIg3K0uD8Oy+xfyL29I7Fv/UStLyg5QQ1K6hp
QU0JOCnghIBiAooKMCzAoAACAvALik+QvYLk4UU3z7t4zsmzDp6xc5SNI61c
54Br73NNC9fY42q7bGWHPd9mz7bYkw32cJ0trrH5FTa7zKYXucQCF5vjwu+5
4Cznm+M885xrgXMscrYlbn+Z21vhdla5zTVufZ1b2eCWNrj5TW52i3u3zb3e
4V7sck/2uAf7/F07f9fN3/ULd8PC3ZhwLyncy4j38uL9knj/WHxwJj0oSw9r
0sOG9KglPybkJ6T8hJGfsvIzXnkuKi9k5aWivALyGyi/g9J7JM1iaR6LC6q4
pInLmrjaFda6wnpP2OwJW31hu8/vDvi9AW8Z8PtD/mDIW3/oNf6B18WV1xXZ
RPfiIxM+OuFjZvEp/wMvSc/A+t5L7OudiT/wEnpHQu9Q6JaEblHoXntpWV5N
82qKx0keJ3gU41GUh2EehngQ4IGPV7y87OElNy+6eMHJ8Q6Os3OMjaOtHHXA
dvZZwsK29tjGLlvbYatbbHmTPdtgT9bZo1W2uMLml9nsIptaYBNzbHSWDc+w
gXesb4Z1z7LOOdY+z1oXWMsiu7vEbi2zGyvs6iq7vMYurLNz6+zMBvtmk3u5
xT3d5h7tcHct3G0bf9vN3/bx34b4b2PCt0nh24xwJy/cKYl3j8W7Z+K9snSv
Jt1vSA/a0sOO9JCSHzHyY05+IshPJeWZrDxX5JdAfg2lt1CaQeJ7LM6p4rwq
LGrCkiasdIXVLr/e4zd6/Gaf1712BjoZtzfkLEPuYMhZR5xtxNlHnGPMOcec
a8y5x5zngvNecL4Lzn/BBS644IQLTbjwd2RTPjY1vOKGlzSsS5deQ8NLHFTE
QVnUvQZXXkL/xOjai++V+G6R7xb4bp7Xcvx3XmqSwwkOxzgU5VCYgyEOBjjD
y8Mrbl52cZKTEx2cYOc4G8taWeaApfZZ0sISe2xrl2luM/UtprrJlDeYs3Xm
ZJU5WmFKy0x+kckuMKk5JjHLRGeY8Fs28Jr1vmXd71jHDGt7z+zPMnvzzPYC
s7nIrC0xK8vs4go7t8q+X2PfrrOvNthnG+zjTfb+Fnd7j7tp4266uJs+/maI
vxnlbyWFWxnhVl64XRJuH4vfnol3KuKdmni3Kd1rS/c60n1aesDKD3n5kSg/
luQnsvxMkV4A6RUU3yDxLRJnsDCrCnOqsKDxi11+ucuv9Pi1Hrfe5zb63NaA
2x5wO9de+yPuYKSTsbYRax+zzjFreF38rdfE6JqMi0y56JSLmcV1rO+9xGHV
6NpLMDoTrr34/jHfO+KvvbhugevmOS3HaVlOS3Nqirv2YlGURWEWhlgYYIGP
Ax5OcXGyg5PtnGhjBSvLH7DcPstYWHqPIXeZzg7T3maaW0x9k6lt0JU1+myV
Plmhj5bo0iKdX6Czc3Rqlk7MMNG3TOg143/FeF4xrteM/Q1jfcdYZpjd98zW
LLM+x6zOM0sLzPwS836ZebfCvFplnq+xT9bZBxvsnU32xi77tZX72sl97eW+
DvI3ovyNBH8jw3+TF74pCTePhVtn4q2KeLsuftsUvyWkO6R0l5busdJ9Xn4g
yg9l6bEiPVXE50B8CYXXSHiDhXeYf6/ysxo/r3ELXW6pyy33uNU+t9ZnN/rs
5oDdGrA7Q3Z3yO4NWcuI3R+xhtfY8HLoZBes64J1X7CeC9Z7wfomrH/CBiZs
cMKGJmx4anh9R6Z7jfTqooF16VXREwZl4dqLH5zyBpbp1T/ieodcr8T1rrzY
bo7VsqyWZrUUqyZZNcHqXtjwYlCIgQEG+FjgZRU3qzhZ2cZKVlY8YIV9hrMw
7B7D7DLUDt3ZpolNurVBN9bp2hpdWaXPl+nTJfpokS7N04U5OvueTs3Qibd0
9A0dekX7X9CeZ4zzBW17RR+8pvfe0Nvv6M0Zeu09vTxLL8zRs/P0zALzeol5
scw8XWEerjJ315hb68yXO+wXB+wXDvZLL/dlkPsywn2Z4L/K8F/l+a9LwtfH
wo0z4ZuK8E1dvNkSbxHibUr6lpHucNJdQbonSQ9k6ZEiPgHiMyi8gMJLxL/G
/FuVm1G59xo31+Xmu+xij13qsSt9drXPrg/YjQGzOWS2h8zOkNkdMZYRsz9i
DsaMdczYxoz9gnFcMK4Lxn3BeC4Y74T5zssgm7KhqU7GRqZsdMrG9BriSK8u
jq68BB3LyPDijUyvwQnXPzY74vqHbK/E9opsr8CaXkw3y2hpRksxapJREwyO
MTjKmF40DNDQRwMvA9yM4mRkOyMdMJKFEfcYfpfhdmhmm6a3aHKTJjao9jrV
XKPqK1R1mTpfok4XqON5qjRHFd5T2Rkq/ZZKvKair6jQC8r/jPY8oR1Paetz
ev8FvfuK3npNr7+hV9/RSzP0/Hv6/Sz9do5+uUA/W6QfL9H3l5lvV5gba8zn
28zn++znDvZzD/t5gPs8wv01wf01w3+R57845L88Eb46F76qCl83hBst8ZuO
eJMSb7HibV76VpTuSOI9WXygCI+B8BTyzxD/AnGvMPdG5d5p7IzGznbZuS67
0GOW+sxyn1kdMGsDZt302hrS2yN6d0TvjWjLmN4f09Yxbbug7Re07uW8JJsw
nsklGeOfMIEpE5wyoSnznVf0b7wEvWsvfljmh1de3OCU070GhhfbP2J1r77h
xfQKTC/PmF60lqa1FK0laTVBqzEaR2kcplCIQgEK+ijgpYCbUpy0bKflA1qy
0OIuLezQ/DbNblHMJkWtU501qr1KNVfI+jJZXSTLC+TZPHk8Sx6+JwvvyNxb
Mv2aTLwioy/I0DPK94RyP6IcjyjrE8rylNp5Tm2+oNZeUcuvqYU31Ow76t0M
9fo99XyWfjJPP1ig7yzSN5foL1boT7aYTyzMJ3b2Ew/7SYD9NMJ9muA+zXCf
5fnPD/nPT/i/nvNfVIUvG8KXbeErUvyaFm9w4k1BvCWK30rCXVm4r/APAf8Y
ck8R9xyzL1X2tcq+1Zh3XeZ9l5nrMfM9erFPL/XplQG9OqDXh/TGkN4cGV47
OtmY3jO9DnSyiysy54R2TWj3hPZMaO+E9k1p//R7L5OMiUyZ6JQxvYRRXbj0
GlV5A+vKizMyvNjBCTs4NuofMf1Dpl9iTC+6l6d7ObqbobtpSktRWpLS4pQa
o9QohcMkDpEoQEIfCb0kcJOKk1TspGylJAsl7lLiFiVsUtwGxa6T9BpJrpDE
MtlaIhuLndpCpzLXOZvtnLzvHL7rFN92cq876VedxItO9BkZekL6HpHuB6T9
HnXwgNp7RG4/ITeekavPyaWX5NwrcuY19eYt9eId9XSGejhL3Zujbs1TXy/Q
ny3TH23SH+0xH9mYj9zMRwH24wj7cYL9S4b7S4H75JD79JT/tMx/VuM/bwp/
JYQvSOFLRviKF78WxG8k4ZbM31H4e4B7ALlHkH2C2GeYeaEyrzTmtUa/7dIz
PXq2R8/1qYU+tTiglgfUypBaG1LrQ2pzRG2NqO0xtTum9saUZUztX1DWC8p2
QdknlGNCOSeUa0IZZFPaO70kowNTOjilQ1M6PKUjUzo6pWM61pUXb1TlR4YX
NyybWOfs8IwdXnkxgyOj/iHdL9H9Im16Ub0c1c1Qulc3RWpJUouTaoxUoyQO
d3CogwId5OtAbwe6O8DZUewd2dqRLR1plxS3SGGD5NdIbpVkVjrUcqez2Gkv
dJrznfpcp/qeOJ8hTt8RR2+I4msi95JIvyASzzrRJ53Qo47vQcd9r2O/Q+7f
JXfvk1sPyfXH5PITcuEZOfucfPuSfPWKfPaGfPyWvD9DfvueujFLfTFPfbxE
fbhBf7hHf2hjPnQzfwowf4qwf0qwf86wfy5wHx1xH59yf6nwn9T5T1r8Zx3h
c0r4Kyt8wQtfisINib8pc7cV7i5g70P2IWIeY+Yppp+r9EuNftWl3nSpdz3q
fY+a7VPzA3JhQC4NyeUhuTok10bkxojcHJPbY3JnTO6Oyb0Lcv+CPLggrRPS
NiHt33lNKc+U8k4p35TyT6nAlApOqb/zGhte/LUXN6qYlVkD68qLGZ4wphc9
ODTql6h+keoXqF6e7GXJXobspsluqtNNdrR4R4t11CihhgkcInCAQD4CeQno
JoCTAHZCsRKyhZB2CXGbEDY6/GqHW+6wSx16kSAXCGKOaM0SjfdE9R1Rfts+
fdM+ftUuvWznn7czz4jkEyL6iAg9IHz3CPedjv12Z/9WZ+dOZ/NeZ/VBZ+lh
Z/5xZ+Zp582zzosXnScvyQevyTtvyJvvyK9myE9nqT8tUh+sUx/s0h/Y6A/c
9B8CzB8izB+S7B+z7IdF9sMj7k9n3J8r3EcN/uM2/xeS/4QRPuWEzwX+C5H/
SuK+kdlbCvstYO5B+gGiH2H6iUo906gXGvWyS77ukW975EyffN8n5wadhUFn
cdhZHnZWRp21UWd91Nkcd7bGne1xZ/eis3fRsVx09ieday/SMSGdU9I1Jd1T
0jMlfVPyB15UeEpFplR0SsUa/LhuZnhx116s7jUysBgjw4seHtOmFzUoGfWL
ZL9A9nO6V6eX6fTSnW6K6CaJbpzQYoQWaavhthps40Ab+9rI04LuFnS2gL2l
WFuypSXvtqXttrjRFlbb/BLBLRDMPEHNtjvv2+2ZdvNdu/amXXndPnvVPn7R
PnzeLjxtZ560k4/asQft0L22707bdZuw3yQsXxPbN4mN28TKXWLxHjH7gHj3
qPPqSefZs86j5517Lzu3X3W+ftP5/C358Qz5wQL523Xqt7vUb630b9307wL0
7yLM75PM77PsB0X2D8fsH865P1a5D5vcnwj+zxT/Mcv/hec/FbjPRfZLmb2h
MDcBfRvSdxB1H1MPMflYJZ9q5LNu50W386rXedPvvOt3ZgbE7ICYHxILQ2Jp
RCyPiNURsTYmNsbE5pjYviB2LojdC8IyMbwODLKOfdpxTDvOacc17fzAiwxM
yeCUDE3J8JSMTMnolLz24sY1o1GVNbAML2Z0zowML3p4Spte1PCIMr3IQZEc
FDr9fKef6/SzRC9D9NJEL9XuJtrdeLsba2mRlhZuqcGWGmhiXxN5msjdhM4m
sDeBtalYmvJuU9puihtNYbXFL7e4+Tb7vs3MtKl3LeJtq/Wm1XjVqr5snb9o
nTxrHT5tFR63so9aqQet2L1W6E7Lf7vtvtm23WhbviS2vyLWvyGWbxEL3xLv
7xJv7hMvHhJPHhMPnhJ3nhHfvOh8+arzyevOh287v54nf7VG/mqH+pWV+pWb
/nWA/nWU/k2S+U2O+W2J/d0J+7sy+/sa90GL+2OH+5Dm/sTxH/HcX0T2M4n5
Qqa/UuhvAHULUt8i8i4m76udh1rnsdZ52iWe94iXPeJ1n3g7IN4N2u+H7blh
e2HUXhy1l0ftlXF7bdxev2hvXrS3Lto62e6E2JvoZMTBhLBOCduUsE8Jx5Qw
vTqeacc77finncC0E5x2QtNOeNqJTDvXXty1FzuusmPDizG96NGZ2Sk1PKFM
L3J4SA5LnUGxo3sN8kQ/R/Sz7X6m3Uu3e6lWL9HqxlvdWFOLNLVwUws21EAD
+xrY00CuBnLWob0OrHXFUld26/J2Q9poiGsNYbnBLzTZ903mbYt+0yRfN9sv
m80XzdrzZvlZ8+xJ8+hxs/iwmXvQTN1rxu80w7eb/pst942W7auW5a/trc/b
a1+2l2605262333bfnW3/ex++9GD9r1HxK0nxNfPiM9fEB+9JH7/uvPL+c6/
rZG/3CF/aaV+6aZ+GaD/PUr/e4r+jzzzq0Pm16fMbyrsbxvs79rs70nuA4b7
A8f+SWA+FplPJfpzhfoSkF9D8ibq3MadOypxTyUeaMSjbvtJr/2s137Rb78a
tN8MWu+GrZlha3bUmh+1FkatpXFredxavWitX7Q2Llo62fakvTNp707alkl7
f9o+mLZt07Z92ja9CPeU8EwJ75TwT4nAlAhOidCUuPbqxBomVp01sAwvZlwx
GpXpay9K9xqdkMNjcnjUGR52dK9hkRgUiEG+Pci1Ta9WP93qJ5u9RLMXb3aj
jW6koYUbWrBurPjx1bGnhl015KhBWw0e1IClpuzW5O2atFET12rCco1fqHOz
dfZtg37ZoF40Os8brWeNxtNG9XHj/FHj5EGjdL+Rv9tI32nEbzfCNxv+G033
V037F03LZ62tv7RWP28tftGa/br19pvWy9utp3faD+617zxof/Oo/cWT9idP
iQ+fE795RfzrXOdfVzv/ukP+3Er+3E39PEj9Ikb/Ik3/W4H+5RHz72fMf1SZ
XzXZXxPsb2j2dyz7Ac98KNAfSdQnMvWZQn4BOl/Bzg1E3MLEt2r7rta+3209
7LYe91pP+63n/ebLQfP1sPl22Hw3ar4fNedGzYVxc3HcXL5orlw01y6a65Pm
5qS1NWntTFq709betLU/bR1MW9Zpyz5tOaZt17TtnrY907Z32vZN24FpOzht
m15EZEpEp4TudaFjXXkxV15l2uicMrFIoxNydNwZGV7EsEQMi+1hoW16tQbZ
1iDT7Keb/WSjn2j04vVetN6N1Luhmhasaf6asZvJU8WuKnZUkK0CDyrAUgG7
FWW7Im9UpLWKuFwVFqr8bJV9V2Ne1ehndfJpnXhcbz6q1x7Wy/drp/dqR3dr
hW/rmdv1xM165EY98FXd/UXD/nnD8klz66Pm6l+aC58133/RevNV6/k3rce3
Wve+bd262/rqfuuzh+0/P27//mn7ly+Jn8wSP1nt/GSn8xMr+VMP+dMg9bM4
9bMM9a9F+ufH9C/KzL/VmV+2mH8n2f9g2F9zzO94+o8i9SeJ/FjufAqIzyHx
JWp/jdvfqK3bWuuO1rzXbT7oNR/1m0/6jWeDxotB49Ww8WbUeDdqzIwas+PG
/LixcNFYumisXDRWJ431SWNj0tyaNLenzZ1pc2/atEybB9Omddq0T5uOacs5
bbmnLc+05Z22fNNWYNIKTtqhSTs8aUcm7eikHWuwupeRjmV40eOKiVWmdK/x
GTk2vDqjk47pRYwMr7bp1RrmW8Ncc5BtDjKNQarRT9b7iXo/XutFa71ItRuq
doNVzV/RvBVj44+rjB1lZCujg3NoOQe758r2ubxxLq2di8vnwkKZny1z7yrs
qwr9rEo9qnUe1tr3a4171erd6tmd6vHtavFWNftNLXmjFv2qFvyi5vm8bv+k
bvm4sfWnxuqHzfmPmzOfNl/9tfnsq+bDG807t5rffNv64m7rL/dbf3zY+vXj
9r++aP94lvjxKvHjnc6PbZ0fe8h/CZH/kqD+e5b6SYn66Sn9swr9rw3m5wTz
C5r5JUv/iqN+K5AfiJ0PZeIjhfgEtD+DrS9Q6yvcvKE2b2mNb7uNu73G/X79
Yb/+eFB/Oqg/H9ZfDuuvR/W3o/rMuP5+XJ+7qC9c1Bcv6suT+uqkvjapb0wb
m9PG9rSxM23sTRuWaeNg2rBOG/ZJwzFpOCdN96TpmTS9k6Zv0vRPmsFJKzRp
hSetyKQVnbSuvRjd66JKXxhelIFleJGmV8fohBgdE6Oj9uiwPSq1RsXWsNAc
5pvDXGOYbQzS9UGqPkjW+olaP1btR6u9SKUXqnQD5a6/rHnPNc+56jpTHWfY
dmZc7bacwt1TsHWqbJzKa6fS8qm4cCbMnvHvztjX58zzMv24TN6rEHcrrTuV
2u1K+Vbl9Gbl8EYl/3Ul/WU19tdq6POq99Oa4+Pa/p/rW3+sr/y+Mf9h493H
jZefNp78tXH/y8btG82vbzY/+7b557vN399v/fvD1r+8aP9otv2jVeJHu8Q/
2zv/7O38c5j8f5Lkf8tRPz6k/uWM+u81+ict+qck8zOG/gVL/QdP/kbs/F4i
/ii3/wxaH8Pmp6j5OW58qTa+1urfdOu3e7U7vdq9fu3BoPZoUHsyrD0bVV+M
qq9G1Tfj6rtx7f1FbfaiNn9RW5zUlia1lUltbVpbn9Y2p7XtSX1nUt+b1C2T
+sGkbp3U7ZO6Y1J3ThruScMzaXgnDd+koXsFJs3QpBmeNCOTpunFGFiGF216
URcV6qKsR5peV1hGx+2x4dUyvZqjQmOUbwxz9WG2PkzXhqnaIFkdJCqDWKUf
LffD5V7ovBc47/nPut6zrvtUc56qjhPVdoIPTpDlGO0cw61jsHGsrB7Ly8fS
wrE4e8K/O+Fen7LPT+nHZ9T9887tcvtWufFNuXqjfPZ1+eircuGLcuav5cRn
lfAnFd/HFeefq/sf1rY+qK3+pj73+/rbD+svPqo//rR+7/PGzS8bX95ofHKz
8cdvm7++2/z5/eaPXrT+abb9T6vtf9ol/slO/Fdf579GOv93ivxRgfzRMfXP
Zeq/NagfE/S/UPRPGPLnXOeXAvFrsf07ufWB0vwQND5CjU9w/TO19oVW+6pb
u9Gt3upVv+1X7w6q9weVh8PK41Hl6ajyfFx5Oa68HlfeXlRmLiqzk+rcpLow
qS5Nq8uT6uqkuj6pbk6q25PqzqS6N6laJrWDSc06qdknNcek5pzU3ZO6Z1L3
Tuq+Sd0/aQQmjeCkEZ40TK9m9MqLNr0o04vUsS7KnYvzzoXhpWO1jY5b46PW
+LA5Lv2/ZN3lc1xpnuD7v+Du3RszsTMLM9M7M93TTNXdBd3l7iKXXS6XmZlZ
JtmSQZYtS7IkS7KYmTOVSmZmZmYxpzLzMOWLm6ly7W7cG/F7rczIz8nnOSci
9XwThDO+7RUjbFHcEsXNEdwUwY1hTB/CdCFMG0TVAVQVQBV+ROZHpD5Y7IOF
XojvBbkekO0BmO4sw52luzNT7vS4e2vUnRpyb/a713vca52e1TbvcpN3qd63
8MY/VxFMvgzGyoOhF0FfWdD1PGh7GjQ+CWpKQvJHIdHDMOdeeLooMn4zOnAz
2nU32vow1vg4VvM0VlEWe14ee1wRv1sZv/4mfq42cagtcbA/eXBi9hBz9pBg
7pB87rBu/rBl/ohr4ah/4Vhk8Xhy8eTC4qmlhXMr85fWZq9uJG9sJm5vxe+m
Yw8ysUfZaAkQeQpFnkPhcjj8CglXoqFqLFSDherwUD0RekeEmslQKxlqp0Kd
VKiLCvXkQn250EAuNJQLDedCo7nweC48mQvTcuHpXJiRCzNzYVYuzMlFuLkI
PxcR5CLCXESUi0pyUWkuKstF5bmYIhdT5mKqXGybLJ73ysWWcgWvbazIwrbX
/LbXHBWYo/yz1PdYBa/EtlecdMZIR4ywRwlrhLBECHMYN4VwQwjXB3FdANME
MLUfU/pQhQ+VeRGJFxF7YKEb5rshrgtiu0CmE2A4s3RnZtKZGXekRxxbQ47N
fudGj3O907nW5lppci/XuxdrPPOvfbMv/Inn/ugzf/Cp3/Mk4CgNmB8HdMVB
5cOg+H6IWxRi3AqPX48MXI123Yq23I3WP4xWl0RfPo0+LYs9fBm7XRG7XBU/
VRPf15bYN5DcN5ncx5rdJ5rdr5zbb5g7YJs/6Jk/FFw4HFs4Mrd4bHH+5PLc
2dXZi+uJKxvx66nYra1oUSZyPxt5CIQfg6EnUOgZHHqBBF+iwddYsAoLvMED
tUSgngg0koEmMtBCBdqoQEcu2JUL9uSCvblgfy44lAuO5IKjueB4LjiZC9Jy
QXouxMiFmLkQKxfi5ELcXJiXCwtyYWEuLMpFJLmINBeR5SLyXFSRiypz0W2v
mCYX08aXtr0Wc9HFXGQhV/D6AavgNbvtlaS8ScqToDxx0h0nXTHSGSXtUdIW
Ia1hwhImzCHCFCQMQVwfwHV+XOPD1T5M6cUUHlTmQSVuVORChC6Y74S5Dojt
gJh2kGEHaLbspC0zbsuM2LaGbKl+22aPbaPTtt5mX21yrDQ4lmqdC5XuuXJP
8qkvXuoLl/j8j32uRz7rQ7/hgV91LyApCvBuB2duhCauhgcvRjqvRppvRd7e
i1QVR16UREufRu+XRW+8jJ1/HTtaE/+2Lb5nILFnKvktJ/mtePZb9dxe09x3
jvl9vvn9kfkDyYWDC/NHluZOrCTPrCXOb8Qub0avbUVupsN3sqF7QOgBGHwE
BUvhwFMkUIb6yzF/BeavxP3VhL+W8L8l/Q2k/x3lb6b8rTl/e87fmfN35/y9
Of9Azj+U84/k/KM5/3guMJkL0HIBei7AyAWYuSArF+TkgtxckJcLCXIhYS4k
yoUlubA0F5blwvJcRJGLKHMRVS6qzkU1uWjBK7743iua95rPhedzoTkqP8HZ
ba8k5UtQ3gIW5Y5TrhiVx3LkvSKkLUxaQ6QlRJqDhDFAGPyE3k9ofbjGi6s8
uNKDyd2YzIVJnKjIgQocCM+OcGwwywbNWKFpK0izAJOW7Jg5O2LODJq3+s2p
HvNmp3mjzbLWZFltsC7X2har7PMvnbPPXIlHnlixN/TQ633gddz3mu76NEU+
2W2/4GaAeS04eTk4eD7UdTHcdC1cdzv8+l6krDjyqDRS9Cx69UX09KvYgdrY
rvb4rqHELlpiFze5Szq7Wzu72zL3jXtuT3D+2/j8d3Pz+xdnDy8njq/GT6/H
zm1GLm6Fr6ZDNzLB20CgCAzch/zFsL8E8T1Bfc8x3wvM+wr3via8VYS3hvTW
Ud56yttIeZty3pactz3n7cx5u3Pe3px3IOcdyvlGcr7RnG8855vM+Wg5Pz3n
Z+T8zJyflQtwcgFuLsDLBQW5oDAXFOWCklxImgvJciF5LqzIhZW5sCoXUeci
mlxEm/jBK7bw3qtAlvea3fZKFsafoHxxyhunPDHKHaVcUcoZoexhyhYirUHS
EiRNAdLoJw0+Qu8ltF5C4yFUblzpwuVOXOrAJHZMZMcENpRnRTkWhGWBZ8zw
tAmimcAJIzBmBEYM2UFDps+w1WNIdRo224wbTca1BtNKrXm5yrL4yjr/3J4s
ccbvuSN33YEij6vIY73t0d/yKm74RNd87Cv+qYuBobPBrjOhpkuh2hvhijvh
Z/fDDx9Fbj2JXHweOV4e3VMb+6oj9uVw/MvpxFf85FeK5FeG2Z322a99c7si
c7tn5/cszO5bShxaiR1bi57aCJ9NhS6kg5czgWtZ/03Qdwfy3YO9DxHvY9RT
inme4Z4y3P2ScFeQ7irS/YZy11Lutzl3Y87dlHO35NztOXdnzt2dc/flPAM5
zxDlGaE8o5RnnPJOUl4a5aVTXgblY1I+FuXjUH4u5edRfgEVEFIBERUQU0Ep
FZRRQTkVUlAhJRVWUWE1FdZQea/Fgld8YdtrvjCRuYJXeJYKJalg3ivxg1eM
8kS3vSKUM0w5QqQ9RNryXgHS7CeNPtLgJXUeUusm1S5C5SQUTkLuwKV2XGzD
hVZMYMF4ZpRjQllGZMaI0A3wlB6a0ENjOnBYBwxqs33aTLc23aFNtWo3m3Tr
Dbq1Ov1KtWGpwrRQZp4rtSYe2GO3XOFbLt9Nl+OG23Tdrb7mkVzxci/56Of9
w6cD3ceDTedCNVdCr26GntwN338Yvv44fO5p5HBZ5Mu66Gedsc9G45/NJD4T
JT5TJz83J79wzX4RnP0qPrdzLvnNYvy75ejBtcjRjdDJVPDMVuB8xncp67sK
em9Antuw+y7ifoC6HmGuEtz1FHc9J5zlpPMV6ayknNWUsybnfJtzNuScTTln
a87ZTjk7KWc35eqjXAOUa4hyjVCuUco9TrknKTeN8tApD4PyMCkvi/KyKS+X
8vEon4DyCSm/iPKLqYCUCsiogJwKKqigkgqpqJCaCmmocMErse1VIMt7zRUm
MvuDV6IwgTjlj1G+GOWNUp4I5Q5TrjDlDJGOIGkLkFY/afGRJi9p9JB6N6lz
kRonoXIQCjshtxFSKyG2EEIzzjfhXCPGNmBMPcrQoXQtMqWFxzXwqBoaVoMD
KqBXle1WZTpU6VZVqkm12aBar1OvVmtWKnRLL/TzT4yzxeb4HVv0miN4zem+
6rRecekuu+WX3PzzHsZZ3+hJf8/RQNOpYM2F4MtrwZLbobv3QleKw6dKw/ue
R3bUR3d0xz4dj33Kjn8qTezQJXbYkn/1Jf8Wnf1sNvnlQnz3UnTvavjAevDI
ZuDElu90xnsu67kIuq9Aruuw6xbiLEId9zFHMe54TDieEPbnpP0FZX9F2V/n
7FU5ew1lf0vZGyl7E2VvpeztlL2TsndTjj7KMUA5hijHCOUcpZzjlHOSctEo
F51yMSj3DOVmUR425eFSHh7lFVBeIeUTUT4x5ZdSfhnll1MBBRVQUkEVFVRT
QQ0V0ibzXguFic8XvGI/eEWSVDhJhfJe8fde/ijli1DeCOUJU+4Q5QySjgBp
95M2H2nxkmYPaXKTBhepd5JaB6G2EyobobASMgshMRNCI8E34Fw9ztbhTC3G
0GA0NTqpQseVyIgCHpJDA3KwVwZ0ybIdskyrLN0kSzXIN2vl69WK1Qrl8gv1
4lPt/CN98q4xdsMSvmT3X7I7LzpMF5yq8y7RWTfztGf8hK/3sL/5aODN2UD5
5eDjG8HbRaGLD0LHHod3vwh/0hj5pC/6yVTsE178E0X8E1Piz67kX0LJTxPJ
v87HvlyM7FoJ7V0L7N/0Hd7yHk97TmVdZwHnBchxGXZcQ+w3UdsdzHYPtz0k
rI9IaylpfUZZy3LWl5T1NWWtpqy1lPUtZW2krE2UtZWytlPWTsraQ9n6KNsA
ZRuibCOUfZSyj1OOScpBoxx0ysmgnDOUi0W52JSbS7l5lEdAeYSUR0R5xZRX
SvlklE9O+RWUX0kFVFRg2ytY8Er+4BWf2/aazc+2V6LgFYpTwRgViP7gFaY8
IcodpFwB0hkgHX7S7iOtXtKy7WV0kgYHqbMTGhuhthJKCyE3EVIjITbgQj3O
0+IcDc5U4wwlTlNgk3JsTIaOSJFBCdIvgXvEUJcIbBcBLaLsO1G6XrRVK96s
lqy/lq6Wy5afKRYfq+buaxO3DNHL5tBZm/eczXbWrjvjkJ52ck66J495+g/5
Wg7435wMvLgQKL4WuHk7eO5e8FBx6Mvy8IdNkT8NRv80HfuTKPYnTfxDW+JD
X+KjWPLj2diOhcgXy8Fda/5vN7z7U+5DadexrPMkYD8D2c7DtkuI9SpmuYFb
buPmu4T5AWl+RJlLKPNTylxGmV5SpteUqZoy1VKmesrUSJmaKVMrZW6nzJ2U
uYc095GWAdIyRFpHSOsoaR0nbZOkjUba6aSdQTpmSAeLdLJJJ5dy8SiXgHIL
KbeI8ogpj5TyyiivnPIpKJ+S8qsov5oKaKiANo9V8JovTN4rPpuL5b2SBa9I
ggrH33sFo1QgQvnDlC9MeUOUJ0i5A6TLTzp8pN1L2jyk1U2aXaQp72Un9DZC
ayU0FkJlIhRGQmYgJDpcpMUFGpyrwtlKfEaB02XYlBQbF2PDImxQiPYJkB4+
3MmH23hgCw94x8vW8zK1vK1q/maFYL1cuPpMvFwiXXigmL2jjl/VRc6aAict
rlNW00mb8oSDf9xJP+IePOBp2+N7c9Rfdsb/8HLg+s3A6bvBfQ9Dn1aE/9Aa
+WAk+gEr+oEs9oEx/oE7/odw4o/J2Mfz4R1LgS9WfV9vePakXPvSjoNZ+1HQ
egKynIbN51HzJcx0FTfeIIy3SWMRabxPGYspQwlleEbpX1D6V5S+ktJXk/pa
Ul9P6htJQzNpaCUN7aSxizT2kMY+0jRAmoZI8whpHiUt46RlkrTSSCudtDFI
2wxpZ5F2Nungkg4e6RSQLiHpEpFuMemWkh4Z6ZFTXgXlVVI+FeVTU34N5dfO
bnsl815zhfneK5akoon3XuEYFYr+H14hyhukPAHK7SddPtLpJR0e0u4mrS7S
4iTNDtJoIwxWQmchtGZCbSSUBkKuI6RaXKzBhSqcr8Q5cpwlwxgSjCbGJoTY
qAAb4qH9XLSbg3awkTYW3MyCGpngWyZQw8xUsbYq2KlyzsYz3mqpYPmhaKFI
OntDGbuoDZ8w+o+Z7cesumM2yRE785BzZJ+74xtvzQFf2Unfg4v+q9cDJ+4E
vnkQ/ENV6Led4d9MRn7Dj/5GHfuNLfbbQPy38dgf5sIfLwV2rHq/WHd9nXLs
Sdu+y1oPguYjkOk4YjyNGs5hhou4/gqhv07qblG6Ikp7n9I+orSllOYZqXlB
al6RmkpS84bU1JLaelLbSGqbSW0rqWsndV2kvofU95GGAdIwRBpHSOMoaRon
TZOkmUZa6KSFQVpnSCuLtLFJO5e080iHgHQISaeIdIpJl5R0yUi3nPQoSI+S
9KpIr5ryaShfwWt2vuCVzHvNFrziyfde0TgVib33CkWoYJgKhCh/iPIFKW+A
8vhJt490eUmnm3S4SJuTtDpIi5002QijhdCbCZ2R0BgIlZ5QaHGZBpeocJEC
F8hxnhRnSzCmCJsWYFN8bJyLjXDQQRbay0S7GGjbNNJERxrocB0NqqEBVfRs
BT1dPp16NrNRylot5izf4y/cEievyKNnNMFDRu8hs/mwRXnIxj1gn/jO1bXb
U7fXW3bMd/+c7/JV/5FbgS8fBn9dG/pVX/iXjMgvpNFfGGO/8MZ+GYv9ejb0
h0X/JyueHevOz1P2nWnrN1nzd6DxAGw4jOiPY7pTuPYsoblAai5T6muU+hal
ukuqHpDKR6TyCal8TirLSWUFqawklW9IZR2pqidV70hVM6FuJdQdhKaL0PQQ
2j5CN0Dohgj9CKkfIw3jpHGSNNJIE500M0jzDGlhkRY2aeWSNh5pE5B2IekQ
kQ4x6ZSSThnpkpNuBelWkh4V6VGTXg3p1c5te83OvfdKbHvFE1TsB69IlApH
3nsFQ1QgSPkDlM9Pen2kx0u6Pe+97A7SZictNtJsJUxmwmAi9AZCqyfUWkKp
weUqXKrAxXJcKMX5YpwrwlgCbIaH0TnYJBsdY6LDDHRgGu2hoZ1TSOsk8m4c
qRtD3ozBlWPgq3HgxXjm2eRW6dRG8fTafebybc78NUHyvDRyXB34zuDab9Lv
t4j22ejfOvq+dtXv8pQd9t4747tw2X/wpn9HSeDnjaGfjYR/yo38VBP9qSP6
00jsZ8nQbxZ8f1xxf7Lu2JGyfp4278wavgH1e2HtAVRzGFMfw1UnCeVZUnmB
Ulwm5ddJ2W1Sdo+UPSSlj0npE0L6nJCWE9IKQlZFyN4QsjpCXk/I3xGKZkLR
Sig7CFUXoeoh1H2EeoDQDBHaEUI7RujGCf0kYaARBjphZBAmJmFikWY2aeGS
Fh5pFZA2IWkTkXYx6ZCSDhnplJNOBelSkm4V6VaTHg3p0c7N/2+vZN4rWZiC
V5yKxajotlckQoXDVChEBYNUIPCDl5f0eEi3m3S5SKeTdDhIu420WkmLhTCb
CKORMOgJnY7QaAiVClcqcbkcl0pxsRgXiDCeAOPwMCYHY7Aw2gw6MY2O0tGh
KbR/AukeRzpGkZYRpHEYrh2CqwbhlwNw2SD4bChbOpJ+NLZ5f3LtDn35BnP+
Ei9xWhI+qPbtMdj2mpR7Lew9tqGdznefe17s99w95T13ybf3hv/DssB/tId+
MhX+sSTy7+bIvwei/x4P/Xze+9tl5x/XbZ+kzDvShs8B3U5IsxtR7UWV+3HF
YUJ+jJSdJKVnSclFUnyVFN0kRXcI0T1CWEwISwjhU0JURoheEqIKQlRFiGsI
cR0haSAk7whpMyFrI2QdhLyLUPQQyj5COUCohgj1CKEeIzTjhHaS0NEIPZ3Q
MwgDkzCyCCOHMHEJM4+wCAiLkLSKSJuYtElJu4x0yEmHgnQqSZeKdKlJt4Z0
F7zmtr1mZwteybxXouAV3/aKRanoD17hEBUKUsEAFfBTfh/p85JeD+lxk24n
6XKQTnvBy2YhrWbCbCRMBsKoI/QaQqsmNEpcJccVUlwmwSUiXCTABDyMy8HY
LGxmBpueRqdo6PgkOjKODo4ifcNI1yDSPoA098ENvXBtD1zZA5d3Q0+7oZIe
oLgvc38wVTSyfnNi+cr0/DlO/Lg49K3as1tv+MYk3G2Z+MreusNdvtdz97j3
zAXf7hv+X70O/Ftf6F854f+pjfzIE/lRLPTjOe8vlx2/W7f8KWX8JKPbAag/
h5U7EfluTLaXkO4nJYdI0TFSeJoUnCf4lwneNYJ3i+AWEdz7BLcY55bg3Kc4
rwznvcR5r3F+FS6owQV1uLABF73DRS24uA2XdODSLlzag8v6cPkArhjClSOE
coxQTRDqSUJDI7TThI5B6JiEnkUYOISRSxh5hElAmIWERURYJIRVSthkpF1O
2hWkQ0k6VaRTTbo0pEs7n/eaK0zeazZZ8Eomcol4wSv+vVeEioapSIgKB997
Bf1UwEv6PaTPTXpdpMdJuu2ky0Y6rKTdTNpMhMVAmPWESUsY1IROSWgVuFqG
KyW4XIRLBbiYhwk5GJ+JcRkYi47OTKH0CXRyDB0fRkYGkYF+pLcX6eqB27rg
5k64oR2uaYcq26DyNuhJG/SwDbrfkS3q3rrVv3FtZOXi1PxpVuyQKPCVxvm1
Xvm1ifGVrWuHs2K3++4xz6kL3i9u+f61PvCj8dA/S8P/ZA//UyT0o1nPfyzZ
f7Vu+n1K/2FG/WdQ8VdY9jkq2YmLdpPCb0n+AZJ7hOCcJNhnCdYFgnkFZ17H
mbfxmbv4zAOc+QhnluLMZzjrBc56ibNf45xqnFODc9/ivAac34TzW3BBGy7s
wEVduLgHl/Th0gFcNoTLR3D5GK6YwJWTuIqGq6dxDYPQMgkdi9BxCD2XMPAI
o4AwCQmTiDBLCIuUsMoIq5ywKQi7krSrSIeadGpIZ8FrPu81W5i812zivVci
RsWjhYn94BUJUuEAFfJTQd97L7+b9DlJr2Pby0o6LaTDRNiNhFVPWHSEWUMY
VYRBQehkuEaCq0W4UoDLebiUg4lZmJCB8egYZwpljaOMUZQ2hE4OIGN9yHAP
MtCJ9LbDnW1wWwvc1ATXv4NqGqHKRqi8EXrSCD58B95pAm+1pa93bV4eWDk3
Pn+cGftO7PtcY/nKIPjSMvipo/or190jnuPnvZ8W+/65I/A/OKH/Zgz/11Do
vyXd/7Zk/dm64Tdbmg+yig8h6Z9R0V9xwecEbyfJ+YZg7SNmDhOM4zj9NE4/
h9Mu4bSr2NQNbOoONnUPoz3EaI8x2hOM/gybfoFNv8IYldhMNcasxVhvMXYD
xmnCOC0Ytw3jdWD8LkzQiwn7cdEALh7CJSO4dAyXTeDySVxBw5XTuIqBq5m4
hoVrOYSOS+j5hF5AGISEUUSYJIRZSphlhEVOWBWETUnYVIRdTTg0pEO7MFfw
mt/2mvveK56fglci7xWhYuHCRH/wCvupkI8KesiAm/S7tr3spMdGuq2ky0w6
TYTDQNh0hFVLWNSESUkY5YReimvFuEaIq/i4goPJWJiEgYnomGAK442j7BGU
OYQy+lFaLzLRhYx2IMOt8EAz3PMO7myA295CTXVQQw1U+waqfAOWvwGfvgGL
a8A7deC1huyV1tSFntXTI/NHZiJfSzyfadWfG6d22Oo/c9077D5y3vuHl/7/
Phr8R2XoHwLh/5J0/8uS5Scbul+klb8FpX9AhB9hvL8QnL8SzC+J6d0E7Tt8
8iA+fhQbO4mNnsFGL2Cjl7HRa9joLXS0CB29j44Vo2OP0fEn6MRzdKIcnXyF
TlWitGqUXotOv8UYjdhME8ZswdhtGKcT43ZjvF6M348JBjHhMCYawcRjuGQC
l07hMhoun8YVDFzJxFUsXM3BNVxcy8d1AlwvJAxiwighjFLCJCPMcsKiIKxK
wqoibGrCriHs/4dX8r3XbN4rRiW3vRIRKp73ClGxIBUNUBE/FfZRYS8V8pBB
Nxlwkn4H6bOTXivpsZBuE+kyEk59/q8SNk3hRcyK/MviBkn+jRTekZqbf4OY
YgaT0THJFCYaxwQjKHcIZfejzB5kuhOhtSETzcjoO3ioHh6og3vfQJ1VUNtr
qLkCangF1r4Eq8rBVy/B5y/BxxXg3Urg2hvgYkP6XPvayaH5AzPhHQrH33S8
HZa2vzjvH3IfvOD5yTv/P/CCf+8K/V3C9d+XTf+2qf5ZVvorSPB7jPMngvkx
Qf8rMfklPrYLH9mLDR3ABg6j/cfR/tNo3zm07yLadwXtu47230b67yID95HB
YmSwBBl6igyXISPl6GgFOlaJjr9BJ2vRqXqU1ojSm9DpVnSmHWV2oqxujN2L
cfox3iDGH8YEo5hwDBNNYOIpTELDpNO4fAZXMHElG1dxCp+Lho9rBbhWiOvE
uF5CGKSEUUaY5IVP0KwsXPpWDWHLf6y6vNfCbMFrPu+VKEzeazbvFS3M917x
H7yifiryvZebDLnIoJMMOEi/jfRZSa+Z9JhIt4Fw6giHtvD1zX+P819osxQ3
iXCDANfxcC07vwZgymlMPoVJxzHxKCocQvn9KLcHZXcgM63IdBMy1YBM1MGj
b+DhSnigAuoth7rKoPZnUMsTsLEUfFsCvikBK0qAF6VA6VPgQRlw4yVwrho4
07RxrH/+W2bwz2rdDuPgnxzFh1x7b3n/cSTwd+bgf467/nHZ8KOU/Ceg4Bco
+7cE4wNi4mN85K/YwJdY3y60+1u0az/acQjpOIa0n0TazyDt55H2y0j7Nbjj
Jtx5B+68C3c9gLsfIT2lSO8zpL8MGXiJDFYgQ1XIyBtktA4Zq0cmGpHJZnSq
FaW3o9OdKKMbZfairH6UPYhyhjHeKMbPX50TmHCqsLJIpjFp/qplYnJ2fsXB
lbzC0qMWFNag/Eqky1/fUtwgw/Nrk1FJmPLXvZqwaAprllW3uO21sO01v+01
t+01m/eKUMkwldj2igepWN7LR0W9VMRDhd1UwctBBuxkwEb6LaTPTHqNpEdP
uLSEU0M48iuuorBnWsS4WYgb+biBg+tY+W0WU9Mw5QQmH8WkQ6i4HxX2oPwO
lNuKsJuQmXpkuhamVcETFfBYOTz8HBp4AvU9hrofgh33wda7YFMR2HAHqL0D
VN0BXt0Fnt8HHhUDRaXApXLgVF3qSO/8V1zvX7SsD+xPD7t2Vvr+XhH4TzHX
369q/jkj+jHC+jlB+zU+8kes789Y19/Qti+R5l3Iu2/hxn1ww0G4/ihcfwKq
Pw3Vn4MaLkINV6DG69C7W1DTHaj5HtTyEGp7DLeXwh3P4K4XcPdLuPc13FcF
D9TAg3XIcD0y8g4Za0bGW5HJdmQqv1J0o9O9hVWeOYiyhlH2KModR3kTGH8K
E9Ax0TQmnsEkTEzKxmQcLL+pK/i4SlDY4zViXCvBtVI8v+vrFbhBiedvAkzq
wt2AJb/HFLwW817JwuS95uMFr7ltr9nvvUJUIkjFA1TcT8V+8Iq4qbCTDDnI
YN7Luu1lIr2GvFf+EYFwqQmnknDICXv+zlSEWwS4iYsb2bh+BtfRMc0kphrD
lMOYfACV9qDiTlTYivCbEG49zK6FmVUw4xVEfwFNPQUnHoOjD8Hhu8DAbaD3
BtB1FWi/DLRcBN5dAOovALUXgKpL2ZdXss9uZIuLsjceZ0+8yh7unv+T3Pon
S/Ux18eT/v8Udf0/G/J/hlg/JiZ+jvf9Hm37CHn3KVz3GfzmK6hqF1T5Lfh6
H1hxEKw4AlYcBytOga/PgpXnwcpLYPVV8M0NsOY2WFsEvr0P1heDjSVQ0xOo
+TnU+gJqewV1vIa6quGeGrj3LdzfAA/mF/FmeKStsAGPdyGTPchUH0IfQKaH
0JlhlDlauK/iTKLcKZRHRwUMTDiDiViYmI3lb79kPEzOxxQCTCnCVWJcLcE1
+S1fjusUuF6JG1S4UY2bNIUbbvN7r8Vtr4Vtr/lYwWtu22s2TCW3vRLbXnEf
FfNSUTcVcVERJxm2kyEbGbSSATPpN5I+A+nV5Z/CCbeKcCkIp4xwiAmbELfy
cQsHNzFx4zSun8J045h2BFUPoqo+RNmNyDtgWQssaYREb0HhG5D/GuCWZznP
sqySzExxevpemnZ7a/L61viV1OjF1NDZ1MDpVO+JVNexVNuRrabD6beHsm+O
ZCtOZMvOZouvZy89zh7snP9YP3TJ83dR1/+d5f0LMfxTtOX3cM1H0Ku/gM//
Bjz5AijZCTzanX30bbZ4X7b4QPbR4eyjY9nHJ7Mlp7NPzmWfXsw+v5Itu5Yt
vwm8ugNU3AUqHwDVj4CaErDuKVj/HGwsB5sqwOZKqLUaaq+FOt9C3Q1QbxPc
3wIPtMFDHfBIFzzWg4z3Iflb3qkhhD6CMEaRmXGUOYmyaSiHjvIYKH8GFbAw
ERsTczEJD5PyMZkQU4gwpRhTSQrPPxo5nn8Q0ilxvQo3qHGDBjdqcZNuafa9
12Ki4LWw7TUfpeYihcl7zYao5LZXIu/lpWIeKuamonkvBxmxk2EbGbKQQRMZ
MJJ+PenTkl414VESbjnhkhJOEeEQEHYubmPjlhnMPI2ZplDjOGoYQfSDsK4P
1nRB6nZQ1QwqGgB5bVZWlZG8SovLtkRPUoJHm/z7m7zbG5zr6+zLa8zzqzNn
VqZPrNCPLk8dWp7YvzS2d2lkz9LQ7uWBXcs9X6907Fxt+nqjenf66cnMgY6F
iOv/Qpt+BZZ8mL39l/TVHelLn21d+GLr/M6t87u2zn+zdWHv1sV9W5cObF05
vHX16Nb1E+mbp9K3z6aLLqTvXUo/uJopvp55fCvzpCjz7F627GG2/HH2VWm2
8hlQXQbUvATqKsCGKvDdG7C5FmytB9sboc4mqLsF6m2D+jvgwS54qAce6YPH
BuCJIWRyBKGNIdPjCGMSYdLQ/DMnh4FyZ1AeCxWwUSEXE/EwiQCTCjGZCJOL
MYUUU8owlRxXK3CNEteqcJ0a12twgxY36hJINI5E4kg4hoSihQlG4EAY9odh
Xwj2BGF3EHIFIKcfsvsgmxe0ekCzBzS6C11jnRPQ2AGVLauwZmWWjNhcaMoU
GiX6NFO7RVdvTapSo4rUoHyzT7bZLd3okGy0iNffidbrhWs1gtVK/upL3spz
7nIpZ+khe+kua/Emc+HKzPyF6bnT9LljtNmDU8m9k4ldE/EvxuM7RmOfjET/
OBT53WD4V/3hn/WGftwV/Nf24L+0BP5Ho/+/1vr/ocL3X0q8f3/R8/dHXZ98
ZGw3/JNm/hd3lz46u7Lj2Ornh9e+Ori26+D6noPrew9t7D+8cfDIxpFjm8eO
b548uXn6dOrc2dSF86nLl7auXtm6cW3r1o100e30/aL0w/vpxw8zpY8zz0oz
ZU+zL8uyFeXZqgrgTSVQWw3U1wKNb8GmBrDlHdjWDHa0Qd0dUG8X1NcDDfTB
Q/3wyCA8NgxPjCKT4whtApmeQhh0hDmNsGZQDhPlslE+BxVwUSEfFQkwiRCT
ijGZBJNLMUXBC3vvpcZ1GlyvLXgZdPGCVzSGRGJIOO8Vgd97hQpe3iDkCUBu
P+T0QQ4faN/2srjBQoraCegdgNa+XYe0ZOXmjNSUERsyhVKJLs3WFM57pytT
k/LUmHRzSLzZJ9zo4q+3ctcLJzixV2tYq5UzKy8Zy8/py6W0pYeTi3cnFm6O
zV8dmb8wPHd6cPZYf/Jgb+K77vjuzviXbbG/tUT//C7y4dvwBzWh37wO/uJF
8KelgR/f9//rNd+PLnl/fs7zhxPuv+137d/huP6xsXPfQKJ6V9r4z+rQj1qT
Py6b/+2DxQ9vLX96beWzK6tfXVrddXHt24tr+y6uH7y0fuTyxvErG6eubZ69
vnn+ZurS7dTVO6kbd7du398qKk7ff5wuLk0/fpp58jzz/EXmxavsq9fZ11XZ
6jfZmlqg7i3Q0Ai8awKbW8DWNrC9A+zqgnp6oL4+aKAfGhqEh4fh0VF4fBye
nECmphA6DWFMIzMMhMVE2CyUy0F5XJTPR4UCVCRExSJMKsFkUkwuwxRyTKnA
VEpMrcI1alyrwXVaXK/DDfo4Eotte0WRcGTbKwwHQ3AgBPuDsDfw3svlg5xe
0O4BbW7Q6gLNzkLg2GAHdLbtRqQ5qzRl5MaMxJAW6dICbSGpwFamZhQpumxz
UrI5JtoYEmz089a7OWvtrLVmxmo9faVmauX1+PKLkaXSocWHA4t3+xZu9sxf
7Zy70D57piV5/F3iUH18X238m+rYzoroZy8inz4Jf/wo9OH94EdFgU9u+v9y
zffXS74vznp3H/fsP+A+sdN19QNHyZ9N3X9UWI6+XX9+IkP/KGb6kdr3P0ei
//4u+R8V8799tvDh46W/PFj+7N7KV3dXdxet7r2ztr9o/XDR+rG7GyfvbZy5
v3n+weal4tTVR6kbJanbT7buPt168Dxd/CJd8jL9tCJTVpkpr85U1GQr67Jv
6rO1jUB9E9DYAjS1gS0dYHsX2NkDdvdBvQNQ/yA0OAwNj8KjY/DYBDwxBU/R
ENo0Ms1AZpgIk4WwOSiHi/J4KF+ACoSoSISKxZhEgkllmFyOKRSYUompVJha
jWk0uFaL63S4Xo8bDLFtr2jBKxKBw2E49L1XMO8F+QKQ1w95fJDbCzk9oMMN
2gtehYZ4oXFs286wWrIacyFmpzBkCv0mbVqo2a5gKFIseYoh3T7uWLgxyt8o
HBrJXuueWeuYXm2ZWmmcWK4bXa4eXno1sFjWu/Cka764fe5ey9ytd7PX6pOX
ahLnquKnKmLHX0SPPIscKg0fKA7tvxfcfyew/0bgwGX/ofO+oye9pw57Luxx
39jhevix/fUOU++fNbI99NDxinTphWznlyvC3/nN/6b2/Ds99JOe+M8aZ39R
Pf/By4WPyxZ3PF3+4sny1yUre0pW95WsHSpZO1qyfrJ048yTjfNPNy8/27z2
PHXzRepO+da9V1sPX289qkyXVqef1WRe1GVe1mdeN2Sr32VrmrN1rUBDO/Cu
E2juAtt6wI4+sGsA7BmC+oahgVFoaAwamYDHpuAJGjw5DdMYyDQTYbAQJhth
cREOD+XyUb4QFYhQoRgVS1CJFJPKMZkCkysxpQpTqTG1BtNoca0O1+n/l1e0
MNHID16h916BAOT3Q17f916gywM63aDDBdqchey72Q6YbNsxVnNWayr0B5X6
QnKrUAVSbwmVW3x5iiNLsSSbDNEmTbAxwVsfZa8PMdf6Gas9tNWOyZXWseV3
I0v1g0s1fYuV3QsvO+aft849aZp91JB8UJsoqk7cqohfL49dfRa9VBq5WBw+
fy90/nbw/LXAhUv+i2d8V455r+/33PnaXfyJ6/kO+9vPzAN/1Qn+JnYeHpg9
XZ59fDX7ds/W1I6k/Ncey0/U7v9gBX82Ev1FZ+LX7+Z+Vzv/YdXip6+XPn+1
/PXLlT3lK/terB56sXbsxfrJ8vWzLzcuvNq4XLF5/fXmrcpUUVXq/put4pqt
krr00/r084ZM+btMRXOmsiX7pi1b25Gt7wQau4HmXqC1H2wfADuHwO5hsHcU
6h+HBieg4Sl4lAaPT8OTDHiKCdNZCIONzHARFg9h8xGuEOWJUIEYFUpQkRQV
y9CClxKTqzCFGlNqMJUWU2sxjQ7X6nGdAdcbY0g87xXZ9grDkRAcDsGhIBwM
vPfy+SCvF/J4QLcbdLlAhxOwOwrx90JJ3Jo1WrIG03Yy0pBR69JKbVqu3m4D
KVICWYon2eSIN5nCDQZ/g8ZZn2Ctj86sDU2v9k+t9IyvdI4utw0tNfcvNvQs
1nUuvGmbf90897Jxtqwu+fRNouR1vPhl7MHz6L3SSFFx+M690J1bodvXgncu
BopO++8d8T3c6y35wlP2mav6C3vLl+bhz/W8v6gt382EjncsXyjLPr6RrT6Y
Hdi5xPkkov6l2/ozjfvn3MAvJyO/GYj/rjP5h+a5DxsW/lK3+FnN0s43y3uq
V/ZVrR6qWjtWtXaqav1c9cbFNxtXazZv1G7erkvdfZt6UL/1qHGr9F36WXP6
RUv6VVvmdXumujNb25V925Nt6AOa+oGWQaBtCOwcAbtHwd5xqH8CGpyChmnQ
6DQ8xoAnmPAUC6az4WkuMsNDmHyELUA4IoQnRvkSVChFRTJULEclCvT/66XD
NHpMa8B1Rlxvir73ioXh6Pdewe+9oKAfCvggvxfyecD/5eV0Ag7HdvzdWkhU
F5LHpkLlU6vPaLTbrTTVlky5VSjOSFMC8SZPuMnmb59WzV6nMdcmGGtjtNXh
yZWBsZXe4eWugaX23sXCQRnt8/Ut87Xv5qrfzlbWJF9VJspfxsvKYs+eRJ8U
R0rvhUtuhUquBksuBEpP+Z8e9pXt8b78ylO109X4tb3ra8vYTiP3M61ut8h7
ZDxxqmn9Shnw+Ha28kS2Y8867YtZ8UdB3S9dtl9q3L8WBH7LCP9+LPbH/uSH
XXOftM1/2rT4eePS1w3L39av7H+7evjt6vG3a6ffrp+vX79cv3GtYfNm42bR
u9T9plRx81ZJ69bTtnRZe/plZ7qiK1PVk6npzdb1ZxsGsu+GgOZhoG0U6BgD
u8bBnkmwbwoaoEND09AIAxpjwhMseIoN07jwNA9h8BGmAGGLEI4Y4UpQvhQV
yFCRHBUrUIkSlaowuRpTaDClFlPpMLUe0xgwrRHXmb73ihSm4BUqeEWCcDgA
h/xQ0Pe/vbxu0OMC3U7Q5QCcdsBuAwoJeHOhemwybrc+dYUcoVqdVim3o06y
lESSKqQxBJs83gabs85krTNm1mj0tcmp1bHxleGR5cGh5cIpTz2LnZ0Lba3z
zU1z7xrm6mtn66qSNRWJ6hfxyiex14+ir+5HXt0Ov7waenUh+Opk4PUhf9Ue
X823noZvXW3f2vv3WCd3m3g79ZqvlK6DrPDJwYWzDanrZUBJUfb12Wzz/q2R
3Yucz2Lyj/zG3zjsv9V6ficOfMAK/2kq9tFI4s8Dszt65j/rWPiibWlXy/Le
lpWDzStHm1dPNq+dbV6/2Lx+pWXjRsvm7dbNu22ph+2pxx1bTzq3nneny3vS
r3ozlX2ZNwOZ2sFs/XC2cSTbPAq0jgPtE0DnJNhDA/vo4MA0NDQDjTChMRY0
zoEnuTCNB9P5MEOIMEUIS4xwJAhXivBlqECOChWoWIlKVKhUjco0mFyLKXWY
So+pDZjGmPfCCl7mCJLIe4WRWAjOTzQIRwLvvUI+KOiFAh7I7wZ9LtDrBD0O
0G0HnDbAYQXslkII3mLMmg0Zoz5j0G4XJFVptbLQ4SqkgsQpiXBTxN8UcDe4
7HU2c505vcagbZ//ObYyPrw8MrA81LvU37XY277Q3Tzf0TjXVjfb8ma26XWy
sTxR/yz+9nGs7n609nak9lq49kKo9mSw7mCg/qCv6YCn/YCrZ79jeJ+NvtfM
/8ag+lLr2C8MnKAlzvYsn6/L3C4DntwDXl/MNhzO9H+3Ov31nOhvEfVHPvPv
7Y4PtJ4/SgMfcsOfMGJ/mUz8dXT288G5L/sWvu5Z/KZr6bvO5UMdK8c7Vk93
rJ3vWL/UsX6tc+NW52ZR1+b97tSjnlRp79azvq0X/emXA+nXg5nqoUztSObt
aLZxLNs0AbRMAu1TQCcN7J4Gexlg/ww4yISG2dAoBxrnwpM8eEoA04UwQwTP
iBGWBGFLEa4M4ckRgQIVKlGRCpWoUakGlWlRuQ5T6DGlAVMbt71MmM6M6S15
r3B+4HjeK1jwigbgiB8K+6CQ9//vBeS9XDbAaQEc5kIO3mosFJALRV1N2qBO
65SFzp1atlWoO4k2pYJNCW9DxNkQsNZ5M+sc+hpzqnBkK31kZWpwuXD2XffS
cMfiYOtC/7v53vq57prZzsrZ9pfJtueJlpJ484NY851o07VI04Vw08lQ84lA
23F/5zFv71H30BHnxCH7zAGL8DuTarfeuk/uO86JnB2bv9C5drEGuFsGPH0A
vL4KvD2R7Tm4Mbl3kft1QvZZSPexz/onu/NDnfdjWeDPgvAOVuxv04kvJmd3
js3tGl7YM7j4Xf/Sgd7lI70rJ3tWz/asXexZv9q7fqN3407f5r2+zYf9qZKB
1NPBrbKhrZfD6YqRdNVopmYsUzeeaZjMvpvKttCANjrQMQ10z4C9TLCfBQ6y
oWEONMqDxvnQhACeEsJ0ETwthmckCEuKsGUIV47wFAhfiQpVqEiNijWoVIvK
dKhcjykMBS+VEVObMI0Z01owXd4rmfcKFbziQTgWgKP+glfEB4W9UMgDBd1g
wAX6naDPAXrtgMcGuK2Ay5J1mrdz8IbtaLU2Y9IU0p96xZZOvqWRptTilFJY
yNBIuRsS9oaIuX0+PG2NM7HKGludGV6ZHlim9W6fgNe2ONq8MNwwP1g3N1A9
2/cq2VuW7C5NdD2MdxbFOq9HOy9FOi+Eus8Fe8/6B077hk95xk+46Mcc7CNW
8UGz+jujZZ/ae0wUOsNIXBxauty2ebUGePACeF4MVN4A3p4FOo9ujR5YYX47
J/o6pvosZPyz1/aJzfVnve9TRfBvosjnvNiXzMTX07PfTM19O76wb3Tx4MjS
kaGV44MrpwdXzw+uXR5cvz64fmtw4+7Q5oPhzcfDqScjqeejW+VjWxXj6aqJ
9JvJTN1Upp6WfUfPNk9n2xhAxwzQxQR62GAfBxzggkM8aIQPjQmgCSE0JYJp
YnhaAs9IYaYMYcsRjgLhKRG+ChGqUZEGFWtRiQ6V6VG5AS14GTGVCVObMY1l
28saRpKhglciCMcDBa+YH476oIgXCnugkDs/YNAFBpyg3wH67IDXCngsgNuc
dZmyDkPWrt/ujGsyhbSuMm1UFAKFOklKI0qpBdvlIM6GjLUhYayL6Nunjo+v
ckdW2IMrzL5lRvcSvWOJ1rI4+W5h/O382Ju5kdezwy9mh54mBx8lBu7G+2/F
+m9EBq6FB68Ehy8Hxi76Js976WfdrNNO/gm79KhVc9Bk2a/3HJcFz3JjF6fm
rwysXm3ZulkDPCoHyh4DVbeB+otA28nM0JH16QOL/L1J2a6o9oug5VOvY4fN
8zeD/3NV6EtpZKcgtpub2MOc/Y4xd4C2cGhy8ejE0onxldNjq+dGVy+Orl0d
Xb85ulE0unF/bPPR2GbpeOrZxNaLya1Xk+nKqfQbWrqWnqmfzjQyss0z2VZm
toMFdLGBHg7YxwUH+OCQABwRQmMiaEIMTUpgmhSelsEzcpipgNlKhKNCeCqE
r0YEGkSkRcU6VKJHpYZtLyOmNGEqM6a2bHtZMZ1t2ysZfO8V98MxX8Er6oUi
Hiic93KBQScYcIABO+i3AT4r4LUAHlPWZcw6DdlCGl6bsakLQeRCsFVeyErq
xdslNf6mmrupZG8omBuy6XUJbU08sSYcXeUPr/AGVji9y6zOJWbbEqNpkd6w
QKudn6qcm3g5O/5sduxxcqw4MXY/NnY3On4nMnErNHkjSLvmZ1zxsi55eIV/
cHDIT9m0xyyWgybPCVXgnCh6iTV7dXzpen7pas4U1YAlL4HyUqD6LlB/FWg9
kx04sTl1dIVzcF78XUL1TcTwVdD2mdf5uc37pSGwUx3aJY9+I47vFST3cWcP
suaPzCwcm148SV8+Q1s5P7V6cXLtyuTajcn1O5Mb9yY3iqc2S6ZST2mpMtrW
S/rW6+l0NSNdO5N5O5NpZGaaWNlWdradA3RygR4e0McHBwTgkBAcEUFjYmhc
Ak1KIZoMnpbDDAXMVMIsFcJRI1wNwtcgAi0i1KFiPSoxoFIjKjOiChOqNGMq
y7aXFdPa8l4hZDYE572SATjhL3jFfVDMC0U9UMQNRVxQ2AmGHGDQDgZsgN8K
+CyA11zwchuyLn3Wqcs4NBm7utBEtsjThWyrZMso2o7f8TY1nE01a0PJ2FDQ
12WTa9LxNfHIqmhwRdC3wu9e5rYvcVqWWI2LzLqFmep5xqu56Rez9OdJ+pME
vSROfxSjP4xM3wvPFIWYtwPsmz7eNa/wilt60ak6Z9eftlqPmT2ndIHz8shl
fuIaY+Hm6Mqtns1bTcCDWvDpK/DVU7DmAdBwA2i9APSf2Zo4ucY8uiQ8NKfY
F9ftiZi/Dtq/8rh32n27jMFvtOG9yug+afyAKHlYMHeUO3+CvXCatXR2ZvkC
Y+UyY/Xq9NqN6fXb9PW79I2H05uPpzefMlJljNTLma3XM1vVzHQNK/2WnWnk
ZJo42RZutp2X7eQD3QKgVwgMiMAhMTgsAUel0LgMmpRBNDlMV8AMJcxUwSw1
zNEgXC3C1yICHSLUI2IDKjFue5lQuRlVWra9rJjGtu1lz3sF4dnAe6+ED457
C14xDxT9wSvsAEN2MGgDAlbAbwZ8JsBrzHoMWbcu69JuN+JV2xlrWdoq3Y6B
ClNGfkrP3dSxN7UzG+rpDRVtvZDPGF2TDa1K+gvnWos6lwWtS/x3S7y3i5ya
BU71PLtw2NosqzzJep5gPY2xS6PsRxHuwxDvflBQ5Bfd9klveBTX3JrLTuN5
u+201XPGGLioilyVxG9w5m7Rl+4Mrxd1bxU1gY9rwbLX4OvnYG0x2HgHaL0C
9J1Pj5/ZmDm5wj+2ID2cVB+IGb8LW78JOnd7PHvs/r2m0D5d5IA6dkiROCpN
HhfNnRLMn+EvnucuXeQsX2GvXGet3mSt3WGu32NuPGBuPGZuPmGmnrNS5YUf
929VcdI1nPRbbqaBl2niZ1r42XZBtlMIdIuAXjHQLwEHJeCwFByVQeNyaFIB
0ZQQXQUzVPCMGmZpYI4W4eoQnh4R6BGhAREZUYkJlZpQmRmVW1CFFVVZMbUN
09gxrR3TOYLI3PdefjjpK3glvFDcA8XcUMwFRZ1gxAGG7WDIBoasQNACBMyA
3wj4DFmvPuvRZtyajEuVKWTi5Wm7LG2TbPdbBSkTL2XkbBqYm3rGhpa+oZlc
V4+tKUfWFIOr8t5VadeKpH1Z3LIkaloUNiwK3y4IaucFhfPxkvyKBL88LiiL
CZ5GhaVh0eOQ5GFQdt+vLPKqb3n0113mKw77BbvnvDl4RRe5rojfEs7eYS3e
nVq9N7R5ryvzoAl8UgeWV4JVLwo/9mi6B7bdAHsvZ0cvbE6fXeOeXpKcmFce
TeoOxcz7w45vg+69Ht8+R+CAJXzIED2ijR9XJU7KZ09L58+JFy6IFi8Llq7y
l2/wVm5zV4u4a/e56w85G485m6WczWfcVDk3VcHdquJtveGn6/jpBkHmnTDT
Isy2ibKd4my3BOiVAP1SYFAGDsvBUQU4roAmldCUCqKrIYYGntHALC3M1sFc
PcIzIAIDIjQiIhMiMaNSMyqzoHJrwUtpw9T2bS8HpnPmvQIFr9ltr6QXTnig
uLsw33tFHWDEDobzXhYgZAaCJiBgzPr1WZ8u69VmPOqMW5VxKbbj49K0Xbxl
E25Z+SkLN2VmbRpnNg3TG/qpDd3EunZ0TT20pupfVfauKLpX5J3L8rYlWcui
tGlB2jAveTsnqZ2VVCcllQlJRVxaHpOVReRPw4rSkOpRQPPQr7vnNd7xWG+4
nFcd3su24HVD5JY6dkeavMtfuD+z/GBi/eHg1sMu4HEz9PwtWFEFvikH65+A
zQ/B9ttg7zVg9PIW/eI65/yK6Myi4tSc9njCeDRmOxR27Q96D3r8hxyhI9bI
MWPspC5+WpM8q5q7oJi/JFu4Ilm6Ll6+KVq5I1y9K1x7IFgvFqyX8Dee8Def
81Mv+KlXgq1KwdYbYbpOmG4QZd6JMy3iTJsk2yHNdkuBXhnQLwcGFeCwAhxV
guMqaEINTakhugZiaOEZHczSwWw9zDUgPCMiMCJCEyIyI+K8lwWVWbe9bKjS
jqrsmNqBaZyY1hkoeM354VkfPOsteCU9UCLv5YLiTijmAKN2MGoDI1YwvO0V
MgJBQzagz/q1WZ8m41VlPMqMW552SbcT5KItu2CrEHJlpyzMTTNj00TbME5u
GMbX9dupGu3gqqYQaFhWdy+rOpaUbYvKlgVl07yiYU7xdlZRm1RUJ5SVMdWr
qLo8onke1j4N6ksCxmKf5b7XXvT/8nWfXXJc6bmm/+TMLM05skcttbqptmx6
EgRJeIDwKKBQKO9tVqX33nvvXWRkeO8jk18m9i6ApEZzZq3rH9xfalXueJ9q
5feVxm9LnY+yvT8mhn8Oj//qRT62zz85Iz7ZZz7Z4D95LX/5XPn2kXL7rvzg
O/nx1/KLT+XXf5bXfi/v/Ad//O/M5b+S7n/BAv80i/7DJPU/R7m/G5T+z171
/2g3/q966+/K3f9R6P99dviPqdE/Jyb/Gpv+W2T22xD6++D8PwPYH/34X3zE
xz7yUy/1uZf+0kN/42G+9bDfedhbXu6ul3vg4x/5+Cd+4ZlfeAk+ExXfBMW1
kLQekjbD0nZE3o3K+1H5IKYcxZWTuHKaUM+Tqi2lXqZUe1p1ZDRnRnNnNU9O
8+Y0f14PFPRgQQ8V9XBJj5SMaBn2qrQ0pAl6TWGvSU0dV5VxRRmVlWFJGRbl
QUHu5+V+Tu5lpW4G9OokxXZCbMXEZlRohIV6SKgF+JqPr3r4iosrO7mSHc65
wsXJ3CmdBTtrVHqfTMPBmuQmnljHEm/n8TfgOHns5Sz2DIk9mcZ+nMQejuP3
hvE7g8QP/eR3vfSNTuardu6LVuHTRvnjeu1P1eZHle4f8/2/pIcfx8afBJFP
3ehnV/jnp5T1J/bnG+Lnb5RvXig/PFbu3lce3VKe3pBffiG/+Vhe+4O885Fw
/DvW9lvK9W+4/1/nkX9Bkv80yf7DqPg/B5W/69X/73brf9Q7f1/p/WNx8M+5
4f/KjH+Tmv42gfwuNvsoiv4xjP05hP81RHwSJD4LkF8EqK8D9A0/c9PPfO9n
b/u5u37ufoB/FOCfBIVnQeFlSFgJiW/C4tuwtB6RNqPSdlTejcl7cfkgrhwl
lJOkcppUzlOqLa1eplV7RnVkNWdWc+c0T17z5jV/QQ8U9WBRD5Vgr7IerRix
ihGvtlSrF9JQp3V1WgO9Jh96jWCvYUEeWL2ycj8j9dJSNyV1EmInLrajYisi
NENCIyg0Anzdx9e811vkYC65fMWULpniBV04o/MnVP6IzIFBKCK7A2ZQ0htY
+t089RZNvZmlVpDUi2nq2ST1ZJx6NEo/GGbuDjK3+7nve/mbneI37fKXrepn
jcbf6u0/V3t/LQ7+lh1+mhx/HkG+8KNfurAvL8mvTpiv9vivNqSv3yjfvVTu
PFEePFAe31Gef6esfK2sfqqs/0Xe+aN4/J+c7fe083ek77dY+N/Q+G+QzP+a
5P95VP7HQe3ve81/aLf/qdH952r/f5WGvymMfpud/C49/Sg1+0MC/VN8/tcY
9rco/mmE+DxMfhWmvgnR34bo70LMrRB7J8TeC3EPQtyjEP84xD8LCy/CwkpE
fBMR30aldzFpIyZtxeWduLyXkA+S8lFSOUkpp2nlPK1eZNTLjHqVVR05zZnT
3HnNU9C8Bc1XhL1Keqish8t6pAJ7Va1eTXXWUJE6YPWaVtVJRZmUlXFJGRWV
UUEe5uVhTh7AXv201EtK3YTYjYudmJVMaIWFVkhoBviG30oG5uNrbrBwXbHD
HV4bmJ4snVLFY7JwRBbALBSe38FyW1huY54FEwCz7Gsk+2qafTHJPR3nHo/y
j4b5+4PC3X7pVq/8Xad6o13/qtX8vNH5pN7/tDz8vDD6IjP5Ko58HUa/9mHf
OIkbNvrGCXtjT/hmQ765qtx6pdx7pvz4SHl6DzwMfn1DWftC2fhE2f2LdPwn
3vZH1vmflO8jIvS7efw/Zul/n+Z+My7966j6L4PGP/Vb/9Lu/Guj92+1wW/L
o98Vxx/lp3/IIn/KzP6SQj9OYp8k8M/jxJcx4usYeSNK3YzSP0SZ2xHmboS9
H+EeRrgfo/yTKP8sKryICisx8U1MfAuuVEgbCWkrIe0k5b2kfJCSj9LKSVo5
zSjnGeUiq17m1Kuc6sirzrzmLmieouYtar6SFijpwTLsVYG9qnqsZsRrsNfM
6lUDplVlCntNSsq4qIwL8gj2GmalQUYapKV+ykom9q6TRYVORGiH+VaQbwX4
po9reLmGm6272JqDqdmZ6iVduaAqZ1T5lCwfE6VDorSPF+F+TXFzXlhHC2uz
wipSWJkWX06Kz8elp6PSj8Pyw0HlXr92u1v/odO82W5/0+p+0Rh8WR19XRp/
k5vcSCHfxtBvQ9hNL3HTQX13wdw85m/uSTc3lR/eqndX1IfPlSePlRcPlJXb
yup3yruvlc3Pld2/yccfC7a/cM4/094/kqE/4LGP5qnfz7K/mxZ/O6n8+6j+
m2HrN/3Ov3V6v232f1cbflQZ/6E0+VMB+Ut+9nEW/SQz/yyNfZHCv0oSN5Lk
zQT1fYK+FafvxJl7cfZBnH0U5x7Huadx/nlceBkXVuLCm4T4NiG+S0obSWkr
Je2k5L20fJCWjzLKSUY5zSrnOeUip17m1au86iiozoLmLsJeJc1X1gJlPVjR
QxU9XNUjVT1ag73qTRVt/CoZ7DUtXyeTx0X5OtkoJ1nJhiCZ2E+K/YTYiwu9
mNC1koX5TohvB7mWn2v5wI580w2mruvXg7w2qnZBVc/I6glROSIqB3hlDyvv
zMtb8/IGWn43K79FKm+mlZVJ5cW4+mxUezKsPxo07vebd7vtW53ud+3+jdbw
Rn38bWVyszD9Lot8n0S/j2I/BIkfPNQPDuaHC+6HY+GHPfmHTfXumvrwjfr4
pfr8qfrqkfLmnrJ2S9n4Vtn+Stn7TDn+VLT9jXd+zHr/SgX/TET/hCX/iGb/
MCt8NC3/flL73aj522H7P/rd33f6H7WGf6iP/lSd/KUy/biEfFJAP8vPv8hh
X2XxbzLEt2nyuzT5Q4q6naLvJpn7SeZhkv0xyT1Jcs+S/Isk/yopvE4Kb1Li
25T4LiVupKWttLSTkfcy8kFWPsrKxznlNAeuMl3k1cuCelVQHUXVWVTdJc1T
0rxl2KuigV5V2KsGe9Wve10nq6uzmjKrKlYyBCabluRJUZ4U5HFeHuekUVYa
ZaRhWhykxAFIJvStZFGhF+G7VrIg1wlwbT/b9rItD9MCg9d00043LqmGjaqf
k/VTon5M1A7x2gFWA8NDaG0LrW3MamtIbXVafz2pvxo3no+aT4etHwfth/3u
vV7vdmfwfXv0fXPyQ216q4Tczs9uZ9A7CexOhLgTIO946Dt29s4Ff+dYur2n
3NlSH6yrj1fVZ6/Ah0ivH6tvH6jrd9St75WdG8r+l8rJF5LtM8H5Kef9hA7+
jYx+TCT/imX+jOb/NCv/cVr9w6Txn+P270fd/+z3/tgd/Kk1+ktj/HFt+kkV
+aw8+6KEflWcf1PAvs3j3+WIH7Lk7Sx1N0Pfy9APMsyjNPs4zT5Nc8/T3Ms0
v5IWXqeF1bSwlhHXM+JGRtrKSjtZaS8rH+Tko5x8DO5nKecF5aKgXBbVq6Lq
KKnOkuoua56y5q1ovooWqGrBqh6q6eGaHqnr0boea+jxRkudN9V5Q0XrFuV9
soqClGWr14dk0jgvfUgmWsmGSXGQEAZxoR/j+1G+F+Z7Ia4b5Lp+tuNjrwfl
20665aBbV1TrEoyHNs+I5gnePMYbYNhr3thFG9toc3PWXEeaa9PWm0lrZdx+
Oeo8G3afDPqP+oP7vdGd7uROa3q3Pr1XQe4V0fu5+f00dj9O3A+T9/30fTd7
387fvxDvHcv39tUH2+qPG+rTt+rL1+rKC3X1qfrukbp5X92+re59px58o55+
Ldu+FJ1f8N7P2eBndPRTMvEJnvkblv8YLf11Vv3LtP7nSetP484fR70/9wd/
7Q4/bo8/aU4+ayBf1GZfVdGvy/MbJexmEf++SNwqkHfy1L08mOZ7lGMe55gn
WfZZlnuR5V5l+ddZ/k1WeJsV3mXF9Zy4mZO2c9JOTtrLywd5+aggHxeU04Jy
XlQuisplSb0qqY4yuF7nrmieiuatar6qFqhpwZoequvhOuzVgL2aLRWDvWAy
BYW9gIpsJUOsZEV5WpAmeWmSk8ZZcZwRR2lxlBJGSWGYEIZxfhDlBxGuH+b6
Qa4XYHt+tutluh6mC5evO2CfF+y9ts+J9inePsHbR1j7YN7eAwtE7a1ZZwPp
vJt2Vyfd1+Peq1H/+XDwdDD6sT9+0Js+6CAPm8jD2uxRGX1UmD/KYo9SxKMY
+ShMP/Izj9zcI7vw8EJ6eKI8ONB+3NGebqov3qkrq+rqK3XtubrxWN16qO7e
U/dvqUc31dMb8uU3ovNr3vsVF/ySiX5BJT4nMp/h+c/mpU/Ryiez+t+Q5sfT
zl8nvb+O+n8bDD/tjT7rTL5oTb9qIl/X0Ru1+c0q9n0Fv1Um7pSIeyXyfpF6
WKB/LDBPCsyzPPs8z77Mcyt5/k2eX80La3lhPS9u5MWtvLhdkHYL0l5BPijI
R0X5uCiflpTzknJRUi7L6lVZdVRUZwXciPRUNW9N89Vgr7oGejX0SEOPNvVY
80MvmEyZ15V5DSRDYa9ZWZ6VZKRokaxkU5BMnMBk47QwTgqjhDCK88MYP4xy
gzA3CHGDINv3s30f0/cyPTBWDvavu3Cit3tBdM/w7inePca6h/PuPtrdRXvb
s94m0l+f9tcmA7ARMBq9GI6fDSaP+8jj7uxJa/akgT6pzp+UsCcF/EmGeJIk
n8ToJyHmiZ974uYf28XHF/KPJ+rjQ+3ZnvZiW1tZ11bfamuv4Uv2Z+rOj+r+
A/Xwrnp8C3xGcXVTcn0r+G5wwW/Y6Nd04msq/RWR+xIvfjGvfIHWPp81P0Pa
n067n0z6n46Gnw9GX/QmX3Wn37SRG63ZzQb6fX1+q4bdruJ3K8T9CvmwTP1Y
ph+X6Kcl5nmRfVlkXxW510Vutci/LfLvisJGUdgsittFcaco7RWl/ZJ0WJKP
SvJxST4tK+dl5QKc71SuKqoDXPNU3TXVU4O96lqgrgUbWqihh5t6pAl7tfR4
q6Xi18kaClb/kKwqoxUAJpOsXkhBQvLSNCdOs+IkI07SwiQFko0T/CjGj6Lc
KMINw+wwyA4DzMDPDLz0wEMPXGCyvG8n+1dk3wa2RPtneP8ELOj14c7XYGc2
2EKGG9PRu8l4dTx+PZq+HCLPB7PnPfR5B33emr+oYy8q2IsS/iJPPM9Qz5P0
8xjzPMQ+9/PP3MIzh/TUpjw91Z4daS/3tZUdbXVTW3unra9qWyvazgt176l6
8KN69EA9uaOe31KvfpBd34u+7/jQTS76LZP4lk7fIHPfEMVv8MrX89pXaOOr
WftLpPsF0v9iOvhyPPp6OP6mP/22i9zszL5vo7da89sN7G4Dv18nHtbIR1Xq
cZV6WqGfVZgXZbiRXubelLm3ZX6tzK+XhI2ysFUWt8viblncK0sHZemwLB+X
5ZOKfFpRzivKRVW5rCpXVdVRU5011V1XPXXNW9d8DS3QgL2asFcLHNgFvdpt
0AtvqrjV6zpZzSLPr5OVZbQkzYrSrCDN8iJigcmmaWGaEiZJfpLgJ3F+HOPG
UW4cZkchdhRkRn5m5KOHXnropoYuauggh3ZyeEkM4aLo8BQbHs+Hh+hoHx3t
zsbbyHhzOlmfTN+OkTej2ashutKfr3TnK21spYmt1PCVCrFSJFdy1Ks0DSbk
o+yrEP/SL7x0Sy8c8gub+vxMe3msvT7QVne1tS1tY0PbWtN23mh7r7SD59rR
E+3kkXZ2X7u4q9rvyO7bkv+WEPqBj37PJr5n0t9RuZtk8SZR/havfYs1bsxb
36Cdb2a9r5HB19PRjfH42+HkuwHyfW92q4ve6czvtrH7LfxBk3jUIB/XySd1
6lmNflED6+grVfZNlV2tcmsV/l2F36gImxVhuyLsVMS9irhfkQ4r0lFVOq7K
p1X5rCqfVxVbTbmsKVc11VFXnXXYq6F5G5oPHj4ONrVQSw/DU8jRth5r6/FO
WyVALwWAvQDYa16R51avsmQlQ0Ey0Uo2y4lIVkAyAgKS8dMkP7WSxbhJlJtE
2EmYHQeZcYAZ++mxlx57wND82EmO7eT4ihjb8PE5Pj7Dxifz8RE6OUAne7Pp
DoJsTZGNyWxtjK6O5qtDbLWPrXbx1Ra+2iBWa+RqmVwtUm9y9Js08ybBvo7y
r0PCa7+44pFXHMqrS+3Vuf76RHt7qL3b1zZ2tK1NbWdd23urHbzWjl5qJ8+1
syfgS0Dbfc1xT/Hck/x3xdAdPnabS95m0rfo3C2q+ANZ/p6ofY83vsNa3807
N9Hezdng29nw5nT83Xjyw2h6azC700fv9ub3u9iDDv6oTTxuEU+a5LMm9bxB
v2zQK3XmdZ1drbFva9y7Grde4zdr/FZN2KkJuzVxvyYe1KTDmnRck05q8mlN
Pq/JF3XFVlcu64q9rjoaqrOhuhuqp6l6m7BXSwu2rF5auK1H2rBX50MvoqUQ
sBdQl61eWBWqSPOyNC9J86KEFkQ0L6I5cZYVZhlhlhaQFI8keSTBI3FuGuOm
UXYaZqchZhpkJn564qMnXmoC5ubJiYOc2InJJdiBnZ5hU7BWiSKHKLI/m+0i
6PZ0vjGdr4+x9RG+PsDXe/h6h3jXIt7VyXdV6l2ZXivQazlmLc2+TXBvo8Jq
CPzz+41HfuNUX19qby70t6f6u2N940Db2tN2trW9De3gnXa0qp281k5faufP
NNsT7eqR5nyoeh/IgftS+L4Qu8cn77GZu0zuDl28Q5Vvk7XbROM23rqFdW7N
ez+ggx/Q4fez8Q/Tye3J9M4IuTec3R/MH/axRz3scRd/0iGetcnnbepli3rV
pF83mTdN5m2DXWtw6w1uo85v1fnturBbF/bq4kFdPKyLR3XppC6d1uWzhnze
kG0N5bKhXDUUe0NxNFVnU3U3Ya+W5m/BXvAiPOgFDsTrsa4e77ZV0gJ7AbAX
XoNgL6wsYaXrZOK8IM5BMgHNCihIxs9S/CzJzRLcLMYhURaJsEiYQYIMEqAR
P414KcRDIS4ScZII2MXGERs+O8dmZ/PZyRw9QtGD2XwPwXYQfGuCb43xrSGx
1Se2uuRmm9xsUpt1arNKb5SYjQK7keXW0/x6QngXFd+FpDW/vOZR3jq11St9
zaavn+mbJ/r2kb67r+/t6gdb2tGGdrKmna5q5yua7aV2+UyzP9Fcj1Xvj0rw
kRR5KMYe8skHXOYBm7/PFO/T5XtU7R7ZuEe07uKdu1jvDta/Mx/eRsd3ZpO7
yPTeBHkwnj0coY+G88cD7Ekff9YjnnfJlx3qVYd63abftJm3LWatxa63uI0m
t9Xkt5v8TlPYawr7TeGgKR41xOOmdNKUzprSeVO+aMq2pnzZVOxNK5bibKmu
lupuqZ6W6m1r/rYWaGvBjhbqaOGOHunq0e4vvRSrFwB7EXUZgL3wioR/SIYV
RQz2mueEeVaYZwQ0zaMpHk1yaIJD4xwaY2dRdhZmZiFmFqRnfnrmo2ZeauYm
Zy5y5gDT2Ogljl5g8zOwMYodo9jhDN9HiL0psTshdkfk7oDc7ZM7XWqnTe00
6Z06s11htkvsVoHbyvKbaWEzIW5GpY2wvB5Q1r3qO5f2zq5vXOpbF/rOqb4L
7+Qc7ulHO/oJvBFxvqbZVrXLFc3+UnM819xPNd8TJfhEjjwW44+F1I985kcu
/4gtPmLKD+naQ6rxgGw9IDoP8O59vH8fG96fj+7NJ/dn0wcI8nA6+3GCPh7N
nw6xZwP8+YB42Sdf9cjXXepNl37bYdY6zLs2u9FmN9vcdpvbafG7LX6/JRy0
hMOWeNwST1rSaUs6a0kXLdnWki9b8lVLsbcUR1txtlVXW3W3rViqz+rV0QId
2KurhbuwV0+PgeWMjkq1FepDL7Jhed+LqFpAL7ws4SURt3rBZFhewHICBpLx
8zQ/T3HzJDePc/MYO4+y8wiDhhk0SKMBGvVTcy8195BzFzl3EnM4kI3ZMOx8
jp/O8WOUOJyRhwh5OCUPxuTBiDoYUPs9ar9D77fovQazV2P3Kuxuidst8DtZ
YSctbiek7Zi8FVa2AuqmV9tw65sOfftK37Hpe/AO1eGRfnygn+zpZzv6+Sb8
QH9Nt6/qjhXd9VL3vND8z9XQMzn6TEo8FVNPhewTPv+ELT5mKo+Z2mO68SPV
+pHs/Eh0HxH9R/jwETZ6iE0ezqePUORHZPZkij6dzJ+NsRcj/OWQeDUgXw/I
N33qbY9e69HvusxGl93sslsdbqfD7Xb4vQ5/0BYO28JRWzxui6dt8awtnbel
i7Zsa8tXbdnehrE6iqujuDuqp6N6O6qvo/q7WqCrBbuwV0+L9D706l/3gsmo
JmD1IusQSCYRFYkoW0QCJsMLIp4X8JyAZwUsw2NpHktxWJLDEhwWZ7EYi0UY
LMxgIRoL0pifwnwU5iExN4k5CdyB41c4fokRF2DJlzxBqZMZdYJQxxPqeEwd
D+mjPn3UY446zGGLPWywBzXuoMLtl/j9grCXFffS4m5C2o3JO2FlJ6hu+/Qt
t7HjNHbt+v6lfnChH53pxyf66ZF+dgC/8N7WrzZ1+7ruXNNdq7r7te59pQVe
quGXSuyFnHghpp8L2ed8/hlXesZWnjG1p3TjKd16SrWfkN0nRP8JMXyCjx7j
k8fY9PEceYLOns7Q58j8xRR7OcFXxsTrEfFmSL4dUmsD+l2f3ugzmz12q8du
97jdLrfX5fe7/GFXOOoKxx3xpCOedcTzjnTRkWwd6bIjX3Vke0d2dBVXV3F3
FU9X9XZVX9eKpQZ6miXY00I92KuvR/t6rA970W0FaF0nk6kGBHuRVQmovO9F
FEWiIBB5AM/xeJbHMzye5vAkhyc4PM7iMRaPMniEwUM0HqTxAIX7KNxLEh6S
cBGEgyDtOHmJkRcYdT6nzlH6DKHPpvTZhD4d0adD5rTPnHTZkw573OKOG9xR
jT+q8Ecl4bAgHmTFg7S0n5T3Y8peRN0Lart+fddj7LuMA4dxeGUc2/STc/3s
VD8/hh927+tXu7p9W3du6q513b2me1d132s9+FqNrCixFTn5Skq/EnMvhcJL
vvSCq7xgay+Yxgu69ZzuPKe6z8n+c3LwjBg9I8bP8OlTHHmGzZ6j6IvZ/BWC
rUzx1xPizYR4OybXRtS7Ib0xpDcHzNaA2e6zu31ur8/t9/mDHn/UE457wklP
OO2JZz3xoivZutJlV7rqyvauFUt29hRXT3H3FE9P9fZUX0/190CvYF8L9bVw
34oFew30ONBRmM77XkBTpj/0omoSAHuRZZEsQUWBvE6W44ksT2R4Is0RKY5I
ckSCJeIsEWWICEOEaSJEEwGK8FOkjyQ9JOkmKCdBOXDqCqMvMdqG0rYZbUOY
iylzMWYuRsz5gD3vs2dd7qzNnTa50wZ/WhNOKsJJSTwuSEdZ6SgtHyaVw7h6
ENEOQvq+3zjwGoce48hlnDiMU3id7+LcsJ3Cr/APdce+7tzVXdu6ZxMc+vCt
gfMRoVUt+kaNv1FSr+XMayn3WiysCKUVvrLC1V6xjVdM6xXTeUV3X1L9l9Tg
JTl6SYxfEtMXBPICn73E0Ffz+QqKvZnhqwjxdkqsTch3E2pjTG2O6K0Rsz1k
dofs3oDbH3AHA/5wwB/3hZO+cNoXzvrieV+86Eu2vnTVl+x92dGXnX3Z1Vfc
fcXTV7x9xddX/X010FeDgBYaaOGBFhloVqwY7JUYwl5MG3jfCyaj65b3vaiK
RaTKIlUSKdiLzAtkjiezPJnhyTRHpjgyyZEJloyzZIwhowwZockQTQUpKkBR
PpLykrSboF0EDfboMcY+Z+woczVjrhD2asJejtnLIWsbcLYed9HlLtr8eZM/
bwjnNeGsIp6WpNOCdJKTTzLKcVI9jmtHUe0wpB8GjCOfceI1Tt3GmdM4txsX
l8blhXF1bthPDcex4TzU3fu6Z1f3buu+Ld2/oQff6eE1LbamJt4qqbdyZlXK
r4rFVaH8hq++4etvuMZrtvWa6bxmuq/p/mtq8JoarZDjFXK6QiArxGwFR19j
8zdzbBXF387wNYRYR8iNKbU5obYm9PaY2R0zeyN2f8QeDLnDIXc05E+G/OlA
OBsI5wPxYiDaBtLlQLoaSPaB7BjIzoHsGijugeIZKN6B4huo/oEaGKjBgfo+
1hCIDrXYUI8PrV5dhf05WcsiM02ZaVwnk+iaRFehikh/6AUUBCrPUzmeyvJU
hqPSHJXiqCRLJVgqxlBRhorQVJimgzQdoGg/RXtJxkMwLoJ14awLAyvnTpR1
IKxjyjomnH3E2Yfc1YC76vGXXf6yLdiagq0uXtTEi4p0XpLOC/JZTjnLqKcp
9SShnUT147BxEjRO/eAO8LnHuHAZNodxaTeuLg3HheE8M1ynhvvY8Bwa3n3D
v2sEdozglhHaMCLremxdS75T0++U7Ds5vyYV18TymlB9y9ffcs23XOst21ll
uqtMf5UerNKjVWq8Sk3ekMgbcvaGQFeJ+VsMW8Pwd3N8HSU2ZuQmQm0h1M6U
3p0wexNmf8wejNnDMXc04o5H/OmIPxsK50PhYijahuLlULwaSvah5BhKzqHs
GsruoewZKt6h4hsq/qEaGKrBoRoCtPDPsUZafKRbEiPYC2gr7M+9YDKmLjE1
6EMvoCTQRYEuCHSep3M8neXpDEenOTrF0UmWTrB0nKFjDB1hmDDNhGgmSDF+
ivWRrJdgPRac9cw5Nwq2zl0I55pyrgnnHPHOIe/o846eYO8I9rZ41RSv6uJl
TbqsyLaSbCuAX2LPM+p5SjtL6Gcx4zRinoXM84Bx4TdsXuPSbVy5DLvDcFwZ
zkvDfWF4zgzvCbytdWgE9o3gnhHaMcJbRnRTj29qqU01s6HkNuTCulRaFyvr
YnVdqL/jm++41juu847tvWP6a8xgjR6t0eM1arJGIWvUbI1E35LzNQJ7h+Pr
GL45J7ZQchuldmbULkLvIcz+lDmYsocT9mjCHY+5kzF/NubPx8LFSLCNxMuR
eDUS7SPJMZKcI8k1uo4lv481sqiBkRocqaGRGh6pkZEWha57JcaWrsJ1P/QC
yWS2CV33qr/vxVREoCwyJYEpCkxBYPI8kOOZLMdkOCbNMSmWSbBMnGFiDBNl
2AjNhmg2SLEBivOTnJ/gfDjnwzjfnPOinHfGexDeM+XdY9494l1DwdUXnD3B
2REdbdHRlOx1yV6TryryVUm5LIBnDrasZkvrF0n9PG6cR82LsGkLmpcB88pn
2L2Gw204neByqfsKXvq5AFf7/KdG4NgIHhqhAyO8Z0R2jNiOntjWUttqZkvN
bSmFLbm0KVU2xdqmUN8Umht8e4PrbHC9Dba/wQ43mNE6M16nJ+s0sk7N1il0
nZqvk9gGgW/i+BZGbGPkzpzaRam9Gb0/Yw4Q5hBhj6bs8ZQ7mXJnE/58wl9M
BNtYuByLV2PRPhYdY8k5llxjyT2SPZB3pPhALCUwUkCssRqGImMtOtZiYy0O
Wb2S1724DtRWOKtX630vtiGxdYmtQVWRrYhsWWRLAlAU2ALP5nk2x7NZjs1w
bJpjUyybZNkEy8YZNspwEZoL01yI4oIkbwkQfADnAxjvn/N+lPfNeN+U903A
jrZ3JHgGgqcvunuiuyO52pKrKTkbsrMmOyqKo6Tai+pVXrvK6pdp/TJp2OKm
LWZeRsyrkGmHB7edPnAW2O02PE7D6zB8V4bfBu+fnRmhUyN8bESOjOiBEds3
4ntGcldP72rZHTW/oxR35PK2VN2WattiY1tobgntLb6zxfW2uP4WO9xiR1vM
eIuZbNLIJj3bpNFNar5JYVskvkXg2zixg5O7GLU3p/bn9AHKHKLM0Yw9mbGn
CHeGcOdT/mLK26bC5VS4mgj2iegAJOdEck0k91j2jGXvWPaNFf9YCYyVIPC+
V2SsglgTID7REhMtOdGTk67C/7pXW7aScU2oIXF14L/0Kv/cS/h1Ly7NcSmW
S7JcguXiDBdj+CjNR2g+TPFhkg8TfAjnQxgftMyFwEwIIEJgKvgngn8M1rR9
A9Hbl7w9ydORPG3Z3ZTdDcVVU1xwNcxZ1Bx5zZ7V7RnjKmVcJUx7zLRHTUfY
dMIb6W6/6fGaXo/pc5l+p+G3w7NnNiN0YYTPjMipET0xYkdG/BBcr0rt65l9
LbenFvbU0p5S3pWru1J9V2rsiq0dob0jdHf43g432OGGO+xohx3vMNMdBtlh
Zts0uk3Pt2lsm8J3SHyXJPYIch+nDjDqEKOP5vTxnDlB2VOUPZtx5zPuAuFt
CH+JCJarqWCfio6p6JxKrqnknkieieydyL6J7J/IgYliCU6U0EQNT9QIFP1V
rMRUS0711LQHegEdhW/LwH/rxdUkrioCFZErC1xJ4IoCV7DwXJ7ncjyX5bgM
x6dZPsXySZaPM3yMEWK0EKUgUogQQgQXwpgQngshVAjNhBAiBqdicCIGxmJg
KPkHkr8v+XpgSdbblr1NxdNQPHCVz13WXEXNVdCdOcORMRwp05E0nXAtwhUx
3WFw1t4bMH1+0+c1/R4z4DKDTjNkN8NXZuTSiFwY0XMjdmrET4zEsZE8NNKH
evZQyx9oxQO1dKBU9uXavlzfl5r7YmtP7OwJ3T2ht8cP9vjhHjfa48Z77HSP
RfaY2R6D7jLzXRrbpfFdCt+jiH2SPCCoQ5w6wuljjD7BmNM5ezZnz1HuAuVs
M/4SEK5mgh0RHIjoREQXIroRyTOVvFPZB/mncmCqBKdKaKqEp6olMlWjUzU2
VeNTzQJj/fdenfe9gKbMNySgLvE1i8hXRb4i8mWBL0FFgS/wfJ7nczyf5XjY
S0ixQpIVEgwQp4U4JcRIiBCiuBDFxMhcjKBieCaGETE8FUMTKTSWgkMpOJAC
cKnZf70n21R8DdVbU71V8ALFU9LdBd2VM1xZ05k2XSnTnTDdcdMTNb0R0xc2
fUHTHzADfjPoNUMeM+Qyw04z4oDHVi/N+IUZPzcTZ2byxEwdG5ljI3ekF460
4pFaPlSrh0rtUG4cys1DqX0gdg7E7oHQPxAGB/zwgB8dcJMDbnrAIgfs7IBF
95n5PoPtM/g+TRzQxCFFHpLUEUkdE/QJTp/izBnGnmPsxZyzzblLlL+C7Kjg
mAnOmeiaie6Z6EEkL+RDZD8iBxA5iCghKIwoEUSNImoMiiNaAkoiWgrR0khP
EbpQxyILbei6V/NDr/qvelWE98mKglDghTwv5HghywkZTkhzVi/RkmTEJA0k
KDFBinFCjONADBNjczGKitGZFEGkyFSKTKTwSAaz9QM51JeDPSXYUQJtNdBS
/Q3VXwcPT3wV3VvSPQXDkzfdWdOdWXhSpjdpehOmL2b6o6Y/YgZC4L59KGCG
fGbYa0Y84Fpn1GnGHGb8ykxcmkmbmbowU2fgpl/21Mif6IUTrXSiVY7V6rFS
P1Yax3LrSGofSZ0jsXck9o+EwZEwPOLHR/zkiJseccgRNztk0UN2fshihwx+
yBCWI5o8pqgTijol6VOCPiOYc5y9wFkbxl1i3NWct0MOVHCiggsV3ajomYne
mWTxzST/TA7M5CDwcywl+qFXHFF/iTUD0jOr1y/JfukFNCWhAdUloSYKVagi
CmVBKAmC1avIXycTc5yY5cQMJ6ZZMc0AKVpMUUCSFJOEmMClBAbE51IclWIz
KYZI0akcnciRkRwZyuEBGEMP9ZRQRw211WBLDTbAEwZ/VfdXdB8c6fPmTW9u
4c0sfOmFL7XwJ80AXPoIRs1QxAyFzHDQjATAuceo14x54DVcJ7hDm7SD66Zp
m5m+MDPnZu7MKJzpxTO9fKpVTtXaqVo/VZoncutEbp9I3ROpdyL2T8TBiTA6
EcYn/OSYnx5zyDE3O+bQY3Z+zGLHLH7MEseMhTyhqVOKOqPoc9LCXBCsjWAv
ce4K5+wYb3FgvHMuuOaCey565qIXtUg+VPKjUgCVgyjoFZop4ZkSgaIzNTZT
41BipiUhGAv2Ei1dqCMDbVlsQU1JbEB1SayJQFUUK6JYFsQSVOTFAi/CXlLW
wgIZBqKlNCWlSSllIaQULiUxKTmXEqhFjs/kOCLHp3JsLMdGSnSoRAdKpA8n
0TtquA1+Vg01tWBdD9b0QMUIlA1/0fQXTF9u4c8uAplFIL0IwiWdUNwMx8xw
1IyEwb3AaNCMBeBFVa+Z8IA7zymXmXKYabuZuTKzl2bWZuYvjMKFUTrXy+da
9VyrnauNM6V5prTO5M6Z3D2TemfS4EwcnoqjU2F8KkxO+ekpj5zys1MOPeXm
pxx2yuKnLAGRpwx1RlPnNH1BMTYLyV6S7BXB2QnOgfMWJ867MMGNCR5M9M4B
31zyz6XA/H2vECqHUSUCRVElhqqWOKomUDWJapYUqqWhDNr//+rV/tCr+aFX
/Ve9KoKVTCoJUpGXCryUt3BAjoUYKUsDGUrKkFKGkNIWXE5hcmoup1A5OZOT
iJyYyomJEh8r8ZESGyqxgRrrq9GeGu2Coe1ISws3wcu7UM0IVY1g2QyWzEBh
EcgvgrlFMLsIZRah1CKcXEQSi0h8EY0twOW5MDjJCQ6pBsDF4qTXTHnMtNtM
u8yM08w6wJnT3CU4nlm0GWWbXrHpNZtWv1AbF2rrQmlfKJ0LuXsu98+lwbk0
PBdH5+L4XJicC9NzATnnZ+c8es7PzznsnMPPOeKctZDnLHXOUBcMbaOZS8rC
XpGsneQcJOckeIsL59244MEFr9ULE32Y6MekAAZ6BedyaC6HASUyV6JzJQa8
jwV7qakPvTLXvaQe1LXIUkeW2lDLIklNSWpAdVGqiVIVqgjSz72ukxU4qcBK
eQsjW3K0nKOALClnCTljweUMJqfnchqVUzMlhSjJqZKcKMmxkhipiaEaH6jx
vhaDQ/bRDpzbbuqRhhGuGeGqGaqYodIiWFyE4GZfOLcIZxaR9CKaWkSTi1hi
EYsv4rFFPALmJJIhMxmE56X9ZtoHrnNn3WbWZeacZt5h5u1m8cosXRnlK6N6
qdcutcal1rxUW5dq26Z0bUrPJvdt8sAmDW3SyCaObeLEJkxtAmITZjYetfFz
G4/ZOPyCIyDygqNsLGVj6EuGuaIZO83aKdZBcU6Sc5G8xU3wHkLwWnDRh4t+
XAzgoFcQk0KYHIYimBz90Cs+VxNQcq6mAC0NZeZadv7fe3X+971gMrkiyGVB
Lll4oMhBrFywMECelvMUkCPlHCFncYuSxZTMXMmgSnqmpBElPVVSEzU1VpMj
NTlUEwMt0dfiPS3eBe9KYm091jSiDSNaNyNVM1JZhMuLcGkRLi4i+UUkt4hm
F9HMIpZexOEKUiKxSMTBXEsyskiFF+kQ2CnIBBYZv5n1mTmvmfOYebdZcJkF
p1l0mGWHUbEbNbtet+sNu9a8UttXaudK6V4pvSu5fyUPruTRpTS+lCaX4vRS
RC7F2aVgQS+F+SWPXfL4JU9cchbykqMsVyx9xTJ2hnEwrINmnTTnojg3xbtJ
3kPyXlLwERbRT4gBAvQK4lIIl8K4bAGxACWGKXFATWBqEkphahrTLBlMywJ9
Re5BXYssd6A21JLkJtSQ5LoI1ET5utd1sjIPlDiIBcmKjFyk5YKFkgukkrcQ
Sg5XchiQnStZVMnM1AyiZqZqeqKmx2pqpKWGWnKgJftasqcnunqio8fbRrxl
xOCUc7RmRqtgcDYKZzFjhUUMjvfFs4t4BqyMJVKLZHKRSixS8UUajoBkwotM
CM4jBOAUiW+R9y4KnkXRvSi6zJLTrDjNqtOoOfWGQ286tJZDazvUjkPt2ZW+
XRnY5aFdHtmlsV2a2KWpXUTs4swuonbBMrcLmJ3H7TwBkXaesnM0wDIOlnEy
rMVFc26a89C8h+K9FO+zepGCnxQDpBgkLFKIkMIE6BXB5SgUw5U4lMCUX8VS
r2Nd98qBXr8k+//pJV33UqoWAajwEKeULSxQYiBaKVoopUgqVrICoeRxJY9Z
1NxczaFqdqZmETU7VTMTLTPW0paRlh7oqb6e6unJrp7sGIm2kWiZ8aYZr5ux
2iJWXcQqi1h5ES8t4sVFvLBIwAm/ZHaRzCxS6UUqtUgnwSJSJr7IxMB9/Wxk
kQuD+REwGhNYFPzguHrJuyh5FmW3WXGbNZdRdxkNl9506W2n1nFqXafac6p9
pzJwKkOnPHLKY4c0cUhTh4Q4xJlDRB3i3CFYMIeAOwTCwVtIB085eBrgGCfH
uFjW4mY4DwN6eWneR/F+SrAEKDFIAiESxiKkCCFHoRghv4+FK0lATUFpXM3g
miUL5fD/0uu/JFNaEtCUlAZUF5XaNQGo8hAHklVYoMxAtFKiIFIpEha1gKsF
DMjP1Tyq5mZqDtFyUy07AaxkmZGeGepWsnTfSHWNVMdIfpi2TzTAAHe8uoxX
wFJworxIlBZJOJGZyi9SuUU6u0hnFhm4YJVNLrIJeFY/tshH4epIGC78BBfF
wKLkX5R9i7J3UfEsqh6z5jEaHqPp1ltuve3WOm6t61Z7LrXvUgcuZehSRi55
7JInLnnqkhCXNHOJqEucu0QMEHCXQLgEEuApF09DjItj3BzrZlkPy3kZC+9j
eD9tEQK0ELR6UWKIEsNWL1KKkFKUlC0gFqAkCCUJpQjVAmOpv4oFeymWHtS1
yEoH+nWv98lEkKwuACAZD3EgWZUFKoxSoS1qmQJKpFoigCKuFjG1OFcLFlTL
z7Q8ouWnWm5i0bNjPTvSs0M9MzAyfSPdM9JdM9UxUy0z2Vwk4WZ6Ai47J+FY
cKoEJk3ThUU6D4YXMzkw55fNgNGxXGqRSy7ycG2nEIMTMZFFMbwohcB4QTmw
KPsXFd+i6lvUvGbdaza8RtNrtD16x6N3PVrPo/U96sCjDj3KyKOM3crELU/d
MgJIM7eEuqW5W8Qg3C0SboGEKLdAu3kLY/HwrIdjvRznYy28n+EDgBCkhRAt
WsJWL0qKUFKUAr1ipByHEqRigbFArzSUIdQsoVlyUJ4YwF6/JPtVr7astiS1
eU1UG9cEoM5DnFqzsECVgWjV6lWhgDKplgmghKslTCvOIVQrzLQCohWmet4y
0XNjPQd6GdmBke0bmZ6Z6ZrpjpluL1KtRaq5SMHl9FRtmaou0xUwGZwuLTNw
KDObX2Rzi1x2kcsA+fQin1oUkmAgqRgHez6lKFgGKYcX5RCYMKgEF9XAoupf
1P1mw282fUbLZ7R9esend31az6v1vdrAqw696sirjL3KxKtMvTLilWeAhHql
uVfCvCIOEV6R9AoWyivQEOMRGC/PWnwc57ewfIDlgxZGCAFimBYjAIxFSTFK
jkMJ2CtJKikoTaqWDKlmSfVXsWAvtQ/1oK4MdGS1DVm93hNBsqYAgGQ8YPUC
WKDGQDRIVrV6kRatQmhlHMK00hxCteJMLyK61QuY6PmxkR8ZuaGRGxi5vpnt
mdmumeksMu1FurVIw6X7NBxPz1ShyjILh2izcC4zl1/kc4t8dlHIQOlFMbUo
JhclOLtTji3KUbAPUoksquFFNbSoBRe1wKIeWDQDZitgtv1Gx290/XrPr/f9
2sCvDX3qyKeOAWXiU6Y+BfHJM5+MAtLcJ2E+CQdEwieSEOUTaIiBWB/P+nku
wFn4oIUVQqwQtjBiBIrSUgyK0zAWJScBJQWlKeWXWKSaA7Q8VCD/d71AMukD
EfQCYK8m/16Dg2CvOgPUaA2gtCoJEVoFhzCtPLfoJVQvzfQSApIVp0ZxYhTG
RmFk5IdGfmDm+2auZ+a6i2xnkW0vMq1lpgk1llk4oZ6tLnNwODgH52jzxWW+
sCzkwQ5jMbsAMotSGmyQlZNgKakSB6qxRTW6qEXA8EQ9BDSCi2bQbAXNdtDo
BIxuQO8F9H5AHwS0YUAbBdRxQJ341alfsSB+ZeaXUb88ByTML+F+iYBIv0hB
NMT4BfZagOeCAB/iLDAWK0RYMWphxBgjWeKwV4KWk9AvsSglQ6mWLKXmoA+x
rnv9OllX1q51LNJ7bfG9lgDxQJN7r8FCjFa30FqdAr1qJGD1quIWvYLplTlQ
RvXyTC8jVjKjBHsVx0ZxZBaGAEy2yPcWVrJcZ5ltL7OtZba5zMHJ+xxcUc/D
red8eVkoAUW4m1nML0u5ZSkLlDOLcnpRSS0qyUU1AcUXtdiiFl3UI0AjvGiG
F62Q2Q6ZnZDZDRm9kNEP6oOgPgxqI2gcVCdBdRpUkaAyg9CgPA/KWADAAxIB
kQGJCooWGmICIgsIXBAKWb14PswJESgKe8UAKc5ICUBOMjAWoKShDK38l1iA
VoCK1EDRLH2oZ/nQC/jQqyMCbeED2KvFAU0WYkCvBg1YvQDQS68Reg3XrV5V
TK/CXhVUr8yMMgJNjdLEKI1NqxdgJRssCrBXvrvId5a59jLXWuYtzWUert4X
alB1Wawsi2UwIlyyFJelwrIMBxktleyykllW08tqCqglF7XEoh5f1GOLhiW6
aEYWrciiHVl0wqalGzZ6YaMf1gdhfRjSRyFtHNImgDoNqUhInYUUFJqHZAzC
QzIRkixkSKIgOiRamJDIQhwgcGGBD/N8hBcsUasXJ8Y4Mc5apASUhL1SUJr5
EItWsrSag/LQh1j/r1592Os9CfQCRAAkE4DrXgDs1WIBqxcAezUoHSD1uoXQ
6zhIVsP02txKZlRRw+oFwF7liVkem1ay0sgsDRfFwaLYXxR6i0J3WegsrWT5
9rLQWhaaUGNZrC+LcE69BEefS+VluQTBwdNKflnJLasWOB5XSwP11LKeXDYS
UHzZjC2b0WUrumhHF52o2Y2YvYjZjxiDiDGM6JZRWB+HtUlYm4Y1JKxaZmEV
DStzCAsreFi2EGGZBCQKosMSA4gsxF2LCLwlKghRXogBYpwDEhyMBcgpKA17
ZRglC+WYX8UCtOJ7173eJ5Pfu+517boXAHt1+PesXgDopbcYoElDFGD1AmAv
ADNqcwg1qjOggpiVqVmxesFk5dHC6lUaLEp9K9my2FteJyu2oday2FyWGlB9
WYIj3UBlWYFrwhW4eVqFM5o1OM5Yyy7rGaABh64aSTCf1EwsW/FlK7Zsxxad
2KIbM3tRsw8Yg6gxjBqjqD6O6hNLRJtGNCSizSKqBY2o84hiwSIKDshERCYh
CpDoiMRALMRFrFgiH7XAXjEB9IpbvXgrlpjkJEvKYpWCMsDPsUCvPFSAPsTS
SvRQ0Qc/k/X+Nem9nviBoHev8XrHwr3XZiHYq0VDsFeTBBqE0cABq1d9Dli9
ajPTUkXM6hSwklXGC6tXeQiUBstSf1nqLYvdn4qdZcnSXpZaQLm5LDeW5TpQ
qS0rVaBaAQPQ1dKyZoHLp/U8BCf/gAzYJmumli1LctlKLNuJZSe+sHTji17c
7MfMQcwcxowRoI9j+iSmT2PaNKohUW0W1dCoaplHVSyqWPCoQgAyCVFRmQYk
BmIhDgK9YoAQF4CEICZ4MQnAWJyU5mRLhgO9slYvVslBefaXWKAXo1lKgNXr
mhXrFx969UXgutc1qxfwoVeHBaxewIdeAGk0LYTRhL0amNGAveqoaQHJELMG
ei2qk0V1vKiMgPJwWR4sy7BXqfdTuftTuWNZltvLcmtZaUKNZaW+rFrgunqt
ApVBr3oJjNXWC8sGnNRs5JbNLNCC82SWdmrZTgKdxLKbWPQSi37CHFji5jBu
jOLGOG5M4rplGteRuGaZxTQ0ps4hLKbiMcVCQGRMoWKyhYYYQGIhDuItcYso
JCywVxJKWb14Kc1L72Nxchb4ORboVYCKFtgLxtLKzOhDr6H8nhXrZ9e9gOte
/HtWL4B936vDAG3aACijZSGNFgFYvQCrF2Y25mYD9qrPzLrVC1nUposa7AWM
lpXhsjJYVvpWsp/KvZ8qXajzU6VtWVZby2oTaixrdQgOrNcrUHnZKEFFMIEK
5JetHJQFi3JAetlJAd3kspdcWPrJxSBpDhPmCDDGCWOSMKYJ3YIk9FlCs6Bx
bR5XLVhcxSEirpAQBcg0xEAsxMUlLn4dS+ITEuiVFEVLSgDSAozFSxletmR5
0Ctn9eKUPPRLLKjEapYyYPV670OvoQSAXuJ7Vqz3PvTqcYDVq8saXQboWGjA
6gWQH5LhFrOJQbAXAHotANgLGC+tXtUhUBn8VOn/VOn9VLV0f6p2oPZPNUtr
WWsC9cayXofgzDoAx6CbcGK4WXw/hNrKg7nGdm7Zzi47lsyyk152LallL7Xo
pxaD1GKYModJc5Q0x0ljAk2TOgLNkjqa1CzzhIYlVAueUAmITCgWCqIBmYFY
iIOsUiBW8poVCwKxBCkDZa9j8XIO+BALUIvXQCz1Qyytwo4/xPrZdS/gQ6+B
AMBexrUeB7HAdS8A9upQgNULIEwrFoABVq8malk0ZosGAli96hPL0upVGwHV
4U/VwU/VPtT7qWbp/lTrQO2f6i0I9mpY6hBcWm/C/e5WGYLDtW0LnNfs5MFo
o6WbXXYzQC+97KeXg/TCMkz/P03dZ5KqUBRF4fnPq1VA226VJKCYs0gQCffP
O3tf6HpV3wzWAFazGtRrigfVhraDz472g89hUB6+yuNXeYL3mS5QXOn2Vdw7
+YOelNBLDDKRDoX0SrNRyliQmy8dK7ekV1KME/TSsb5702cpfnSvCvJqpWWd
SKSd8NXTvZ4d3Wt5B90L0Kv2LiC93BPoXs5BNNLL3gGSbVohveZrmK3ULFKz
kAKYL9XcJw8Wrlo4ZCvpZYs58bcOvELDN3g8ogrfIrNdGhCMIBw10ahZiWG9
HtYxVJthtaXd8LMn6XWkE50Hb3EZvK90GxTiTg96DnItoZc2ZK+RSDOjZ7KX
pelYSTGB93fyFwu9fjoxY/356wV9r+gFuhf0vYIH6F7LG/i32r+C7uWda4+9
3KNoJBbsG4e97G1rs9cibhfopeYrNY8oJPZaCJ/YyxYO2cpZ0LwVLpfr8IOX
t8fdsPAnNG6XFpltIIw2NNrIaMTKaNYjUcejegPVdlTt4LMffQ5i+DkOS3Ea
lme6DN/iSjco7vSgZydP6KWNcsbKUiPLhJlquZUi1hgKMXmh17fulbyn1Mcq
f9ErzqFLloGO1Xl1vaIEdC9N9wrutVjeeuzlXwC9kKzxjo30cg+AXkjWOtKL
yWzpFavFWi1WFFGoFgHYS/LJQy9HOGQrd0Fz8GYtxut8r/tiSvzYwrgNhAWh
CZHZrsxmbUBs1BvaGpXYGdVesNeRTqNSnOkC7yvd6A7Fg56UdFBKSw1NYpGl
Y6X5GFiKvqErhVhQ/nb+ekHW9YL/emm6F3S96vABuldwA90L2Ms/NwK9mMxj
L3cvWt0LpNdG2bGy110yW0TKDikAZ0m+cjxylSscspW3oDnNlM/9uvRaiil9
t4GYQDhuQwsiq11Z7GU2MW3Meks7sxLS6wCfI52gPBvlha7wvvXu9DAK8aSk
96IulgmMBfk407HyifQixiqm0ot+XujVxypnySavNv/10nQv7a/XKqlFJJ4d
3Su8g+4FXa8G2Ms/AXohWevtW+nl7oC9FMRdMpu9nIhCCmipXOEr1yNXecIh
JvPFnGbdgX3Jr3cgpugVigmN24hW43ZtiSa2mg3UW6ve0V56mdWBjubnRGco
L3SlG7zv9Og9zUIkvRelnTy18gyybMxeE01K9aZp0ZWiXyjFDL3+Ack3k/s=

           "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> RGBColor], 
          BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
           Selectable -> False], DefaultBaseStyle -> "ImageGraphics", 
         ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]], 
       EdgeForm[None], GraphicsGroupBox[
        TagBox[{PolygonBox[CompressedData["
1:eJxNmnWYV9UWhuf8Dh3SDcLQjUM3QzPAEEM3Awzd3Tl0gyDd3SEhUooiKSqC
dDcCSkrJXd/d732e+8f33OV31l5rnfUexpF9g9v0iOgeCAoKaucHBcWw//VM
+udMpowms//rZzYFE8c0ZcGLb0pgym3KxVmf3EzkxjJl5Yzi2KZseHFN8Uw5
TTmI41MrJ7lxTNk5o14JTXnoqfgzU148xYlM+fBSmlKZipgKmxKbkpgKmPIT
JzV9gZfMlNxU0BRCrcTk5mOWuMyanbPJyFWNtKZ0phKm4vRObSrKDIrTmIrh
pWBGzVaI3imIC5Kj3Aam+pxNS+1i1CzKs3ow097LmsoQi0U5vBzstYqpsimD
6XNTaVMpcsU1lDOZ4VYeLxvvXclUkTgHtSqRK64VOJMTllXpmQtu1fBywy0M
ryDvXtdUB4baew1TdWKxqIlXgL3XMoVTKy+5YbBIbyoJk/ycCadGenZQipxC
sIhghsLsuB5eCDNqttr0DiGuxbtnYzcVYCRWDWHYwtTSNNQ0hJnUt7GpEbFm
aYJXCjZN8crAsbmpGYxCqdkCBmLR1tSGGTRLpKk1cSWeRXJWnFpRoyw1W9Cj
h6mnaZppKrXFsR09qsKtvSmKWHvvgBcGi4541eHWCa8GHDrjlWfm1swUzl67
mroQa9fd8GrDojteHbj1wKsLt554VZg5incoDoNGMIqAdS/O1IdbH1Nv8sSl
v6kfsbgMwGvNXkeYhlOzEbl9yRXLgZxpxp4HmwbBQO89LMh9I62oORyvOWyG
cCYSliPp2QYuo/Da8p6j8bqwt0mmiexBnKJNY4jFaSxeR7iMN42jVhS5o9lV
fXbTi7MdyR3L7hry7n3oLU6TmaEbnKbgdWZGzTaB3p2Jx5MrjlM505O+04Pc
N3rddMP0r+kjPdV7lmkmsVjMxhvKXheaFvAefcidQa64fsmZ/nCbgzcYFvNN
84iHUms+uWI9lzPDYLmInsPhthhvBNyW4I3n3deYVsNQe19mWkosFsvxotn7
StMKao0iVzUHMbNm/Yqz0eQuh4H2usG0nt5isZYZJsJtHd44ZtRsq+g9jngl
Oco9avqRs5OpvY6aa3n2Axy19y2mzcRisRVvHnvdY9od5JhPJ3cTueK6jTOz
4LYdbw4svjbtZAfzqLWLXHHdwZn5sNxLzwVw+wZvIdz24a3k3b83fQdD7X2/
6VtisTiAt4y9HzIdpNZicvfBQt/6Rpgs5cxBakxlB5vIWQWLI8ywmh3/gLeC
GTXbYXqvID4EE7H5CWbr6XsM77TpZ9Ofpsf0VO8TpuPEYnESbwscdO4UtTaS
e4zcLTw7Se42epyGkVj9ZvqVZ+JyhpxdsPvddDbI/SzQn2F9N9N5Jm7nyNkL
pz9M53lv7UI/N66xc+3+oukCsThdwjvA7q+YLlNrH7mquYOZNesvnD1A7iVm
2Uvvc/QWpxvM8D2cbuIdYkbNdpXeh4ivsIsd9DrDWbG+RQ3F+rN1G+84XB6Y
7nNOsz4zPSXWrv/CO8YZ5d5jx9rjc9PfQe6bOMazuzAUy0emhzDSXE+C3Ddz
hp5P8U7B+TFnTlDjITPqdwP9DqB/J3Smt/b2ghmuspsPpvcwEIvXplcw097/
Mb1hF/qu77CT85xR7kt2epVa7+h1nmcvqCWWb6l5DW4fmeEyNd6Rc5Qd3aXn
BWZ6w4w77D+Wtpt22H947fQcc3H7FOT+HXaLOT39h5nnYtUJeM67Q23fc95d
WMTwnHcPdjE9591nr7E85z1g17E95z2EQxzPeY9gE9dz3mM4xvOc9ycc43vO
ewLbBJ7znvIdJfSc94xv6zPPeX/DMbHFiTwXa89JPOe9YPdJPee9hFUyz3nv
2Xtai9N4bqfabQqLk3suFqeUnvP+gUsqz3lvYZXac9472KuWvA+wTee5Hq/g
ptqa4SOc0nsuJwlzfWEq4DmO4va5KQMMxS0jnge3THgBuAXj+XDLjBcDblnw
YsItK14suGXDiw237Hhx4JYDLy7ccuLFg1suvPhwy42XAG558BSLZV68RHDL
b8pHnIRd5GfH2mtRUxF2pT2GsLNkcCuIlxxuhfBSwK0wXkpqFsH7lz872nV6
eollMXqmgWNxvLRwK4GXjnMl8dLDrRReBriVxvscbmXwMsGpnKksO9eeK5kq
wkhcKpjKE2fjWQXOimsoNTJSsyw96poiTD1NPagtbpXpkRNOVU1ViMWpGl5u
OIXh5YFddbx8cKppqsEsWZg1FI7iVMsUTixOtfFC4FQHryCc6uIVglMEXg5m
rsI7FIZlPXKKwK0+XlG4NcArAZfGpkbE4tIErzx7bW1qBeMS5DbkmXYfSU4p
ODalRhl239zUjFhcWuCVYy8t8ULp2QqvNDWaUbMO7y123ektbm2YIZw9djV1
YS/iFmVqRyxu7fHCYNfR1IEdViG3LbUrE7fhbBi57dllcXbRgN7i1o0ZajNz
d7yazKjZOnvuG6lJ3Mlzvzvrd2z9DqTfSyLg1stz3+wS01LTAdN+GKpvH1Nv
Ys3SF68hrPrhNYJrf7zGcBqA14Q9D8Rryu4H4TWD22C85nAbgtcCbkPxWsJy
GJ5ifSfD8VrDbQReJHseideG3Y/Cawub0Xjt4DgGryt7nmyaBCOxGmuKJhbr
cXid2P0E03hisZmI14Wak/C6wXIKPaLoEc0MeqZvcyo5o5hrGdx6wnK6aRqx
uM3A6w23mXh94DYLry/cZuP1g9uXeP3hNgdvANzm4g2E21d4g+A2D28w3Obj
DYHbAryhcFuINwxui/CGw20x3gi4LcEbyU6W4k1gr2tNa9iV9ricnY1htyvw
ouG2Em8sLFfhjaemaq2GRU92PZVeYrmOnpPguB5vMtw24E3h3Ea8qdTahDcN
bpvxpsNtC95MOG0zbWXn2vMu09cwEhf97rqDeC7PdnJWXLdTYwY1t9JDPxv0
M0DfTS9qi9tuesyH017THmJx+gZvIZz24S2C07d4i+G0H282M+9gpqVwOui5
n0nL4HQIbzmcDuOtgNN3eCth9z3ePGbewzuMs9/tx/puH3qf8b7zdvF8gu+8
3ZyZbPEk372L5p/iO2/f/+a3eJbveqmncif6bhc6c8T0g+mW6aZ4+67Gt+xg
usXTfPeuer8ZvvMO8n4zfecd4v3US95h3k9nVXM/+7rJf6Po91r93qXeP5pu
M8Np08+mP02PTT+Zjpnume4SHzfdxzthOml6aHpgOsoZ5d6h9lHi25w9Qa5q
aBfa6R6+D/U+Y3rCDIp/MT3FO8WMmu0RvU8RPyT3V9Mzzij+zfQXnuKzpr/x
zpnOm16aXhD/YXqFd9V0zfTB9N70O2eU+5zcC6bXnFF80fQG77Lpiumd6S3x
VWq9I/eS6R/OqNd100d6Kr5h+hfvJpx0cfeJd9a7x7F/jh1wO9auAxZ7AReL
hR9w3j32HtPiGAFXS2eUq5qXmPktM92Fs3JV4wl7TWBx/IDrLRZxA26Gx3CL
F3DeA2bUbLECrrc8xTHJUW5OU46AO6se8fHjkKNn2QOOm/ae2OJEAReLRZKA
896y19QWpwo4xjqj3M8CLldckwbcmZdwSxZw3hveO6XFKQIuVk3VkvcKrskD
7sw7WKYJuJ7v4ZY24LwPcEsXcF5M9pDVlAWG2vvnpgwwEIuMeAH2HmzKFHC1
9C2kD7iaT/muEwYcE48zmajxjO9c756Q3mKRjRlis+PseDGYUbNlpncM4mCY
iE0umMWnb268AqYvTLVM4fRU77ymPMRikQ8vMRx0Lj+1EpKbm9zEPMtHblJ6
FICRuBQ2FeKZuISQk5LvoAg520zbTWdMP/NM3IqSkwZOxU3FeG/torwplJ1r
9yVNJWAmTqVNpdi5dl/WVIZa6chVzeTMrFkLcjYjuaWZJQ29i9JbnCowQ1Y4
VcQLZkbNVo7ewcRl2UVyeoVwVqwrUUOx/mxVxssDl+qmMM5p1rqmOsTaYwRe
bs4otxrPtMd65OQiR8+qwlAsa5pqwEhz1Q64byaEnnXw8sM5nDN5qVGDGV/z
czMF71mEvdVnhnLspqWpBQzEopGpIcy096amJuxC33UVdlKMM8ptwE7LUas5
vYrxrD61xLIZNUPh1ooZylCjOTk52VFVemo2fVuNmVHf6g7TLwH3zZaHe2tq
VoRbG1MkM6tOO1NbYtWOwqsKi/Z41WDXAS+MvXbEq86uO+HVgENnvJqw6YIX
DseueLXg2A2vNmy74ynWd9QDT7G+m554EXDshVePPffGq8/u++A1gFVfvBbs
fahpCDvVbvub+sFcnAaaBhCLyyC8ZrAajNecmkPwWsJhGD0a0qMfM7SC1XBy
ejPXTNMMmIndSNMIYnEbhdcWbqPx2sFtDF4U3KLx2sNtLF4HuI3D6wi38Xid
4DYBrzPcJuJ1gdskvK5wm4zXDW5T8LrDbSpeD7hNw+sJt+l4vdjJDLxB7HWe
6St2pT3OYmd92e1svH6w/BJvANzmmuYQD6LWXFhEsmsx0Z+dyuy5Db3Fdj4z
DIXbQtMCzujsYtMiYnFagjeOPa42reLscHIXkiuOSzkzCo7L8KLhtNK0gngc
tVaSK87LOTMeTmvoOQFOa/Emwmkd3kz2pn8PboWZOG0wrScWp4140+Cy2bSJ
WpPJXccs0cy6nLPTyN3IzrX7Xaav6S1O25lhNux24M1gRs22hd4ziDfDdC61
dlJbnHbTYwjMFsBwAXv/xrSXWCz24a1gr9+ZDv/fGeXu4Zl2/z05i+D8LTWW
wO2AaT+xuBzEW8ZeDuEtp+dhvMXU2E9N/WzXz3R9o63pLa5HmGEzuzhlOglT
cThq+pFYbH7C2wCH46ZjAfdNrCX3B2qvIT7C2Q3k/sRu57OL3fQWm9PMsBWO
P+NtYkbNdoLem4g1g/6uWn8nrb+T1N9D7oTlb6ZfTVXtvwWrmdqbonzXU73P
mX4nFpvzeAfZ41XTFb6B3eSeJVec/+DMN3C7gLcfTpdNl4gPUusyueJykTOH
YHeNnof5Lq7jfQenG3jHefcHpvvsWLu+ZbpJLBa38Y6y97umO9Q6Qu4NZtnP
rBc5e5Tc2zAQiz9Nj+ktFg+Z4STcHuEdY0bNdo/ex4jvkqPcOMYitu/Onqb2
I2oqR89i+Y6j9v636S9isXiOd4m9vjX9A/PfyH1Grri+4Mw5uL3Eu8B7vzG9
Jr5ErTfkiusrzlyG5Tt6XoHbe7yrcPuAd5d3j2Hv4vuOofb+r+kjsVh8wrvF
3j39n2h9V+s6uR9god/bnsDkJmeU+4ln+t3uKTn3YBHTdzPcZ8farbw7zKjZ
Ar7rLU+xZngEm7i+Y/aYvvF85yU2JTEVMOX3XU/1TmBxfN8xEIvPLE7oO2bi
oHOJfFdLZ5Srmn/BVc905jmcktDrNVxSWJzcd8/EJSlzvIFdSt/lZDZlMZU3
hfrumbil8l3OOzilsTg1O9Augk2ZfLdz7T6dxWl9F4tTet95n9j956YMvqul
M8pVzVd8V5o1me/O6oxyVeMt3416p6J3DOYOJo7JO2SGSYDZMvKNeMSa4SXf
qnol5axYZ6VGLP7cZcPT3sUqtykXM2rWgqYQYu2xEF48zig3J8+0x8LkxCVH
z3LAUCzzmfLCSHN9wTeTlJ4heIngnJ8zCamhs3l892fxAjt9BWftrQgzZGQ3
ZU1lYCAWxU3FYKa9lzSVYBf6rrOzk9ScUW5RdpqRWqXplZpnRagllqWomQlu
5ZghAzVKkxOHHeWgZ1pmKsGM+nfXLn7O6edYMNxDqXmWvzN8zt9DZadWZVMl
Yu2+Cl4B9lrLFM47Zie3IrliWZUzufgWquHlg0VNUw3iAtSqCROxqW4Ko5dY
1qanYn03dfAK8p3UxSvJXpqYGsNQe61niiDWruvjFWNPDU0NqFWY3LrMko9Z
q3O2GLn1YaI9tjA1p7fYNGWG0rBuhleCGTVbI3qXIG5IjnIHmQZytiy1m1Gz
Kc8GmCqw90hTa2KxaINXg712NnXy3c+tCuS2Ildc23KmMtza4YXx3h1NHYhr
UKsjueIaxZmasOxCz3C4dcWrBbdueA15936mvjDU3nuYuhOLRU+8euy9t6kX
teqQ2w0W+rZbwiSCM72oEcoOWpHTCBb9maExOx6A14AZNVsfejcg7g0TsRkM
s+b0HYK31LTMd/cEujtoSe9hpqHEYjEcLxIOI00jqNWS3CHkRvJsOLniNIoz
uhvSfdBZ7hLawmU0OXqm+6HfuWfQz2z9Ga7Id6Fnuu84x88F3X/oTugP7h50
d6M7nOvcBeguSfdBF7lbUKz7nEvcHeh+R/dBV/h7e9XSmQvcTei70e/S0aYx
nNWZy9w7aBbNcJ57DfXWndUN7h6+tHiO7+6JdFeluybNeI17DPWWd5W7De0i
il6jOTvXd/dAqqH4K9/dCclbYPFC390J6W5I8SLf3evIW23xKt/dreqOdb7v
zihXd1HKXey7OyCdUbzEd3dE8vRtLPfdvZC+EcUrfHcvJG8J35C+HZ1Z47ue
6qX7Wv07OCvs9F2v9V2Onun+dpvFW313V6r7yQ0Wr/fd3a3uazdZvNF3d7W6
n9W7z/PdHZl2oNx1vrv71Zl19FBteTqrmv+tpRq+q6lauo/V/xdRM6i37kg1
yxbf3ddqJsU6o1x56q0danea4T99a3/S
           "]], 
          PolygonBox[{{930, 931, 901, 466, 465}, {931, 946, 435, 436, 901}}]},
         
         Annotation[#, 
          "Charting`Private`Tag$63431#1"]& ]]}, {}, {}, {}, {}}, {{
       LineBox[{2, 1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361,
         391, 421, 932}], LineBox[CompressedData["
1:eJwVz8kxwwEUwOG/fUsssZNkJldJBYkCIkcncXSQ2BJbFrHFMhoQKlABKqAB
VEADqACfwzfv8ubN7yVWyoultiAICrTTQSdddNNDL330M0CIMIMMMcwIEUYZ
Y5wJJplimhlmiRIjzjzL1LnlkTe+/+8LS5GjyBV3PHEt9N38ISo8zRJVWtzz
wichu3NkWeWSC845o8kpJxxzxCENDqhTo0qFffbYZYdtypTYYpMN1lmjSIEF
koT50vXKAzfUyJMhxq+/PnimZf8PWakoqA==
        "]]}, {}, {}, {}}},
    VertexTextureCoordinates->CompressedData["
1:eJx1mz2oHUUUgB8KErWKjRBsxNZS7OR1Em1EK8EqRgsrwTYqFmInWEURDIjF
Q6tMqiTdBLHYgDAEFlklWf//1uVZ2fru5X1nOd+9azN8uffue8fvzsyZM+c9
/uqbL71+38HBwbX7Dw42o//75NK5CzeOPj/MXIJfu3F09vKlm3q9Br+7wbPf
6P1d8PMvz2+8/+u3+nwLfvj2Mx9e/eGOntcH/3vy6SvPfqfnD8H9me0Dgp/b
/ry7wXfvbN4wBn+8/fk/Br/4xJP/PXXrp+CHto/7Ofjrt144eccvwe9sf7/f
gp++tXnD78HH29/3j+CvTn7bcxf+DL64/f3/Cn5s87jLfyueKfijk/85Z27/
o/jm4NOfKl687h9LMH7z6zUYv/n9XTB+8+dbMH7z8/pg/ObnD8H4hfEL4xfG
L4xfGL8wfmH8wviF8QvjF8YvjN8czxSM3xzfHIzftXm63+syZr/8ew3Ofov8
Fvnl8y04+y3yW+S3yG+R3yK/RX6L/Bb5LfJb5LfIb5HfIr9Ffov8Fvkt8lvk
t8hvkd/ddXf/PF28esQvjN/8vi4Yv/nzLRi/+Xl9MH7z84dg/ML4hfEL4xfG
L4xfGL8wfmH8wviF8QvjF8ZvjmcKxm+Obw7G79o+un/dLTse8+vLmOdvDb9w
nr81/MJ5/lbN36r5W8MvnOdv1fytmr9V87dq/lbN36r5WzV/q+Zv1fytmr9V
87dq/lbN36r5WzV/q+bvbl60fx8tO/PSHmGP+IXxmz/fgvGbn9MH4zc/fwjG
L4xfGL8wfmH8wviF8QvjF8YvjF8YvzB+YfzmeKZg/Ob45mD8ruW5+/OiZR/1
uut5aq8e8/rchV84r89d+IXz+tyFXzivz53W507rc6f1udP63Gl97rQ+d1qf
O63PndbnTutzp/W50/rcaX3utD53Wp87rc+755b9eW7Z2Te9znpe2iPsEb8w
fvPz+mD85ucPwfiF8QvjF8YvjF8YvzB+YfzC+IXxC+MXxi+M3xzPFIzfHN8c
jN+1c+j+c0vRPLup1+vOOut5aY/588uY998WfuG8/7bwC+f9t2n/bdp/m/bf
pv23af9t2n+b9t+m/bdp/23af5v236b9t2n/bdp/m/bfpv13t66AX59TnNc6
D/K+6XXW89IeYY/4hfGbnz8E4xfGL4xfGL8wfmH8wviF8QvjF8YvjF8YvzB+
czxTMH5zfHMwftfqRDm/Ws6dPqc4r3Ue5H3T66znpT3m5y1jzq/68Avn/KpX
ftUrv+qVX/XKr3rlV73yq175Va/8qld+1Su/6pVf9cqveuVXvfKrXvlVr/xq
t+6HX9cRfO70OcV5rfMg75teZz0v7RH2iF8YvzB+YfzC+IXxC+MXxi+MXxi/
MH5h/ML4hfGb45mC8Zvjm4Pxu1bHzfnzUhdyHcHnTp9TnNc6D/K+6XXW89Ie
8/OXMefPg/LnQfnzoPx5UP48KH8elD8Pyp8H5c+D8udB+fOg/HlQ/jwofx6U
Pw/Knwflz7t1efy6zue6kOsIPnf6nOK81nmQ902vs56X9gh7xC+MXxi/MH5h
/ML4hfEL4xfGL4xfGL8wfnMcUzB+c3xzMH7X7lnw67qt63yuC7mO4HOnzynO
a50Hed/0Out5aY+wR/zC+IXxC+MXxi+MXxi/MH5h/ML4hfGb45mC8ZvjmoPx
u3Zvhl/X4V23dZ3PdSHXEXzu9DnFea3zIO+bXmc9L+0R9ohfGL8wfmH8wviF
8QvjF8YvjF8YvzmeKRi/Ob45GL9r96D49b2K6/Cu27rO57qQ6wg+d/qc4rzW
eZD3Ta+znpf2CHvEL4xfGL8wfmH8wviF8QvjF8ZvjmcKxm+Obw7G79q9Nn59
T+Z7FdfhXbd1nc91IdcRfO70OcV5rfMg75teZz0v7RH2iF8YvzB+YfzC+IXx
C+MXxm+OZwrGb45vDsbvWp8Cfn3v6Xsy36u4Du+6ret8rgu5juBzp88pzmud
B3nf9DrreWmPsEf8wviF8QvjF8YvjF8YvzmeKRi/Ob45GL9rfSf49T227z19
T+Z7FdfhXbd1nc91IdcRfO70OcV5rfMg75teZz0v7RH2iF8YvzB+YfzC+IXx
m+OZgvGb45uD8bvWR4Rf9yX4Htv3nr4n872K6/Cu27rO57qQ6wg+d/qc4rzW
eZD3Ta+znpf2CHvEL4xfGL8wfmH85nimYPzm+OZg/K71heHXfSbuS/A9tu89
fU/mexXX4V23dZ3PdSHXEXzu9DnFea3zIO+bXmc9L+0R9ohfGL8wfmH85nim
YPzm+OZg/K71+eHXfUPuM3Ffgu+xfe/pezLfq7gO77qt63yuC7mO4HOnzynO
a50Hed/0Out5aY+wR/zC+IXxm+OZgvGb45uD8bvWt4lf94G5b8h9Ju5L8D22
7z19T+Z7FdfhXbd1nc91IdcRfO70OcV5rfMg75teZz0v7RH2iF8YvzmeKRi/
Ob45GL9rfbj4dV+f+8DcN+Q+E/cl+B7b956+J/O9iuvwrtu6zue6kOsIPnf6
nOK81nmQ902vs56X9gh7xG+OZwrGb45vDsbvWl81ft2n6b4+94G5b8h9Ju5L
8D227z19T+Z7FdfhXbd1nc91IdcRfO70OcV5rfMg75teZz0v7RH2iF8Yvzm+
ORi/a33y+X5h6bt1n6b7+twH5r4h95m4L8H32L739D2Z71Vch3fd1nU+14Vc
R/C50+cU57XOg7xvep31vLTHHM8y5vuFKfzmv3M4Fi9/94Bf91G779Z9mu7r
cx+Y+4bcZ+K+BN9j+97T92S+V3Ed3nVb1/lcF3IdwedOn1Oc1zoP8r7pddbz
0h5hj/jNf7dyLF7+jiXfHy198e6jdt+t+zTd1+c+MPcNuc/EfQm+x/a9p+/J
fK/iOrzrtq7zuS7kOoLPnT6nOK91HuR90+us56U95viWEb9rf5eE38zL3z3g
N7++9FW7D9d9m+7zc1+Y+4jcd+I+Bd9r+x7U92a+Z3Fd3nVc1/1cJ3JdwedQ
n1uc5zov8j7qddfz1F495nhHxTsq3lHxjop3VLyj4h0V73j4ZYp3VLyj4h0V
76h4x8PzKd5R8S73ZUdXv3jl0UeW+9DMJZjvc369Br93+n3O7++C+T7nz7dg
vs8w32eY73N+/hDM9xnm+wx/9sAHn15/8N5O/NeuXD/fvr8X8WcuwcSfX6/B
b5/Gn9/fBRN//nwLJn6Y+GHiz88fgokfJn74fyOOH6w=
     "]], {}},
  Axes->{False, False},
  AxesLabel->{None, None},
  AxesOrigin->{Automatic, Automatic},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  ImagePadding->All,
  Method->{
   "GridLinesInFront" -> True, "ScalingFunctions" -> None, 
    "TransparentPolygonMesh" -> True, "AxesInFront" -> True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.827490846107746*^9, 3.827490850472845*^9}, {
  3.8274909084807987`*^9, 3.827490943504459*^9}, {3.8274935528686123`*^9, 
  3.827493574483676*^9}},
 CellLabel->"Out[34]=",ExpressionUUID->"df9e29c5-0d24-4bbb-91d1-382b57cb444b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     RowBox[{
      RowBox[{"(", 
       RowBox[{"x", "-", "\[Theta]c"}], ")"}], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", "1"}], "/", 
        RowBox[{"(", 
         RowBox[{"B", 
          RowBox[{"(", 
           RowBox[{"x", "-", "\[Theta]c"}], ")"}]}], ")"}]}], "]"}]}], 
     SuperscriptBox["x", "2"]], "/.", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"\[Theta]c", "\[Rule]", "1.27"}], ",", 
      RowBox[{"B", "\[Rule]", "3.12"}]}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "1.27", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8274898100367002`*^9, 3.8274898789332952`*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"5707a3d0-1ca0-4632-af53-b2e5ab76b965"],

Cell[BoxData[
 TemplateBox[{
  "General", "munfl", 
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"1797.1865711754858`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 19, 8, 
   31546055972801521149, "Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.8274898759897757`*^9, 3.827489879213965*^9}},
 CellLabel->
  "During evaluation of \
In[19]:=",ExpressionUUID->"1a833013-cc34-42af-abf5-a8dfaa80161d"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwt1nk8lN/3AHDLMIslSRERJrK0WSKFc5JUIkoqa1mzpbIrEllDVIhSCSWJ
hElZYsxTxEdEKUoqUp+oPjSDrL/n+3r95p95vV9n5t773HvPOY+S6/F9HgJ8
fHw7+Pn4/vd9i3+8amQvF/j+/4OK+YaDjlxwkS2yamxN1/1ovI/oO8qF179l
fz/QEtoc6SRg0RXAhRHVyw6x+u+3rIio6H4RyQXDmAM//SqaDWuuujqwE7nw
RyD4Ut7wASO7J5KDjy9zQZAYFZFRqDaaetvkU36DC/vr9JeJCs8ZZU0EjBcV
c0HvJ5y3jtYy1l3KPHWziguM4/N7LPrsjLt1uvmvNHDhob99xSDjtHHAvnNJ
F1q5wF46oaM6l2kscVJncfwbLpwv+Ob9LqPUuCxtMDvyExcOVdNzWtazjS3L
LisGj3Dh5G23qRutr4xH/9l212+CC5s7bvDoLz4Znx/5s96dnwcLD6Kovxx/
GqsxCqsdRHmg/Fal7MfKKeNmtf1gI80DpdMS2ns6BMBzB6XZXJkHbw8GPmxd
JAoUz6o9Jmt5MO5kDkJqUlAQ695jsIkHjYN1HTXUFWBSIOWstY0Hpdc7NLrH
leETm/iqtocHiRMK3qILahD1KeiYoh0PottfzcYpbwCFhVU8aXceGHwM+1J0
XBfq5N9ELDrOg5bf2h3CgQbgYBhHoZ7igSa7wjlWH2DafmPKfCwPrtg6CBwe
NIHs8K9LJtJ4UBtQ6hSXYQb62ZnXfl7lgQttrK6hwhx6Hm1nfr3Ng1xVqYBZ
tIKgN7x7H8p5ILTbUK9VcR9Icm9rv67lwd2QT2Xq7/fDQ8kDNW3PyfW2Cbli
50Gw1hI24bziQdONLXVBfA7wy+rRi5oPPEjdc7aG6+sMqf6eeyu+8aASYz2c
6C6wJnVZb/E4D+b7Cs13TbuCd2vI92zaBHiayrWN6BwF2r+qJ9KXTEBs3xVn
sQhvuEN9O5mgMAHSA4ptFz/5wpCpPjVUdwIO6weEnzlzApwbJlVsj0zAr6DB
Oo/NITDbX1Rq4TsB0XG56j9aQuHa7MGNpiEToDGFyv5u4fDO4LGpTsoEODE8
pDVrI8CmKsxt8eMJ+J1YKbR6Ihp2Fv/Na180CeYSLCMN4fOQIq5q/VBuEqpi
5r7aayXDq8B9CxmrJ+H+cepszpEUsDcucXKESWh3/JuT3HoBfLsdZUf8J0H9
xqddjwcvwoW5hsu0l5NQMb8tQEvpCrzeGx+/LWUK7pQkb6hfdguOTEv6PaFN
w591DoUJqveBsWW5V/eSaZCP9Lq/NuQ+sE6vdP+pMA3h7OMjmc/I+Jymo9LG
aXC/HTRx160UqhZMLZJcpkFcKuzj09wyoAuFrrGrmQZ038mbPlsOFYvej075
zsDpQCOnHa0V4Gj9+btk6AzcWq/FuPSzAqgXvw2tiZmBHQ5KyiyJSnCU5H44
kj0DZt6rtsYeqATqUrH2FmIGzsg/8jP9RMZloTRbfhbe7zzXs220CoRUCo5t
6piFl23fJXYMPwKNGvF7sn2zIKvg7zIvWA3WVqeGZ4dmIca9ajxNqRpyw/ce
Zk+Tvz/lscrEsRp0Xy5Ym6vOgeF3BYGvHdXgHuqo6xg5BxLSSoGbyh8D8WLp
TJTmPCyI1lz4x7YGfjhH67vqzcOuqwE/pv1rQII7Gmi6dR7+K5/tEk6sAUcF
YpR2cB6GTVtaqp/UADcg4OPFmHngKJwkouVqYdWKDnZB7zw88LRz6HpXC7H+
iYnNCQswrhLMs9xSD9bmJ0YzLy/ALRE+fb199bBC9ZC1+80FcH061THtVQ+V
/atl+KsXoOs+pWp5Vj18sWgu2jy8AL257ryKX/WQt/Tc4AFlPqwPE6wNy3kK
83/YAq1n+fDFLVOrsJ4GGPrM0n0Yz4dfQwtSjf5tgNaOYs/sFD502vLTeWim
AbJKLrZ6ZvPh6g9bS30lGmGtm8slwXI+LAmbSCjRbQTHLj5lowE+DC0I+Hb8
VCPUlMPWciN+fPAs6136TCPYpOTlaG/jx21W6arlAmwYPUoW9J38mM1JNiHo
bFBYycl/YsOPh9W75Nuk2RCTakbhePPj9S693/t12GDuY9n8JpMfF9sO6Hl4
saGP6WA585MfXddkjPW0siFwofZ25B9+rN91LvteJxtE36+YX5jix2N59Jqg
HjYYX/pYRqEI4KYA9xujn9mQz+cqIS4rgNKDDdv8ptjg0+/VrWgmgMOuFsks
ZhP8zQqxM7shgN/yn9uzA5tgKDPzmXGhAHrL2K/+FNYEnRlVWvr3BPCESUsI
L7IJ7l4ap6s9EkDjUf7XgolNcOiCfw39pQBufu03W36tCarjPOXa5wRQxiTa
7xC7CfJj4xKeCQrihoQjF74+a4IL5wr/1NMFMfXpH36f1ibwjP7SVrZUEJeJ
hyyy626CZZHOEelrBXGhpFfm1VATBAcd6LdxEsQTKkb7dYQ5cCQweJeFG+l6
TZ0tDA5YBGSwTL0F8YiyqNIWcQ6sOtGVujFYENOW3DvAXMaB1757jKVTBVHv
McMlS4UDOm5mN/vqBHH/4S+nJbZxYGyvnovLCgryWA3/XQ/jgOxMwk8jZQpa
hIq9LT3NAdPC3nBZNQoOPcndX32GA9kTEZe6dShYFLvIoDqWA8bXOJztuyl4
VSDwum86B84PWatqnKLgOttpx7I7HKhKza8QPktBvz0RLQ7FHOjX4xoPxpFx
9jcbwfsc2JB05WDuRQou/8Q/gg850LP2Y6J4MQVdVY7NhNRygBnqOzL+loyr
705685J8XsX60I5+ChIH75SoveJAyAtxyv1BCoYE/esT0s2BVrmKFR6/KRgw
9q2f/x0HTjROWb4VFkKNhlq33k8cqKPHl9duFMJNptGGF8c4YJubFxx7WQhD
V1fF7l9EgLbOYbXZbCF0c9pXPyJBgHir/PvAG0LoU8+kREkS0DJ5Fd2KhTCJ
c7UzZykBm20yRUwahDCqhn8sT44ARcb5Wws/hFCx4fy1v6oEzObt3B/6Hzne
4Qe0/WoE9OpTqb95QiihwNd1T52ASx6xfh/5hPG9cnOy5RoChNhn9OuXCePa
J/MrvLQI+BEa2H7KRBj33l9UwttMQLO49tnxHcIYtdZnTtqQgMLb/2n7WArj
5nn2Hz0jApy6j2XbHRLGdM3L/T5AQOc6L7dN/sIokXVnRck2AlhfHf/ycoRR
492Pn+m7yfkj5O4fuymMZ30yQqMsCPBf0uf8tVAYDf85+s3HkgC1rQeJ1w+E
scrCKWmTFQFXc/emVT4TxoxZedMH+wg4a2OmcnKMnH+n5ZiYHQHlYpwR50ly
/Fmtgg+kB5qhwmJOGB1q2JNF9gQYGxqAGp2Kk9tDr+k6kvuzao3dgCIV8dIX
S9XDBKwZuLuyXZWMl/Ey+0g75KgM16yhovoZvdvJRwioEVsZmLWJim+MGJpD
LgSETyxOtbSmokbqSqvj7gTcLb9gs+UAFV2SxnYzPAh45yMiq+5IxRf1g9r5
pDcNUIooXlTsM1/f2eJJwETzZGNtFBVP65o9HfMiQDUmKKE4jopha1fHBHkT
YGs4ZnklmYqRS6/v5ZKuKv/RF3CFir3xGcwRHwICcvq56g+o+LAsnfLIj4B8
G/taaRYVJcdWZikdI+CV2NtooVoqNp2xsDlPekNMp/jn51TsVl5+xMafgCOG
lm9e/kNFzYzw6krSaRMvrtV1UbF22dSuxccJ+OXDUcv+SP7fL3M9QVpBBX/H
DVGxVcX8/PITBFgO1LECf1Cxs3Xnej/S920emVhNkOt3X3aUfpIAX8NiR2Fx
Gu4uDOYxA8jzm1BhcpfQ8BtDieFOurU8/9/Py2m4sDQ0/hZpDZXckHoVGoYZ
BBFSgQTYD8gYlWjSMOGafqo56aScTMEcLRrOb/vYFkn6u1haepARDSWz3j3+
QFqmReSg6zYaHn+n5E8LImBHTKK89S4a9uUZFGmRDjEUGjKyouH2/gtHD5G+
MxF9T9OWhm9akisiSPeUz59Y7kDD3vHM5BukhXxP61NdaFiyXXyinrSuytQc
15Ncj9heXh9p94Eg4osfDR0XWCk80mYJzg99A2joGT+gJxpMgPr6nTe4oTSM
6f3crkha9K1WcmQkDU3DffbrkP51Ri5M+BwNN0cy27eRfqUq5JGWSMNb2ZWb
95Guevlrr8wFGlJXPr3pTDor5J3xrcs0HKcNznuRDldo0tTIoWHQ1FP7k6Qd
n5fIVN6gYYvRCCuUtLF/ppBhIQ3fvZ+TjCCttCxqnCimISclKegMacpTrwHL
BzQ8+ly+/38e9tj3T08VDVufmllFkn4hZvjkcA0Nb5xIbQ8nfZ+lcud7A7m+
m6H2QaQvOC26fPIZDYX6E6b8SJ8U+hs13UrOl2x0z430/tIvfuc6abj3q1TA
IdJ6tv/YifbQUH0uft9u0svnWGaZ78n78Iy+x5D0bOFNHYXPNFy9VOKoJumP
FkmKRcPk+RTR82RIs7kBYhtGaeij6jYjSLow13H68RgNldTjT/8k9z/e1Ozb
1kkarjTsVX5D2nt0/evWWRrmDzb8qSG9zlCw7AOVjibjz+WiSS8eGr3qIUbH
nYdvhrqQ5ib3JPySpGNT0GlhJP3kfbELnwIdeYsvPJ8k71fuuct7kph0dBL0
mO0kfUYzcoukOh1Tw8763yVtetp66SpdOrp/vC2xj7Qqc7NAqQEdO+UMtq8i
TW9j/t4IdDx4htnAJe/7S9nJlh3mdHwqNZacTvph0ydWpxUd/+WaDTqQzvBp
zbezpaOzfW+iCmm7musRvkfouPzMqeZKMr+G7Ew3pIXQsdYg1qqOzL/n/Ovk
ZSLoGNdZZHuKdHGxNONWNB0lH+6p1SPt//fHYEUKHRc9yCq9R+bz3+yLV3ry
6bhePc0risx/8Xcf5+U76DjIvC340ZfcL40ZkeTXdLyaON0cS9oqQnr5VC8d
tSxs5TRIpyta63QN0VG2MTjkBFmPFnuzj8ZP05HCdNEaJeuZ1HRB5y8VBkoN
F5rfIuufrkVjv4MmA9n8Hm+1SNve+PCjZQMDb85dWcQm62eWyVKhgi0MtAld
nfTejQDp5HiDg3sZ+CNhfSefKwGyK7zzGyIY+OykvZK4M9n//OMerIlhYIR6
2trzTmS9brxVl5PAwPjQ9AUK6Vz3vp7ASwzcnGs+M+FAgHzpbhG1uwy0sz8e
+Q/ZHxSN1wWldzNwLPw3BWwJUDnyZ7uLhggqvc6IsyD7U/abdk/TDSJI0Y7s
zzQn83f33YTVeiK4SWv5TP8uAsY3Or34uVUED/k7XfDZSUCDSLPFKTsRdHTR
2R68nTyv6qs2lxNFcN7r+bF9ZD9MFTdxeTYsgj1z92n62gTw6tIj1AtEMTTm
2as5KQJWKL7jFN0VRRkdwYKlpE3OrRRRLRPFjsp01polZL7tKstRfiKKA1pV
+YcWk/2xp+2RXIco7l6S9KRIjKyXv4XHxGZE0eHt8GOmMAGNSpEe4/vEUPzz
TH3OBAeS47331AqII++XinX5Gw70rWpb1BW1CBlJ5X8zEziwu3jEf+qUBH4e
8xs/o8uBlJC0Aj/1xbjhVcdK18Em0CibtCoYXowHhav1Vyc1gWbu3AvjK5K4
WiDUY0anCRK5zbW5B5Ygw+dlTt5bNuRmfKs8IymFf1+EmeRGsmHJSGH4M7YU
llvPajzUYMNwiWr1y6il2LarRGZvVyPIM82aDLWWoaxSKftUdCMwvtR0rxtY
hr82v3Tk6ZDv9yJcx8Fr0vhC4c29Lk4D8I20Vs7ulsHSz+c3lq5rAPpGz5h3
jOXIok1bBF58Ci3PDxzc9Hw50tepKWbN1MOI+Ne/s0Gy+JtKjWsLrAcftr5U
rLYcqoi83/1mqA4sNNRmjw/KIUNaU+KQWx187Tv2YyB9BZY4ao/Sv9dCHy/U
WtJSHl1G3XCjZy1oN6+MLZ6Vx7+FQXwV/9XAN4GU9YK1CngiJU5OObgGFriZ
d9l+K1Fsu0m4oVANHL0yvSRGTBE57HuZ5VefQIR3ShrFTxGpH30vJGo8Ac6y
nycNCEXMPOdQ/Id4DJv+rk/vYCrh1mzhnSvtH0Ni1PWHRdFKOLvVNdaLWw2M
z70G2r1KaM735zBmV0NN6NSc/CZlDAk0XbZBvxqu/ftVrS5dGeVuyxerDTyC
QwtzB3K/KeNG4mWzdvIj2GY+1di/nYnWwcn1edqP4PAJ9sVX15mYXBQ/YvKF
BVNnXXfb32TiASwd+/SJBZcuCgoN5jGxQkVGOWqABc8rtodxC5hY7XaTv+4D
C9bxXjhL32PiiY7KGv23LJgN79J0esTEBc+/4vr/sODqucFn318yMe2ws4Tt
IxboZsRGnexkYm5t796pKha8LFQxmH7FRAeZxrprlSwQeH70vsgbJupOV4gP
lrPAmzZ6ad17JpaXBucHlrBgUyr3cNA3JkqpZ57LzWNB1/XM5XPfmWhx9voh
k5ss8CvT6477wcSb07cPfL/OgryOMLMrP5mY0prbrnuNBVTJuTU1f5hI0fe6
05FJxpVvDJvwmOg5X90UksGCzTqQ1zbBROeRLqrCZRb4749e0v+XiQ/arUSP
pbOA5qHc7jHDRM7FwjapNBbkB3Pif80ycVDmXmVdKgsM490xdJ6Jju12hHsK
C3qyhKYXFph4R7Z0TjSZBf8HDoyFNg==
       "]]},
     Annotation[#, "Charting`Private`Tag$163013#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{1.27, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{1.27, 10}, {0., 0.15983567997641332`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.827489829580755*^9, 3.827489879228238*^9}},
 CellLabel->"Out[19]=",ExpressionUUID->"c3a406bf-e1bf-4a93-9a41-58b5a6908c17"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Evaluate", "@", 
     RowBox[{"Im", "[", 
      RowBox[{
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"Sign", "[", 
         RowBox[{"Im", "[", 
          RowBox[{"\[Theta]", "+", " ", 
           RowBox[{"\[ImaginaryI]", " ", 
            SuperscriptBox["10", 
             RowBox[{"-", "5"}]]}]}], "]"}], "]"}], 
        RowBox[{
         RowBox[{"iF1", "[", 
          RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
         RowBox[{"\[Theta]", "+", 
          RowBox[{"\[ImaginaryI]", " ", 
           SuperscriptBox["10", 
            RowBox[{"-", "5"}]]}]}], "]"}]}], "-", 
       RowBox[{"\[ImaginaryI]", " ", 
        RowBox[{"Sign", "[", 
         RowBox[{"Im", "[", 
          RowBox[{"\[Theta]", "+", " ", 
           RowBox[{"\[ImaginaryI]", " ", 
            SuperscriptBox["10", 
             RowBox[{"-", "5"}]]}]}], "]"}], "]"}], 
        RowBox[{
         RowBox[{"iF1", "[", 
          RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
         RowBox[{"-", 
          RowBox[{"(", 
           RowBox[{"\[Theta]", "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             SuperscriptBox["10", 
              RowBox[{"-", "5"}]]}]}], ")"}]}], "]"}]}]}], "]"}]}], "/.", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"\[Theta]c", "\[Rule]", "1.27"}], ",", 
      RowBox[{"B", "\[Rule]", "3.12"}]}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.8275494800734243`*^9, 3.827549502632869*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"1c60fc4d-168d-40ec-9dc9-800241fe6f2d"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJxFjn001Xccx+9UvvfSritkyuOdhzt1cIVSwvG0Q7Kh0ZFWrsdkNCqruyNx
GWe2kBziyMmGRWslJcPnY6vm4eZhXYQrrFC0Yn6/n0txd/fX/nif93n/83q/
zERJQdFqLBbLTZX/2sZt86xSqYQfuPRW4Sc8TFr+MGd5RQkGdibyh/48/KVB
aLlIK6GpafJ6uB8P7QX7RdNzShiZ+zo7x5uHO7UlI9IhJWSnbedO7uGh+7OF
rtIbSqBDZDmXBDwM+uZR3Y4jSqhYLG3ZqMbD1F7JF7FtazDoU2ydHK+FMpnm
bHvEKoTVK1toEy4aYZLuTsN38CmsueGbjdh4/P4GrbEVWLXVa0/o1sSjecL5
4YxlSBxNyAgr0UBFoTgH3BQgyWz//UkOB2cM22d9divAS6pbnyDh4GC1+v4e
BwV0TnuGq6VzsKG5QHvsIwXkDptZ7EjlYOJfNZdXdBSQ7Njffy2ag8+EsnrH
F0twvGxBwnhwsKdve39d/hJYjQe6minZWMV9alAyycBwt8Hw2zQ2Fh5yI85y
BsT3KsJdxGzMqK2khgcZWFeeSJ1LZaPII7J3q5SBx55JZ3kn2Mg//UJy5Q4D
DnOdBaERbLw69s+b6m8ZkO0VxmR6sbGynjxsdGRAKklaO/M+G/OX4xpC7BjY
sHf1K4EGG9N9uiqXrBnwnHlyc0SdjUcn8sTOpgywSgrj/FhsNNHdJGzVYGD9
fLRx6CLBCrFh+f1xGjr6XInlCMFyP2Hy41waxFEmrPPXCJpr+nX1SWgoEay/
LKshWNct4veco+He3zVj1j8SbPYv+rPjFA3yLk+r8SsEhwOW7NsiaPCum1ZG
XSK4Obh1sdaZhtr0UvFAuupPZ3BftQMN8T6v4valEbSQva6qsqVBzzel+zcx
QYfPTA9UWNDQ/bFlUeNpgkGhmbcvatMQFj55qzaB4IVDvqfSXlJw0mcq5tZB
Fd9Q9Ej8nILcKe9sxxAVX37W4sw4BdlOZpNNwQR/Plw/kDJAwehVF2MMICg9
ouV0rJ2CtbIxWa8XwQOmgu9jWii4Y2LyPNiD4OiE+3TkXQr05etWhtwIzkYk
F39+nYKnewrsJ3YTZEcNMMGlFPgTC5i3I5hv/jogsIiCX4fspk/aENSfUq8J
uEDBu5vV3OVtBC1jdoX6ZlEQ87Yz8j0rlY9l4A2fdApcL6bmZ5kTdJo5RrzE
FFQ/+K6NwyfoHVd21/VLCvh8xniTkcpXcFvLJYGC+QjfwOItKt+X0ljnWApM
Y0nWlg8Iyn+aAicRBV6tds0VegSj4tf0HQ5T4D7/YJ6vQ/CVtf4J4UEKduX9
IajhEUyZs+2wCaag1MhJtI37/3Zu7T2/0G+F/wKbVhlJ
       "]], 
      LineBox[CompressedData["
1:eJwVVnk4Ve0XJWkOhTJGhaRIlKFkX0UhCZ+QJJX6ikJCQqZkqqT6SCXzTClD
ItmK0qCUVESGkiHce865pnsP+Z3fX+dZz9nPefdae+31npVHPG2OzRIQEHAX
FBD4/7PXML+w35WLuVvjFpg2rmERG/suxh7iokpXwO/r00osC9tfubKOXEz9
d5fwudhVrDy/7ndFtlwUq38csMZdkTX79g/Otr1czAs1tvm0Wp7l8vS7eJMZ
Fx3FwUW/X5pV/eObrosxF6e6cguPiyxnSQl8OUAactGpa++e87ESLJ9VzSHh
+lwc2uXguHbvUtZH46ZM8U1cDDk1NsvYRoy1/t/GhiwNLopuuOURu2wxKzrm
zdDmtVycV7xbTqRvPqu38JVow2qm//bXr4TmzmWxPtRpO6zg4oolKe+0PGez
kola+0EpLmZ3bvXql5zFmlxaExggzkXzfe87D/fPgO3mp6kLRbj4VtZ/3H72
FDy0f1KXPI+LAiJXWA/OTcKigPJ+dSEuPpAG8U7dMTiRXLIQpyls3FS1PsOA
gvqa4g1WkxRW+86TvjLNhkChgnPeIxQ6XbXeF2nyGzxuO89xGWDqZTVtLLb2
wJEN4gl7flE4mdC/cIzzHexeNqze2kmhlFV6Wd6fz2B+IKhEtY1CzYtu++Qq
3oIhqWm0rIVCFykfg9yf1bAx6neTUBOFAh9fn3WKvwVSpZYjnfVM/YiP0O+J
57jITCioESkUE74mox38Dmc6KxZUVVFo6ns46dOWZuxbsFI14SGFeRZPI/he
3/F72pfH4YUUqsa8YOGmTnyvE2vilcOc9+r0iqGebiw7wj2yO5lCC/0ZBb21
vZg3mUvq3aLQQT3x8Oai33g3zilU5QaFivcTJh1l+zG86uU9wWgKV2WUDerW
DaKfVcB6TjiFkfeFhLf+/YNufRpPOy5QuGA46c0stWG0XprUWnGWwqQR3v0r
9mw0zrP4N9uDQi8LT1meIwf1DAXHb5yk8Ku3DcVaS6Cim5u4xyEKC3NaOvaI
kSghoJBxwJHCIe/dlHYQiXMTP2ua7aPQZLTDwfUXieznBpZKuym8W3cmNSeL
wp/2ZMeSnRT+t9dhQmOGwi8j2e4zLApXsuYDZx8Xq6VFY77rUGjjPy3VMcnF
h8V1y19vpHB44oTCUZNRzDLxzylfT6GIx4Tvt7hRvHympy5+FYWX9udfU5Ae
w+C5iTbB8hRqcbod9R3H0PueeY+7FIV+Wbu/NyaNoeOb0r87RSgcDeWafhMZ
R9WVkfrTPBL75NtrHHvGUa5iy+s/oySqme0v11wygaJ7OHatHBLlTliVm8AE
jvs7+JT+JtHom2HcucQJ/COyWCi9m8RpnUTrCpzAH1nPr8e1k/i3pnhpUP8E
1n9UKz75icSgxJmuj1qT+OR41zb7RhKjFiZvuGA3iYVTNxuNG0hUCV8v2+8/
iTdUpwcVnjHn/fxnQKlqEg+HNil9zSOxbGhIJ3QDD+3aUg1/ZJI4T+W0wicz
HppreTn0ppA4cvmb2LajPNzUK3aF+o9Ei/SwW5du8nDttp5s3jUSuwxcJc4U
8HBF4iMUuExiNKfOO6GWh/NMbbgiYSQ69VzXy/zDw+m0VYuXMXNsOiehePsv
DykepSJ/jsR610Ciewkf2wtvOq47TeIW7a9RQTp8fCD65fmu/SRK5pzu9fbn
Y+aJ7HZLWxLDJGTXxkTxMem579i+vSQa24kdl0rkY9jZZWtdTUh8e9eg7dEj
Pvo19m13ZzHvqZ7yuho+uilXOHlvJTGDu6P94Ds+2n6zjw/dSOJYbGa93i8+
mmmqFkStJ1GX+0Q6lM1Hw5jJurg1TP3GlA4nHh9Vt96eSJYn8c7J6Kifi2mk
U747V85n+p1j98Bdi0ZiosC/djaJ2juPBRdtobHXKvBGwwyBfjFufbe20/hh
ltyrL2MEhngtcztnTWPdgeGuDoJAn0/l7zwdaHxSVs37NURgQs87G9lDNGYc
P6hO9RAod2r8zk13Gm+h+i5eB4FsEwMp1zM0XpH66yLQSqD/uaxNHD8afd+m
/CfygcAldXIrDMJodFvt+UDyDYEWlTpagpE0OgfBa7l6As/r3/KJiqXRVKOb
VqsisH7U7NKPGzRui3ooqVVO4O/8mzoPE2nU6g7doP+QQEMc6zC7Q6OKvrUZ
q5DAuSrmHwrv0Sh7Y+XRXTkESgVI2X1Lo1FsiAyyTCeQEpoof59J42zjF4n7
kgmMi+tXjs+hkT125O3RGwRqNWoOXCik8Zeldq/bVQJHsPRC4X0aW3OF/p6J
JnD8nUFBfjGN7wValp+/SKB8yOeA849ofLE/a2NoMIF5c96NypbSWFHiszvq
PIGi43OW3SijsWihybE4HwI3GW770lFOY5qrZEiCJ5MrfptXTT+mMeHZ76Rk
NwJ3JAj3cSsYPfzvBOseI3Bs+lvxpyc0qmrvdW0+ROAHm9qK0EoayREh89OO
BD6+Eicyq4rGqrwnG+btY/gMzH1mx+CLR09LZu4lMKJdsz6EwRYrVtHbzAk0
HrwpH8xgybav3a3GBNqGX3pqw+DOm5dfnQUC9USPxfxlvp9rySoS2ULgR/N2
93AGe80fu56/icCdi5YZdTH96NfnnzPeQODLVMEeSQbPCnE+2MXk5Lx3IfJr
mP7f6YvvCFAiMPZ28gtxht9/ow2qkgqMHxY8T+xg9HAuDhJ5KE2gd+Uvx3BG
rzVuG0fNJRj9ble8FS5h/KrU1/ZbhEBsa03+9yGNlV13MHQ+gQ+EJ8PzHjB+
K5i37PQ0Bz2N9m55W0CjmqJ3TwbFwRcHn9oX5dFYndBe1NrPwQ/5rSu9mPl2
hz7YYdzMwdIXj5RT02n0Hl8uGtDAQcu2rbELUxk/nAr7XlzNwdkrbckDyTSu
tbc9I5vLQTHle9wCxm/e6vwUKpCDSlaPDMUYf87OPOqmeoaD5y/KmBYy/k2U
er/Z+TgHrw742WlcpPGpUFrjGysOdkqKmLEDmfrvJvw0ZQ76fZzlcvgUUx95
fd/eJjZW2nfLuJsx853iK16qZ6OUwofrj42ZeZ5xHa6qZOODFyZLCKCxy0n3
okoWG73blY5o6PzfDz8eTvuzUVi50q97JVPfpbqoaBVzj8ltyrEb52OQgeD9
O1JsNGWCVZjk47bbbXtiRNjYe6vIKn+Ij7U2sdeO80cwrcQ+vbGbjw0vh5au
bB7BQeJ8duxbPrYUPpBODBvBRWqhkXOT+cg+t2lNaPcwBi0x0aB1+bhajLXd
NmUIDbhWQXX7eRin2RPgdnMISxKGfn605uGkVXhpaPQQdgacUmll8rrxer3S
fe8hTGIrXW/R56GPuNncObuG0Gb5+ZlIaR6+WmbTWMH5g4TtudSeb5PoJu9q
J2v0B5M/f77WbjWJJWrRbj9/DaBbdLpdls4Edr18pKij04eRXyOelQ2N4u/1
CVr4+BcKH3XcEVhM4ZLgfB0NwR4M+GFYaqpF4HodzvpsbgcmVTSd/1gwhBeN
Rz5W+n/DeI+t6wwv9KGk7YP4/cub0TSDpVJ+sAdLxl+KvlZ6i64Bs6/oKrZh
dvvvq4MRNVhbIGg+4PgeD1rLlbUfzUJC4NH1pJRSrFwQ+OWFbyYQL7NXRlSW
wOafgivCHBAeekXnsFQ+wGriKW/LizfQWixOVj9vBbPMtveWDs2QcszF8+nd
HjDZs1RorPwbJF8+q+5Q0QfXDn0L1azogIGxZf9OnBmCBkv5xVZLe2ASE0+o
bydgZKVkcPOdX+Cbrickl0iBr8+6w9eW9QHuyZzX2jQK3zrEbI6/HoCMHef0
2xUmwPzysVaf5gFw9Gh+o606AdX6Vc4XOwZg+umb9zGaE5CWeNQ9jRiAqgQv
KQ2jCThh9Tjiu9Qg7K+oWmh/ZAL4dQcqLE8OwoNszRdKWRMgV5gjp7vgDwyn
csovKE+Cy3mD/rkWQ7A7e6chS54Haq6vv7DthkBf3DXWXpkHXEvb+i+Hh2DL
YLn8SXUeRCqdSs88NwRT5nOaA7bxoKjp7gHIHIKRCrOTdgd5wFOmm/z4Q1Bm
Mj7/x10e3GiufPI7bxiEphTnXhbng9Mzk9zG0mGoaeNPP5fhg3Lep4TSmmH4
6ae4h1jJhycXBr3DWoZBj2vkr6XJh05VaXV5gRH4GDDngpkFH9RC/NNt7Ucg
co3c4qxwPtSt042tE2aD7h3dJG4fH5w32GaSomwYWJFCnBzmw6TWmWoFGTaU
HD6r2kLyYf2WQnagBoMrZgdcnOLDf6YK/2yyZ0O+bYip6RIajh+bK5edxwaJ
8JDdBno0CJxU2vy5hA2bfSVPtRrQcOeUkaXgMza4O+gKHDOi4cPZwNCDn9gQ
NNV7wdKcBt1wTq8knw1lw0scDxygofnSor87ZnNgz+YThWcP0XAqZu1ybxEO
fF1/DAKO0pAWf9TswyoOtEk8mLRyp2Fe6rf7kbs5YO0T8EE2gIaMjNFXZfs4
0CF33PneBRoMcpZ0/zzEgQz3sZsLwmjwur97KfhwYK9hb2BOFA0LHp1YdzqY
Az51tR4tsTRklV0yvhvNgWofmejhqzS0PUW/iWQOLMpoSWi7SYMPdlxTzuXA
w+yOivuJNIjU8fL+ecSBI9mXD7jdpmH7W+324pccULNIO343hYaO91ajP5o4
UCJ8sU8knQa/T6cXL/rOgWsLO6ROZtJQ0JoLJ9gcSNaty27KpcGko94hcZID
P3zGBNrzaSA4hN4RQQIevywTfVdIw7MzISbn5xBQ5iFvnnqfhljuYpv4hQRc
2flZyb6YBnvfZOdcMQLk8n6LUQ9pUJpQc6+RJCDNriTQs4QG0r/y3BcZAjxM
Gz58KKWhhr8rYliBgMDddZ6i5TRcDvoaL6RMwM5zm2s1H9Pg8Nf1nowaAULO
gfJaFTQoh3LzN24gQIdzr3vpExoowfDHppsIsJpa79zMYLwoVndInwD2Xuk+
z0oarginNvkZEtC182rdHwbvj1LvuLqDgOi2OoPtVTSozK8eyDIlIECo84Yv
g6kGDbeMPQSY3tsnGcHgmsj0oVQbAjofuh72YHCsicTpe/YE2B0eLNVmsN3s
KPYdJwLK1Q8Zf2a+v6qO55l0mIB148XGFgxmh50iE44ToCYj1HOP6a+K1eV9
052AU0mx0MDwuTRjPRrvRcCwlGVoA8PXqqbeN86X4dPArb7H6CF3QXficgAB
639FzjMro2Fga4F/TAgBjYNbPV8zepbx5fiREczNtVVrXOYRDaGV1wIjYghQ
UdS+C8w8LPxnTYfFETBLwMN2MzMvKV3f4JCbDP+ajWJ0AQ29Y/0zQUkE5Ahm
ll3Lo+FhmWNYwD0CTph6KlDZNASdfT/LP4OA+Kwg5ZWMX0y1WBG+uQTMGU64
IZtGgwRZIny2iABKW3xtdzIN3cXKUV6PmPOPBaefZvxY5JE0z+MxAS3l2gUv
EmjYMXxh4claAsQD7xPPGH+LFBJXjr8kwMyxyPZwDA3fTx4VcX1LAO9j7H+v
Imjw7jddcqiF0fvvMq+PzH4Z5jy94dTG9G9k33TGl9mfYxoSjp0EOMyNj//g
yezfT/Hl+wYIGAt3Vi5l9tUjPTLJZoSAoFciZroHadjiwpO2ohj9Zuef9rRj
9v1Hp9zuKQJeq4hncXfRkJJsnWIqSEJBwJbgrSwa3A7UK+ycQ4LS1JkBDSZf
BNvyVxmJkTAZrbdGdA0NjbfksgwlSZhn83T1hDwNSXbXlA1kSKhPsvsbKkGD
ZouPqq4SCXnvt6R6CtDg0gQa6nokyGUUy5z4zORbXEmx2jYS7r+x3CDawOSf
hfJG1e0k3FTSmoIqPlx7u2DTagsSnCx5zpqpfHCMuVCuaE3C1qqFbgPxfFAx
JXRW2JGw/4auhCyTrzUvv+hLu5AwsrPXv+sIH2IjTJ8uO0ZC/p4O5xM2fLDb
8dRAwo2EgIueOo5GfGDXpoGoDwk1f77SrvJ8kK92NxGOJsHqs1Nc6HseSEjz
+R5XSRBoDJ/bXs6DRX7RD1tvkKB/JeHOnns8mNqQLVt0j4Qc4ZCj9id5MHpF
+5NkJgl2+xVz2/fwYGjweWRIHgnxa/YttdnIg++ZnaRNKQmDVzX4g6OT0Cxw
Orf6CQk/pk86jrZMwpuDtJNKDQlJXcOJL0on4clyqde81ySk/Vfr6nt6EhIv
W6ekdZLAvSVnktA0AXEDXf8s6CVBi1LNX83cl5dMPOb7DJLQuTZAedxvAnxm
Yn12jZJwwFi9T2L5BJxyklZ7xCNBKNu6eVPvOBytzO2SmSEhavzdBBSPg83Z
enP2fAoGX4YnFBuOg/lHGwEHUQpMX2rUtc8aByP1nvLnEhQoRojYhtePgWb/
tGKCAgXW+TsWV8IYiBzQndi6mYIrsYRU5pJRmPPkZVH2Fgq0jpc0RDzjwrSE
7RFRFgVvVO3e3jjGheEPXu9/mlPAvyb5cW8+Bb3rZsItrCiQUR3SCjemoD36
qt7jfRT4mEn96vtOwtvtBZkxLhTwdAd2L5sk4EWq3n7uMQqanLp99IMJqJx6
JXLQnYI5o6FGF6Y4kPf413lNPwpqDT3+pLaMQJq494Y7gRSk/dsNIwXDkOQl
8FsojAK56kLhY8z/T5SavNW3yxSU7N0z95+3AxAcVShsdJ2ClqmNwbsc+8Gv
V/9pAfMf1LE+Webgl9/gYfTaSyKZAjHljPmzt/TC8RQ7leB0Crx8P9pERv4E
Z7q3vT+HAuMWn9NCld2wz+HsdesiCuIXvDn3NeUHGC+Nn1KqoCBPVZdns+0L
GHiuKImrpmDyx4ujPlkfQbux6N/J5xR078v1PRHUAGprt8ofaaAg9Gc/KS1a
Basi3zS/a6RAQFpFM7v0Ksj8so/e3Mzw1SvIadAqwyWsvm2p3xi+Q2e/Lht8
hQL8WfnePylw0biyV+NJG7r8auOG9DPzvbvxhXp8N9Y2PjS8OkzB64ktTsEx
vaj4OCrmDkmBf16AUtOHAQxNdW7JHaeg9Z2bUfW/I9gdvVmhnKZAZ/9As7sG
iSzvRW4vBLgQ4PpOr7+dizPGVTMdC7jgNZDgtaePh84a183/iHJhnjXHNcJq
GmuWn0iYkODCP1JXg7ZHCNSuEITu2TJcsOuum/3m8qza4D+S65YqcGGxoZ+u
av3s2s7Pw74KSlwI8yFNLmrPrTV8Vle7fi0XHqn33hntnl+bknNn4RYNLvzq
Ur9d3bKo9u+1M3a7tLkQLXxo/7ZFYrXO503TbfW4IL3hUHVl+5LamiMKw4e3
ccEvRyHibJd47QqLcR3P7VzokcuRNVRYVhu8+X1Y0C4uyLnIrDiaJVXbuSKr
McaCCzsrq9eOn5etNZwXuPyWNRdaKMMCw/sralNI6yNZdlxwPK0vp7BmZe30
d9X7jw5w4fxmZT0NvdW1TvUzEzUuXNC89UYhI0G51ici7ftvVy7oP2sKIz+t
qf0fkAxpyg==
       "]], LineBox[CompressedData["
1:eJwBsQNO/CFib1JlAgAAADoAAAACAAAASAKdfB1S9D+nO44KSMwnQEgCnXwd
UvQ/NHl266MNB0DgFUTVClf0P4qRtSEVEAdAa502VIRc9D/U1mDRyxIHQIKs
G1J3Z/Q/ECHQNTkYB0CwyuVNXX30P+rB/RIUIwdAPFLYzNaC9D/MKYDOyiUH
QMfZyktQiPQ/6cSwi4EoB0De6K9JQ5P0P5G3GgvvLQdADAd6RSmp9D8dR8we
yjgHQGlDDj311PQ/VA2bUoFOB0D0ygC8btr0PzfOPJM4UQdAgFLzOujf9D8k
4/oB8FMHQJhh2Djb6vQ/2aPFnl9ZB0DGf6I0wQD1P2sk+LVDZAdAIrw2LI0s
9T8SUM/BM3oHQNs0XxslhPU/IsDAMnmnB0Bm+TUPhYn1Px9q+RhXqgdA8L0M
A+WO9T96l7AeOK0HQARHuuqkmfU/FtqXyAOzB0AuWRW6JK/1PwWKuSLDvgdA
gH3LWCTa9T+m6OJ769YHQCbGN5YjMPY/eZlm9wgKCEBwVxARItz2P2+Hql0s
ewhAYqgvmiXh9j/lCFLWq34IQFX5TiMp5vY/7Wa2+C2CCEA6m401MPD2P4Rx
8yU6iQhABd8KWj4E9z+oJCiRcZcIQJpmBaNaLPc/blZqKli0CEDEdfo0k3z3
P/LnDmzh7whAGZTkWAQd+D+ME0LR5GwJQK5boKfzePk/shbNr8ePCkBXPX9I
yL36P19JgzkwrwtAsV5tIjr8+z/Sl2GbJtIMQPgKQwO5Vf0/kjKWDqEUDkBS
0Ts2HZj+PzLDqfL1RQ9ACjsLwbyd/j95wgT3UEsPQMGk2ktco/4/V9qGN6xQ
D0AweHlhm67+P9DnvGtjWw9ADh+3jBnF/j9I9DeY1HAPQMlsMuMV8v4/g19w
vcGbD0BACCmQDkz/P51XUjTF8Q9A+HH4Gq5R/z8H0vMqJ/cPQK/bx6VNV/8/
3L2eVIn8D0Aer2a7jGL/P8KEBiCnAxBA/FWk5gp5/z8IJSQ4bQ4QQLejHz0H
pv8/CFa///0jEEBuDe/Hpqv/P+e+kISwJhBAJne+Ukax/z+RNPcgYykQQJRK
XWiFvP8/FVAOoMguEEBy8ZqTA9P/P2UTPbSUORBAKltqHqPY/z8rVY3yRzwQ
QOHEOalC3v8/Ao+NR/s+EEBQmNi+gen/PyvXLjViRBBACAKoSSHv/z/5zJjN
FUcQQL9rd9TA9P8/IolEfMlJEEB21UZfYPr/PynvFkF9TBBALj8W6v///z+k
DvUbMU8QQLt2pCk=
       "]], 
      LineBox[{{1.267240853696378, -11.91004567776564}, {1.267240853696378, 
       11.898987130987576`}}], 
      LineBox[{{-1.2678618147245122`, -11.91004567776564}, \
{-1.2678618147245122`, 11.898987130987576`}}]},
     Annotation[#, "Charting`Private`Tag$383226#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-2, 2}, {-11.91004567776564, 11.898987130987576`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.827549412502462*^9, {3.827549481280747*^9, 3.827549503000692*^9}},
 CellLabel->"Out[19]=",ExpressionUUID->"8056aa05-0321-45e5-8da2-df8f351d8564"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Evaluate", "@", 
     RowBox[{"Re", "[", 
      RowBox[{
       RowBox[{"(", 
        RowBox[{"iii", "+", 
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{"Sign", "[", 
           RowBox[{"Im", "[", "\[Theta]", "]"}], "]"}], 
          RowBox[{
           RowBox[{"iF1", "[", 
            RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", "\[Theta]", "]"}]}], 
         "-", 
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{"Sign", "[", 
           RowBox[{"Im", "[", "\[Theta]", "]"}], "]"}], 
          RowBox[{
           RowBox[{"iF1", "[", 
            RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
           RowBox[{"-", "\[Theta]"}], "]"}]}]}], ")"}], "/.", 
       RowBox[{"\[Theta]", "\[Rule]", 
        RowBox[{"x", "+", 
         RowBox[{
          SuperscriptBox["10", 
           RowBox[{"-", "7"}]], " ", "\[ImaginaryI]"}]}]}]}], "]"}]}], "/.", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"\[Theta]c", "\[Rule]", "1.27"}], ",", 
      RowBox[{"B", "\[Rule]", "3.12"}]}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"-", "0.5"}], ",", "0.5"}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827549509625074*^9, 3.827549599242432*^9}, {
  3.827549631563613*^9, 3.827549698476205*^9}, {3.827549772830533*^9, 
  3.82754977298168*^9}},
 CellLabel->"In[37]:=",ExpressionUUID->"bbfb8326-a554-4830-88ec-6a7a9e5c9f47"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwBMQLO/SFib1JlAgAAACIAAAACAAAA5wWM78Dp9b8AAAAAAADgP557HJzE
3/W/Dh3dNE/S3z+cSjFy04n1vwmwdEE8Vd4/JAtKytCE9b9bfcPyqz/eP6vL
YiLOf/W/53TyDDEq3j+6TJTSyHX1v565oDN9/90/2U73Mr5h9b88f/CAKKvd
PxZTvfOoOfW/FHstMxQH3T+eE9ZLpjT1v77irCUE89w/JdTuo6Mv9b8a/RLy
Dd/cPzRVIFSeJfW/ASBLKG+33D9SV4O0kxH1v/k6OURmadw/j1tJdX7p9L8y
3F4V+NHbPxYcYs175PS/6vwa9XK/2z+e3Holed/0v/qM6Z8Drds/rl2s1XPV
9L9D25doZIjbP8xfDzZpwfS/BTd3URZA2z9UICiOZrz0v/bm0CwyLts/2+BA
5mO39L893K4gYBzbP+phcpZerfS/kQ7ByPD42j8IZNX2U5n0v38Hmajbsto/
kCTuTlGU9L/WpommfqHaPxflBqdOj/S/EZMPPDGQ2j8mZjhXSYX0v2zfyEHE
bdo/riZRr0aA9L/J5gtDpFzaPzbnaQdEe/S/UNxo/ZJL2j9FaJu3PnH0vwBL
4NibKdo/zCi0Dzxs9L+WonWctRjaP1TpzGc5Z/S/wHHQXd0H2j/cqeW/NmL0
vy5sUvIS99k/ZGr+FzRd9L/rmNEwVubZP+wqF3AxWPS/D3CA8abV2T9z6y/I
LlP0v7VhZqgExdk/c+svyC5T9L8AAAAAAADgPyy2I5I=
       "]], 
      LineBox[CompressedData["
1:eJxN1/c/Ffz7B/BjJXJLhLrtsslICDkXpahsJWRnlJVk3EZIC9l7E9myV8I7
Kzsch2OdiHASJ5yKKD7dn8/3h+/1y/V4/gOv13UJ2N41tKfGYDBMVBjMvzs2
wdYrXeobwvx35pDuMSPJ/VP/M0vYJJQo6+vHiP7XOV5Kk3DAQsdT4OS/Dg5g
FJ0Em6ArKdU8/zpUMJFjEppfaDZfOPavV09L0E3CsU6NOTzrH/MzMgxRJmD4
IIhu0f+xB38jjEyAWpxco8omBbm95i1qi5iAjFqZmYFVCmo3bV5q95+A7fFT
GMtlCrLPOXBgxGkCKrlEtYJnKCjo67AP2+UJ4Mvnnuh8R0FPjxqrSx2YgL0G
um2ddAoKo/NfzQ8hgNkUNfdsIgUV0RjfuONBgPpf++AeQ0H43tsnz9oSwE19
51ncEwrKzvWK2lInALGPzEm4S0FZAkZRu1QEaCYSFK01KOjJI0+Zg4/HwZ+m
xMdjbRM9vWpG0x49Bm6plgesSZtIP77t2+DDMbCVZkvUWdhEfAcEj87fH4Mr
NwOqRSc3kYuISe0JkzE4VqO79qFzE6HeSntagTGotaXYXs3YRNteyhfVa/FA
bjunK3h1E2029HDYzY2CTfCQ4HjRBjIUNU8t08FBYstiSobTOnLntDz/cv89
NM2KMpWdIKOFX//4TeT2wkkWtfPXsr4gfFm5gOHZLqgWD3WaXyChYKq4V6OY
NpjtquJXUFhCcQ8q/ES6m2BRMvE0ql9AgTtce9PLtXAksFhBiuojOr7QrDUy
VQ5P60V7WLbm0IkMN9CuK4cdcqEpZXUODSTerJ+NLod5q4KAxok5xPkslU3/
YjlUq+e1n6+cQ63BbmzGVa/AkC5T94bVHHpDq+NJiSwDkeMCgxj/WVR9WmXN
2LQEJBW+SuZTZhAXczL1smIBOEgFBb0mziAsx7R8G3sBZAsfxg12z6ArX8mH
Gij5wMop7fMjfQYN4fWiv1fkw9aWW5umxgy6XBnk3yKWD+2vyddXEqaR0y8a
Va8TL8FElRworTCFbKPd1hxFcyFOPnDkAv8UYodCv3KGXOg/xSxowjiFDnNl
i7F8eQFYXqne4A+TiFI6RBQsfwEn913ZcE8nkVSHomK8/Asgv10r9CRMoBq/
Lf/gyznwSGNt+PU/BISLeSfMcCgT2rVW9c7cIqAd50hzvbEMwOh8eV+uQ0CD
JwoP9mZnQMD1zwN5JwhIqEGr1Fg+A7wdFnsiB8aR4BST+5RtOtwOJb614R9H
SZHSLYHdqaA9MFjJ0INHLjvbVKwNSRA+PCD9uBqPymQ0Xr55lgQ9+P7yvQw8
Kh4g0aWYJMFFYm8Z5R4eqbGJbpJ2EgFL7ioicuFRSrfxzIp6IsiwtOZU3R1F
v4e6/Z0m44H9WnmMKScOqUpQWypIxUK18POmizQ4FO998M4afSzo/3T8JPt1
BGl5d3AMf4yB8CyBs4zdI0i9ZPjqsaQY2CMlzDZ5j6Cl/syGGkwMLD3wl+Ie
H0ZmdeR94eZIcNOLTWkRG0IpGq/FWj3CoOjbldVEqiHEdZ41jF42DOZTadXc
Jt8j/E+KceHXUDD+5LPMG/YeHf6IE1pxDQXwtVQIJg0iI1GfJX+3Z8CSJ4E/
XziAjnJTdfYFPYHqH12HewT7UIkmHZDnH0JUSW479mcvMtMzDLQofAjOlkFe
dYO9SFxK7rGsy0MQfHd2Ote7F231UPXRbwVDUmJpwYOeHtSqlBLhciQY/M7E
qsq5dKM3XJ1sJ6sDwJjkul6s1o0S8NvRCZoBIJdxJY+fvRvd1LEaf0/0h1Ua
Wgbm1ncoKUs0IZPJHyxHvfGkw++Qjp5fau59XzjvYe6cVdOJrFS/XlB39AZe
YSVe9tBOtOxtrKzM4A27k+wjz807kULjsO5uqRfUqg8p+NJ1oh0XxpIxiicI
HzlPfe1GB5Jj6uVYibgPjJUiqQy7bWh8nicg7JM75E8vRn5+3IpWyxaEeg1v
w1QAR3amXCs6V2xwomXEEZh5NSsN5ltQgbWcAJOhI3hbF+FeQwsKaD6+1WTs
AJcWnTjDd96gDRPOt2budkAif80Rd3+NyJ89OVM/WQN3DH/1B97XKJzb+oei
rzXoyxp0xA02oiM+NWKyh62h8X714o54I9poZhi0C7SEsG1P8f7FeqTcwmHx
wfImiFPv1DjfrEUjUTf4E15cB8s88S4+xlp04QZPH9uPaxCncXN8tLEG0bxM
o9LUuQY7T5u3VThqkHJ293Q3jRH0HwpSZRqpQpMfdFNlY/UB86pC921QFRoO
nOdI+aEHZ3TnrDylqtCb6zgJuWFdyIhRD5l5XonWhsf90+O1YUL8YJRpZDk6
Ru9KlL2pBWqudyrbVl4hFuVHLolmmlBU0YcT03qF6lzCbSytLoHvmUjOHeoy
xG31XIDfVwP+xrK+SPunGOVVcMVZr6lBSPD9DurxIpQciFla5VSDL+34RSe5
IhTw9MjKm2gsNGsmi6uQCxA7VnBj+q4KWBhw107feonCxP1UnlXJwyrlu5JX
Zx5qsfVwe3DrDAQkDSFmoTwUe5JUNMwnBxnTIf3qSy9Q1KX99sgGGZAMNDeY
vvQCmeqGTpCFpOENvwLBszAHXSxOt/bfkITaflyX3kgWOlZ9RBu9EwU8y9OR
kLhMtBloY+A9LAyU60rEOqMM9E2dfXiRLAin57K/cY2nopHx3Ni1OwJgIGSE
0UtOQfI2xxkPRfKBu9MBphCTZHRC/nt+yV1uqPjmcpI0lYBGfc8tK1ZxwHsl
fmmujHg0IMVwSIjlKJADR5V1LeKQcEXmXHDKEfir8+mlh7yxiOpzunVSAjOY
sHq+vI2iEVlRLIL+KiMkZ0y9ea8eidwiRBauXTsA48Lqo2c6w5EdQZgpsJIa
jlYVrqRdCkWHX//lRIf2sEYqzNRUvU/QFP1Xoa72bWxcl+dxx6uPkMvHpU5l
Fwp2WG9aZnAwGPUipsx+7zUsb+2jGIecAKS6sFv13HoRm96jj07n+yB6WiNB
Jwki9hiRh7xX7IHGvUq0oiRxWImFMaUkC2cU6bJTRRfWgRVmck+WcrRBpCDx
lrNpFdhgvCieq0MHsawfldTneoaVPEx0ojt1BjDSjc6D565jxzdCslm2TWD+
0ymnuxdysOt6Ipt3PRyg8RvnmcbLTVj/+Et9zmfcgTaCIuTv0I/dC/RNz5b2
gstsGH6iEwEb7FTmMiruB9KUzO6CmY9YGuNZVXrhILC8LrOrqfcZ28Ef9iyT
JQTYP1vcKT6wgX2cdMJdMeoxkOvqGewO/cBeYmo2GTn0DLQZ5/TwdbtY+pDr
6s5hYRBKj7f4TU0FPVtkMTr6CIgqe7v25QEthLuGsmY/joLAICXh+qsHoWAj
5gH3wz85HnHEwtyFCRwdxR3q9+KApX+Cn2+UFbRO+Jg9Uk2AXnm8VYsVO4gS
O3T1AxIhbkPCrY/9GKwYWiiu/EwGnmLDDdk9Huj7q0Si4Wwq8Is0eV1K4YfS
nh98j33SgOXtwKzEpRPggo05yPs9A7LFHI7yzQmBzs+ZXytyWcDErShzakAE
pGrFNho8sqGzOXOaMiAG2wkfV0W3c8CddS65lEkKXjP6j7V75YH4No7Ovl0O
ck6xj1b86XliZMFujYg8PNWvGM4Yegl8EvK28qkKcC1pod9brADcys5zD+co
wbqAdrs4sQgy8mDhjIAaEDSWEGd4MXRcwVsU0apDq2NwC61iCSRcPdQsT1aH
569qGz/ElMLfEceeZI1eAGElnoo4jXKg0rM7XrqsCUzmDWVBG+XgZqAdsL6r
BZRAgxKXrArYLZ1I0ue4Atbz7YYnAyrh7djebRsLbZAS3dL5PVYFr3Q43e3S
9KG3xkqjKqwW7nSWHHWgNYZzXZIdInO1kA/omAMyhsrxn+pZCnWgTcUU7vng
BiT9jIfnC3XQY7pI00JtCnbQo2yv2gARDN3xe7LmsN8nI3t84zUQ6ZOTSmNt
wGPmd0W0ZhP48OGoXtLbwtJan9SBrCb4IpF8XTDIFgZY7CUpV97A7GkSqdnj
FqQZp4oMvmwGSbplYT0Xe5Cfp+J9aILAPKy6n6b4Dkg13diQKUagwHiS9PWU
EwjHveqc+4kgizaW+XStExx6USafo/MWZk1zSho7neGXvsnMPvktmCRIBQ1/
dwViZYUYkm2H27WmGC7tezCVYcbGadYOJDtVW43UezAeSvfbLaQdfiV+PH18
+R68t745zDvaDjyGrKpdjz2glYXeJ9CzA6puyreJ9NyHbHfLTtWGTvjsIMjH
c9cbMswZyhNnO0FVzXUF0+0NKVq1yWv0XeAM/lkxfD4Qw8/onGnSBUM5hR9r
cD4QPFx35PfPLjC1E21hVPcFG5m/rJrPdQP3hcRLVNgAOLn+5qdyey9ECbQG
F5k/hIDBC4+/rfXCkohi4m7yQxgv6WcuP94HW063dGtHH0K4/fRJgXt94Ld8
tNdYOwTWp3Z06Pn7QfCHbJr1+UfQ2qWUO/pgAAKYjPIj1Z+AWXrDFRelIeA8
rFESFBEGtf/AmJD9EGgLwdcEfBgwG3dbzcYMgT33jzYWnnBoYyF4GpKG4FXv
hsy5inA4esFfL+PqMJTZ3fj71sRz8G9M8w3ZGYb4Si63bdUouJw3OahrgoP1
22QxKI2F9SflDl2uOKiLDaBQ8LGQcvvRvsojHLRqOlZN7cUC6dQpWbFyHLh9
r+DGGsVBaGNwAg3tKPjp7Jy2+JMLPYMiNxsrRsFXxT4EY5kAmtteJAH6MZiY
7Du+dz4ZLuqw0nyvI8BvDvaDey8zIcqGYeNnLwFUPoTblBMyYcILM7tHJMD0
8UPmzxmzwCmL3HTwz9+m0hGg1e+eBVFf+zy4jSeg+2Bi1C3IhonYR/MXfkzA
uEKu1AOPHHAa/9YWpzAFbQyZ2pQ/93y0FSFYpmEG7vG5vPg1mQ9PV8/B0sAM
mDwwO5W1mw+Bvrm/0+dnIM3t0YgZz58ciHf1o2cmAn3plftCNgWg203j+cGO
CDypbPGYlQJglpZxjGD9AN/3WuhwmCKI2gvVIbnOwq13Rq2YCyXQrcvzlz7r
R8D9aqtL/LsC1gTYA3FpC4DZ8vn1qaQWvDwlbKI5lkAN3b464tMEhBkWQ4ce
EmylLAeqTb4F6z89Sq/9BfzSlTKfVHVCh4RieAcdGbI19pdFXHtBmKGZ9FJr
HUyxCpLh7u+Bp9n5Il3oBqzewp2+uz8CmB3qYo/5TSCyof2we2NgvTBJCVre
BP3Zd2YOQWPwdqASG7m6CVkXvUeuRI5BcLYlvvDHJiyq+itLFo/BvkbT/gwj
BfIOcfIZfhyDveh7xppyFKhIsu+SMxqHX0JzNNyPKbAjDWZ5qgQwP9ygKxZG
gW/v1UtTtf/8w9uRqQpRFAjRji1JvUmAgH4VaYMUCuRs/KbU+xJg1z3Z7GkZ
BRTiwoNv1xNg541u1TqeAmekV9fqZSdgy6DFskvoG2AwmNBomUkImawgYiX+
awycnwRmm1zzRpn/GXNtEtJICdOyCv9nzBxETD9b+n9G/wG0NE1p
       "]], 
      LineBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvb+C4YqK4xd7BjB4sH/T98qbCD4Dg219TsQ8NwT/
BFv8dXEfBD+kLzBsYiCC/0DU5SpX+Bf7rVNenbl88aZ99lyzkJaYL/ap8zUk
eZ7ctP+monn5b+IX+22qO+pDvt20b1ojHVSe/sX+gHecyVqOW/Z8JnwXP+R8
sf/Vcz5HTPqW/czdDAFZRV/sWX5cSZige8t+w6mnvrG1X+xvT9BK2x50yz7T
mc/265Uv9meOaD+e3nbb/rZJvLRqy1f7UKFzq0/Z3LNP+2nK39r51T7A44rn
q+B79h/28jA/7ftqH63jLaCUfc+exX3XqyUzv9r/rme9dn3mPXu9SNFdKuu/
2p+a/v+r94979g21pyNUbn21v1/2gefCjvv2Vc6Xohe8/AoLL3sA2w2PqA==

       "]], 
      LineBox[{{-1.2638825342134823`, 0.5}, {-1.2638825342134778`, -0.5}}], 
      LineBox[{{-1.2652089609137678`, -0.5}, {-1.2652089609137678`, 0.5}}], 
      LineBox[{{-1.2678618147245122`, 0.5}, {-1.2678618147245122`, -0.5}}]},
     Annotation[#, "Charting`Private`Tag$384194#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{375.9999999999988, Automatic},
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-1.999999918367347, 1.999999918367347}, {-0.5, 0.5}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {0, 0}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.827549412502462*^9, {3.827549510156433*^9, 3.827549518064516*^9}, {
   3.827549591055779*^9, 3.827549601051997*^9}, {3.827549634351198*^9, 
   3.827549698804183*^9}, 3.827549773209572*^9},
 CellLabel->"Out[37]=",ExpressionUUID->"8c65a08e-3559-435a-a819-b2b78b9896c9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"Evaluate", "@", 
     RowBox[{"Im", "[", 
      RowBox[{"(", 
       RowBox[{"iii", "/.", 
        RowBox[{"\[Theta]", "\[Rule]", 
         RowBox[{"\[Theta]", "+", 
          RowBox[{"\[ImaginaryI]", " ", 
           SuperscriptBox["10", 
            RowBox[{"-", "5"}]]}]}]}]}], ")"}], "]"}]}], "/.", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"\[Theta]c", "\[Rule]", "1.27"}], ",", 
      RowBox[{"B", "\[Rule]", "3.12"}]}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827549272684514*^9, 3.827549406087624*^9}},
 CellLabel->"In[14]:=",ExpressionUUID->"5b7a21c5-3f4a-4014-ac1d-c9e8a64be69d"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJxFkH9Q03UYx0nUz4TlxDmWhgELJtG1MSN0HsWjB8pId7EB0unUDRFBkpQw
cVGE44Sy/AFS/JCW5ELFmCl6EPNxHUe2+HUIFooCFxKwWqmf71fgJt/WX/3x
vueeP57X87p3sCFHkz7Hy8tL6cl/UxbjP8lxHPquLQmuusOHnOkXS6ZnOHxY
UB697Dc+WC8rpI8ZDrvnxKdW9fNhZdgmw5iTQ8f5syeqeviwys90p+NXDmEU
+NXtfIDfHzoqGznst0uCa77ng+ZI54VXt3MYvZV11H7Ch/e7Te9kXJ/FuFhF
uGUNH/r6fCft+qd44we7OeEzX1h+I2fJqgA3Hteu9s53+kDTnrZ5gnszOKFr
lI9s9IEdRxX/DBRNY7VAFDduXgBTJ40lGDOFwoNru/K9FkDdwvtLvxxhMS3Y
WWfV8ODklhiiHGSxrFL49vy3eFBUb6YDt1kMLftGsHUTDwzr0rqf72CRs3h/
TOJ5IDkwbvrqKovJwT3vbXudB2fuPfrb8imL/tzBr/lhPDA3kPam11j0zYvx
z3pK4Pj07sspESwutqbP4AyBwvUO85NwFs120bBoisCO4aNGZRCLQ7Niq/0R
gcAlixU2HxbvD7YZlo4TqDUG1LQNMThvT7Pw514CNQmK/bdKGVS5T51/qZ5A
iG+Co8fEYIMwteLiWQIXfjFIuj5i0Ly3+LCijkDLxvLem3kMZpUGGZS1BAbU
T1Ze1zPY1RwfoSon4K+1Pa5XMmgKLRZkFnr+CW+/aYlk0Cb7wu+vAgKhfa66
OjmDle5nRPuMBCKTg5JqQxl0mgcC8w8Q0Gw+fKXMj8H200lxpdkEjm1R5X04
QdGS3Nh5LtXDDzB0Gkcpjul1o6+kePiDh0LzhyhW7FW5L2kJfKdr6M/tp7hB
PihvURPo2C6IyrRTTGjxtjhiCSQFhX2+q5WiJONqu3odgbvDMJZ2jeJPOut4
bwyBSf3+im0XPfc1RRF31xDg7exntZUUb7kGup0Rnv5DXOrEcoqtPdxMjoyA
+MH8b9XHKJ4WfbCCvkxAumv1ZlUxRTakwOSWenykiY3rCykK0+c2FYYQiPoj
k8QaKQa6x8bmSgjE7a6+9sY+iq7cH9XPLvf4hl0RRGdT1OhsphPLPL4THRnK
DIptl8StoucIDJ57gFEGijX6XlopIrAza1YcqaM4kuKSvSAk8Ge4+F1FKkV3
XnbWmUUEcp3ymzItRVtiUL104f/7oVPNQhxZAf8ClwPGTw==
       "]], 
      LineBox[CompressedData["
1:eJwVl3k4VV8XxwnNERENoqKQDA2ksK6iKISQhFT4FUmJSIgGU6VSVBLKGIok
krKIUlIkkiFDZAj3nnOu6d4T3vP+dZ7P8+y99hq+a+2zVx7xsnKdISAgcEJQ
QOD/XxsTxxlzXbmYmzPnxquOtWV3xAYO8Vy42DkzYtf1xrVlhGbvpahDXPQ5
u5WKmVQoM7Xuzlhmz8UkOVdx/6hVZZlnOz/nWHOxMWVjmJKHfJnw/V8cvb1c
7L8z9d/31bJlziUti2pNmP3nSny29S0pe/OrSdvZkItj1/pLj4lKl8kINB4k
9bl4tNz20PkoyTKfVfUXLupw0cporce6vRJldYa1KYs2cXGGS7TETquFZar/
1VSlqnGx553z1ejFC8oiIj8Nblbm4s/IPC2J3jllPdkfxKpWc/H+rZr2WbNm
lbG+Vmy0W8FFZRXDLi0v4bIEomz/gAwXDzeGXxqUmlE2IVF6PmARFxObiwTc
+6bRenNJ0jxRLhL8kkXOwv8wb/+rioTZXLzOVT9Q6DeB8wNe9q0X4uKC+yZr
e7VH8VhC/jycpDD0s6Zuli6FlaW56hYTFFYltqslTLLxvFCWn/cwhUGuyw7E
Gf3Bk/edZjr3U6itlWjmsK0Lj6gvijXrplAscCUlSbSg7fuq1dvaKdT7Zhb1
8e933H0wMF+pmcJm8fqOg0XVqE9qGCxuoDCTei62pvsNaob/qRWqpdBl6G2J
bcxdlHlhPtxeSaHIS6DTxsthvolQYA1SKPfr0oaRoM8w3V409/VrCo8/cdyU
v7UeeueuVIrNo/DVxous1lMt0JLcWHgxm8Kcj1bzkze1wxetKKNT6RTWOItf
a+3qhIIj3CN7Eijc90D/oZJyD2ROZJBb7lL4VyyuVzHnDzyIdghZE0PhMUOz
K3uW9cHF1+8fCkYw/j4qv6JUMQBnLQJUORcpNLj5LHPd1F9w71UraQuiMMmo
2YerPASWEvd+Fp2hcPke02NB+9lgmGn6X9pJCouP6v8asOfAFn3BsZjjFMZZ
jtjqKBMg7+6+6OQhCvN0Oox3LiRBUkDu8UF7Ct+fFz6iGkjCrLjvGiY2FArd
ZtU4dJPALtc1V9hDoediuaVJqRT83k+2ie+kcOJ7qu/aaQoah9M8plkU2uuR
ZX02XHizRCyyRYtCwSPijxsmuJCXWyH9UZPCZ/8tyDloNAKpRv7pL1Up/FSr
NLMuegSunu6quLmKwk6Rv2tkloxC8Kw4q2BZCsNEUkc17UfB++HuLg8ZCte+
uO7//t4o2H96MbVTlMIsU2V2regYKK0M05nkkVjsW3d6X9cYLC/a+vHvCIn0
oUIPZfFxEDPj2P7kkHhpnoSXPozDmL+dz4s/JHYvKTM/FTcOf0UXCD3qJPF9
vLdUHo7Dr9TyW9GtJHqr9TT79I1DZZ1K7vFvJD6faHn6acMEvHLr0NtfQ2LI
kQ8CZ20nIPvf7RrDKhK/fn/M6fCfgBilyQG5tyTK2xyokH09AYdDahV+ZJJo
LjK84pw6D2ybk/R/pZD4aSB2brUJD3ZvOGXXk8jsN1Oc3nyUB5t6Fl6j7pD4
/bT4teDbPFDW60rj3SCxS0l8vnsWD1bEPUeBqyQKHr7qGV3Gg9nGVlzRUIaf
h+kk/OXBZPKqBYsDSbypslwhZooHFI9aI+tHYuy52+PN4nxozb5tv86TROGH
s2J9tfjwTKyxfNcBEt3CCyY9/PmQciyt1dyaxHj7w0YXw/lwr9x31GYviZ3p
+66Ix/Eh9MxiZRcjEqVEzkxlPefD2Zre7R4sEt96i7a/KeWDu2KRg/c2EmV2
uMzc/5kP1k37b4Zokuj8nKlnNx9MNJSywlVJ3KaSYXaOzQf9yImK6LUkmm33
W2TL44PStvvjCbIk3r6vUdm6gAY6scWpeA6JP+MujrlsoIEYz/IvEybx9WPP
T2lbaeixOB9TNU3g+gemm25tp+HrjOUfGkcJrCpKe3vKkoaKg0MdbQSBWcky
q47b0fCq4A2ve5BAIU2BHMlDNDx2c1xPdRH4/UUV75oHDXdx/S5eG4H185vP
OZ6m4ZrMlLPATwLtK+fe7z9Lg2914h3RrwSa6i+M2BxKg/tqr2dSnwj80j2c
yL9Cg1MgfFxeSWDT2oU9IVE0GKt10iqvCVQoZPF/xNCgF54nteElc37ozmdP
4mjY0BmirpNH4PiXI/t3xNOwRsfShJVNoNctrz1pD2lYFrPy6K50An3cRxrr
kmlYOEgGmj8iMC81fEtVCg3Chu/ibBIIBNF12ZHpNLBHj1QfjSGw7VGDt182
Dd3mG3vcrxP4XEJkXtpTGn5mCE2djiAw8YfO1pRcGr4INEifu0Sg04WABWee
0/DuQKpmSDCBmnpLo6Re0FCU77Mn/ByBF9P/Pb1aQEPOPCPXaB8ChXObvH68
pCHZRepCrBeBmYQ3jhXSEPv2z70Ed+Y8154rw0VMPvzjg7VdCdzld8Pq8ysa
lDbudak/RGBDgLljQDEN5LDQbk97AnNPkIU0w68zX6nPtiFwy3W9Yxavabh0
1FMqZS+BYjba3ucYNl2xitbbzcS75/hXP4almn90/jQk8EX3Wi9ThttvX/1w
BgjUiaqHCcZehjkrR3QrgTMmxRUDGT41Z/TWk00Eei+WnPzJ+KNT+cTPUJ1A
WvF9khjDMy44OXYoExgyMrNDnvH/s86iHQEKBKbf/BO2gInvzkiVkpQcgRX/
Pjn+YPLhlBsomreEwLCmLIVAJl9r3TVHdksSuFl6291pJp+EQm/zH1HG3vDi
E4fzaCjuiMeQOQRaD7CtHz9j9JY1e7HnJAe5QfnilVk0qMh7dz2mOLhEuV4z
PZOGN7GtOT/7OOhp8mjqOFPfzpBnOwzrOZjW+3PW/Uc0eI9JiwVUcZDKF/MS
SWL0cCK0JfcNB2UEv/+0SaBBeb/16WUZHFwv5tmZyujNez0/kTrPQa9oMa25
jD6FU466K53m4KCxzPa0MBriZL5sdnLj4IYHEvuULtFQIpRc88mC2d/Rubv/
PLO+xYifrMjB1VMaJw6eYNaH3bLZW8tGemfgNlcTpr7/+PJXKtnovIwsyDNk
6nnaZeh1MRsV7Nhaf4GGDgftS2tS2XjVouGaktb/9fArb9KfjdJ7XLNbVjLr
O5Tm56xiI8JdtsUYHwJ1BZ/Gy7BxFtbvEiD5oHe/2SxSlI3d6QkPUwb5UGYV
dcONP4xrpOuoD518qHo/KLGyfhjrvUanL1fzoSH72ZK40GEc6K+hBBP4wPbb
tDakcwjN7N3fjmrzYfVC1nbrxEGc2rXTvPQAD6I1ugLcbw9ig6tk0WdLHkxY
XHwREjGIuZ+q/tUz87rmVqXCU+9BLDT57VGrwwOfRSazZu4axKMD7N+hS3jw
YbFVTRHnL9IPNO60NU2Au6yL7TKDv/h2pVv6D4sJyFeJcP/d3Y8yNseeJWmN
Q8f75/JaWr0o37Hset7gCPxRjd2Ahd34r6A8wC+XAvHgJ1pqgl14Y52ftdEG
AlS1OKpp3Db85pHiV501CJcMh+uK/Ztw0sZicEtQL0hZP7t5QLoeP1H/HuY5
dkH+2HuxjwrVWPdE/6O6fDOktf65PnC5FHU8vS+12n8BR8vlBa1HU9E4e4nE
5cQXUDz3fOM73xRgDd8puV2cj5t/C64ItUOYDv1Ta7TmK64mSnhb332C7fMH
dpeW/0STlOYv5nb1ENM3fKrkQRcamUkIjb5sgicxAlf2F/XijUNNIRpFbTDa
eVl27PQgVpnLLrCQ6AIp9dPuqtsJHF4pFVwf3w2e/Stzl8ZR6Ouz7vCNxb3w
QGqj44/aEWxqW2jl9rEfHge+UWmWG8fdV11/+tT3Q2d4fLGm0ji+0XntdKmt
HyqcJd+Ea4xjctxRj2SiH4r3opCqwTgesyi83CIzAO3XFpDWR8aRX3GwyPz4
AGQpnn+wKnUcl2enL9ee+xf6H/ecPa84gc7ndPtmmQ6CV7bbFz1ZHqq4fGxk
2w7CL/8aaRtFHnLNrSsbDw9Cr4rbE7f1PAxTOPEoxW8Q3hcZ2vvr8TCn9sFB
SBkEvc2Jf/c58pCnSNee5TP2tjoGtTzgYUx98as/mUNg6mLgFLGIjw5vjTJq
XgxBabflPlzKR8XMb7EvSofgWcTT5OGVfHwVNOAd2jAEb3bofFTX4GO70pL1
sgLDUMeufr/TlI8qF/wfWe8fhpJ3DrseXeRjxTrtqAoRNvAGyAKil49O6tYp
pBgb4jruz/tviI8TG06/kVvKhsMjuQbfSD6qbs1mn1djg4Zo+Y2Qf3y8Yyy3
bxPzH3k3fuN+I3Ea3VxnLU/LZIP9JWFTnS00ChxX2Pw9nw0Lbn1zb9SlMf6E
gbngWza861KePGxA49cz50Mcv7Gh02a7357dNGpf5PRI8dkglqRraneQxvor
86d2CHMgM7jywalDNJ6IVJb2FuWAkR213u8ojck3j5p8XcWBu13x3WYeNM5O
anoatocD9S2y+TIBND5+PPKhwIYDb202s+KDaNRNF+/8fYgDp4s5Z2aF0njq
6R4J8OHA9nMb7FLCaZz7/Ng6z2AO2DVom3yLojG14IrhgwgOJNwvdh64TmNz
CZ4dT+CAa2q5+4/bNPpg2w3FDA6s8uJEZcXRKFrBy9z3nAOGXhWq/92ncXv1
xtbc9xwg3sptupdIY9sXi5FftRzwW66YP+8RjWe/eS6Y38KBZ3TSb9cUGrN+
ZsAxNgcOe3/0qMmg0ait0i5uggMWK5a+b3pCI8EhthwRJEBwwcS3qmwa356+
YHRuJgGpocFzE57SGMVdYHVzHgE3LC279+XSuN83wSljIQHw48IXdh6NCuMq
HqVSBNz69p/WiXwaSf9iv8alBJzccjf88wsaS/m7Lg/JEbC/KWfN/Jc0Xg38
cVNIkeFKbd/1hTTaTbk8XKpCgPrN2Dq1IhoVQ7hPNNUJaFaqvcXch0gJXiw0
3kTAdiefBbUM46WFFYd0CLjE8719opjGayJJtWf1CWiwmTrZx/CB8PVt13cQ
IOxu3Kv/msY1c970pxoTMFvDd6s3w1SVmvtjM8ZfzdklIQyXhj0aTLIiQO2L
pogHw1FGkp4P9xPgpFBno8GwrXA4O96BgPACp55axv6qCp7XvcME6DlU/TZm
mB16gox1I2DLOc2geMa/16wO79seBFyeXdtcwcRzZdpy5OYpxl5ehkwlE69F
aaVvtC8BWfGH98Uz+VgepD1+NYAAJZHZD40KaOzfluUfeYEAR49awfdMPgv4
y/lhlwlYr9oUJv2cxpDiG+cvRxKw6lq/si5TD1P/GZOh0QRMURu6NJl6yWj7
Bl+4TUClgciD8Swae0b7pgPvEWC3/LLetUwa8wrsQwMeElAy7ZDOTqMx8MyX
Gf6PCXhM+2bJMnox3sC67JtBwKvu+1IyyTRKkvkiZ3IIEP0sn9WWQGNnrmL4
qecEKNy7I+/O6DHn5L3ZJwsJoIIt12IsjTuGguYdLyMg26bp+GtG36LZxDW3
9wS4Zbd8doykseX4UVGXagJWR76ZU3GZRu8+Y/FDDQTU7THtqmH6Sz+9JMah
mQBO0TX9k75M/7iqSdq3ExByrXKy2ovpv9+LpG36mfx9vh6dy/TryUdh96yG
CZhTqpO30ZHGrc68JRYUc09d+VrvYcv0+6/25Xv+EVCjoyJC7KIxMcEy0ViQ
hO6bxr+0WTS6H6yU2zmTBLXfvkbrmPki2PxklQHzLl3mphAyby2NNXeXp+pL
kdBvfj+AK0vjPdsbirpLSSC9FfcFSdKo0eCjpK1AQmZUH8dDgEbnWlBbv4WE
ApPZR12+M/MtOj9XRY+EmzNu+M6rYuafqaKm0nYS1ofbsXRf8/FG9dxNq01J
uFTUl6iaxEf7yKCX8pYkJI60ZvTc5OMaY0JrhS3zTpbr3yvNzNfS9406S5xJ
yOmyyGs9wseoy8Yli11J2BuncMfFio+2O0p0Jd1JZt7eOm5rwEd2WTKI+ZBw
4EKmymFZPsq+8TASiSAhSN2/IPALDyWX8Pknr5MQe1R3XdNLHs4/G5H3M4aE
OYqDJSYPefhPPW1ZzkMSZhSJhOw7zsORaxu/SaWQIDFDt7zJjIeDA+VhFzJJ
OGkmpGKuycOWlHbS6gWzfoQ3v3dkAusFPDPevCKBNYXuRMMEfnKkHdaUkmD5
rDq19MUEvpKW+cj7SEL51jTP054TGHfVMjG5nYSqT/07btWOY3R/x765PSQ8
PeCWJsfcl1eMTs7xGSDBX1hRjjo7jj7TUT67RkgwkshoWSg9jicclqg855Hw
645qpUbPGB4tzuhYOk1CRoRQ37bcMbQ6U7mbPYeC3I2uF7L1x3B3nZWAnRgF
03+dsppmjKHB+q6X5ZIUmLSHbQmuHEWNvkn5WDkK5BK2DhXAKIoe1B7ftpmC
/uqYoUTxEZz56n1O2lYK4is87oW85eKkpPURMRYFCU9k70W7cnHo66kvv3dT
IFPdenfPEwp71k1fNLWgYEZg8niQIYWtEde3FNpQoFSel/q7hcTq7Vkpkc4U
zFOVmyUxQeC7pC0HuK4UHPaqU93MvIuK/30QdfSgIOZMfpbPPw5mFnaf0zhL
QVfzd6O7DcOYvMhbPf48Bcb9K+/0ZA3hvVMCf4RCKejzirdyYP5/wlVkLZqu
UuAcM264u7ofg8OzRQxuUTD6tuOFvn0fnu3RKcmKo8C3fraxdeMfPGnw8ZRk
AgWn34aq0To96JZouyb4EQU73349GRT2G53onta+dArkF28K4b/qRBu7M7cs
cyhoiJuIrEz8hYYSN/8pFFHg4UZ0sfQaUddrRX70GwqW3ZXROpJahxtrcv6b
KKdgZvrY3x2BVaiivE32SBUFZr08vzrR17gq7FP95xoKSg5GzbJ9fh2Xdu+P
2FxPweOcQ1PiGwtAnNWrl9TE+Cv1G3QHPoAAf8YT798UeNufNzF41QzO3c3c
C30UWNx3tdS+2QllNXn614coEAszmA6P7AH5wvDIeJLxx0Ph18+v/RCS5NSQ
MUbBp+Ya8Q//DUNnxGa5lzQFP0Dp4yk1Rsfe893fCXBh3tZA3aFWLkwbvp5u
m8sFn8ktcVa9PHBSu7X7rxgXihelJUZaTEKp9LHYcUkuCG0uVDC6LMBaIQid
wku5YFD2qvjz1Rms4L9S6yTkuBCWNsFXqRRmtX8f8pVT4IJ+kdTSsI2zWPpv
K8pUlblQMbbq4njnHFZievy8rWpcOHQoIA4b5rOmbpy23bWRC0u663r05y9k
OZ0zfmS9hQui8qW2Ja3irNIjckOH9bjwQFRAw7djEWuF6ZiW13YuLMha1wZy
i1nBm7+EBu7iwrpTy8ddUmVY7StSayJNudDoPCo3cW4ZS3/2eem7llwIVYqo
YD1dwUokLY+k2nKh12yevvzalazJFqWnzw9ywWZH4Rn1LatZDpXT46XOXHAQ
7ghIiVVkDTnoaQq5ciEgtngRdq1l/Q/uPoj4
       "]], LineBox[CompressedData["
1:eJwBUQOu/CFib1JlAgAAADQAAAACAAAASAKdfB1S9D96lbkTv+EnQEgCnXwd
UvQ/IN4wlJ8NB8DgFUTVClf0Pyf5hIIREAfAa502VIRc9D8ZhTcRyRIHwIKs
G1J3Z/Q/n6/ggDYYB8CwyuVNXX30P3ybpVYRIwfAPFLYzNaC9D9Q1g0QyCUH
wMfZyktQiPQ/lOccy34oB8De6K9JQ5P0P8YcMEbsLQfADAd6RSmp9D+WJxpQ
xzgHwGlDDj311PQ/bPQosn1OB8D0ygC8btr0PxlLq4U0UQfAgFLzOujf9D8X
lcZa61MHwJhh2Djb6vQ/ayDECVlZB8DGf6I0wQD1P+6Iw3o0ZAfAIrw2LI0s
9T+pWlOo63kHwNs0XxslhPU/7dxYMFulB8Bm+TUPhYn1P48nTYsFqAfA8L0M
A+WO9T9CacPnr6oHwARHuuqkmfU/AUk1pQSwB8AuWRW6JK/1P1e3KTKuugfA
gH3LWCTa9T9YBiCUAdAHwCbGN5YjMPY/ghrBdan6B8BwVxARItz2PyL3TZP9
TwjAGZTkWAQd+D/yXLgVPu8IwK5boKfzePk/zBB8L/+bCcBXPX9IyL36P4vU
JG9YPQrAsV5tIjr8+z9m2hQelNsKwPgKQwO5Vf0/t5CAqk+HC8BS0Ts2HZj+
P7tIUhucJwzACjsLwbyd/j/zDe35ZyoMwMGk2ktco/4/uLlr2TMtDMAweHlh
m67+P2GME5vLMgzADh+3jBnF/j8rmgQp+z0MwMlsMuMV8v4/160ob1pUDMBA
CCmQDkz/PyusYqIZgQzA+HH4Gq5R/z9XgOWc5YMMwK/bx6VNV/8/OLpCmLGG
DMAer2a7jGL/P/83i5FJjAzA/FWk5gp5/z+eUUyOeZcMwLejHz0Hpv8/wRlP
sNmtDMBuDe/Hpqv/P2X6VbilsAzAJne+Ukax/z+RszLBcbMMwJRKXWiFvP8/
tZBs1Qm5DMBy8ZqTA9P/P6ol2gc6xAzAKltqHqPY/z8k+YcWBscMwOHEOalC
3v8/12oJJtLJDMBQmNi+gen/PxkOhkdqzwzACAKoSSHv/z+QsoBZNtIMwL9r
d9TA9P8/EttNbALVDMB21UZfYPr/P2hB7X/O1wzALj8W6v///z9xn16UmtoM
wJdlkx0=
       "]], 
      LineBox[{{-1.2678618147245122`, 
       11.940910927204403`}, {-1.2678618147245122`, -11.936954946452117`}}]},
     Annotation[#, "Charting`Private`Tag$382923#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-2, 2}, {-11.936954946452117`, 11.940910927204403`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.827549290811028*^9, 3.827549407027862*^9}},
 CellLabel->"Out[14]=",ExpressionUUID->"4b349b45-a209-4f2c-95d2-cc1f086f08a1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"Evaluate", "[", 
        RowBox[{"Im", "[", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             SuperscriptBox["\[Theta]", "2"], "+", 
             SuperscriptBox["0.2", "2"]}], ")"}], 
           RowBox[{"5", "/", "6"}]], 
          RowBox[{"(", 
           RowBox[{"iii", "+", 
            RowBox[{"\[ImaginaryI]", " ", 
             RowBox[{"\[Theta]", "/", 
              RowBox[{"Abs", "[", 
               RowBox[{
                RowBox[{
                 RowBox[{"1", "[", 
                  RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", "\[Theta]", 
                 "]"}], "-", 
                RowBox[{"\[ImaginaryI]", " ", 
                 RowBox[{"Sign", "[", 
                  RowBox[{"Im", "[", "\[Theta]", "]"}], "]"}], 
                 RowBox[{
                  RowBox[{"iF1", "[", 
                   RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
                  RowBox[{"-", "\[Theta]"}], "]"}]}]}]}]}]}]}]}]}]}]}], ")"}],
       "/.", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Theta]c", "\[Rule]", "1.27"}], ",", 
        RowBox[{"B", "\[Rule]", "3.12"}]}], "}"}]}], "/.", 
     RowBox[{"\[Theta]", "\[Rule]", 
      RowBox[{"x", "+", 
       RowBox[{"\[ImaginaryI]", " ", "y"}]}]}]}], "]"}], "]"}], "/.", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{"x", "\[Rule]", "1.1"}], ",", 
    RowBox[{"y", "\[Rule]", "0.3"}]}], "}"}]}]], "Input",
 CellChangeTimes->{{3.827551824274338*^9, 3.827551835538342*^9}, {
  3.827552093255658*^9, 
  3.827552097839314*^9}},ExpressionUUID->"a965ddd5-a893-4434-9238-\
c098b3e4986c"],

Cell[BoxData["0.3257787412683152`"], "Output",
 CellChangeTimes->{3.827551845675845*^9, 3.82755190814505*^9},
 CellLabel->"Out[54]=",ExpressionUUID->"b149c712-91a6-4ee7-8d16-92cad228d46d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{"x", " ", 
    RowBox[{"Exp", "[", 
     RowBox[{"1", "/", "x"}], "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827468489747037*^9, 3.827468497122335*^9}, {
  3.827468550029158*^9, 3.827468569747735*^9}},
 CellLabel->"In[4]:=",ExpressionUUID->"87d802ec-af41-45fc-bdcb-d506ef1418cf"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{"x", "+", "1", "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", 
      FractionBox["1", "x"], "]"}], "1"],
    SeriesData[$CellContext`x, 
     DirectedInfinity[1], {}, -1, 1, 1],
    Editable->False]}],
  SeriesData[$CellContext`x, 
   DirectedInfinity[1], {1, 1}, -1, 1, 1],
  Editable->False]], "Output",
 CellChangeTimes->{
  3.82746849735259*^9, {3.827468560630088*^9, 3.8274685699875803`*^9}, 
   3.827481962269148*^9},
 CellLabel->"Out[4]=",ExpressionUUID->"3e6bf624-2d34-47d3-a821-004cfbb725e6"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"iii2", "=", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    RowBox[{
     FractionBox[
      RowBox[{"x", " ", 
       RowBox[{"Exp", "[", 
        RowBox[{"1", "/", "x"}], "]"}]}], 
      SuperscriptBox["x", "2"]], 
     FractionBox["1", 
      RowBox[{"x", "+", "y"}]]}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "x0", ",", "\[Infinity]"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"y", "<", "x0"}], ",", 
       RowBox[{"y", ">", "0"}], ",", 
       RowBox[{"x0", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{
  3.827399065803953*^9, {3.827399110076665*^9, 3.827399110380816*^9}},
 CellLabel->
  "In[158]:=",ExpressionUUID->"b6e097f9-9f11-4738-9df9-1bb1c5732eff"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox["\[ExponentialE]", 
    RowBox[{
     RowBox[{"-", "1"}], "/", "y"}]], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{
       FractionBox["1", "x0"], "+", 
       FractionBox["1", "y"]}], "]"}], "-", 
     RowBox[{"ExpIntegralEi", "[", 
      FractionBox["1", "y"], "]"}]}], ")"}]}], "y"]], "Output",
 CellChangeTimes->{3.8273991150292797`*^9},
 CellLabel->
  "Out[158]=",ExpressionUUID->"a5d9b280-e936-4513-a7bf-6c1d1444f0ed"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FullSimplify", "[", 
  RowBox[{"iii", ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"x0", ">", "0"}], ",", 
      RowBox[{"y", ">", "0"}], ",", 
      RowBox[{"y", "<", "x0"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827398872425025*^9, 3.8273988827608223`*^9}},
 CellLabel->
  "In[189]:=",ExpressionUUID->"41965605-2b79-48db-a227-2111a1e5bd93"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", 
   RowBox[{"x0", " ", 
    SuperscriptBox["y", "2"]}]], 
  RowBox[{"(", 
   RowBox[{
    RowBox[{
     RowBox[{"-", "2"}], " ", 
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", "x0"]], " ", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", "1"}], "+", "x0"}], ")"}], " ", "y", " ", 
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{"-", 
       FractionBox["1", "x0"]}], "]"}]}], "+", 
    RowBox[{"x0", " ", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"2", " ", "y"}], "-", 
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         FractionBox["1", 
          RowBox[{"x0", "-", "y"}]]], " ", 
        RowBox[{"(", 
         RowBox[{"x0", "-", "y"}], ")"}], " ", 
        RowBox[{"ExpIntegralEi", "[", 
         FractionBox["1", 
          RowBox[{
           RowBox[{"-", "x0"}], "+", "y"}]], "]"}]}], "+", 
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         FractionBox["1", 
          RowBox[{"x0", "+", "y"}]]], " ", 
        RowBox[{"(", 
         RowBox[{"x0", "+", "y"}], ")"}], " ", 
        RowBox[{"ExpIntegralEi", "[", 
         RowBox[{"-", 
          FractionBox["1", 
           RowBox[{"x0", "+", "y"}]]}], "]"}]}]}], ")"}]}]}], 
   ")"}]}]], "Output",
 CellChangeTimes->{3.827398883332217*^9, 3.827398934722471*^9, 
  3.827399284708077*^9, 3.827399346864921*^9, 3.827399566084638*^9},
 CellLabel->
  "Out[189]=",ExpressionUUID->"42c191f3-52e7-443a-b3d1-6dd6c714a8cb"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       SuperscriptBox["y", "2"], 
       RowBox[{"Re", "@", 
        RowBox[{"(", "iii", ")"}]}]}], "-", 
      RowBox[{"0.2", 
       SuperscriptBox["y", "2"], "ii"}]}], "/.", 
     RowBox[{"x0", "\[Rule]", "2"}]}], "/.", 
    RowBox[{"\[Theta]0", "\[Rule]", "0.5"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"y", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827398837880198*^9, 3.827398847831921*^9}, {
  3.827399118949429*^9, 3.8273992107183113`*^9}, {3.827399290472872*^9, 
  3.8273992992959223`*^9}, {3.827399354665359*^9, 3.827399355017283*^9}, {
  3.827399450730795*^9, 3.827399465762721*^9}, {3.8274000991186028`*^9, 
  3.8274001518795977`*^9}, {3.827400621736384*^9, 3.827400622783819*^9}},
 CellLabel->
  "In[206]:=",ExpressionUUID->"92c22ee6-96dc-4a23-9b99-2945672a4526"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw1m3k81N/3+Mc+Yw8VJclSSJIkie6rKJSQLaQIRVIkW/GWypYosiaVkIRs
SVI5r+y7GVtk3ybZQpaxf1+fx+P3+2sez8c599yz3ft6nXnM7LJ1MbrCTCKR
TFlIpP99/vf77OzGhiCeFMmSd6FiEug+W+a7VgVxxVLqrErCJOjz9y1+XhLE
qa7f3oi7TIL4Edc1l3+CuKHLa6OdIpNQGvqM3E8n1mPfjWpvTABZ4acY3iCI
49ldtp0i4xDtbnPG/4UgTprrqpv2HYVMptuppMPE+g+UiHyXIWC7oq0kclEA
J+mq3Xr0shkEOyqckyM34aSGnK2mD18CvvdNSMATgsVsXk9mPgfne76pVx8T
XNZzPK09Bip3H+yWCyQYJ8nP2YfBXY+kMx+9CbbROREcYoAGBXzkyq0JBtLh
ztlXKP+s4ujIvk04zvrSbLNhITIqS7CTreXHbZ7ZpV74XY2kWod7qyr5cf9p
F7mXFjVoYVjB8moZPy5+snkqpK4GPWcvM0z5RsjJ/ZWXsmtRv+64xo4cfpz0
qes7ybUe3aAeFd4UzY/3R2u3sQ01oZCe7nrGRYInrB6ka7Ygy6ndOnGW/Hju
+UkLI68WJL/hWnboPD/u+oH6pCmjBTWJsxW7GfLj/ENv2jQ3taIt9vveTZwg
7C9EqAp0t6KUsf/u9+/hx5NucB85cq0d+fzVcI4Y4sNJXhKUk5c7UeLlw6NY
Dx+eFP1Ad19YJ/rWomg/086HR5wxX5so7ETrnyWtjGoJudJY6CzXL/TAn6In
lEfI+4zrhQp+odBNbXvj/fhwm8UolLHahRIOOo+/FuHDDRVLir7c7EVf315x
MBTkw6e1xs56Rvei7q3WQyQePrzffy6JXNyLxFbPdV0m8eG5rM7a2ax9KLn8
cJ3kb1486dEhltW4PvTelCXzXQEvHpLfhk5f6EdFXglOOQa8uKLVq770awNI
wv7W2w4dXrzIVs9BwWcAhRvq9DOd4MWFo3XZEsIGkK3sgqmJMi8ef8bLSjJn
AHF1nTu+JEzw2oj12uwAunSMIqw5yIP3n/YfrvAYRNVy/UbOXTy4q0OxSHrg
IFLa+jk8ppUHjy+cKnWJGUQc0/Yso5U8eMenVO2cgkGU+wafCsvkwWX6ZOcn
ZwYRC5t3Rbs7D65DXX1p4zCEbs7ok0g3eXCbuR+7YjyGUEeP9FFZB2J9xw2X
7IdDKKuwJdfHggfHRfvUn74eQmaO+xPFj/Hg2EXZG+T2IZReR3dz4uDByQK/
XJs0hpH+M1Px9efcONlYrcyGMYzuKvHpakdx4+JvYph+M4+gtObqWxFh3HjI
pei0czwjaF1AvUziHjfO2G662LJrBH2Ikriqbc+NKzqJeT7WHUHcMX8zIxS4
cVKo0MDXqBGkeuh9a+cewn7urMLDxBFk32a7JrGLG59WNtyr8HYEfdvcrv9J
kBuPeORC2l84gq7HfpvpZHDh5qvt1F/tI6g27tFhyTIuHJt+GkMVoKOFw5o2
zt+4cMWm0yoNInQk0bEa8ukTFy4emFCRJU5Hd4Vdf2mnc+E2J6f9hBToSPa5
2X/O4Vw4+UEkS6A2HZkc4U/7FESw3Ek87iwd+XfWNK7f48INxz6Tw43pqENE
QzzSjQsPie3n3GlNRyEJkmWfznPhOlDp3udORwVqPePrhoR8cb8i21066v8V
K6RzmvBHKUWA5x4dqW7nvPpLndBP/CFSFkJHoy+myRu7uPDctI3aygQ6ElLP
OKCznQuXieaxWH1FR1i3nWWkEBfu2PTqnWAKHcWL/syU5ODC/e3vG/3OoCPt
l9/1dSY48XQc3d71hY6mw7tXWemceP/cw3vy3+gowW8l40cfJ95BPdwvCnQ0
YX2E42gLJ65YrOr+oZyOYg3NPy3WE3J/sWdnq+gIHfeyK6jkxBkebzuba+jo
mcQn2FfMibsWPSsOa6QjdcHWG2MfOfGIWadjP6h0NMLyb/u7D5y48Jlq/Fcz
HT2Z21Rr944Tt5n9qdLZSsQ7ougt/oaQe5fGfGuno8E2g909CZw4f2dmc0AH
HT2uvNn6PJoTF3/8cfDALzrqfZelKBhCyB0CDdV6iPzG1/U23SfWG3vHx/TS
0YFHY2FhPkS8il3BbX109OsO5aiuB+Ff0mfB5X46CnCS+cPmQsj5BQ+wDNKR
wgXtuFJHTly1fqp1muCfZ66evGfLictw6cyVDhH1VQ/8d9SKE09iEg64M0xH
cvtS3zBMOfH4GeM7QiN01LqjzOCTASdOVZusjiL4P97BtVu6nHiIM81hkeDd
G6QsBU1O3PH82GlEpyPq352W4+qcuOFOMYfrBN/tP0ZOVyHyrW+Q50OwJO1i
ob0iJ07+bSXmSnD9D1/7XXKEvTsSKToEe+a/EOiVJPxV8VZmI1g8pRhP2EHs
z3Sw6i2xX01U583zW4n6PpYylCPYLYAhKrSJqJft9vJnhP+iHlvrqJxEPrmG
tvYR8VVeUbkTzkrkU0gL4yPYxcx0z+l1Cj66n1VJksiHsLZ7GzuDgueeoQ9s
G6Cj0sNRD8tmKHj/2wytBSK/zjL5B/zHKbjqKK/BJyL/m0VofeojhBw1zp8n
6lNCmQ5f6qUQ9X2zr7eLjhyXedULOyi4tyAa1ybqKTC+b8ytmYKnO1yQjCHq
/bVLL35/PQWXKUqvrSD6gfd76Fw6UPCOrJgjNKJ/ij68T77yhYKH+EWMZRL9
dflVtaHERwquM+TWc43ov4J77B9epFFwhmfUhadEf15ylb5gnkTBDXvFqQuV
dMRxWYuyOYFYH6pscZzob8sTD648CSfkxvd97pXQEevBN4Jngon4S5jW3b7S
0QdJ/AfHfQpOMo5z0C2iIxLb+o777hS86Hto6as8OkqrutN++wIFxya0LcaS
6ei5kqfmexMKbqO2dzSROJ9hL91ye88S8o1zrfLE+XW7fT1UF6PgVHa/0OEI
OtLYefHYTmkKjnOodeb50pFiqEWmiRgFrxbe8f2sF3E/zZsKh24l8nf1dWjl
LToi1+nPzlEIefVQuv5Vov88sbTaKTI+em3Z+jNxH1UNqAuSRsm445jhuipx
XxXrHfE/NEDGDct9BeMwOkqSULJMaiHjmLzJtVElOrreKMnrWURwo8+h3s10
xLybw3PXAzJO/ctYo7SNoPkIliEzHzKeG//xul79CBpd2TAIcyf0o7hdncpG
UCONIbt4lYyv8rCwH8kbQc//G+upP0PGbRIZ42KPR5BiW8NJ781kfCKweoVJ
dQRJYrX5H3jJeLVWWfii/Ajaklm5c4iDjMfL2A1VEc+DVX9YOrvMgccfffCO
wTmCquTzPkj2ceDfEneoPe8aRpcCojc3pXPg4iE/t9Z7DKNGtMDhncyBh8jo
KJy9NozQyvll8UQOfOLQ8r4PVsNI3G17n9tTDrw7/lYlRXMYDVonp2/x5MD7
36m5KPMOo6tHc49e0uTA5yyyU3VeDaH2hU0KHBocuP/XSb+Cp0NIO/+2eK4K
B95x8Uzluv8QkpE9zMYsx4GLetk+ULAbQmNbShrf8nPgRdf9WJaliefrbN3l
yR52PORWxCX1t4Oo98M+k9if7HhW+8+LYdGDyODa01OIxo4PfyjzKn44iBT7
jfZGlrPjhr4npnIvD6LZhs455Ux2XErgZSy76CDyfP872NebHa8WOnzYOHQA
+dmwZHMJsuOkbVMp7mf7UW6T9pNWboLle19Pq/ajwWNhN1+ys+OOVQcV9aT6
0akdm/fvX2bDiyaGTbXm+xDvr925RgNseEcx1hF9pg+9Mj6d/zyHDedPm4+T
nehBcCqycI8eoR+CWdLXfiHSvp2gGciKk2++EPO+2Yp8txy/FOjHinvHJXtm
H2hFixu2a5VerDjD4Fn2+7kWNNWcdvS0EytueHOf/sydFtTlrVBkaMCKm0/f
Ueq434wKyzXyLoqw4vzmL3dmBlPRDSurFK8PLLj4ubdgPVSNfj1+HpzZxoz7
3ys/pbcjF7VUiGfZNDHjpFJrqyTtbFS/8Y66uYZgDuaTwaZZqOR2oYj/N2Yc
yzaoOuiejpIvtGSapDDjuMWR0Z6SJOS0l4e65kro46KPusOvIbsr0XP5TgQn
vbXbxHIcrF5vF3G0J1io0qh20RX0BeVsm88THDnXdUQtGJRWTs2lHSP8aRVa
XZVKgJVaf2FDboI13ZqYRTNhjpWswcZO6J+mjLQ2ZcHUsaeXizeYcJJz2jVn
/2zoz3+ZIfWPCe+PcuRrGs+F8oRi9aVOJhw7urlydV8BhDnN2SS/I+T+seZh
ZsUQmOoTeP4Nsb5dst1B4Cv49TJncL8g+Lexgnj9V3A12vTP8wnBp0CT/8h3
MFFTCDzjQfCfBOYrDABRTsf3cyeYcPHZ9Pt7AkvhUkl9mIQ6E06tED1892cp
vHE74Gp4iNBnSTl/R6YMdnctq2TtIfQLWumBlWWwPyu83I6bCc8VXA9W/FcO
bjaz7yLZmHDcq+Lu0aMVUCB0/jGsk3BFdTVB/gcVoPqfuNH2GRI+uvnh8F7u
Sjih/7GvuY2E97NU8rQIVEEAs3AZqYmE89dOxjScq4KqQt80hWoSnkvX6P/x
tAr0dp66EVpMwl17HpXnkqvBbLpj+fhrEp4k8fi3/t9quPZsfXOeIwnXIc1m
sETXQtYpu6XeyyRcvPYaiFXUwtRyVTf3BRLuzT/Bd2++FtzsIlMczxL29f5s
325SB77KUgfElUg4wyb9BTelHkpGQ4T095Jww+vbTr5Srgeml5OLPlIk3LE4
cfqRdT0EsX0u+bmF0H+7sd37Yz2IfYiKF1vcAPIWg+E/xg2Qsvmi9d0/G2Bz
5zUWdLcBZPx2727v2gCZlwn5YUkNcMDgy8dwfAP8ySyjvWMNoDXT27j6iODb
coVV3o1w/ZAcW5foBqTr6x1k82kCN7Yv7zz5NoDf8XSYV3wT3G3TPi3AvAHx
h+Neun5qglCPK091f6+D6iHxtJXJJsj4lCRSlLcO9vK2abXyVMgP3P/NOHUd
5tTjq7KPUKHYtOTS39h1UB+5W2J5igq1810pu33XIcI9SZ3bmgp/Dm1ViDm1
DlKb212GwqkwzZZGVTyyDgG8bZpCz6nAaFO+Xb93HVjzRX/yp1KB7GlUxLJp
HYpE9bhdvlBBpjD8hFvXGsxtKuSoH6CCgwrreQPXNWAo3m67IkuDm+xRS2O2
ayBDnawMPEADz/ZdiUGma2Dj8YzD+wgNgjzRwHe1NWgVLx9r1aFBWuHd6/Js
ayBqP7P77hUaZAdReKsXV2FC/X6IijMNCs3ic+3GVqFj81fWajcaVC58mk9o
WoW5zpxX1+/RYERl5h4lYRWmH0dalcTSYILdX+Jt2Co4Mye/kk+kwVw7bwV2
bxW+LcYHur2hAauXPKe3/SpoxezzDMqkAbf21yzB86ugJ5yx1TSXBkJbTxvk
6K5CGFNL+GoBDaQ+O0TTFVah6MGq2M/vNJAPXlB5sGsVrDbfruMspYHy+cDO
HUKr4G/7yEW4kgZai8lipksrYPVX7UtpAw3sDveml5WtQIjplhHLLhpcTT9s
durzChSEK4Uo9dLASSSSpSZjBbTK/02N9dPAdUXzUmPkClD3KHStj9DgtvNL
rnOBKyAVY1ljOUrks2ehqMWbsG8Xqxc/RgNfeC/Yab0COFd4b9EUDe4psvy4
YEzwv3NGidM0ePDG6mbvqRVI+q0hbTtLg0CBwu2X1VaA9Q6EcM7RIOQhX83Q
vhXoGOv4EDNPg8dzjp5XdxH+duyqYFmkwZMrpZJ/hFZgtaV63YRBg8j27bTr
5BVQXY0OfbREg2htD7+plWUwD/0d92aZBnFFjXtv/V0GYfPvpi9XaJAgK9P5
b3AZyq1yZ31XafAy4X6QZ/syuEotJWJrNEji6jq4VLMMExquD0YJTvFVHvD5
TnDyU6r7OtEfk+FP1nOXwUbYvWCE4IxLv4/eT10G1pBey6MbNPjQhP1hiV8G
eZND0x4E52IJsUGPCU4JTIohuCDvnybl3jKYpAXEJRD8WeLszGO3ZRD/FUEK
JLg4Ku0V79Vl0EEf2U0J/s5K0ou0WIb6p0mtnATjHhZLgmeXIcC5ODqN2L+M
np8WixHyIP5bMgRXnuc2EVFeBu6yy1ERhP811VeYEvcsg/v5HdJ9RLz1RyBb
bDvh77CdgRDBTRnCVm94l0E5mHxUkchP83Y3ihTzMoSNR/IfJPLXFlZXmDa/
BBHGRxmiRH471qTsZf8sgWPivMgUUY++vp8lCtQlmDaZfX+KqNeg4QHnvLIl
sPfNvNr4jwb0H6Eiyp+XIKDPflmDqPdEiob7kVdL4CxTirUR/fFXKG7Xt8gl
4NbNRWsTNJgNnG48FrgE5XTlbJ5xGjAcUmS1nJdAVKfYZZROg5WO1fZK6yUY
9pzn/jhMg3VdswBd4yUQfquRfXWQOE/ylD59tSUo0Pv45FEPDTZN34y2IC+B
KuIt/NFMnKfL1ce7VxiQqq1t39FEA+HmXX8v/WWAjfTUwc56GogVtOratzPA
9uLIj+fE+ZHzVtu4mcoA0XSK6bYvRP579OWGYhmgRRvTO/yJBmaadqbnHzFA
fn5vw9E8or95wzLRTQYI0wp4V9Np0Jnac55flQG5JaJil+KI+4hz9kGAHAOs
OhWGvj4j/HVlz2aIMmA09NEd5ic0UDy6n3WAiQH+UrlfTgcQ54Hmn5tXtwj+
ViY/61wI/w7HdEmXLEKHFsnb3Ynop8T37Am5ixDgMiXBQdxX/Q7NVg9iFoH1
cdb+cQsaHF6XpBhbL0L64f3H808Q9ZCrujw3uwAyFfNeVvzEeY3oCnMcWYBW
2pOdnyk0EFj4+7n75wKoRrwXWWemwbEfwrwV3xbAMDA54tw8FWLOOxXHBC2A
vft5fYFOKmgF8Age3rYAtgLmr4RfUuFNj3H5nePz4HRHYERUmApKw0rLrcrz
wLzRlNfJR4XysU2KijLzYPXnU28IBxXoi00v6Lzz0B3n5PEf8TyRE9C7bdw9
B0lBPCe3vG+C/FNaEvu85kBqLg7z2t4E5TnK/v1Z/yBMemaLxlQD/L6/WV1b
eBa835RpxpnWAed/OX+jOGeBMd+l3qJRBwreuin9qzOwGi2luSpdB543/+O8
OzADUqMW2lsWaoH9wkhHVsYMyAtc6nSJqQUp5U8eAhozwK1qup9OrQFbuklO
z+VpyDox362pXg3FMTInR80mwV3N2//z33JQ/NM5t/8lHeIpd61C/b+B+/Q+
2a0BdLBSpIjwGnyDosX7F9ed6JB6/5xJ4o5vcJxdrrJelQ7V5Q+fdxZ/BSPJ
u3HXWkeg2OBjZv98MXhc3KaWwjUCd/nWhZxvfoFimuW9LXeHICPkxZee64Ww
3pH9cc1mCPpfxb6yUC+EE/3Mo8PaQ/CEyZpznLsQ6qYyDD9uHoIOFZE/Btmf
oJtrZZdh3iD0Rg8v7J0tgI2TL8ofjQ6Ao8u3iXt+H0GruIuyZtYPr1weG6pn
5UJ2xtsjVUf7YdjR+egN31wQfuFyLVK8H9xe7G+s0MuF9kX2Z2da+0Ds9Y2/
fV05IO1jxv9yuRfMVctibthnQ+n9eW5Muwcc87mG2IMyYfXJQfag/k6In3E/
kyuQBlSXqivbMjrBrHw7hQJvIcXwQkX27U5g/y/sccv1t3Ba4GHAT/ZOUA9+
bFdamQrPY5qZZfd1AKc66+49D1JAJfHWRt2ddvAskN3Cw/8GXN/nMDYJtsBV
8N1bIf4cFHlvPjzR3wyXVBTq1FPiYcZNnvf2h2YwrLMU+Lo7HtzU30u2ajeD
kaGmdItiHHg0JevH+tLApl1fNO1cDPwb26t7qL4JejZcbe5WRYJ7Qfql2KtN
YHguw1HjQiQs/CftvkhqgpXcxiGp6Qhg8O98/eVQI1w4etDDcUcErKoIzGu8
Jt7T/urUjHKFA/tDRtIptxporajLNt0VDMF6HoXvuGvAjOeOhZBLEPEeN1tH
flcNU73PaMYQCJzvxxdqu6pgG8u6ia1DAPA19eoZnKyE+5Y9h4Tb70NE/AXb
3L4K6N1xmKyqeh8EbDu8Nt2tgMZoEZXZRH8Qmqclt2SXQ9ZjjxcPu/1AeHsF
47xwGYQereA6cfkuPB8+zvslvxROiE8KNhrcgW3ZJZLbzpZC8uX+4O+a3rDj
eJF+9/0f4HpsLrT7qCdoNprp/mgHeJs+xJpzww1OXTZ0f8gFoC3ZyDoefAt0
5nRfn8RKYPDP0aaP71xBb5vGfM37byDz8ZLp2t8bYHZV8k2z7xewVODVm/7s
AKG3boc8+1QEbQsmFy3PXoXvvmUuRlOfISPrwFD+pD1IRdkda7YuhKB3Q3F6
BrZg/uqj9LP4T8B6UfX3C/7L8Pg9C48RrQDUxJ+1jX+xhllI6aKd+AgmhmJ/
q/ZdgN11/0ojffLhRLp6C5liARbtmhnnCvJALLkOj1g2A3xiyJsmnQt6UdIe
yeLGMPrXAZf4TsxFssFex03PgQE7+WmywgdIetYwnYIZgNhBHfnkTRnAEbic
1flPBwJ1R5d3PUwHzMPt5qZNp2DCOqTmzVwa9O92POx2QROMPWXid119C/3b
PshytWBQHFZ99c3PFPAOj+lv/asOu1IcD+3STQbe6G2+atGqEPKFzPqmOAl2
yujEW0cpQ+/rc2+Pm7+CA6g4z3JSET7UR544fvQFFNcMP/fX2gs+S7Q+TCwe
ZC7YjJ60lwbd3QL/YUwxsKea7fpuNXHYamy0DRuOhOVWuQC/sK1QtyHlcu9J
OBzbVrrDeBM/OFq8fe9nEgyO3W/K/7CxAutH6eH/thF9tPX3buGg+RJMRE9j
GfcAz6eGbOzXBkqm45/bzzy3BbW7zbdrPL6U+DJHV5xS1UWlU3J9T68Glygk
2FUJqbgglpyEs27jtJJekbwpLj5fpM72SHdkYaLE+GDHt6DjAUgJ319uprhe
Uth5/kGwTyhKs5sWiK+nAA8+LlluGYHs77a4Xf4gCCgqM6jcKwqVH15K2T+w
HW5dvf6nPDoWXeeR3VOOS0Dykb16FXnPEXnNMnKbtgy0co9nVzQmom7XJ+M+
DxWAvT9jU+X4azRZoPd4sFgJEi0OqdkFvEHLPs5+v5+owCHNmOtDAiko20ry
zOfvatAoP59o9yYVFZz/z1NNGwGJ9GnDruQdCjtVmLhUoAXP/wgdGNZ7j/R1
PvB539cGpRZ3W/uuDLT7ivrDrT6nwT5NucKe8QGdao/Z+vWuIaw9jV4YDspB
Ly15CslHjaBOfTkqPzQXsfMpd5VuMgH73ZYVSiL5iBzq/tqY2RwUt3P2uvXn
I8yjMkxI1BLW+IoX8t99RKWHbF9v0bOC2CURmYMqn5CcmNW0mZcNVNV3hh40
LkKDyu6c1q+ugKP3r6oLe78gueCrTDYSDkCW6mINYClGw3aG6kc+OsJpn26/
1o9fEXdXyS+9letQL9vn5iEEqNf5BctY5C1wbuvLeTkBaL+3+KHiIDcIwlwX
bG1xJPVC4Ebd/duwZ8L14GO1H8iMa3IhPtQDHDXdPnSNlSK38VpOJfodUH0+
W/fXrAwZ2Xf+tuL2AfJftzGWsjLE+9CoO0aVmAYSbu+Rf1GOQnLtA7ek+MHY
jPsb3zOVaJ+xsnll331wTvKK2ZFVg2KL7St/BweD+sLixwPCtWjdRuBzkW4I
cOt5N58MqEVZMQqBJryP4MOiN99NqzqEsVpYdb8OhSn9u49KuBuQaLLNj6Kh
cCjyKynJUaGim9HO3p4ez0Bt3498w7gWFL/K3I85J8Ch1vbYkpoWZK8e1uk2
kQCKPhN35Vdb0Nh38sqrGy9gd81WTfLlVlTtUXW61y0RBK/cbAG5NuRsOre3
IuQVTCRun1MoaUevjohcPu36Bl5zex7iGelEhl+TUaZIGjB7bu62F+lH5r/a
N6ljuWBpk9FcpNyPjCYy6nlccyH/NKrhNuxH/XoZ7zmScsF257XCgqB+FDKj
8+UWKQ9Kq79FsM71o8ofA838ZXnwcLv9ydTGAfQuAp5RDD4C64/87KGHQ4hh
3yTt5lcIHNyG922n6Mhx8V/5qPh3eNjfrumWMonmvNS/dqgRz4kvZ254f5tE
yf4RAheNK0AtCo/1a5tEagF1hl3XK2D6ZMafUI4p9MpdYLw8sQIuZf73NOX6
FMp+zOels07oe0p1tR78ixxL56b/QiUssR35st12GllNSZkVEe9DuS+CDP1m
Z5CYtaZAr2Ad1AkG/eYjzaKQB78jQ/bWAf1xoN8bnlmks6coWVyzDkR9A7LK
ZWbR6pfbH4Td6iDE6gGZy3oWyZdCh0RTHdjs8MPj6maR+3HaZ7fAeuB/7aGY
l/oP1XfnNUQNNMDerR5VJ/L/oYLNu4+FLTTAqaful1rhH5K/Up53nasRfO/d
Dlv89Q8ZHtxR1avcCKPWt0Y1Ns2hAspE0tOgRsDFbyTV/jeHvEXGFMalmsAl
2Z5/2Gwe8Q9l71mVpsKTO88Tn9jNI0su6+4dClTINmyUOeI6j9KDdB4dUKHC
1Prh408eEXKpxw4Kp6jgfIHLTfXbPMolhbv5XKGCk1B+S9iuBZSwzn1O7w0V
Qsfp1ocVFpD3bFzU/XQqZJRunxhQW0D1vtiBdzlU+OMayHrYZAHFOxQLlH2n
gmOD+aGBoAVUGax+R414v74atBF7aGIBTXSblvLx0CDoorJkP2MBMYIkRjQE
iXlU+VpOKNsimjZ69c5ShAYjg81VfWKLqFyIP95amgb2KI3x6NwiEpbOmI9S
p0HAlq4A5UuLaLT9y8hBYh5IneTb1Oe0iFyL7oT+0KbB0Is7ssoBi2isK+XO
WyMa2DL0LHsLF1HR0a6EMAdivmm6Tw8pW0RJzF97Yp1pkJxW6HaQuogi1LT6
w2/RYMBE/HHIn0WUX/Yq7bgP8V6V9++rkigDMXxTS76F0+CSU8KO4PsMFH9Y
/+NwNjHPdVIaZ8IZKNr451p8Pg3ide/4WSUwkIwiH021kAY0GfO+Ax8ZqIgR
9VTtOw20fm9+0z1M2Bvb3Hqilph3zALPac8wUO7Wp/UGDTT4r3KOKX+Ngbh1
nmhpU2lQ+LbFNnjLEuqWjJObb6OBrH2klJLOEuJO6mLX7Sfm5RZSW6LJEtJi
5jiURsyPtpqugRyXl9DE28G6CWK+TJQwoHffWUJC2QMph/7QQPVZSax20BKa
TgtKPEzMp21MCtr5z5aQu0uPs8QkDXgHuNODM5dQ/+gEKX+aBpmGvuazn5eQ
/BfZu2bE/KuDj5Mvli+hbwNiKkPEfDy8/8KXKuoSyro9ymtOzM/3X9deU+oh
9n9wqbdggZj3+NS2vfyzhAw1hPyWiHm72O99LcfCEsLXzKqkiXn8/JSwjxvz
Mkq6sC/qCDGvz10M2dvDu4wmDpkVKxPzfETDYpf29mU0V6S9eSsx7+/TcAjL
37OMUi8r+PYTXJvVrr5DeRm5Lo9X/u/7gquipyaDsWUUH72lYc86DVjCPr2c
1VtGoz6LV94SnLQipX/RYhn57g51pGzQQP169HrVlWXkLuaTaUxw5y+WHCW3
ZdT6ezdbAMGep29bv/RbRul98Wf+932HQPEgH/kx4c+WUJNYgnNkjXC3uGWk
t8dm3otgvec/XHtSCHvM8iyI4FHygV06ucvI/mu60Tixf6B3Ei3/2zIyP61W
5EuwxCjfgx01hL7uBMc/wv+S8/eUQtqWUXmW62Z9gi9UTQ3ODiwjHTexgnAi
XobKpaiLU8uIW2+6MI/IT3Rag2b1MhGv5sPpL0T+DmzRmFPiWEFaZpsPphH5
bQzMSn0puIKiOQMMPRk0cJrfbkoWX0GOa6e3yRH1SG1d/tSjuoLkU3sWjs7R
ANNyuqpzcgWpxr7PeE7Uu+dj55aP51ZQq0yd3i+iH7ZEFXmFOK0g/GDkcxai
Xz4yy8j881xB7pOjA+NjNDB0i+u4+HAF5TotGReO0uDROc8jBxNXkPmNofHp
IRo8q5dzznq/ghRr0q/tGSD6U7vvlfTnFcS/m0o90kuDXA0dVuHmFaQndcxw
5ifRL0WrKpF9K0gq8fxATCsNyg/mXeOcXEFz2W5nN9No0CG7rWmVYxWtXoak
lBoaDKY2MnluXkWJKYoreRU0mNj5UPmvxCpK4hHdmvCDBqQtE88HNFZRxKWv
txaKaCDDXGJfeXsV2fhyvPj5lgZK/7nFofuryL/O7G9mEtEfjN21RU9WEdlX
9sP5F0R8U0/3Z75fRVZ7vGSVI2jg9evy8tO+VYQdKtFneNHA33TLPsrkKvL9
IrPzHnGfhFJrrR8sryLzE/trfjnR4FXlwQr3zWvI6vJdA76LxPnNZ4uwOLOG
RsVFXOwQDaj7ikubzdeQovKti8GHafAr/eb8matrKLH9q/F/+2kw9eqn5bH7
a6j/OersESPq8fi9tOTnNeRL1g65ukIFcfZL5onla0iKuWydb5YKcvcFHm9u
XkNFziYXQ0apcMzLZ5pjcg0xWLRlhlupcMXu7NcJiXVkv8i+cDSTCjd7maau
KK6jEFb4bJhEBW+LQvE+jXVULms3pBhDhTCDnUE083WkqsX+/JwfFQqOzhgW
PllHwlPPFtn1qcAqFEO/t0wwjXMtsaIJBKb8eAU4NpBiVyp7dkYT7Kp2VEkV
3EAROFe3ydMmOOarHlQtv4Fyv7r+tT7fBHeGh6Q3WW8gzOR6h/5gI0wVKF1J
LttAVB6WnLjBBlh7IhquTN1AIe2lzx7iDcB9jf1TZfcGSs/5Mz77sgFkd/xi
HZ/fQKOKGYFm5xsgvxRrFhEiYYb7SQco5fUwITd6y/YUCfO+vDFU/LAO5rb2
BGbqkbCi2c+yuy3qYIW1+fmcEQkL2b/33PK+OuDs+/ojyJqEdVB8PrW21cKe
qKebMr0J/UM7uTaJ1YKCf4D0nB8JiwigrD+YqgGVG3eOaASSsOmH2VKnS2pA
S9vuclMkCVON219Sd6EGbFdU8v5lkDDFn6PNR59Uw7XRvRXqeSRsVD5TlWFe
Da5t4p2Bn0lY7pqF1YRENdzL4WQSLidhNnvtc64VVEGiXa+heg8h70h+qNRQ
CT/rAqcD+Jiw3Beneb/QyiH62MuTpluYsOmCpI5/weVglFeQIL2DCcPtLitN
qpdDY+yQVqUcE8ZfcSOIK6UMKi8ff85xiglTDOjb8sq6FAoXV4+H+jJhSWF3
PiYeAHB3EoqzfEis93lUMHO7BJR69k7IhRJcYTGc/vE7ZJdaxtbFEfr23yuN
936DtPCiMe6PhDwlhcNitQhiJd2jnv5hwvpx01OV8vlgEvt41HqaCfNXTVqd
18kDAUqKhuIioa8VdGmbXS48maL9prIyY5gvXj0o8QGCvuxXFxBnxvBK8932
OW/B02B8ONqMGSOdfLr9TFYImPrYqiSUMWP+f5TwU6kZKPalEPtiDSHfseIi
+iILtUNlmzGVsCfJGjr8LBuZse714OlhxmzOCPoHnMhD5uH/PvovEOsTRKon
VT8hy9cBBxxkWTBxFWMkqvgd2ZSlySs/ZcHwE0UjamGVyJlrXKLRkhWrZsI/
zI43o/E7xaxcl1kxx8Rs0JVuQU6jj+jaDqxY0XfGZ9dLLcihQibjx21WDGMP
3ytPbUG2964e+BTGiuFk9YDTea3I4t8ASiwh9GX/qBRfa0enujqsnCTYMGru
zJbXuZ2oQjf92DsZgpttb24b6kRaRV7iwwps2HSnt4vF5l/oeMyW4YtH2TDF
HXJ+u+78QuoGJtfPmbBhozTrly0aXUiprOmOahAbhk29aYz62o12ZlbGso+x
YYb8h41cg/uQyeuiL7XTbJhOCEdc8qc+FBqV0f1kkQ2Tef3IPGSoD835PJHY
ysaO6e3JWVXZ2Y9q9cyy94izY9xPmqsMvPuR59RIhY4ZO5bqZ3VTW3IAZQ3+
HOW+yI4lRa0+YhweQAPtNVw0O3Zs4rX+4gO9AaQHH85Z3CLkkeQSSY8BJBHh
0XMtjB0zWYxriy4fQA0H2OZDS9mx+qxIk0NWg4h59+JWgxp2LPeS1gWfm4NI
ddsfNUEqO5Y4V1KS4D+Ikpkb/F/0sGO41MXMK6mDyLslmjuLwY6RVLzi5McG
kZSHlFSDAgc2LLX/0cObQ8inSNOY7wUHpv7n4VqI5TBSsqJOW7/hwEg9EvW7
HIbR2IbVk9x3HJiqfXTF89vDyFLbs+ZcAQdm6Fd9YU/YMFJrT0fRDRyY8C9h
vuKvw4jxj0dehETG0rW2f6gQGkG5cQk119jJmOhN8i3TnSPI8egeh2JuMsb9
q3++XHYEdTzAki+IkLH6+FQnzWMj6POm28KvlMhYPH5eDK6MIM/9HaySV8iY
o75uU3H2CFJosU++fZ2MJfG99znzeQTRPWdQ+S0ylktdi/gGI8i0hNPnih8Z
MzQ4IYFRR5DyWY2Zd3FkDD8eJNj4dwRNTNc8YbwkeH/EUbvFEZQabSavm0rs
r7ku1bk+goS6XRzGcskYI3rA0YGHjv45JffI1xL7mZpO88rSUQbvfp//qGTM
/PfPS5n76cg2/6twYzsZ4zfa80dGhY6al1qNXYaI9TJtflUn6Cg/hKM2b5WM
qe4T+xtlSUdO8tEOzCwUbDonwlfNho4kqOJsxhQKJuOScL/0Ch1FblXD5jZT
sIjJVHEvVzpyTXMuVNlPwcy/xi/cDqCj3qbtMbwqFKzI27sj9BEdnV2qvU1X
p2Cq5zXP+j2hIzk92QOxp4n1Q1VyK3F0FO/RwXfzHAVLMt6RF5BIRxyvg6dO
mlMw8q9otvEkOhqeGcmcv0LBOsYOmOi/pyOj7TGhDc4UjJS5dv3MBzr6oaV1
7e1tgp0Oh0vn0dGruOTdpvcpmOOOU3tuFdER949zbPtCKBg1pOz74Fc6ujtG
GmZ9Svh7bSP+ANDReQ3rNwWJhD/ta+YOFXRUeZXXPyyFiD/J7oJ+NR0pR3y/
ZJ9B+P+3oUegjk7MbdtFhYooGOPm75fKVDry465bHi+hYIat+5Yim+lo8tDd
zrIKCpb7I42voZWOakM6Ym+3ULDRplPvuzvoSDU/2OPMLwpWPTKrm/eLjt51
qZhIDhDxCXb123XT0RY2utLKbwqm87HYd66HjgIUYja1TBH25nXl7froaPa8
1nTG/P/yrbGe009Hl+//a3ywSuTrujZT1wAdUTOSP1iycGLxtUJaw4N0dKz1
XJgSJyeW+9OgrW6IjrLWSNc5N3Fi3imvyiKH6Wj7nlzdwa2cWLp8yg6VEToK
NbSWKRbjxBzVV2aKCGbc4eV4Js2JKWpiBtvodHQ15fvINXlOjP8wh5YlwW31
zuXHDxLs1t/rTbDWwvYUETVOrCPyvIInwfk76+7PYJxYiPk/zOh/v9fTvWtT
o03sF35Imofgp26y6I0+J2bTn/Anjdhv/UXHjjumnFh1TULiToKdK4JXDa04
MZlb7/S8CH9/Tal0ydgR9p/uI2cT8egI07+QnDixftPonjIi3sLjMfEdrpxY
kaFGVxGRD+nrWl65XpyYq2EAXziRr+jof6YhfsT+BhCCEflkLklWtgnkxEYt
j5m2EPl2/X1OUDWMEyPfOfPwJFGPXn6mWb4ogqPldsUR9dJTy6X+fs6JYXYi
GtX/+72enXUOJHFiqqYGIx3tRD8Xfnd2yebExF31BZ8T/cDe73xG+xMnxtC/
+kmH6BcPiqjczm//s2cr2tFA9LPV3d+NNUS8bVa3Yol+wwNlK9OoRHxS7j4V
RD/uz+lI9fvJiflbJT9oLSX6mfmwrcIIoa8ohz/7RkdfvFiM6eOEP+4cLee+
EPWZbNJ8NUvEV+eDzX4i7HU4SvOSuDDx/W+tf2bT0e2chNHJbVyYo0WfqPJr
oh7SDp1vd3ER92GI20YCHdUnHKy9KMOFKfrxPM6KpaPdQfWZDYcINjijmhVO
5N9q/eYHQy6s+p7l+Im7dBTcXGt95TwXhgv0wA4P4rzoxBnuuMSFqfqXfP/l
QkdPDioqhV8n9j9p6rhiT0fHOW3nnYO4MP6Tqr86ztJR+ucKH/lvhD9L/pJ8
2+jIdN8z5+FSLozqz+wqIEjUJ+XSxcQaLiw3y+oDg4uOrJ4sHuP+yYUl5bjs
vbk2gviuyDJPzHBhhhJKj9Z7iftYIDwkcw83Fo/RjCBxBEmGWNyxUyD4UK3p
YtQIoq5JO20/xI0pxjhTBB+PILk/JWcenyDk5yLz5r1HUC9M816/yI3lqvad
uWY8gk7eMImRi+LG+sMoZYIsI8j92VeSy3NuTMbcQubE0jBK/Szh/PE1N+Zf
mxpq/ncYMTPPnFDP4sbMMzKdNLqGER4bPn224n/rE2JH84jnEV555tYiN0a9
+t2nnnieKQgeYS66wIMJe7qokF8MoYuqSTdWL/MQ99GOO9pPhlDYRY5OzJEH
owY9obncH0Lj79pyatx5sI43Z0d8HIZQurrbxa5wHszwrfSDB0pDSPJqZtE6
8GDVOQMNhuWDSPjLDpeTUrxYv+1WF7mfA2jd7t32TXt5MXP5r5FnKgfQMO+B
6u4DvFg18+t/Rp8GUK691i53xIvFt7gnCkUNIG3+6y3JlrwY+cBglP3ZAeTp
UHSYFEmsrzv7BH3vR22bjUlf13gx8UIM1xbqQ8V4d1YQKx/G/4j/17GJXpR0
/aqFERcfZmOwvZ61vBc5/7iT/0eYkN/28V9z60WsN5LshZX5MFf2XNHUxh6k
XD5Z7eHEh+UKTT1q8+1Gz9xCIhV/8mGYukn18U+daLk+qyikh+D5jp6ToZ3I
dg+tr3+ID5v+LMYQt+5EB7tFFCKnCXkch6sVuRONJZuOMFj5sQg+9r4/5h0o
jPv3fQsxfszwXaGs02w7auyjfN12jh+jZlrutORoRUZBBvteFvJj2GbLlnNe
dSjNYlr3yxd+jMTbLvSZrw4tyUdebftGsLesa8u7WpTU0vyap4zQV/xWfeBn
DZoUNxPwayLkS8Zng5WqUchXq8VLo/wYXhff9q6rHJVMX/shvm0Thi84WL2Y
/orkLgSYpv63CSO1yhmN87tDO52SHGUqgOUqc73YO0+DRtuR4wI7BbGQihsx
qVqDMMD6jhEjIYiNzh/TN3cdhLk0xxyR3YKYqsd32Z2JgyAyPi66a58glq5b
e4j+bxDsb88u7j8qiE2LsYhZpA7B8sOND2fPC2KOZz9ubSSPwO63ItsePRXE
ihx4n7b2/YYj2l1U7ihBTDx9MXWIZxT0/iQGR8QKYuQMqzNs6qNwa5/4fNxL
QQw7yK/qHz8K3z7tpqZlCmL+J6e3mBj9AaPKg0HlVYKYocfULteaMbjiOK+u
UyeIUQ8sq6QxxsCb8/O/ukbCfu3TuKk94/BSX+1ySxvhX46XXGHQOIy2Y+qD
Q4R+SMou8ZMTsOzN/O/Kb8KepumOUfcJ4Nle/v7PmCBmY7tJszR1ApSstbfO
zAhiuZtEVrNYJ+EkE6XRfV4QU2SSDP6uPAnmKbUBDAZhn69gb7/9JDidDDvq
u0r4+yZvRChmEv7f/6ew////qf8D5DOaVQ==
       "]]},
     Annotation[#, "Charting`Private`Tag$972971#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 5}, {-0.9303415734580547, 0.7156351531106733}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.827398852732707*^9, 3.8273989378862534`*^9, 3.827399058504977*^9, {
   3.827399120292354*^9, 3.827399210951322*^9}, {3.82739928762567*^9, 
   3.8273993001692142`*^9}, {3.827399348722337*^9, 3.8273993557907543`*^9}, {
   3.827399429923098*^9, 3.827399465958661*^9}, 3.827399568428409*^9, 
   3.827399687181246*^9, {3.827400101329447*^9, 3.8274001522375298`*^9}, 
   3.827400623136322*^9},
 CellLabel->
  "Out[206]=",ExpressionUUID->"8c4b66cb-8732-4825-b27e-681a4d43fbfb"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexExpand", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"(", 
     RowBox[{"1", "-", 
      FractionBox[
       SuperscriptBox["\[Theta]", "2"], 
       SuperscriptBox["\[Theta]c", "2"]]}], ")"}], 
    RowBox[{"(", 
     RowBox[{"\[Theta]", "-", 
      RowBox[{"0.1", " ", 
       SuperscriptBox["\[Theta]", "3"]}]}], ")"}], 
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"1", "-", 
       SuperscriptBox["\[Theta]", "2"]}], ")"}], 
     RowBox[{
      RowBox[{"-", "15"}], "/", "8"}]]}], "/.", 
   RowBox[{"\[Theta]", "\[Rule]", 
    RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827401001552004*^9, 3.827401034215644*^9}, {
  3.82740134999053*^9, 3.827401377741975*^9}},
 CellLabel->
  "In[220]:=",ExpressionUUID->"5073e95c-759c-4f6b-bccc-e97ba8930d41"],

Cell[BoxData[
 RowBox[{"0.`", "\[VeryThinSpace]", "+", 
  RowBox[{"\[ImaginaryI]", " ", 
   RowBox[{"(", 
    RowBox[{
     FractionBox["\[Theta]", 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"1", "+", 
         SuperscriptBox["\[Theta]", "2"]}], ")"}], 
       RowBox[{"15", "/", "8"}]]], "+", 
     FractionBox[
      RowBox[{"0.1`", " ", 
       SuperscriptBox["\[Theta]", "3"]}], 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"1", "+", 
         SuperscriptBox["\[Theta]", "2"]}], ")"}], 
       RowBox[{"15", "/", "8"}]]], "+", 
     FractionBox[
      SuperscriptBox["\[Theta]", "3"], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"1", "+", 
          SuperscriptBox["\[Theta]", "2"]}], ")"}], 
        RowBox[{"15", "/", "8"}]], " ", 
       SuperscriptBox["\[Theta]c", "2"]}]], "+", 
     FractionBox[
      RowBox[{"0.1`", " ", 
       SuperscriptBox["\[Theta]", "5"]}], 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"1", "+", 
          SuperscriptBox["\[Theta]", "2"]}], ")"}], 
        RowBox[{"15", "/", "8"}]], " ", 
       SuperscriptBox["\[Theta]c", "2"]}]]}], ")"}]}]}]], "Output",
 CellChangeTimes->{{3.827401024319312*^9, 3.827401034406571*^9}, {
  3.827401359748621*^9, 3.827401377935137*^9}},
 CellLabel->
  "Out[220]=",ExpressionUUID->"9f4fcd66-9d81-45fd-8f5c-1c2cd6ec6392"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "@", 
    RowBox[{"ReIm", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"(", 
         RowBox[{"1", "-", 
          FractionBox[
           SuperscriptBox["\[Theta]", "2"], 
           SuperscriptBox["\[Theta]c", "2"]]}], ")"}], 
        RowBox[{"(", 
         RowBox[{"\[Theta]", "-", 
          RowBox[{"0.1", " ", 
           SuperscriptBox["\[Theta]", "3"]}]}], ")"}], 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"1", "-", 
           SuperscriptBox["\[Theta]", "2"]}], ")"}], 
         RowBox[{
          RowBox[{"-", "15"}], "/", "8"}]]}], "/.", 
       RowBox[{"\[Theta]", "\[Rule]", 
        RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}]}], "/.", 
      RowBox[{"\[Theta]c", "\[Rule]", "1.2"}]}], "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", "0", ",", " ", "1.5"}], "}"}]}], "]"}]], "Input",\

 CellChangeTimes->{{3.8274008254366617`*^9, 3.827400873612925*^9}, {
  3.827400910685648*^9, 3.82740098397512*^9}},
 CellLabel->
  "In[215]:=",ExpressionUUID->"b6d6ce4a-b418-42c4-a061-c998db199010"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJxF0X0s1AEYB/Ar1Zkl2XQrb/P6S6xdq5SreW+MEtXceetyxx3pOrLyGnnp
VLq7OVdbkrc/DGNrsRhFhHNNmLkyq/NyIXfk7UQYV231PM/27Nnnv+d5vtbs
+MucnSQSKeBP/52/zvNLguIj3Uj/Ki/6sMMA4eb+333zk3Ei4iJ4scFbyCOY
4ByK1jyC4IN7e/ynrhCZ4PjypA+BhBjcIRS+CSBKwbv3JJLVcS/BfvdYgtf0
JnBTKkdZOdgGHgm7QU1M7gQb+4q4HR494P0KTv3p8F6wrRWvRsAeALsob/Z6
Fg7iPhtZFxTFQ+DYd3J5W84ncFFUlemByGHw0ZCJ1W3OCHhUG9jv4fcFvDx2
6BglWAkuqE2LYTDGwISRfkBK8Ti4MSGrVlw2AVbYS8mXClVgu9whh6tF38C0
oLGTZcWTYGWCwE0knALX00INuyXTYAq9Z6Ra8B3sriJJ3t+ewfsosYZEihrz
LL3+wDlOAy7pfyYTJ8yCM/jSRYvEOfAsy+FgKPsH+PGWZtcodx7cMue7sC9s
AfzZ3kV1xm4R/30kiiqtRHfQw9M9LZfAJ0I0NSYVaF6uz7Cr2TL4IVd/Y4cU
3WrB0mlMtODm7Tw9RzG6v8FbIzJeAXdbcWXCQvT9puCKCYOf4Aibr8xwEXqz
kWrmRF4F39VTf3yaiabY0Vj2pDVwMp++YpCKNj8VLSfS0e1bt154ZaANRKJz
adno0tquJ+pHaNnMcWf5c7RJlFGS4C262dHCv6INzVx2tGxtR1dn+8hWutBn
yzMo0X1otnK20WsUTa5cz2eOo+t45GtpKvTqpg25fhqdbxrGsF5AU1UxTq5L
aEXNHV2IFm1Jk1QVrKE7SWXpdevoWHldoHwTvbegxXZyC/2KIV/T6dC/AThl
OnM=
       "]]},
     Annotation[#, "Charting`Private`Tag$973377#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwt1nk4Vd33AHA0KCnJkCGS0ECRoYG0hEQUlVkoyZSQsUyZNSBjL5FSSb1o
QFSmREhKZioclQZ5c6dzLhV+63yf31/r+Tz73nvW2Wvtte8aF99DJ/h4eHgU
eXl46Dhl6nPNwvfoLvb/xwTXdes7lHbB6ZGAircY3/z64pWsdAC0muTzLmFk
lBskeSs5wYSU5cETGGPE2auOKPnAhcrQLYDxdcu+scNKkfDwuMYOQjESfG8E
vzJXSoFWlWS1aIUUaEhKqt6vlA8rys40ia7OhwUL/fl/eD2ApBcbai33PQCT
c8fiH1tXgXfhOp/0NVVQdfbEUGFnHZzYXTOqbFsHg/YnVf1DGkGp9FKG1uwL
EN6b7Nag1wJT9/mCTwc2w/KeE2XbHF7DsH16hIFIG6yV874X79IBjbrzH2iE
vYHtQ6de707vBIbYf0rvd7+Dht9RZj253UB+sxg/39kJHvWtrXUxvWCk+bq2
c0s35BwvkhI72g9at4balUJ6YJPtKDV7YhBYB1drn2nohWG2+Vs9kw/wY3S2
xJvoA9aIpJq41RCYq+jrpvEMQGpxqLuNzQhMlm7Z3jR/EJSEFu0/k0uAWuFz
gTefB6HSL6o45foo1Anf6ZdueA89ihn8B9M/Aa/sXzH1iA+gENu93jHnM8g9
MQz6qfURdliMaF7P/QKJ0kLZkoMfYcgvfldy0hgkVsxYybkMQdkOu6Uv076C
qqdlIHwbAnHrlsG78d9AptHAXdR6GOATT9qLwO8gtfyWqGjVMOSIeyxVOvMD
GtzznMxERyAm3zNRy2scXP028JFHR+Da2+zmFL+fIC1t/Lz13ghE+GQwZPwn
wOPJwOrhbyPw89h6CTuX/2BacPCG+FICLs2Mzx92+wVJ1aYPbyoQ8Gxi7+Qy
+0mwtXnvELKNgD7F7Z+0FRgQriw/z3gvAV86vQ30lBjQd6Z6XyKaFVFwe896
BqjV7nFrRgv1CbhbqDCg6WyMpKExAcYJQz9PaDKgwZrhr2uCv/81hkw1ZEDv
Dfn5600JuF70ZtE3VwZ4LEpTHzpAgMeG46oZhQxoO1av225FgKxAxvegIgbw
R4rmzqC7x18U2N5jAHUnum+zNQG7SuRFZUsZ4Prg87dUtIjqp6m7FQwI84wJ
PmxDQJ3msRd1jQzY+p1r0WVLgKies9X4KAO2HZH1qHIgMC+HsN2yTEjIcj4r
f4yA5nSxVjM5JtTV2Zmbo9vfdojayjMh6NMUbzh6wMjwvo8SE+5l+M30oBlb
N43mbmaCf/B+83gXzHflnBG1iwmid8d8Ro4TENp/c0WxMxPsVHxlQt0I0LAd
vydawAQ5q29y+08SQLRePzBzkwkftj038EUn7bBij91mwrLLhaZp6K9Sz3dW
3WVC70C7QC/66lBWh91DJhSGChk7eBPAd3w3mV/PBL55Lm0upwh4dypbb8Mw
EyTClPY7+RLgHWvUryvNAuOT79QFAgiYutj5bZUMC3IqlEMU0fHpR6b+yLJA
6m77bT10foG/5DN5FvxVFKoJRr+rz3fYupEFps8+fRhFa/ylRjbvYMEjG4mf
5YEE/A4s+r7ahgXzeGJy9gYTkBCuPj1rywKRXxYyR9EicbWLh+1Z4Gr6/tIZ
tEpG98Y8JxaU9ZlsuId2ejTnLeHGgkMjg26LQ7Ae/9kwlwexYEvnNeol+rzb
ot+8GSxYbDhaqXqWgBOvZPIXZ2F+P1Jj9qL1VTT0hf9hgXLf0FZn9B+m40W5
XBY48ibapaB9Isql4BYLnJk553+irTKddMLLWSDZ0pZTEEqA/IuKcKqbBY03
o779DSNgTqFNbraXBcsSLEeFwwn4mDjStGCABTVOIS+V0Ff2CywV+8gCnufD
ZhboxYPO1zS+sKD71W27m2jGpECdHwfz4YkO1o8goFbm2Ny4KBskW3kkAiIJ
0Ht8+k+HOBvW2fHujEM3mcVwKyTY4BkTeyAL3R52azJyFRssArWgCv1xcGxk
hQIbRIe9LX6j/2Z5PdfWYEN0+AKdiHME6CwLjL54kA1TDHZwcBT2e2FchO9h
NsxLKIqMR+vrZp21tGLDro2rgjPR+7wrT8vaseFKhq9mGdq+bepY2VE2VDe8
nZxAhyZE6L/3ZUOg+qinczQBT2cT5m1MYYP0WeX722MISGGuydiWyoZfjmP9
RmiXLzXye9LZoDvJnLREC7Sxdh+9woZsK/WffugjWU5RV/LZUNKVI3QXPau8
dYbvARsOpOhJicQSYGg3Rn3oYENISF/iR7SEWVTCj042OCp6p39HT+ySFud2
s0Fd42USB52lcFBrxQAbKgx/WQjG4fmYrAkwJthwU9hKQgd9ISGTUcFgw6Xz
KqVZ6LflBuPJwhzgK2nVgXgCYnQrxtJEOODeuEXRBL21RWE0S4wD7U57eA6j
898vGLgmyQHdY5mX3NCneFtflq7hQLb7ODcJLWhuVvBmCwcCXVXV+tH7xi1t
lx7iQL3vEtdjCfh+AS8PC1tyYMCfzPJEl81omYtZc0BerOnZabSU8EojGXsO
5HlqDUWjf2wb1NjkwoGlXf4JBejz8Y5C+/05UJF43X8Y/VLOrTkpnQPxf9ex
DyQSIDfSKemTyYGn5nvkrdCh13RPmV/hgM29GSMHtJqUmOiKqxyIen/ktDs6
T6Tp2D8FHHgdfnPfOXTgQvmZgoccsIsvFitFdzQlW8SW4fs0jBWUoTfGTt9y
reDAGWdVhSdoYu7dvnVPOHAzYOmSRrTZ9LnsknoOMHVrXQbQChNDGlVvOdAj
qaDHe56Ac/+aJGa/44ByRLHaQvR7j8fvz3Zx4J/G8pVL0KljSdE7+ziQwnV5
JYr+O6zT0TDEgbUH56rXoXs6c7zaJzgQYLf7iyk6rsqqYFSAhLUVX/2S0Wqd
pud/CpKgNJ6bmob+ML7bl1xGQvS19Xey0Oqym3UXi5AQenK87Bp6JG7hoJo0
rh/9e7gUrX2oanmUMgmbo8ur29BfT5ZyL2wioXSqa+dbdFr8reEMVRIe81hU
dKK/P7lcUqRBwt2W2IQBdNZqD+MOHRKMkp48GUMzJiSiZM1I0OCLdJhF5y0U
cl9/gIS4h/uNeC8QsFduwQF1C7TrzLr56PzDTGkjSxIOza56txht+uxV1akj
JHRJ6FaIou8khk7WeJNgcoLqWo8+VODX1+xDgttcjKoyeuaZW+07PxJuXPKJ
3YS2/HXo0pdAErqro4XV0bxWyusEI0gwj/Nv0UYfkf/o5JBMwpIG/YJ96Pt+
b67pXyZBUMjL1oz+fH3dxw1puC4XsugA/XyHAvupTBJqTRwOH0QzMt2ss/JI
YByfyrRB63+2yQrPJ6E39reIHTpri0nP8RskDBaIJNmjtd8qH1K/TULknlvu
jug4fub+jmISqq9+andB91l9SqosJaFeZa+YK3rD7e7X1x7g963Y1ifQb/Uq
TbzLSfh7QbvZHS0RGrZncTUJWlUqVt5or1bvOEYNCQkWwR6n0LXiTo39dVjf
s9uCfNAu5Xq777zA+u/dHuaHLplYoGvQRkLGl8EdgehZbW7YxnYSLsokSAah
D174/kz4LQlr9AZZtCnF19uJThICn19KD0EbB9aEtHSTsKOfsj2Dzn1RWnm/
l4RiEznJs2g951TNiEES2rNfJoSi00ujA1w/kLBAer9mGHrsj3+Z6RAJ0wb/
fqB9MdtKTWqUhJBnf1dGoD9+NfLl/UyCwtWZEtqqWtvvf/+C9TT8qRN5gT4P
UipV30mYmX977zm0kpzgyfxx7J+c0CbaZ31m7sVPkOBCWepEoWWXEOssGSTw
/1JeGY32s+t002FhP3E0wmk3Fr0olOeQUHTV+gNtD8PCtUwu5h/Hdz4G/Sz9
isvANPbzmn96aS8dTSyo/0PC5DJHmVj0UbyE78yQcJRj50y7LMJrdcocCeeD
MnJpz293cAripWCpplAXbWup/deOzKNgR0cXXxz6rseujwYLKOB+/ryJ9p9K
VWllfgo+Chofpr05j3q5aDEFccIB/rSPRtf6fRWgINZJM4l2ulucdJMgBWOa
aTdoN5maNhcsoyC9O+UBbUptxelzyykwCFF/Snu9+KC04woKkuyja2nb/7ne
rC1KQf/jqBraSYTbaQlxCrzqtSpp173ctIpaSYF7ceG/tBn/cpq7JSl4Xdyb
Q1s+tfr0I2kKPBhtsbQtg2JWXZahgH3nogftBHuTFu/VFPD9kTSm/QSW++9b
QwGPeKQ87XGF/lXr11Kwc3UNl96fVQL5LQsUKfiqM9hC+8Ckq/9nJQqWXH6f
TjuqR1mmYT0FV3e8tP3ffj9lteRvxPzs8yVpf8l/6h+uQoH8spP/q5d4XJSM
/WZc91VLom3subd1mxoFj66wdWmXaPTKsDUoqE1JTKfrPyyR1/pOiwJmvIsW
7eWzLgH3t1EgkmreTfdTYCuj1VOHgt8rAnlo3ymtCtirS4FPwePLdP8NpEfK
KgIF231kpGjvdBQMJPQp0O8PkKP710e/W7bOkIJLZ7zz6P6+se7qq1wjCna5
XBehPZ+1brXNPgo28LWy6fPRnmDQ9uYgBZZFD8Lo8zV7UiCo+DAFVW8WdNHn
T+1g5+oLVhQE/1e7lnamtHOQoR26zf1pMD3vHobKVR/FfnNRvh+ATsna/Trb
hYILr6QIf/Tz0EXBwa4UiNlmLKWtsOfK6y0eFKg4aDjQ82Ji8FHwXV8K7lyt
bKDnTfi8H+1ZkRQM+fI8p+fVrIH2krwoXH+nnnUcHR13yeRmDAVFQ5En6PmW
sGBz8/0ECjI3hnOd0Zf5A+pbUnD/tStG6fl4c8nMo+l8Cs+7dY85/XyzA4y5
GxQUx7Md6flblHR988JbFHCuLv5Mz+eSpfrFK4ooaGt8MmKCrhRKvK38gILB
ueZbBuhXIsL/ONZT4Ml56rAVbWbp0nu8gYKylYXXNel5mlku4tVIQZOm2wh9
P3SJWacGt1Agpxl9SJWePytzL1zuwPrnPeWn7xuGtGJ4wwgF20CpXILuJ4Ud
xxR5uFCvPa3JxftNLyeeu4iPC9p3oxRItOeyruSJeVx44sknzEbXTHk9K+fn
wia/haO/0C5v8kT0hbjA7L3o+BV9P5in2UmWC4rbD7b3oI1etWzM3smFbxd7
8h+gQ3ysOQJnuXh/1PA6oVdtdW1VCuPCbNYsjwP6+czpPP0ILrwUfTVjgxZI
TjYMjeZCdbgg4yA6v7gp88cFLryOHKvag27+rq7VepULz4ncQRW06HGh4Pga
Lhw3OnVxGv+/PN0os6+gjgvF09J7KLQTa6Ns7XMu5Az+nWGh70YbNXOauPCg
zNNrAq1zI0Lc9Q0Xzhqc2zyCdhn6Wak/zAVLv6UeTWj+wumLTgQXTv7VX9SA
LvHmdw79xIUTI3/u1KKpP/L8ZV+5kHFtCVGJvihlb7NmkgsrpDbvvodW/eSu
rMvkQnvy4r5CdM+9oDlbNu7/3GXPm2jZHWlFqVwuJMQ+SspFN/JcDyuZ5sL3
Y9arstEerSXmrX+4UND/9N9MtGDqs7VfZnC9idiWhn5k08qdm+NCCv+7xmT0
/wFEcWjd
       "]]},
     Annotation[#, "Charting`Private`Tag$973377#2"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.5}, {0., 0.516786928298488}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8274008521440563`*^9, 3.8274008740375223`*^9}, {
  3.82740092116224*^9, 3.827400984185636*^9}},
 CellLabel->
  "Out[215]=",ExpressionUUID->"347ea2ac-e790-455e-97dd-2b0a927b9cd9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     FractionBox["1", 
      RowBox[{"(", 
       RowBox[{"x", "-", "y"}], ")"}]], "-", 
     FractionBox["1", 
      RowBox[{"x", "+", "y"}]]}], "/.", 
    RowBox[{"y", "\[Rule]", "4"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827398577188295*^9, 3.827398615524055*^9}},
 CellLabel->
  "In[145]:=",ExpressionUUID->"0f797cd1-c8f0-4dac-9564-88a85f1a227a"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVymc8FQwbgPETlYp6c7Z5VhQSIZRxW0VLHiUlhETJqoQipEI7xPNQ4kFl
NKSMzDvH3jlGOTaZGZlF5X3fD9fv/+ViOXiYnxYgEAjv/tf/vTp0cHp5mYP/
TLP0QuxzYdCPOsf/xUFYZt187pILphu7F3J+ctDkKHV77cVcYO70/O0xw8Ff
gx8aNofkQsntiDU9gxyUnxN+zkzPhTXb2qSxjoOz/N4cyflceORltz/oMQeH
xjKunXz4AdJXXEwmaHDwsFT0uFxbHmgeTlsdo8rBxQ/hwW/68qA8uffMdmUO
pkm8nNaeyIMeYzNFBzkOqpwxCvZYlQ/U+4rZXAkO9jAMVNXU8iFYfLgihMDB
kB8FcQaR+XBM1WZMpJqNbiuvv0i3LIBVp41VxGzY6DTaZByxVAhNttstx46z
seq9PNdpTRE8PSbhX3iUjYp5QQJGlCJQPzBZZm/Gxk87vkzQlYrASfXv42mG
bHQ2OuuqeKoIKlcMBWnJs9HMp/vBmroiuPs0pMFmgYXV/JFz5S+KgfS5zDUx
nIUhQxZTxYUIqPBv2I37LJzc8WRZrwzBNdA/2ekOC7cEnL5UUYtQLqvaIX+T
hXaaXmkDfIQrlxL2v/Nl4VxISYvdIkIf0U++9CQLm2OTOKc1P0LmQeXhr4os
fM9KqSzP/Qjm3NhTctVMpCxKHzpcWwKbmge6KsqZuEbmQT27tQTmB7ZZOXGZ
uFL1Y+RidwnErOaaJRUw8fDK31TuTAn07B3TkXrDxGifnWIfJLjg1qhFF33E
xGqX/SsN3LgQ1tlR+8OGieaJgfFEWin4Teq4Puxn4Mw9nRajsDJ4Yq8xrNfJ
QNrwC/dXkWVQwFN2/N7KwDmHyG5GfBn8yeFYm1czcD7Q3JedXQbBQWsPkN8y
UPz61Y74gTK4Ldqi8E8AAyXdJs6GGJZDrKrrWLwYA/21rpTYrq2A/Gennc1I
DPTo2mkoQa2ADtrJfsJ6BtpOD+/pZ1eA9K+/+PYEBoa43SJGa1dAYqlGDWdI
Gs2z7tiFeVZAqoVg+ov30hjnWG71qr0Ccn1iXd4cksYLNQ3XXHIrge14/tln
E2kckEreMlJRCffMTHpWGPzvf3SwxKetEhzk5i2OqEnj6GvVrWXzlSDM/0v/
J10ab3P7vDnqVWCru5Zu2CeFXW9bnQVzq0BwlW9Zq5cUljZrCglVVYP7d1MC
wV0KrzrS1LPaq+Fzp4yWnLMUvuzenuL9rRpeZvMy/I5LYeWfgnrVjTVw9IzS
E6auFMpZmQXGHquBlJrBCy5CUmhi3UbaMV4DphEWzD8xkljq0XL8tmwdXFH5
z17jSEkMapzacm1XHTxvqjz/8K4kBqRopd43rYM/RG0uO1ASf96gm09418Gr
SLaTsaMkkuPeOpdW1oFI1GT6w22SmFaoWzPuWQ/Vf9/S4HAlcN/kZdrx5gaY
1zC0cy2QQL58SoDXWAOwP/8Ky8qSwOyE/BmLFY1whe7ZbpwigSK35D/m0BtB
LuboVdd7EmhAskjbbNIIYbEcbpalBCaOb7dsSG0E47hCU5Nv4vhYJUmbcPkT
TN3r+LVyUBytr3iqxdz8BLEBS2kfu8Ux4i3XXT/iE3w7uVNIiyeOEvFAxfRP
EMHOKlbME8cBTRnFy92foOvFS2VSmDjOq2/fMbO3CbwzHxO7OOJYmG7f3a7A
A2ZSHsZKieNBLxGpqF08qIr84m5JE8dk6PZ32MsDyUu0msZ14jjrka2q4cyD
Eo3I69zvYjjooBVam8SDDYW3Z1OKxbCvSmBPJbMZnldcbr14QgwfaXtoyii0
QIyKt2HqETGMFz4XtE63Be7GXcjoOiiGybS7N0T+aoELF8/d3qsnhi1HUtHZ
pwV0GDa6DBkxtB3iKQaXtUCzt97z6gk6hj4+FBXs3AoCskLerGA6fvO4pFBQ
2gZzDwX7j/rRsSlUTLaU3wbDS8uH7nrRsVtpwXd6ug3qP/2QW3Cio1ffqqdc
1meIuTraWbufjqeLlJ0Nrn0G5Za63b4UOurY3dmyzuQL2N54RGlIoaFIZtbZ
uoV2qId5Id9EGtb1qPqFEPkAS5aLzCc0dKuK8nFT5APzgkT3hQc03GBduaLi
FB/6TiamUL1pKFRc6JzVxAcnrQwtW0MaOiomK49/6IDWedFtQjo0HKVzCora
OsA48yIzQ52Gh+UK1MrnOmCLnMYqAXkaRr/s3npZpRNGqUX1zzbS8MS4n3Pg
605wn66xH++kovdWoatRb7ug65Xikeg2Kr7nar1az+uCQ2cf7IFPVLz8QLC0
bLYLlHvMFcJLqShZ/dX7h2Y3TNd9mVVLp2Jf12FD/9Ju8E4dCvX3peI6mQMv
j3j1QICd4GthEhXDRezONmb1QkaD8f1mESq6OfAejVT3Qp/uXfe41VSclrDa
pdTTC3ukKEpKixQ8vzOQaSDcBxvaZTPMeynYJ7OOHH2qD54e3pcZ84aCgfPx
gf5S/dBYcj/CIZWClq/fhift6AcBFd4FhSQK7tvxfppg2g9OG61VC6MpOBvi
7Gsf2A/b6tze91ylYPr5cNn6gX4o3hOevfkABd+n5xFW5w/AdFZL9NRuCiqf
b9OYaB2ATTLiPh+Agv9mymaIzQxAmGCSxn5VCrZV7VXQ3foVzPB9rrs4BZ3U
Gws///sVenZ+zssaJmO6ZoKy3uNBIKZKPg7oI6NITeJgW/4gGNHt/Yw7yBja
1mlY2jEIKfMjWl8ayJizqYSawBgCz3dLBb+yyah8qO/urdQhICgyig1vktFf
ZcjMuWEY/Kn6tjcDyLhpXFRf9+cwLCw7/C73IeOV3107ojgjMNH0XGufCxll
ouJO1F4eAb7vtlyzQ2QMFpxfTtw6CtmlOm9txMg4MeLzTe/1GKi8PmkWTySj
0aRXxv7eMXj197XJHmEy2lD23RWgfINklzJFxz8knEoQUQoO+AYRGw+mufST
MCczu1zRahzcrK2TfF6RUDu1YvqtxiQM7w4w+PCchG5OG3MO+EyCo1JC72I8
CSutnjm35kyClcAAIyCChPr33vG/Sk2BScq5Jzd8SNjkZfl4/MUUlIbf0yr3
JGF0Fe9jac0UgN+bdiEXEtpMnM+Rn5oCddMZ+h1rEqrze4Mydn2HTbNXosL1
SbjumMIHobbvkND5RI23i4SR0Xvbc5e/g0RFEY+sRkLB0DeJVLlpIMYKEP+R
JeH6hx0BI1enYRlu338qTEKw2MpyV56B9jsxoektRIyPSE4IL5wFXhnzpV0D
EZ90rFaumZyF2uUXjZQqIo5yZIVH2HNQdDFbLKiAiOXNVwxH78xB4gle+pEk
IobUe4znn52Hx1FWjWvjiGjuGp7WkDQPjxp6Z4uiici36Nde7pqHEMMpHbnb
RHQJ1eU3HVsAF4X1jb89iSgdwXXbfeIHnDr9aDbThYhIYu1Xiv8B1vESYmcc
iRhWV0sPGvgBpiR5hyZLIkr9Usu9fvEnqCztmX2uS0TDie5N55IXQWFHPd1a
k4hG2xOKemcXYZOHhY6oChGDNV1ObzZeAmr/qRA/GSK2GiwFnvy+BEvVQXQz
ESJuSfylec72N8yuXKOzajURWdohCrrFv2FC94F93rIo+sYufPRi/4GezLi0
TTOiqC+s6XR26g+UxuZp//wiikJW+VFPjxL0Cpv17V/zRLF5e2Tgz3CCXvaG
qpun6kTRZM07odl6gl5KcFt9HYrimxTXvvWmK/TOxKrvMXolinvPThYTZAT0
/guRtpIO
       "]], LineBox[CompressedData["
1:eJw12Hk0Vd/7B/DrXq7ruhkbDKmEjE3G0nCOzKVBRCiE1EdlCimkIlRKMkUq
Q2QoQySpPCdTGSIzmc695nmep+/5/fH766zXOnudvdbez/vZex1xG6ezl8kk
EsmZjUT6v2fqOfUft1IZ2I8wWwP3o+xYr+qkL1cMAzuxrz8hupuCjVDv7UwK
ZmBjufYNP2Io2EwTTynqy8Aij/ix8RtTMPZbCnRPOwbmYvWEp7uKjEl+uRLe
t4eBzVWfb2luYMMUAudUH4gzsNKSwy/or9gwZdOHrWIbGZhja05tuQ0bpjWf
sO3cIjfWY7pfIGuOhNmqdaYUF3NjOWyKWRF7SJh9ipqJzhdu7L2Sl+pPMglz
EA6llKdxY27+8q8aM9fBeVnTsjqUG3tnI3h0N30dvCFVsNWKG0v2nL0xXb8K
vvsoPy2MuDGbIa/YW49X4UH8BcdOHW5sz4AMxe/YKgT58ZZ37+bGnCnhK+t5
KxCu6353bJmOuUHWZuusZYjKr5Z3GadjERu2VfS7LEOMrEzrNIuOXdE6L5So
vAxx3G1Ki+V0LIb/1ErojyX4WIMOUl7SsWMCW186ty9CmSnDWFiZjg14Pzfn
11uA8t+X2WKl6ViiwhtbC+EFqDoIGdtE6ViFNSXqxvA81Im6ckmS6VjZ0/vT
TaHz0NXVXLjnLxf27CjT5kj/HCxcSZTVus6F5RnvkanImoXllpWmMisuLLKq
QSkqeBbW9E389Y24MOaR4cLRq7PArsDVdUqdC4sxynOXl5gF/gnHcDMaF1Ze
fHo15vUMyHmqrzu+o2GnqmejNqVMA9ZxSq47koYJXxqRqg+aBhNN23Omj2jY
Vbnsy+wO0/CAJzgdcaRhQT5WBvm7p6H1XYcp3wEaZvjwYYJUwRQE1d7Lyq7k
xEJqZJ11eydhm1pEm1QhJ0bNqu07UjUJubGp1JgsTixZy3BjUM4k4FfqLjyI
4MTuk8b1+P0mQW1NgsvIihMb1maq/JGahD65X5dmpqhY4GvM6avnBHg/bwu+
2kvFqCqzERp2EyAwN/6lvZmKrT0L0KWdmYCjP4V4Sr9TMab6NO2kzAREmDoU
RARQsXdvT5P2fhkHLf8NgmoiVCwYa6v//nIM/g2KH01nUDHO9uen8zzGwPm0
6n/b1zmwTxlJGO+5MXglYgWcPRyYSMDJwHaBMZjKyrrW8pEDS3Z94vP5xSjE
dxiV3NbgwMxvuT8+lDACij2KSw3KHJj0SEytR+AIlAzx79snw4E5GVh8m74+
An3zNa/6eDgwXDRhMuPACMgJGNw0amfHfI127xKsH4ZPOlo7d99ix9JTx+tw
gWHQPClxPsiBHePWPfSoYXkIGozIz7ovsmOOE89vr/YMwZw1thitxY7ZR61b
j3wZgkNeh2upAuyY+far5xSsh6AkU/ke/oGC4ak76j5+HYRzeYJ5h+IoGCkh
RDQ9aRD6vk8NR4ZRMMnwx/saQgeBVpFlevIO4SmPnPcOg3CyR2FvgS4FSzA3
PqGzbRCahKQ6w1hkbNcP7TuLwQPQf3/TYV0hMmYee4h56mE/0H0yx8PoZCwu
683+RLd+2OOpn4ivELlvUogVtesHD0cf+h0mG9YS0LXrlmY/UC16Wz6ksWHJ
dpfUqyn9IKn82V3gCBvG/q3ZLO1xH+jtPS1rtZcNO1EZfEPQuw+uyw22p4uz
YRznNDtjbvRB7g4xLW0qG/YPnQqnGPaB5oaHAp41JOxso3KlknAf2PQZZ3Zc
ImF3WmyDqjN6IYA5ZiNnTMJONXatLsb3Qlp70OZbOiSs9XutNhLRC1N13334
5EkYyzrLYLN3L5B99V8GDKzDlgwpu/HjvYDsH6w13LAOcTENbcKjPVAQIaM9
YLIKdpyrW1o0eoBm0W/LdngVMgZPbFhX6wGTHckPRMRXIW1jXsiBPT0wlSaB
GQyvQOXRH7EskR6QxbYdyvZdgY6Elpc8s93wcmjj/jspy5C9oPs+6UM3uCNs
YoylReBbLy5kSXdDETt2SKprEUg3m95s3tENfBV3zY+WLAJP9DjrvFA3fDBe
iXJ+tgi8o2/kaFzd0PPfvEDjzkXIuMdTyzPMgrPho7Q3JxYgf4HtUHI2C/YN
ts7sfT0HcQoCzWZ6LHCb2C27xX8O+CQd6sKPsSB//v7FNYc5SJ4NbGw9zAIN
qlxZ1YE5IL9z+nx/P/E9iTtR/zXMwlvyVhVdURa4XxRRT+SehU0pR7xiJ5hQ
UGvuu/nONDybNM3nT2DCWktGzqr1NJSeVXnq+poJx3DyQI/uNDS9vvKz7SUT
KsfSzuRsmgY3/l2iv0KY0M69LH4mewr21ny6RLrLhHXtVyWPBiYhUbyDbcaC
CVoFbVyrJhOwTWs/1ysxJmSkJR38dWgC4g755yUJM0HoldN/oTsmYGTLg7/5
m5jQNE99caJhHC62ouILG5gg5WXC93ppDMjFZqL/1nAouj/LQHVHQTFSd3En
C4dIm0fXG/hGoQSpaczsxOE/TbGqq/+IHKf5B2i14cDHof0k9MYIvHAZ1XjY
gINVUDhXd9gw/BbSUbb9hcPKMyVqAD4Io5ONk48ycPjr9OuySNogzFxKVH2e
jkPiGYvSjJuDoP5G8e/rFByOC/j5N1MHQci+oac6AYfoiDqy7O4B0CH71QRG
4aAa67JeebsP3Lp/lZ96gBN547Cy1uwDEruR9C9fHDouRhfOMPpAeduyk44P
Dv7bf/qIxfVCmdpEmpknDvUJfCuOZT0w2JIhVeeIg3Nq5gK/YDdcyRi6QL2I
wz4eR79jOAvubnSz4bHAYdJVgefmRxa8UKmV3GqGg+vhVIkGXRaUl1n+1TuH
g3tNwqlIbyZMKayZ9p3EYXpIXl+lqgvKKYYre1Ac3HJTLCPtu+B8aKRg6FEc
5nyk3OZJXRCPQsbCYRwW+La//arSCV5fpO1aDhLrpSowe+RtO1iY97q3KuFA
9VuI03FtBRM7p8wuGRwCDdzz3jNaYWDgW+JLaRxom6cqae9bYEtuy5jJLmI9
UofnKtqaway7zLdbAgfemk6D09pNRH6yjh/ejsPzlxY2WV2N4EB2zNm+DQcB
m5Zb/Hca4cLhWGuaGA4bZ2sT6jMaIOTAgO+gCA5CoqULpkL1oPGyJnpoM7Ef
PRo8Xz/VQQ/t4uj8JhxEMgolRE7WQafuO3c6YTGN/FPt92vh8KK+GCKIg2a1
if7PphooyAqP7uPFQefSGTc/7hrQzjxuK0ZYb0b/rTZaDVnxUcZmPDgYiByZ
LU+tgnPeUik4AwcTe4n4Ou9yKEl8MqJAx+Gxy82gF59/Q9y1kJ4QLhx+eBc7
nR37BUOTqWXzNBwkw2yP1lmVQR6pXquJE4fzb3KkXrwsBW3pv50GhJ+kUjac
rS2BvqM/LX9TcZiCxLbaY8WAiWCMag4cdlVOF4V6FcG+VvaD5wmbNWmmGeb+
hGm3dN1+dhywkW7PWikMhsXGaRsJD4xfwXb+KIT6NXpBNgWH01RaSMKeHxB5
MeC4MeFtSnoKCfwF4PNwmZpCxuGh/sCSuF8+9D/9tt+M8IhVUHn8TB6IP71y
kJewkYfMS3H7z2DT4SlWwYZDQfBv+/jmHIjPd+l4RFg88aqKuP4nMFft8DxF
OOgrjT2+IAvu6Z8e30K4861hksb5DHhQaIf2kXD4WBV6TONQOsQeLL72lbDX
Ym0Xui0FZFWEXUIJ6+8S8EHZkgAhbTvjSHiL0VkRtCceLH6E0s4QrlyXdPJ9
9ho0Lx2JUSV81Swp9a5xFHB/mmLfSZg9R6rHRyQUNHSC9QQIo8IGR5awh6Dr
P2rHSXjiZbTdZLQrVMeTzdkIe5PDS3UOmCE+iZg0ifCeGNtfG1V9kcILUtUU
wp3C2WPcvMFInpPaSQZhI6WW7wEa4YjNSWqSMOG8VtMHgV4xSLtKWqM84Q3Y
sESJeRxSfUCr6xhhJCw9oORWIkJWXftpSdjF/tpgSXgyItFJv+tLOOGgvEFp
diqSnJMkmES4gTGcUVr9AanlFvSrIUzF0/jLhjORVd64qjXCsWYq6rb+2chQ
YcKEIrG+KpoR17oFcpATY7fHrxGuVpiNtY3PRTwMnpanEiaRPq/bFn5B+sOV
+JWJ/Ywe3Li/x+ArYi1T5HuPsGK9m41dWwESqOFfWUvYLlm51G7hB7KTsbLy
gKiX1ZDwuZ4AQBT8ZrpZhCsPL4V9eowh5XzJabpEvdntMi9VFC5CSmS3/ttO
1Oc+UXqnK16E8Ew7aIURXuUtmPv0vhipORcYyk3Ud+SisIySainyWiaumU7U
/6+q1sdKRr+Ryt6nu7WI/Fz1/PfLQr4cuVARsGOEME2yjd2fUoFEd460RxN5
O+7VfrchpxLxa+n7QiXyWCXb5eq+sQZJeJe0cxeR3+uNXZmvR2oQm3PFwSuE
A1DnORubv4iAiv2fFj4cpEeclZ6o1yIhwd9aEwSI+TRdP7YN1SFPdq+e8yH6
yYHoqcpxk3pkqOhY+oMtxPzjrkOU4nrkA8el/qdCOKTG3JRWeNWARLw+IZZH
9KOhSbd47xNNSOquoqKTRD+7HncrQuxDK2J2elgtVhaHw3PzOfuF/iFzFQMy
bPI4MAw867T9/yG1lz3krysQeZj35HW80IYUCDe5GO/FYezUnUeFjA7kmUiz
paMKDvl3CwszVXHkByZXXHEMh7jUtT9fr+NIcdcLuxdaRN4ajnYUJ+BIQrXX
GWsdor/IwXIzDxPRWxIR4j2Ow2IjHCD1M5HYW9T2fEMc1Hf//HQmqhv5ev79
Zg0bon4amiILy7uRD0fZBvXtiP3zGrmjsNKNyJUmu523J/pP+RZN2qUepOvb
hd8BDjgIXnasB7lepJWP0SJzk+gXsaIzewr7kIgs9dsBD3Ho19zfEjvRh+Dx
rOGRQBxYQzrf6RL9iP0jfmuzxzi0HnD17wvsRzoUV6y1QnAoa/i98Y3hAHLQ
l83YNhqHtwwPlQ29g4ja/Oj7cuJ8jsl5Iuy1ZQiJdFpKeZFN1I95/OqA/hBi
b6xJtsnFITilqrQkYwhxvnKxUbAAB08tCRNvz2HE+uPmlJJSHM56//UY5h5F
fCI8H1sT9wWyx6Z2O+EJJKwC18reyARz67S6fOUJRB/PPB0nxIRPx5FyxpkJ
RN1NpjlqKxNstv+XlxswgZitOwXESTKh6Pf35+wzE8hhfvsIYRUm+Inaab+r
nkTOTQYa5ZoS9yOOxUMLg5MIycXdat8FJihPPFU04JhCZkpT3362ZkJPyZft
M4emkCY5k/G2/4j7kiP3kmbqFDLZ+Vw5mji32X9+yuj2m0aKjNg3sxKZcCFd
N0nt7TSy9RXvq/kUJuRGtL96UjCNzOWP79mSwQQ7B+ojpUnifboSuOUzoVTQ
3NbPcgYpG1Xbm/6HCQH2bEISB2cRQ20JfcElJnAyzty3GZtD4ppfrehbsOC8
tDmmyjWPnD9qcifxEgvSjtmt0yXnEdYF/RraVRacuu3pk2M2j4S3vz8978aC
yL642+yl88im0hcjl0NYsOvnpEvyqwUkWdbYKbaMBdoeYTZDekuImOx7EEC6
ITL0dXyh7RISqOw+JqDbDQMf3uMv7i4hZ5wC58VPd0Nw9zfLQ7lLSM7eAMYN
q25oONNjHrx9GcFJz+8X3OsGO3kVoz1zywg5VLD4ZFk3+OFNmq6Jq4hFi36C
pmUPdH49ccPz+yoiXUT6m3mlB9TDsMi7jatIgn//ZwWXHpjQTht8zLmGtOdm
K5v594Bluk9I4rU1JFzubOe9dGK8h2Rbg9I6wuuScVJ+tQciT0eztxmsIy8S
WMK5nL0wKcOzh3l5HdEMTVg6LdALKW3z90aj1hHH7TbxP6V7YbNG5S7qyjoi
m2SqGmrUC4scB7+K2pDQfZdvd9AyeyHZdfrPG0cSugsJ+dxc0AvGXR9Z4l4k
VPZh+b3vZb2Qlb+TIRNOQg2ijH787uwF+2sMK+UyEip5Iyl4krcPGv52sZ+U
Y0OPejlguR59kPUq4MzdKTbU5Wrcjg+m/VApGNDPSyKj72v1uCau9EPfk4d3
4zeQUQb/4AZTz37Y6u3/oUSGjNYxfq2ERPdD0IUHNG4rMuo9vbU0v6MfrMXu
YlGVZNRY7/EOnRsD4BXhYyrbSkYxhVjdMd8BiNzgM1bQR0bX3z+PxF4MQNWq
19ZONgpqy5DO7s0fgAOdtz0lD1DQx69H3VDOQeB7674v+x0F9fFWSMr9MAjy
W9x/HftEQfVWRcPRokHQCXGzbAAKulPesHq9eRC8fW8Gz/+joMc95n6LsA/B
gJXLwBF+dlQ8aGmt0XIIsB034ip82NH7/t4GHNuHwSnBjq/HhANds9sQJvd3
BJ7djo59ZsuB0vpjlbKHRyDjTLXMQWcONHWjwHYfzlEYW1PTePaIA30lMPFt
ABmF6xbcrge+c6AOM0tW8rmj4LDxU32wOBWdv4TPGaaPwePhPiu1PVTUzIRS
8KFyDNKKREeY6lR0y7BjseXIGAw6P2RXM6aiTV9Ulv/sGYerf86rMAOoqLPu
SuX6l3GwD1iPVBmhopddX9rec5yAgIvKEvgCFV2RD0+C+xOQrPxf5mMOTpT0
dH5BNWICell1v7q2caJH+yuf1X6fADskeeGRISfadS2wuJZnEmwWDMw78zjR
3YvCBiOFk/Cg5n5fUDEnarQFT5JpmoSE5DxXpb+cKI97HWSMTgLTeMeToEFO
9PIFqejXYlNgnT39TXErDZ0MEn60+/4UWDrEiAXep6Fiz3K4bp6fhuVWrurJ
pzT0rsNAvpPbNLzUv333QgwNtc/uQ6ueT0OtzPmu/Tk09BDfszsfKqZBq39T
fHsPDX3/83erhuYM4CYPDXUnaSjDrRt1t5kBn7IZtk+rNFSls0ha+MEM5CXV
2wRu5kLrzMsGvhXNgKxdqKSiHhdq0qivmqM/C2X1pMZYYy5UrHJOIev6LNho
Oj/kvMSFyrWJXVZ8PguxO0/3td/mQpPuzdyqa5kFHiYjJTCdC32oe+lsq/Mc
zFwMku/goaMjs6shwjAPz//Mt+mK0tEM6boiysg87D5yJfiTNB0V6T62liG8
APZbdUYDUTqqvmP3pgu3FqD1HyVT0ZWOLtupLCccXgSP4zetXt+lo5JqlfG7
nBdBoIDFS3tCRx/4nOOMercIBtE/nTsS6ai3RlKhKd8SFJr6KgY10lExAwN5
kZklsPg1xppi0lFXBjOxeO8yLKhahl0co6MlJ9Vbw64vw/7NR2YUObnReyfa
ZyoGl+Fdw9LnjgPcaFG9c8/L6RVAtRzs9bS50US/OUmvg6vQkdO6OceQG602
SS6su7cKm8PybwU5cKNJF6ss+TeuwSNDj4NKsdxo77CxgcqpdXhRJXf9Qyo3
apmwy/FkyjrE6na9kfrCjfL/fVJwmkzCso7osQvVcaO+e7e9k7AhYS2yIjUr
nAxUfWuw9o79bBjrXTWbxyYG2pjEsXbxKhs2st1PeXwnA/037Vm2LZ4NI20e
iWYeYaDeos1PHbaQMRlyoV3ZTQZqeDVNVkaYgin6uEYh9xmo44tpcw9LCnZ4
YVdF/jMGuqndmtSbRMHOjIXsTU9loDIlf9MfH2LH9ibWucinMdD//9/9P0Z/
J/c=
       "]], LineBox[CompressedData["
1:eJwV0Gk8FIoaBvAxkRMis5oxGDOKUyIpleR9KyVakCWEIktZ2kg5TsqpG4lK
IYVIWY64LcKMLdmXbMmeNWtUGPvW7X54fs/v+fD/8ig6nDvqRCQQCOm/8//e
7ek1rZAmjQZnfr4nrCViYgjvm0S6NM4aV3041SOEjoQ66OBLY6Vh/Q54JIQc
z8GwtAJpXKmb+tjGSAifWtLgSI00hsn80zxdQsAIrtfDe8PS6DGvVWMd9gvM
Iu4MnRiTRnqUpgdb4ReQVj3ftWlGGteTUJ+atgx3f9QP1gmT8Ea0a6r4pyW4
xVfXIbFJWLRlS/qyziLoqeqH9q4joeT0Y23hzgUgxtoNvN1IwhndI1Q7/wXw
uxly33QnCTP94l34NfPgbTTSF2ZBwjLP+BM//edgSyFR28mWhDpGnz3Oa87B
xBbmva2OJNyfdbLg7cAsnGUa7Gi6QEJLmVhfPDoLzv2JIfQQEpYes48U1ZkB
c18HrSdFJEzdXsbdbDwFETGUlTMVJBQZffE4Q3YKmt6XNprWkfD+/JUG5aFJ
sBDecGl1BwltDF+9eX9jEixDBOnXp0l47Ak1llkigMhXCTc6FklY/ZRPO/9I
AC31x0y1V5DR3dIvJ8BVAFa03AmBFBnb17nEfSMJwDr2pobLn2QMV5PhEd0n
4MkHLaFidTJeLXQyGt07Ae1fh+rYWmQUOaH84xJrAmxUDp9v20PGOZPOaOva
cbB9Q3112IaM26NaDq7SGYeTRYmqW+6RkShzQMVAbQzi+i0X74f/3qzrfq8l
x6BHVPzj9ygyqg+x/lnT9RMcDp1zS0omY1aYeP4vx59wqnFbCrOQjPYT32wT
/voBzoPlykJTZLyk9VkQVTEKiat8Z2wXyNhm4n84JGIUBjdsLMsWouCzCvVw
juMonD4f6uwlScGzGSc6VIVG4cycVcKgMgWtma5fz+0ZAXfxEU6NNQXB0uf8
qa5hGPHJFha3p6DcLdMjCpnD4Dp0e0DfhYJ5iT8iTEKGwaVEJeWDJwVv1rs9
ld41DA7XnDUygikoc7HIourZEFgJeiA6n4IH+J2MF36D0GL/RrG1mILBFqL8
8eODYFF3fQWtioLCkcJLT3YMglmaQtm9ZgpyzkoNzU8NgLGL7ZEbYxQkrooh
Vl0cgP3tLTauHOrvP/n6j3z7ocQgWTdJhYpBzquDVtr1gx7vMrtPjYrJpZ9U
8rEfdofT+mx3UlFEd+VZomg/6BiZuZmYUZHVyf5QFNEHm4tqfbbfomJd4BdT
28KvoPCyNGLlNyruNdp0xUyvF8xiefzKMSoua1JWHlDthaCHKV/uzlDR55yP
nielFyZ973LoIjRct7yjx6O/ByoPWfxXmU1Dj4iOjK7bPeD9o7/kgAUNn1M2
RbO/dENqb/OQhC0NOTa6BrvKuqGnqUK8/hQNy0bLdALedsOh92kmVhd++9PB
2XG3u4Fz/1LHmWAa+gezh9t2dEO1hshUUCENn6To9An2dgFx3QzdqIKGLK9D
45YKXbCdOaxNrqPhVbrQoz8WOiGeWH09qoOGIlWopZfeCVcawiRSZ2lYK5y1
j6rcCUqXlJSq1eh4kr+N7iHbAb68vaZSUXTsDgvVWNBoh802dWMnntFxmhKV
pkxvh2+/bO6+TqJjeaV6lf9iG1jre1eYvKNjftA95byyNtBuSoawajpy3LVt
9U62waxgtSqDIIPMgOTx7Y9bwVu9RZjrJINikrXb5VRaQK3BMd7TTQYzby7x
d5JaYMB7HIovyODWqEn234vNYJ4v5uvkJ4Oj2c/O2dc3w5bDu8aTHslgcWTp
aMbfzSBwje9QrZTBsUoj8QOtTXA+0T1TS52BKy3j9u5PboTOWtlwSS0GJjnc
NXgc1giH5yo9B3QYeLa4NUHMvxHWH/pTI8KQgdlKUqb61o3QN97/csqJgbk5
H/cpSjbCsV0nnr2LZuBMwNJatu9n0P1sErxZjIltSlHUt6cbIHWJ4CYmzURq
Xs8Oa8sGkFV+bdBLZ2LQZHcw40ADzPpIij5Yy0SG5nmhDuUGeKtQ5T+OTFxj
5SB9cegTrHXTu/z6MhOJUiYFaR6fQIK4zUGtn4l3cmNEDAPqgX95henACBPj
JHZ/LfapB+fvtXufTjAx4Fa2pol7PRS0nF4rSZBFv8KMlzEm9eD56snQd6Ys
Kh1M9CPK1UObzfLZNGNZ/Bjp09WdWQfJWSW+qrmyWNx0e8R4tBbMNz5w7yuU
xXLD2fRNjbVAfG5nG10hi9Pv7CxV82vB5u6MrkTzb7/8zMv7fi1IOf1JHB2X
xWvKabXGWrXgTQoJfKnMwv+Y2q2evlUD+zzMwtc/ZOHn0pE3TdrV4PUgh3Du
MQtfStmu1lSphhdZHPf0WBaewuE1z6nVQCSO79FJZaFSTt7jvLGPUBARMna4
hIXMyDX+rUkfQbug9OCFGRaWbd3U9JDxEdTIO4i843JI2z4vdUysCmy3x3ks
2sshNzJTUjBXCcG2oq14Wg4fOKBL7HAljCQ1vqrwkkPJzcnlKhWVkKxz0bY9
5LdPT69cCKwErvNL3vJ7OZTf90vvnnglyPDlzu1TksfRe6XCLbIVsHwqSVZ6
gzxqqx2KZ0lUQJ+kRvkXDXmkjOk7XVgsh9eOeopeII8jk8ZLhh3loL/GrSHe
Wh5n4/eP5MSWg7cLbxshVB75GlXz15XLoZFqSshZksf1Wld0iHvK4MHFwNBN
zQoYvOsNLe1pCcx/TOUFdijg64QVThseloCDcn1X91cFDB0xSkgPKAHNLwy1
0DEF3EzmVvWcL4Fv8eb9s8JsZF2SPJ6+twSCJQb9reTZ+CR6Vk9xpBhqulbl
ME3YKDYdn9eKxXD0ltHGmEw2Lmx8p3FNpAgSrcYM+Hw2BrZEk80WC2FONdS5
MZeNs8Qa6iZBIcQ1fIpdXcTGqoMVx5e6C+E724LkV8tGqd5a6mhuIQTm2MzY
DbExRX3Pc7J3IeSPnfnAZipiyOQxE8vvH2D98ZvmL64qoppzoAB/FIDVhUyS
sL8i9n7ZkiI0UACBAUO1p24q4oMkqfryjgLoTz9kyL2jiFr9a0xdqwsgToIK
8ZGKyMrnO86lFgA1P0ElLl0RJ4uSCnd7FABBsWwhalgRq4Kmfj7pew9NA6vi
H5pz8L015dICIx9KzW5H8y05GF2d1K69Oh8yC/941HWcg63K9M5/CPkQ8VQ0
eIMDB/81XwpXHcwDcwsR76KzHIxh4Fj/uzz4XEIwFARwUP/ZX/bDJnnw6cXM
+NFsDhoO8XKXQnOhxqF/N0mBi336TubVKjnQI5w0G87hIsX9g2cWKwcmE0+/
Yqzj4kGXg4yUNTnAGBlhKW7k4us7R1uSZ7PB0XNiRn0nF3ltLrvEK7Jh/sav
tMPHuBirNXDNxi0b1iUwmLfvcbEgpb11LoMPO/Tb6yQecnGl4Ynj/Sl8ODQc
HXA/gotXshJdW2L5cGEje+pRDBdFZ2uojbf5kJuxri7xJRcdGx82K9vx4Wip
5q3iMi5ymnO+q/7BB6fTUzoHqrhoaxlBuLvEgytiWYKqGi4KfTm6eXqCBzFH
tO0bGrlIN+5obu/gwVAT6vR+5aLh2qGLC+k8mL9CFDgNcpE5YlAc9i8PVssW
/zv8jYumRpqErbE82HxCnz4+zsW9QcLyQUE82Ce0qsZriou6VpoC3es8sHxe
eXN2lot34i4/nr/EA9d9wTv/XuSiRFOAWJ4bD64OHp749YuLkROKeMueB/8D
KKwn4g==
       "]], 
      LineBox[{{3.996278092705496, -2.5304971664322395`}, {3.996306801500057, 
       2.268067836278679}}], 
      LineBox[{{-3.998012662994029, 
       2.268067836278679}, {-3.997964291724142, -2.5304971664322395`}}]},
     Annotation[#, "Charting`Private`Tag$85436#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-10, 10}, {-2.5304971664322395`, 2.268067836278679}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{3.8273986156860313`*^9},
 CellLabel->
  "Out[145]=",ExpressionUUID->"e550adac-e0a6-4efd-b952-1d1016d97b7f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"iiii", "=", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    RowBox[{"D", "[", 
     RowBox[{
      FractionBox[
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", 
           SuperscriptBox["\[Theta]0", "2"]}], "-", 
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], ")"}], "2"]}], ")"}], 
        
        RowBox[{"5", "/", "6"}]], 
       RowBox[{"(", 
        RowBox[{
         SuperscriptBox["\[Theta]", "2"], "+", 
         SuperscriptBox["\[Theta]p", "2"]}], ")"}]], ",", "\[Theta]p"}], 
     "]"}], ",", "\[Theta]p"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.827393611251314*^9, 3.827393616586507*^9}, {
   3.827393782574443*^9, 3.827393786454549*^9}, 3.827393833679454*^9, {
   3.827394143980788*^9, 3.827394148860531*^9}, {3.827400047949716*^9, 
   3.827400049789692*^9}},ExpressionUUID->"d9105b21-3e64-4aac-abae-\
2d82f616b07a"],

Cell[BoxData[
 FractionBox[
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{
     SuperscriptBox["\[Theta]", "2"], "-", 
     SuperscriptBox["\[Theta]0", "2"]}], ")"}], 
   RowBox[{"5", "/", "6"}]], 
  RowBox[{
   SuperscriptBox["\[Theta]", "2"], "+", 
   SuperscriptBox["\[Theta]p", "2"]}]]], "Output",
 CellChangeTimes->{
  3.82739361678843*^9, {3.827393783418345*^9, 3.827393786628747*^9}, 
   3.827393834081977*^9, 3.8273941490919952`*^9},
 CellLabel->"Out[69]=",ExpressionUUID->"574c6df6-7af8-4004-ad57-60b1a3aeebc3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Simplify", "[", 
  RowBox[{
   RowBox[{"ComplexExpand", "[", 
    RowBox[{
     RowBox[{"Im", "[", 
      RowBox[{
       RowBox[{"(", 
        RowBox[{"iii", "+", 
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{"Sign", "[", 
           RowBox[{"Im", "[", "\[Theta]", "]"}], "]"}], " ", 
          RowBox[{
           RowBox[{"iF1", "[", 
            RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", "\[Theta]", "]"}]}], 
         "-", 
         RowBox[{"\[ImaginaryI]", " ", 
          RowBox[{"Sign", "[", 
           RowBox[{"Im", "[", "\[Theta]", "]"}], "]"}], 
          RowBox[{
           RowBox[{"iF1", "[", 
            RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
           RowBox[{"-", "\[Theta]"}], "]"}]}]}], ")"}], "/.", 
       RowBox[{"\[Theta]", "\[Rule]", 
        RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}]}], "]"}], ",", 
     RowBox[{"TargetFunctions", "->", "Conjugate"}]}], "]"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"\[Theta]", ">", "0"}], ",", 
      RowBox[{"\[Theta]c", ">", "0"}], ",", 
      RowBox[{"B", ">", "0"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827556158248519*^9, 3.82755628029881*^9}},
 CellLabel->"In[69]:=",ExpressionUUID->"f94b376c-aafb-420f-a0ba-4122dfe2f2a4"],

Cell[BoxData["0"], "Output",
 CellChangeTimes->{{3.827556184988991*^9, 3.827556280519479*^9}},
 CellLabel->"Out[69]=",ExpressionUUID->"452e7106-44ad-423b-b013-47704d5fa045"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"ii", "=", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    FractionBox[
     RowBox[{
      RowBox[{"iF1", "[", 
       RowBox[{"\[Theta]c", ",", "B"}], "]"}], "[", 
      RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "]"}], 
     RowBox[{
      RowBox[{"(", 
       RowBox[{"\[Theta]", "+", "y"}], ")"}], 
      SuperscriptBox["\[Theta]", "2"]}]], ",", 
    RowBox[{"{", 
     RowBox[{"\[Theta]", ",", "\[Theta]0", ",", "\[Infinity]"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"y", ">", "0"}], ",", 
       RowBox[{"\[Theta]0", ">", "0"}], ",", 
       RowBox[{"B", ">", "0"}], ",", 
       RowBox[{"\[Theta]c", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8275560742812*^9, 
  3.827556117207822*^9}},ExpressionUUID->"69c24b28-334f-4371-a917-\
fb68280ac4c6"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ii", "=", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    FractionBox[
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        SuperscriptBox["\[Theta]", "2"], "-", 
        SuperscriptBox["\[Theta]0", "2"]}], ")"}], 
      RowBox[{"5", "/", "6"}]], 
     RowBox[{
      RowBox[{"(", 
       RowBox[{"\[Theta]", "+", "y"}], ")"}], 
      SuperscriptBox["\[Theta]", "2"]}]], ",", 
    RowBox[{"{", 
     RowBox[{"\[Theta]", ",", "\[Theta]0", ",", "\[Infinity]"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"y", ">", "0"}], ",", 
       RowBox[{"\[Theta]p", "\[Element]", "Reals"}]}], "}"}]}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.827393253300413*^9, 3.8273933386213913`*^9}, {
  3.827393483240753*^9, 3.82739348581619*^9}, {3.827393562674301*^9, 
  3.8273935722975693`*^9}, {3.82739420638988*^9, 3.8273942641107283`*^9}, {
  3.827400077854945*^9, 3.827400090615223*^9}, {3.827548879309278*^9, 
  3.8275488839093943`*^9}},ExpressionUUID->"47275aa3-a518-40c0-8636-\
2a1702e8b8a8"],

Cell[BoxData[
 TemplateBox[{
   FractionBox[
    RowBox[{"\[Pi]", " ", 
      RowBox[{"(", 
        RowBox[{
          RowBox[{"-", 
            SuperscriptBox["\[Theta]0", 
             RowBox[{"5", "/", "3"}]]}], "+", 
          SuperscriptBox[
           RowBox[{"(", 
             RowBox[{
               SuperscriptBox["y", "2"], "+", 
               SuperscriptBox["\[Theta]0", "2"]}], ")"}], 
           RowBox[{"5", "/", "6"}]]}], ")"}]}], 
    SuperscriptBox["y", "2"]], 
   RowBox[{
     RowBox[{
       RowBox[{"Re", "[", "\[Theta]0", "]"}], ">", "0"}], "&&", 
     RowBox[{
       RowBox[{"Im", "[", "\[Theta]0", "]"}], "\[Equal]", "0"}]}]},
  "ConditionalExpression"]], "Output",
 CellChangeTimes->{{3.827393260285619*^9, 3.827393274875136*^9}, {
   3.8273933250956783`*^9, 3.827393342172038*^9}, 3.8273934877599573`*^9, {
   3.8273935657796707`*^9, 3.827393574361773*^9}, {3.827394211507577*^9, 
   3.827394232690776*^9}, 3.827394268062793*^9, {3.8274000870282173`*^9, 
   3.827400091639617*^9}},
 CellLabel->
  "Out[194]=",ExpressionUUID->"4d62362a-0bd4-4ef2-b97a-6130a8ecb486"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"1", "+", 
       SuperscriptBox["x", "2"]}], ")"}], 
     RowBox[{"5", "/", "6"}]], "-", "1"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827402664798593*^9, 3.827402705254951*^9}},
 CellLabel->
  "In[225]:=",ExpressionUUID->"d1af5436-7da6-4fe1-ade5-4cbb449a5163"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV0Hk81AkUAPCfRnJVjKVoMPwUUcpu7UZ4r+gnVrJJSiqNKyWhHCG5NiZH
iNBWjlLJnWPLllyV+xqFiGFCOZbJEbFr7ft83ud9vv+8S4l14ZDDCoIg4pbz
/3o3gCWkZR+hT/wfqaReNYdpasV0BoJQc+h34+ovvSkLYTIvLztTI9GNgDVx
JfmincHLHnC9HkCHu+VRiiuZbCBS92s5uzFhy4R99JLTDSBsS4yj8jbDxzX3
/l3siANCQmDYMuBHUHko8vP3hQQg8pt5vRra4KLnef6bYjIQ3HWvNN0QCtu5
D6YN7gCxPctvqNEQvp8z7eE7pQDx+OI3qTxjSBXoYX/bl7bsKK0iqYNg2Bi7
cbYjHYgGnbH+K4fgc5JRxbTzAyAm12akFFpCpP0/NlMLGUAcFTGR1DgGnIUz
8ZOKmUDI2LwLuWALXm8Vtk8UPAHiwdN3VVEskLvZXj9ukA3ENCnZ1WAPLHWk
jTrlATGbln4lxxlWLPg2T/vnA3EpaUHkoAu0cy3lp/cVABEdl+AgeQF8ssWe
f+14CkSyfs8efw8wiRsS+ppaCESjuEXamkvA8Kk4zHcuAsJHutm+wBPKDbwn
JxaKgbiW0iyldhlWdQ+ojis+X/6vb/O8SyB0lr/0HPu87EibpCfeQfDkYVLV
aEEpBLpH9YZfDwYzD7NTIwYvgHjRY1hfEwq3REpvDTu9AiJlrcLhR2wo8jbx
uLi+HAKbmxJPTF2HOyO/yE75lwPhfqgz2igSXFvoTl/3VQBR2XbZQfgG0O/U
rOB3VAIR2Pdl0DMOFtaUZLrpVgGhd5MRoHsTPgXdN59MXfajwqpNq+KhxCng
3oRzNQR6MqMePU4A65926Py98BrKTUm7Y4xkSKtLcR9VrAVbBTpX0C4VppOK
1fsia4ErOu3az08Fyqme1zZfC/j6ix0jJA3GaN8sSzl1YOvhMZuVnQ679Mx0
2GENQKyNyd3EyICWvMUVqhPNwDzjn7zV5QnQQeTkas0W4DrzH71iZsHuTfE6
YfYtwOyLP5HZkQXR05lTvq3LthobCDLNgR2x7xxYWa0QGCMnKr85H67WbTHR
OsWB7XLmmdmOhfC44M9NWQkcMCdo/QmcQmhL2kvb2MABN+nI6Yd7ikDF6eiL
9drtMJnTeQ+UiqGOFqpJSL0DojbsosHfJSCj101vfvMemIUeO61elUJuHrvb
RfMDhO9Xnm2/WwEj9JFIk9MfQDjJZTyrvwJUvUz01eI/AOFPtS5trIRUXbE0
3vwHsB0e6pbPr4S42khH69fd8Cwg325bXRV48W7wjWw+QouSkHKE9BtIEasP
kdzHhTnpI2K7hOtBX8/PJvAkF7D74LVzx+uhx1Vj54Q3d/l+eu66vHpY3xYx
1PCEC1zvLO8uqwaITTI1DpfoBwnWlNxSbiOEbGxas9TdD0fZfG6Xdgs4QWvy
mAcPHtfoMAbVOUCkz5Z2R/CAMWr/bNKaA0mCjJ66Bzw4DNVaOyI4UFPrqJD5
ngfZK+d9WGMcUDu8mO6g8wkes6kQ64J2+HxGNbtXYBCyDy12Z+57D2fjrpS1
xAyBvXtJvnliF7gObuYV5X4BR5fU+Njzy3ue7BKuqP0CQ867Nf6O5oJFZ7hm
46cvkL/y5U7nfC7sqh++PCg3AuntRwJKp7hAK8iQkAkbAX9DtTc1fv2Q5K+k
731qFNRKngVHxA5AhZRssrbEOHgJt1o4cD6BqFKoat+uSTgr3s4+tjw3WqJe
Pc12Cp5Z/Lv1p2k+sLoPv6I1zIKPCl/E9cAcuL8OZV1Q/Q5eDbp7lQ4sQYGb
uMV6439AlyaoN69LwzS/cyPbrQhkDdsLVnutwuCUxd+mxwTQNrFfbKJYDAkO
F1/40lC294hQAV0CN11y9DmsvhIbNwytPZ5Kx08ziUfEXgrhWQfKJ0pFGk0G
z16JcxdGhs+4pwJtPZp9itFQUBDFE6eG1i1+k8ORKlZgTY4Y5hpR0zOd8qgp
+V7e4NRq7HXs1fsrkomiMHO6Z2oNRiQfP3GVqYxG49bflC0lcIeZm4nJEImd
lfYC1lskUcvidM1C4UYsDq8+yZyRxCAXhnS/myo6rvTkNjXR8Y6i0zF31ma0
8/ArFr8thZ2dwb2r92jgNieNJtPTP2BQmW6EPrkVm+lbxDy1pVFNMk4uW3cb
/pUb/McWmgwaBxp9Lk3Zjn4C6uYNH2Wwu1bxQPtLLRTt8d3vWrQOWyT2mLR/
/BEHHyrFp/ivx3UB3RdeTP6E8Wqygs8tZbFD6GhnmtJOjLnt+PY0Uw7t7COt
2IY/o3X8iSbxYTn8kK0Te93pF5wzzJhPKduALytpka8zdyFvcK9PZRgDz0ts
vX2uRxvT9bQ2NJ6Wx0LNz3SLbbsx53dPSaetCjgT0lfX7K6LYZZ2v9JmFNCR
T1rcLNTDnT1pmWGNivgkQ9+vUQYwafMfOY2/MnF+95YNa3cgXi2PSvr1OROR
lF83NY54YINlRp2KErYcZd9KeLQH97i+PS7JVsLroXpe16z2YgqDpdIwo4Sj
9QGvTWUNUKXq0S2z48qoODvzg0CrAcZsrVRvK1NGdjBj6WmYITpOCbbWqpPI
XPnSvMl8H7IKvjLZN0j8OXzVB7W1FLoEWyyaxJJYfTG2MJBOoadFUYf4TRLd
hO6Vd0pTGD7jGR1zi8Sh97s82QwKc7XnFxLvkmioarx/fDOF8xVL7x9mkRiC
nvFlhhTGtIlHVb8lcdZErDTMl8Lb98+fuVZL4tTbfmLoCoX3LzUZ7K8nUWhO
2M8wiMISmZjv9U0kvgADkRXhFPZYS53hvCNxA0M36moChao8WYMBHonFjEGt
0HwKtxf5KjwYJFHdZnXOYCGFOr93zzsMk9hw9/xxoz8pNFW9m/9lhMQBgZbf
xMoo9DjHVODzSfzFnP8goZ5Cf92g+adTJIam5z6fa6Lw99UD7ZdmSAzMTxSw
aaMwKe9+xNwciV19Q+pkF4XpgYJOpd9J5PCNxcN6KMz6zWGv/yKJJaltzNE+
CouU38jr/0vifoerZw7yKCyb2jS/tLTc75kZr3CIwv8AMzI39w==
       "]]},
     Annotation[#, "Charting`Private`Tag$2197828#1"]& ]}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0., 45.80236474365029}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8274026843923197`*^9, 3.827402705454937*^9}},
 CellLabel->
  "Out[225]=",ExpressionUUID->"f14d8dda-8aef-46f4-9268-1e49eb0a6ab8"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.82740275528027*^9, 
  3.827402756743431*^9}},ExpressionUUID->"2a89c62c-d8e8-4906-9a9f-\
eb121a3679d1"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     SuperscriptBox["y", "2"], "ii"}], "/.", 
    RowBox[{"{", 
     RowBox[{"\[Theta]0", "\[Rule]", "0.18"}], "}"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]p", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827393492808857*^9, 3.827393548633919*^9}, {
  3.827394219734305*^9, 3.827394219861763*^9}, {3.8274027269674063`*^9, 
  3.827402727655208*^9}},
 CellLabel->
  "In[226]:=",ExpressionUUID->"46cab2db-f51c-4f1d-9971-16ff4eabde9a"],

Cell[BoxData[
 GraphicsBox[{{}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1}, {0., 0.}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.827393502087903*^9, 3.82739357508897*^9}, {
   3.82739422025972*^9, 3.8273942356371307`*^9}, 3.827394268803383*^9, 
   3.827402728111472*^9},
 CellLabel->
  "Out[226]=",ExpressionUUID->"745b57d7-b217-49b8-8db2-7ef71fa6ac32"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"i0", "=", 
  RowBox[{"Limit", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox["\[Theta]p", "2"], "+", 
      RowBox[{"3", 
       SuperscriptBox["\[Theta]p", "4"]}], "+", 
      RowBox[{"0.8", " ", 
       SuperscriptBox["\[Theta]p", "6"]}], "+", 
      RowBox[{"x", " ", 
       RowBox[{"Exp", "[", 
        RowBox[{"1", "/", "x"}], "]"}], 
       RowBox[{"ExpIntegralEi", "[", 
        RowBox[{
         RowBox[{"-", "1"}], "/", "x"}], "]"}]}], "+", 
      RowBox[{"y", " ", 
       RowBox[{"Exp", "[", 
        RowBox[{"1", "/", "y"}], "]"}], 
       RowBox[{"ExpIntegralEi", "[", 
        RowBox[{
         RowBox[{"-", "1"}], "/", "y"}], "]"}]}], "+", "ii"}], "/.", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"\[Theta]0", "\[Rule]", "0.18"}], ",", 
       RowBox[{"x", "\[Rule]", 
        RowBox[{"\[Theta]p", "-", "0.5"}]}], ",", 
       RowBox[{"y", "\[Rule]", 
        RowBox[{
         RowBox[{"-", "0.5"}], "-", "\[Theta]p"}]}]}], "}"}]}], ",", 
    RowBox[{"\[Theta]p", "\[Rule]", "0"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.8273957950347958`*^9, 3.8273958036902657`*^9}},
 CellLabel->"In[97]:=",ExpressionUUID->"d97b0acd-9ab2-4bfa-a926-8144e113e7af"],

Cell[BoxData["3.9662400044020547`"], "Output",
 CellChangeTimes->{{3.827395798643058*^9, 3.82739580404287*^9}},
 CellLabel->"Out[97]=",ExpressionUUID->"b9b7a5df-f22f-4613-aa7a-d1a79e12ed16"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ComplexPlot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       SuperscriptBox["\[Theta]p", "2"], "+", 
       RowBox[{"3", 
        SuperscriptBox["\[Theta]p", "4"]}], "+", 
       RowBox[{"0.8", " ", 
        SuperscriptBox["\[Theta]p", "6"]}], "+", 
       RowBox[{"x", " ", 
        RowBox[{"Exp", "[", 
         RowBox[{"1", "/", "x"}], "]"}], 
        RowBox[{"ExpIntegralEi", "[", 
         RowBox[{
          RowBox[{"-", "1"}], "/", "x"}], "]"}]}], "+", 
       RowBox[{"y", " ", 
        RowBox[{"Exp", "[", 
         RowBox[{"1", "/", "y"}], "]"}], 
        RowBox[{"ExpIntegralEi", "[", 
         RowBox[{
          RowBox[{"-", "1"}], "/", "y"}], "]"}]}], "+", "ii"}], "/.", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"\[Theta]0", "\[Rule]", "0.18"}], ",", 
        RowBox[{"x", "\[Rule]", 
         RowBox[{"\[Theta]p", "-", "0.5"}]}], ",", 
        RowBox[{"y", "\[Rule]", 
         RowBox[{
          RowBox[{"-", "0.5"}], "-", "\[Theta]p"}]}]}], "}"}]}], ")"}], "-", 
    "i0"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]p", ",", 
     RowBox[{
      RowBox[{"-", "1.5"}], "-", 
      RowBox[{"1.5", "\[ImaginaryI]"}]}], ",", 
     RowBox[{"1.5", "+", 
      RowBox[{"1.5", "\[ImaginaryI]"}]}]}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.827395215904148*^9, 3.8273953048571787`*^9}, {
  3.82739538369901*^9, 3.827395449756003*^9}, {3.8273954875413218`*^9, 
  3.8273954989164762`*^9}, {3.827395540918079*^9, 3.827395594198576*^9}, {
  3.8273958067545147`*^9, 3.827395846170776*^9}},
 CellLabel->
  "In[100]:=",ExpressionUUID->"b322468a-712f-49de-b702-6be478a69ce7"],

Cell[BoxData[
 GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJx9202I1lUUgPEX2xhtplXUSrGlLYIgJ8aGIIJWQitXYUGQbSIpWkhCIGEL
h4poV9hKCQKXuRKKKLFFZBCBQl9CiyhKs6FF5PSf34X3+WNuLo8MM/Pe536c
e86Z3U8//8QzOxaLxR+3LRZb4/Rv87zxueNX33vs4I3BX++8uP/k2euDHz55
9vKlndcGn7nznaP3PPX74Hv3/vXAx0d+G7x5kw7s+WXwF/u3vsHPg089dvDX
w8evDn7xwJ6b3+GHwW9s/biLVwbv2/p2e78Z/N2lrV/wy8ErW7/u5U8GHzt3
+uZv+MHgRydexzumrx/87fT9Bt8//bzBr0+/z+AXpt938LvT5xl8Yfq8g/+c
5mPw7mm+Bp+e5nPw/mm+B1+afAw+PPkavD2Wh9eO/GJ+Mb+YX8wv5hfzi/nF
/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb/Zl+WZR9yRX8wv
5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8xv
ztnybF/WI+7IL+YX84v5xfxifjG/mF/ML+YX84v5xfxifjG/mF/ML+YX84v5
xfxifjG/mF/Mb+7N8uyc7b6sR9yRX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF
/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+Jg8qze7PnbPdlPeKO/GJ+Mb+YX8wv5hfz
i/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzm7i2PIuDem/2nO2+rEfc
kV/ML+YX84v5xfxifjG/mF/ML+YX84v5xfxifjG/mF/ML+YX84v5xfzmnVKe
xbWNg3pv9pztvqxH3JFfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hf
zC/mF/OL+c27szx7pzSubRzUe7PnbPdlPeKO/GJ+Mb+YX8wv5hfzi/nF/GJ+
Mb+YX8wv5hfzi/nF/GJ+Mb+Y3+QRyrN3Z98pjWsbB/Xe7DnbfVmPuCO/mF/M
L+YX84v5xfxifjG/mF/ML+YX84v5xfxifjG/mF/Mb/JC5Vkeoe/OvlMa1zYO
6r3Zc7b7sh5xR34xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv8nz
lWd5oeYR+u7sO6VxbeOg3ps9Z7sv6xF35Bfzi/nF/GJ+Mb+YX8wv5hfzi/nF
/GJ+Mb+YX8wv5jd52/Isz9e8UPMIfXf2ndK4tnFQ782es92X9Yg78ov5xfxi
fjG/mF/ML+YX84v5xfxifjG/mF/ML+Y3efjyLG/bPF/zQs0j9N3Zd0rj2sZB
vTd7znZf1iPuyC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv6mrlGd5+OZt
m+drXqh5hL47+05pXNs4qPdmz9nuy3rEHfnF/GJ+Mb+YX8wv5hfzi/nF/GJ+
Mb+YX8xv6mTlWV2lefjmbZvna16oeYS+O/tOaVzbOKj3Zs/Z7st6xB35xfxi
fjG/mF/ML+YX84v5xfxifjG/mN/UPcuzOlnrKs3DN2/bPF/zQs0j9N3Zd0rj
2sZBvTd7znZf1iPuyC/mF/OL+cX8Yn4xv5hfzC/mF/OL+U0duzyre7ZO1rpK
8/DN2zbP17xQ8wh9d/ad0ri2cVDvzZ6z3Zf1iDvyi/nF/GJ+Mb+YX8wv5hfz
i/nF/KYvoTyrY7fu2TpZ6yrNwzdv2zxf80LNI/Td2XdK49rGQb03e852X9Yj
7sgv5hfzi/nF/GJ+Mb+YX8wv5jd9JuVZX0Lr2K17tk7Wukrz8M3bNs/XvFDz
CH139p3SuLZxUO/NnrPdl/WIO/KL+cX8Yn4xv5hfzC/mF/ObvqHyrM+kfQmt
Y7fu2TpZ6yrNwzdv2zxf80LNI/Td2XdK49rGQb03e852X9Yj7sgv5hfzi/nF
/GJ+Mb+Y3/SBlWd9Q+0zaV9C69ite7ZO1rpK8/DN2zbP17xQ8wh9d/ad0ri2
cVDvzZ6z3Zf1iDvyi/nF/GJ+Mb+YX8xv+vrKsz6w9g21z6R9Ca1jt+7ZOlnr
Ks3DN2/bPF/zQs0j9N3Zd0rj2sZBvTd7znZf1iPuyC/mF/OL+cX8Yn7Tp1me
9fW1D6x9Q+0zaV9C69ite7ZO1rpK8/DN2zbP17xQ8wh9d/ad0ri2cVDvzZ6z
3Zf1iDvyi/nF/GJ+Mb/puy3P+jTb19c+sPYNtc+kfQmtY7fu2TpZ6yrNwzdv
2zxf80LNI/Td2XdK49rGQb03e852X9Yj7sgv5hfzi/lNH3V51nfbPs329bUP
rH1D7TNpX0Lr2K17tk7Wukrz8M3bNs/XvFDzCH139p3SuLZxUO/NnrPdl/WI
O/KL+cX8Yn7Dsz5q3D7c9m22z699Ye0jat9J+xRa124dtHWz1lmal28et3m/
5omaV+g7tO+WxrmNi3qP9tztPq3XjvxifjG/4VlfPG5fdftw27fZPr/2hbWP
qH0n7VNoXbt10NbNWmdpXr553Ob9midqXqHv0L5bGuc2Luo92nO3+7ReO/KL
+Q3P/s4Bt0++fdXtw23fZvv82hfWPqL2nbRPoXXt1kFbN2udpXn55nGb92ue
qHmFvkP7bmmc27io92jP3e7Teu3Ib/hWf7cy+7uH9sm3r7p9uO3bbJ9f+8La
R9S+k/YptK7dOmjrZq2zNC/fPG7zfs0TNa/Qd2jfLY1zGxf1Hu25231arx3f
XJq/xery/K2cW56/ldXl+Vs5tzx/K6vL87dYXZ6/XeeW52+xMH9vPX73Q3cd
e2XtxPb83ffkZ69ubr685uf8/89d3PLnvvb3iZdu33N01EGNJ6f/H/Owsf11
b+f/rXdfb71j6x1b79h6x9Y7tt6x9Y6td3xkez1h6wlbT/jG9nrC1hO2nrD1
hL/aXk/Yehrf/8L6j2f++f78vlPPrt9x7dOPzLd5w+YNmzds3rB5w+YNmzds
3rB5w84JbJ1j6xxbp9g6xfY5ts8xL5gXbJ9jXjAvmBdsn+PlfX5o7afPH1l9
f5d9e2jtysRjXfNnvfu82OfFPi/2ebHPi31e7PNinxf7vNjnxT4v7v1k/1p3
2LrD1h227rB1h607bN1h6w5bd/j6tD/WH/xvf3y4z/7dyDrZyDrB9u9G1slG
1slG1gm2fzeyTm5x3g02j9g8YvOIzSM2j9g8YvOIzSM2j9j+xfYv7v61zv8F
q1Nf1Q==
    "], {{
      {Opacity[1.], Texture[
        GraphicsBox[
         TagBox[
          RasterBox[CompressedData["
1:eJx03FVwZOt2J3jHzMs8zmP3hLvdtnvstu+43dfuue7rC+cUqiQVq7hKVWLm
EjMzMzMzs1IpJeOGZGbGvZMzdSImU3XO8Wl7OuJfFVl6qYz85fr2+vZen/48
Lvtl0v/2J3/yJ1//j+BfL2OL7uTlxZZE/Z/Bf7zO+pqanJWYEJ6Vn5icmPc/
4v734A+7f/wTeq3xmtReg8qrV3q0Co9G7lHJ3AqpWyZxS8QuodDFFzg5fCfM
dQBsB42FkiAUByAYBnJCt+/RbVt02xrdukS3ztEtk3TzKN00wDB1M4xtTEMj
U18D6MtAXSGkzYE1aWx1Ikf9haf6wFe+EiqeieXhEtl9qfR7qfgPMuFvZfzf
SHn/IOX+vZTzKzHnr0Xcv+Dz/gPM//ck3r874v27Gc6/r2X/X3Hw376HIp6B
X+4DWb8FSn7PqPuO3nqH3nmP3nOf3hfMA3rvA0bPA0bXfWZHfK85rt8YN2CM
HTTEDOqD+TKg/9Jn+Nxl+txq+VKHJJcjuXn28kR742v7cKR++Z58//eC89+w
cf8AkX7NoPwjlfYbCv23FMYfqMw7NOZ9BvAIBJ7AwAsO8IYPfBIC8WIgVQpk
y4FCJVCuBmu0YJMe7DBAvSZoyAKNW+EZO7yIsFYd7E0ne8/FOXRzTz1cjJd3
5ePj/QKyX0jzi5gBCRSQsgMyXkAuCChEN0rJjUp2o1bcaFQ3Ws2NVnuj0/+g
N/xgMP5gMP1gtPyg9ppUXqPSq1d4dHKPRuZRSd0KiVsmckmELpHAyec5uVwn
i+0AWSgdQikAQmAgWJr9jGI7JNm2idZVonWRaJkhmieIpmGiqY9o7CIZWkiG
epK+iqwrpWjzqZpsqiaVpk5gqD4zle8BxStQ8RSWh7Nk99nS7zjS33Elv+GK
/4Er/q8c0d+yhX8NCf+SIfhzkuA/XvL/wx7vT+e5f9rF+dMC1n+Mg//xIxQR
BX6MAFPvAl//GSj9A7P2O0bTHUbrXUb7PUbHPUbnfUbHfWb7PWZrfLclrscc
12uKvU1Mjymm2xTTYfnSYoupR5KqkMxipCDHXpFob3hv73lmnorQrD6Q7d4R
nfyRf/EHztXv2fjfs4h/ZJHusMn3OZRHXMoTHuUFn/pWSP0kpsZJqMkyaqaC
mqeiFatpFVpanZ7WbKR3mOi9FsaQlTFuZ84gwIIDWHWCmy5o1w0deuBTL+vC
x77ycwl+HtnPp/mFQEAEBcTsgIQXkAoCctGNQnqjlN+oFDcq1Y1ac6PR3mj1
P+gMP+iNP+jNPxgsPyi9JqXXqPDo5R6dzKORuFVit1LkkgtdUr5LxHMKuE4u
28GCHSCEMgCUykCINPs1xX5Bsp0QrHs46wbWsnRpnr40jV2ahi6NvZeGjktD
86W+DqurxGqLrzRfrzRZ1+oUnCoer/xMUL4jKqKI8qckWThZdp8i/Z4i+R1F
8k8U8T+SRX9PEv0/BOHfXAn+6kLwl4f8P9/g/adZ3p/1cf+smv1nKaz/FAf/
80fo8Wvow1Mw8RGYfQco/B1Q9geg5jtmwx1m011my11mazD3gi+A5vhOS1yX
Ja7bHExslzm20xLbbo1pscU2IIk1SFoFkluEFGXbK5PtDdH2tij70DPjzGPN
SrhiO0x68FB88kB4/lCACRNgIwRXjwXXz4W4KBHunRj/SYqPleGTFIR0JSFH
TSjQEEt1xCoDsd5IajGTOi3kPht52E4ZR6kzDuqCk7bqom+6Gbse5oEXOPFB
GB985WMT/ByKn0v38wG/AA4I2QExLyARBKTigEx6I5ffKBQ3StWNSnOj1t5o
9Ddaww9a4w868w96yw8Kr0nuMco8BqlHJ3FrxW61yK0UuOR8l5TnFHOcAraD
BzvYIAoBKJOB0Gh2EsWOI9kuCbZTnPUQa9nGmNfOzfMnpokj48CRofvI0H6k
bzrS1Rxry4+1RceavBN15okq5VQZd6qMPlO8O5dHncufXsjCL6QPLiTfX0h+
fyH+H+ei/34m+vWJ8L8eCn+1K/gvG/y/WuT/5wneX/Zy/6Ke8xd57L9IYv23
WPjOJ/jZG+jDCzAhEsx4CH69Axb/Hiz/I1D9HVD3PRBUa7wDNN0NpTG+wxrX
eZvgi3ZrbJsttsUe24gk1iGpweIqQ74WIsU5SGWqvT7W3hIssSjr6AvjzDPt
8hPVxhPFzmPZ/hPp4VPp8XPpaZT07I3s/L3sIlqOiVFgElWXqerLLA02T4ct
0mPLjVfVpqsGy3WrFddlw/Uh+GGUMO4gzLiIC27Sioe84aXsemmHXsapj4nx
gdc+iOhnUfxsup8L+HlwQMAJCHkBkSAgFgck0hup/EauvFGobpSaG6X2RqW/
URt+0Bh/0Jp/0AW9PGaZxyT1GMRuncitFbrVApeS55JznVKOU8xyCGEHD0Q5
TBRmIAANoVHsZJINT7Bhr63nWMsRxrJ3bt44MS0fGWf3DWO7hv4tfduWrmFL
W72lLdvSFG6pc7dVGdvK5G1l3I4iekf+blcetSt7uiuN2JU+2JXc2RX/YUf8
223RbzaF/7gu/G/Lgr+b5/9qkv83Q7y/7uL+VT3n/y5k/+dU1t8msn4XC4d9
gl++hT69hBKegOnhYO59sPB7sPQPYMUtWe33QP2doNpt4ttt8e0hqbg2W1yr
La7FHteIJNQjKbVIeiWSXYrkFyIluUhlOlKXaG/6bG9/Z+97bR2NMk6/1C+8
1K68VK9HqbZeqXbeKPfeKfc/qA6jVUex6uMEzXGK9iRDd5KjP803npWYzirM
57XW80bbRZsd04Vg+h2Xw07suOtqxn294MGtegibXtKel3LkpZ756Jc+Js4H
EP0QxQ/T/WzAz4H9PE6AzwsIhAGhOCCWBiTyG6nyRqa6kWtuFNobpf5GZbhR
m2405hut5UbhsQS9JG6j2K0XurV8l4bnUnFcCrZTxnJKIIcQcPCZKIeOwFQE
INvpRDsFbyNcW6+w1guM5eTMvH9i2j4yre4bF3YMU1v6kXVd76q2bUlbu6Ap
XVAXLKhyFpXpi8qkRUXsovzTkvzdkixqSfpsSRqxJHm4KL67KP7jvOh3c8J/
mhH+90nBr8cEfz/I/7tu3q9auH9Tzf0vBZy/Tmf/Kpn12wTWvRj4ySf4zVso
OgpKeAalR4I5YWD+PbD4e7DsD2DlH8FvZHW3avUhr7ZQ4lrtIawmJKEBSQ4W
Vw2SWYnkliIFQa88pCITqU1BGuPtrZ/tHe/tfW+tI2/Nk2+Ms28NC2/1y+91
qx9065+0m591W7G67QT9TrJ+N92wl23czzPtF5oPSq2HVbbDOvtRE3Lchh53
O0/6XafD7rMJ98Ws53LJc7XmwW178fte4rGXfO6jYn00nI9B8gFUP8jww6Cf
Bfs5nACXF+AJAwJxQCgNiOQ3YuWNRHUj1dzIdDcK/Y3ScKMy3ahvveRBL7c5
6CVyGwQuHc+l4bhULKcCdspAhwRwiBiogIZyqQiLbAeJdgbeRr22ErFW3IXl
8sx8dmI+PDTt7hs3dgzLW/rZdd34im5wSds9r2mZVddOqcrGlXljyrQxRdKY
PHZM9mlM9m5cGjUmeTYmiRwTh42K742IvhsW/n5Q+Nt+wW96+P/Ywf91M+/v
a3l/V8b9VR7nbzPYv05l/y6JdS+OFfkFfvkRfv8WjomCkp5D6Y+hnEdg/gOw
6C5Y+l2wxMCq78Ca738i+4YV32qPD2I1IwmNSFIDklKHpNcgWUGvMqSgCCnJ
RypykOoMpD4ZaY5H2mKQzk9I7wf74Afr6EfL5EfzzCfT3GfTQoxxKc64nGBa
TTatpZnXMy0buZaNfOtmsW2r3L5djWzXO3aanbvtrr0e18Gg+2jUfTLlPp33
nC97MBse7I73+sCLP/ESLnwkrI+C99FIPjrVz2T4AdAPsfwwJ8DmBzjCAE8c
4EsDAvmNUHkjUt9INDdS3Y1cf6MwBpSmgNoc0FgDcrdVGvIyiVxBLz3PpeU4
1bBTCTrkTIeUjoqpqICC8EgIm2CHcDbmlY12aSVfWPBnFuyx+fzQdLxn3N8x
bG0aVtf1Cyu66SXt6Lymf0bdOaVuHlfVjijLhhT5/fLMXllilyy6S/quSxLV
JXnWJY7sFIV1iO63C79vE/6hRfDPjfx/quP/v1W8fyjh/for9++zOf+Qwflt
Gvu7ZPaDBFZkLOvFZ/jtBzj6LRwXBSU/hzKeQDnhUP5DsOgeWHoneBUDK78L
lliILOhVd+tlv/VC4puQxEYkuR5JrUMyapDsSiSvHCkoQYoLkPI8pCobqU1H
GlOQlkSkLQ7pjEG6vyB9n+1DX2yjMbbxWOtkvHU60TqbbJ1Ls81n2hZy7Itf
kaVCZLkUXalwrNY41xqdG62urS7Xdr9rd9i9P+E+nHEfL3pOVj1nm56LXe/l
offq1IvDeAlXPiLBRyb7qDQ/jelngH6A5Qe5fpgfYAkDbHGAKw3w5AGBMiBU
B8TagFQXkBkC8qCXOaCyBNTWgCzkZRG7zEKXke80cJ06tlMDO1SgQ8FAZVRU
TEKFRISHt3Ou7TDWBmCs9HMr5dRCODZfH5gwe6bTbePBpmFnTb++olte1M7N
aSdmNMOT6r5xVceIsmlQUdMvL+uRF3TJsjukqa2SuGbJp0bxm3rR81pRRJXw
QaXgTrngj6X83xXxf1vA++1X3j/ncn+fzf0uk3M3jfMghR2eyH4az3oZw3ob
DX/6AMe8gROjoNTnUOYTKDcCyg+Diu6DpXfB8u9CXrclBtbe+VZft8UVHyyu
n7zSvnlV3XqVIsVFSFk+UpmH1GQj9RlIYxrSkoK0JSGdiUh3AtKbgPQnIAOJ
yFASOpKCjqWh4xnoRDY6leeYLnTMljjmKhwLNc6lBudyi3O107Xe69oYdG2N
uXem3Htz7oMlz+G653jbc7rnOT/yYs68WIz3+tqHJ/gIZB+J5qMw/VTIT2f5
mVw/wA9AwgAsCbBlAa4iwFcFBBq/SOuX6P1Sg19m8ivMfqXFr7L6ZS6bxGUV
uSxCp4nvNHKderZDCzvUAKpkoHIqIiUhIrxdcGXnXtpYFzbwzMo4sVAPzcR9
M27XdLllPNswHK3q95b1Wwu61TntwrRmZlI9PqYaHFb2DCrb+xRNPfKaTll5
u7SwVZrbJMloECfViWNrRNFVwncVwldlghcl/KdF/MgCXsRXXnguNzybG57J
iUznPE5hP0tiv4xnv45lvfvM+vQRjnkPJ7yBU6Kg9OdQ9hMoLwIqCHo9gEJe
3996ff9Lr7Z/8UpqRFIafvKqRnIrkfwypKgEKS1CyguQqjykNgepz0KaMpGW
dKQtDelIQ7rSkJ40pC8d7c9AB7PQoRx0JA8dzUfHixwTZY6pSsd0jWO2wTnX
4lzocC71uJYHXKsjrvUJ9+aMe3vBvbPi3tvwHOx4jg48J8fes3PvxaX3Eue7
IvquKT483UcE/GTIT2H7aVw/Q+AHRH5I4mfJ/ByFn6fy8zV+oc4v1vslxpCX
3OxXWP1Km1/qsotdNpHTInCaeQ4jx2FgOXQQqgFQFR1RUBAZyS7G24VXNt6F
jX1qhY4szAMLbc9M3jHhN41X68aLFcPJkv5gXrczq92Y0ixPqOdG1VNDqtEB
5UCvortb3tYha2yT1bRIyxslxfXir7XirGpRWqUwqVwYVyr4XCz4WMh/l89/
k8d7ncN9lcWNyuBGpXFepXBeJ7HfJrDfx7E+fmF9jmbFfoAT3sLJr+G0l1Dm
MyjnMfQ1AioMg4r/jVfdT/3G7Xr4S696JKMWyapBcquQrxVIYRlSXIKUFSEV
BUh1PlKbh9TnIo05SHM20pqNtGcjnTlodw7ak4v2fUX7C9DBInSoxDFS7hit
cozXOiYanFMtzul252y3c67ftTDsWhp3rUy5V+fc60vuzTX39pZnd9ezf+g5
PPEeX3hPsd5znA9D8l1SfVd0Hw7wE2A/ie2n8Px0oY8p9oFSHyz3sZU+rtrH
0/oEOp/I4BMbfRKzT2bxya0+hc0ncSFip03otPIdFq7DxHEYYVQPolomoqYh
SopdTrRLcTYR1iq4sHJPLaxDC7hrZmyZKOsm4qrxetlwuaA/m9MdTWv3JrVb
Y5q1EfXioGq2XznRoxjpUvS3y7tbZW3N0sYGSW2dpKJGXFIlKqgQ5ZYJM0sE
aUWCpAJ+wld+bC7vSw4vOov7KYP7KY3zMYXzKYn9KYH9OY79JYYVG82K/8hK
fAenvIHTo+DMF3DOUyjvMVQQDhWFQSX3obK7UMWtV3WouEJeDT97JbQgCc1I
UhOS0njrVYdk1SI51UhesMQqkKIypKQUKStGKouQ6kKktgCpz0ca85HmfKQl
H23LRzsK0M5CtLsY7SlF+8rR/krHQLVjqM4x3OgYbXGOtTsnup2Tfc7pIdfs
qGtu0rUw61pacK+suNc23Bvbnq19z/aRZ/fMu4/xHl55j/HeU5LvnOrDMHxX
oA/H8hE5PjLfSxV6GRIvIPNCCi9L5WVrvFytl6/3CoxekckrNnulVq/M5pXb
vRInInLaBQ4b32HlomY2aoJRA4DoGHYtza4m25REmwxnlWCtwgsL/8TMOTTD
uyZg00RbNZIXDfg5w9WM/mJSdzKuPRjV7AypNwZUK72qhW7lTIdivE0+3Czr
b5R21UvbaiVN1eK6CnFVmaisRFhULMwvFOTk8zPz+Ok5vJQsXlImNzGdm5DK
iU/mxCVy4uLZ8bHshC/sxGhW0kdWyntW2ls44xWc9RLOeQ7nPYHyI6HCcKj4
IVR6Hyq/9QoV152QV/3doFeHLaHdlvALr+RGJLUBSa9HMuuQ7GCJVSNfq5CC
IFk5UlKGlJcilSVIVQlSU4zUFaMNxWhjMdpcgraWom1laHs52lmJdlU7emod
vfWOvibHQKtjsMM53O0c6XOODTrHR1yTE67padfMvGtuyb2w5l7adK/setYO
PBsnnq1z786ld+/ae0DwHpG9pzTvBdN7CXmv2V48z0MSeCgiD03qYcg9gNID
qT0sjYej8/AMHr7RIzR7RBaP2OqR2rwyu1fsRIUOhO+w81AbB7WwEDOEGAG7
gW7XUW0akk1FsCqurdJLi/jcLDgx8w5M7F0jtGlkrhqoi3rSrB43qbsc0Z4N
aY4HNPu96u1u1XqncrlNMd8in26Sj9fLhmulfdWSrkpxW7m4uVRUXyysLhRW
5AtK8wRFOfz8bH5uJi87nZeZxk1P4aYlcVITOKnx7JRYduoXdmo0K+0jK/09
K+MtnPUazo6Cc5/DX5/C+Y+hwgio+BFU+hAquwdV3IEqvw8VV9Cr7m7IqzHh
m1ebPaEVCZIlNiPJTUhqsMQakIx6JKsOyalF8mqQ/GqksAopqkRKKpCycqSi
HKkqR6vL0dpytK4cbahAGyvR5iq0pRptq0Xb6x0djY7OZkd3m6Onw9HX7ezv
cw4MOodGnCPjrtEp1/ica3LRNbXintlwz227F/Y8S0eelVPP2oVnA+vdxnn2
SJ5DqueY4TkDPRiWG8tx4/hugtBNFrupMjdd4Waq3KDGDWvdLL2bY3DzTG6+
2SO0eEQ2j9jukSIekcMhcKA8FOGidjZihRELaDcz7UaaTU+xaYlWNd6ivLLI
MWbpmVl0bBIcGLk7BtamAVzVMxZ1lFkdcVJ7ParBDGhOe9SHHardNuVWs2Kt
UbFUL5+rlU1VS8cqJENlkv4ScXeRqL1Q1JIvbMgT1OYIqrL45Zn8knReUSqv
IIX7NYmbm8jJiedkx3KyYthZn9lZn9hZH1jZ71nZb1k5r+HcKDjvBZz/DC54
AhdFQsXhUGkYVPYAKr8HVd6BfiyuW6yGe0BTQqf1lsz+rcSCXknNSMotWXoD
kvkzWS2SX4MUVCNF1UhJFVJahZZXoZVVaFUVWl2N1lajdTVofR3aWI82NaLN
TY7WFkdbu6O909HR7ejqc3YPOntHnH3jzoEp1+Csa3jBNbLsGltzT2y6p3bd
MweeuWPPwpln+dK9du3eJLh3KO59uuuI6TqFXOds1yXPdSVw4UUuotRFlruo
Shdd7WJqXKDOBRtcbKOLY3bzLG6+1S20uUV2txhxCx1OPurgoigHQViIHbJb
AbuFYTNRbUayVU+waHEWNdasvDDJT02SI6No38DfNnA29PCKDljU0me1lEkN
YVR9PajC9KhOO5SHLYrdesVmtXy1UrZYLpsrlU4VS8YKxcMF4v6vop5cYUe2
sDVL0JTBr0/j16TyqpJ55Unc0gRuSTy3KJZTGMPJ/8zOj2Z//cj++p719R3r
6xvW11es/JdwwQu48Blc9AQujoRKfsKquA9V3g1iQdW3K2GouO4Bjb/w+rHE
EltCXsm3ZGnfyBqQ7Hokpw7Jq0O+1iIFtWhhLVpci5bUomW1aHkdWlGHVtWj
1Q1oTSNa24zWtTga2hyNHY6mLkdzj6Olz9E26GwfcXaMObsmnd0zrt55V9+S
a2DVNbThHt52j+27J49cM6eueYxr6cq5indukJzbVOcew3kAOo9ZzjOO44Lv
wAod1xInXuYkKpwUlZOmcTK0TqbeCRqdsMnJMrs4VhfX5uLbXQLEJUTdAtTF
Q50cxMFCUNiOgHYb02al2SwUq4lkMeAt+muz9tKkPjcpToyyQ4NkTy/c1vPW
dZwVLbygAWY0tAk1eVRFGFRe9SoxHYrTFvlhg3y3RrZZIV0tli7lS+byJFO5
4vFs0XCmcCBD2Jsm6EoVtCfzW5L4jQm8+nhebSy3OoZb+YVTHs0p+8Qu+cAu
ec8ufscqesMqes0qimIVvYCLn8PFT+GSJ3BJJFwaDpWFQeUPf8K6E8KqufsN
CwwV1z2gOaHL+nOJJbbZE39Blhoka0LSG5HMRiSrAclpQHMb0LwGNL8eLWhA
CxvQ4ga0pBEtbUTLmtDyZrSiBa1sQ6vaHTWdjtpuR12vo77f0TDoaBxxNo85
WyadrTPO9jlXx6Kra8XVs+7q33YO7TlHD50Tp47pC8cc1rGIQ5eJ6BoF3aSj
OwC6B6OHbPSEh54JUIwYxUrRazmKV6IktYOiddB0DrrBwTQ6QLMDsjhZVifb
7uQiTh7qEjhCajzExUGcsN0B2lGmDaHbbFSrlWyxECwmnNmANekwJs2ZUXVs
UBzoZbt68ZZOuKblLWvY82poRs2cUNFGlOQBBaFHcdUhx7TIThulh7XSvUrJ
VqlkrVC8nCeazxJNp4kmkoUjSYLBBEFfPL87jt8Zw2v7wmv5zG2M5tZ/4tR9
4NS851S9Y1e+ZVe8Zpe/YpVHscpesMqes8qewmVP4LLHcHkEXB4OV4RBFQ+h
yvtQ1d2gVCi/wAJDxXUfaPnZKzGYX5K13JI1I2nNSHoTktGEZjah2U1oThOa
24TmNaFfm9D8ZrSgGS1sQYta0eI2tKQDLe10lHU5ynscFX2OygFH1ZCjesRR
O+6sm3TWTzsb55wti462FUfnhqN7G+3bQwcP0ZETZOwcmcQiMzhknogsUewr
NPs6074F2XfY9n2u/UhgPxHZzyQIRoZgFci1CsFrEKIOJetRqhGlm1CmBQWs
DsjmCNKwkeAa6OA7HEK7O1hrHJuTZXOCNgfDitKsCMViJ1qseLPlymS6NBrO
jboTg+ZIr9rXKbZ1sg2teFUjXFLz5lTsaRU0rmQOK2gDcnKPjNAhu2qRYhol
Z7WSo0rxfqlou0i0/lW4ki1cyBDMpgimEvljcfzhL/yBT7zeD7zu99yOd9y2
t5yWN5ym15yGV+z6KHbdS3bNC1bNc1b1M1bVU1bVY7gyEq6MgCvD4cowuOoh
VPUAqroPVd8NpeYuVPtvsJpDXt3WW7Jbr5/J2pCk1lCSW5CUFjS1BU1rQdNb
0IwWNLMFzWpBs1vQnFY0txXNa0O/tqP5HWhBJ1rQhRb2OIp6HcX9jpJBR+mw
o2zUUTHuqJpy1MyidfNowxLStIq0biDt2/auPXvPob3/xDZ0bhu5tI1f26YI
tlmybZ5mXWJaV0HrOsu6xbHt8m37QtuR2HYis50pbBiVHau2X2vteL2daEDI
JoRiRoIQDFtwxUOC6x4bQYPXLL4DDV7IgpczrtUVrDvI4mBaHDQLSjYjBLP9
2mTFGi0XRtOZwXCs1x3oNLs61ZZWsa6RrajFCyrhrJI3qWSPKeAhOdAvo3dL
yR1SQovkukF8WSs6qxQdlwkPioQ7+YLNHMFaJn8pjT+fzJuJ503Gcsc+c4c/
cgfecfrecLpfcTpfcNqfs1ufsZufspuesBofs+qDiWTVRcC14XDtI7gmDK55
CNc8gGvuQzX3Qqm9Td29kNSPWPfBH7HuA60J3ZagV2JnML8ga7cnBcm+JajW
iqa0oqmtaFpbKOltaEY7mtmOZnWgWZ1odhea043m9KC5vWheP5o/iBYMoUUj
SPE4UjqJlE/bK+fs1Qv22mVb/ZqtcdPavG1t27N2HFq7Tyy955aBS8vQtWWU
YJkgW6ao5lmGeQE0L8GWVY5lnWfZElp2xJZ9qeVQbj1RWs/U1gut9VJnuzLY
cCZb8MMnW+xUq51hswP2YFMRbAXtwYYw2MYHe0W+xc21uNhmF2R2AiZHsBIp
RoRotOOMtkuD9cxgOdGbDnXGPa1+W6vd0KhX1YollWxeKZlWCCfk/FE5Z1AG
90mBLgm9XUxpFhMbRLgaIbZSeFEmOCniH+bz93J521m8jXTuSgp3MZE7F8eZ
/sKZjOaMfWAPv2MPvmH3v2L3vGR1PWd1PGW1P2G1RrJaIuDmcLjpEdwYBjc8
hBseQPXB3P9lQkah3A9J3WL95PXg1iux25r4M9mPavakYNp/THI7EkxKRyip
wXQiaZ1IeheS3o1k9CCZvUhWH5I9YM8dtOcN27+O2vPHbIWTtqJpW8mstWze
WrFkqVyxVK9barfMDTvmpn1zy5Gp7dTUeW7qvjT1XpsGCMZhknGUapxgGKcA
4yxsnGeblnimFYFpXWTalJp25OY9pflAbT7SWE51lnODBWO0XJsswZWNZLFQ
rRa6Ldj+WYNNIAuxclArz2ELbseCHT7X5GabXLDRBRidwYsd1YCS9AhOb8fq
bBc664nOcqA172iNmxr9mlq7rFIvKJWzCvmUXDImEw1L+QNSbo+E1SkG20SM
JiG1XkiqEeAr+FelfEwR7yyfd5zLPcji7qZztlI464nslXj2Ygx77jNr+hNr
8j1r7C1r5DU8FAUPvIT7nsM9T+GuJ3DnY7g9EmoLh1rDoZZHUEsY1PwQagrm
AfgtvzD6Mc0/YYW8En/2+pZvZJ22pF8kudMeTEpXKKndoaT12NJ6bel9tox+
W+aALWvImj1szRm15o5b8yYs+VOWghlz4by5eNFcsmwqWzNVbBirto01u8a6
A0PDkaHp1NByYWjD6juu9d0EfS9ZP0DVDzH0o4B+HNZPsfUzPMO8wLAoMixL
DGsy44bCuKUy7mhM+zrTsT64jpkwRlPwGoQ3B5s9U7Dlo9uCeytzcIcFI2Y2
auE6LEKTN7iJ5ho9bIM72PMDeidD56TqHCQtitciVxo7RmM7VVsP1ZZdlWlT
ZVxVGRaVujmFZlqumpDJR6TSQYm4TyLoFnPbRewWIdQoYNbxadV8SjmPWMLF
FXKxXzkXuZzTLPZROns/hbWTxNqMZ63Fwitf4MVoeO4DPPMOnnwLjb+GRqOg
4RfQ4HOo/xnU+wTqeQx1R4KdEWBHONj+CGwLJgxsfQi2fMsDsPl/yo9SIayQ
V4/lX5PdJunH2JK6rcnB9ISS0htKap81td+aNmBJH7RkDFsyRiyZo+ascXP2
pDlnypQ7Y8qbM+YvGAuWDYWrhuJ1Q8mmvmxHX7GnqzzUVR/ras909RhtI1bb
jNO2ErQdZG0XVdvD0PYD2kFYO8zWjvG0EwLdtEg3K9HNy3SLCv2KSr+h1u9o
9fs6/ZFef2bQY4z6K5M+2OYRLQaK1UCzGRh2I4gYYcTERk1ch0lo8PINXq7e
w9Z7YJ0b0LqC/T9V4wz2lgQ1eqVCgpfCM6XtSGndV5i35aZ1uXFJrp+T6SZl
2lGpekii6BfLekSSTqGwVchvEnDq+XAND6zkMcq41GIOqYCD/8q+zmFdZrLO
01knKfBhErwXD+/EQptfoLVoaOUjtPgenH8LzrwBp16BE1Hg2Atw5Dk49BQc
eAL2PwZ7I8GeCLA7HOwMBzsegR1hYHsY2PYwGKD14S3NL6R+xPqfvP5Nknp+
Sq8lOZg+S0q/JWXAkjJoTh0ypw2b00ZM6WOm9HFTxqQxc8qYNWPInjPkLOhz
l/R5K7qva7r8TW3htrZoV1tyoCk90pSfqCvO1VUYdc2Vug6nbiCqmsiqFpqq
jaHqAFXdsLqXo+7nqQcF6hGRekyimZRpZhWaBaVmRaXZUGu2tZp9XbCd05wa
NBdGLdakxZm1BIuObNVRbTqGXQ8geggxsFADx2EU6n18nZer87K1HkjjBjRu
htpFVTnJSgdB6bhWoJdy5ExuP5bZDqSWHal5Q2JakRgXxPppsW5cpBkSqXtF
yk6hvE0gbeaLG/iCWh6vissu50AlHKCITc9nUXJZpGwYnwFfpUGYFOgsETqJ
Bw9jwb0v4HY0uPkRWPsArLwDFt8A86+B2Shg6iUw8QIYewaMPAWGnwCDj4H+
SKAvAugNB7rDga5HQGcY0BHMQ6D9IRBUa/vZ6Jf5yetnMkvoJ9/SawlKJfVZ
kvrNwSQPmJMHTclDppRhU8qoMXXMmDpuSJs0pE3p02f0GXO6zAVd5pI2a0Wb
vabJ2dDkbqnzdtRf91UFh6rCY2XRmbLkQlmKVZZfKyrwiiqSooaiqKMrGpiK
JlDRwlK0cRQdPEWXQBn8oAYlilGpYlKmmFEoFpSKFVWweVNsa5V7OuWhXnli
UJ4bVZcm1bVZjbeoSVYNxaah27VMRAsiOhjVsR16gTZ0656j8bLUXkjtAVQe
htJNVbjIcidB7riWOS6l6LkEOZHYD8S2XZFlU2ReFZoWBcZZgX6Srxvlawf4
6m6eqp2naOLJ6riSaq6ogiMoZXOLWKwCFpQHM3MgWiZESQeJqSAuGbxKBDDx
wFkscPwFOIxm7n1kbn9gbr5jrr1lrrxmLr5izr9kzr5gTj1nTjxjjj1ljj5h
Dj9mDkYyByKYfeG3ao+ArrBbtYc/qT34N2o/YVn+lVQofebEW6mkAVPSoClp
yJQ8bEweNSaPGVLGDSmT+pQpfeqMLnVOmzavTVvUpC9rMlbVGeuqzE1V1o4y
e0+ZfaDIOVLknsq/nsvzMbKCK1khTlZMlJWQpWVUaTlDWglIqyFpDUtax5U2
8qWtAmmnUNorlgxKJKNSyYRcMqOQLCgly2rpuka6pZXu6mTBve2xQX5mkmPM
iiuzAmdREq1Ksk1Fs6sYiBpANBCqYTm0Ao2fp/ZxVD6WygspvYDCQ5d7qDI3
SeoiSJzXEuel2HEuQk+EyKHAviuwbfEtazzzEtc0xzVOcQxjHN0QW9vHVney
VK0sRQNLHnyT5SxJEUtUAPPzIG4OxMoCwXSQmQrQkgFyIpMYz8TFMrExzIvP
jLNPjOOPjIP3jL13jO03jI3XjLVXjOUoxuILxvxzxswzxtRTxsQT5thj5kgk
cyiSORjB7A9n9j1i9jxidofdqv2vyP4XWOZvWIkDpsRBU+KQMWnYmDRiSBo1
JI3rkyb0yVO65Glt8qw2eV6TsqhOWVanrKpS15Wpm8q0bUXarjx9X55xJMs4
kWaeSbMuJNlYSc61JBcvziOJv1LE+TRxAVNcBIqKYXEZW1TFEdbxhI18YatA
0CkS9IoFgxLBiEwwIRdMKwTzquAeVrimEW1qRTs60b5BfGSUnJokF2Yp1iK9
tsoIVjnJJqfaFXREyURVIKqCHWq+KsBT+TlKP0vhg+Q+psxLl3qoEg9J7CaI
XNdC56XAec53nPDRQx6yx7UH93rrbOsyyzLPMs3AxgnIMALpBkBtD6jpAFTN
gLIekFcBsjJAUgiIcwFhJsBPB7ipTFYyE0xkMOMZtDgGOYZO+EzHRdOxH+kX
H+in7+nHb+kHb+i7r+lbr+gbUfTVl/Tl5/SFZ4y5p4zpp4zJJ4zxx4zRSMZw
BHMwnDlwS9YbImN2PfyJ7MH/RNbyr5fB/z+sxGFD4oghcUyfOK5PnNQlTmkT
ZzRJc5qkBXXSkippRZm0pkjaUCRvyZN3ZMl70uRDacqxJOVUnHohTr0UpV2J
0vDCdKIwnSzIoAoyGYIsQJAD8fNhXjGLV8bmVnE5dTxOI5/TKuR0ijg9Es6A
lDMi44zLOdNK7pyKu6jmrmp4Gzr+tp6/ZxAcGgUnJuG5WYSxiK+sYrxNQrRJ
yXYZFZEzUDmAKiCHkq8MDQyw5X5Y5gelPqbERxd7KSIvSejBC9zX/NA95HOu
84TjOGSjeyxkC7avQ7YV0LoAWGYA8yTTOMowDDL0vXRdJ13TSlM30pS1NEUl
TVZKkxbSxLk0USZdkELnJ9C58XRWLB2MoTE+02jRNPJHGuED7fo97fId7fwt
7fQ17egVbT+KtvOStvmCtvacvvKMvviMPv+UPvOEPvWYMRHJGIsIkjGGgmSP
bqss7Eeyf+UVajxC3eAvvBJ6zQl95oR+c8KAKWHQmDBkTBg2JIwYEsb0CRO6
hEltwrQmYVaTMK9OWFAlLCsTVhUJ6/KETVnCtjRhV5pwIEk4EieciBLOhQkY
YQJWkIDjJxD4CSReIpWXSOclM7hpADsLZOVCrAIYLmZDwSt4FRes44ONArBV
CHaIwR4J2C8Fh+XQmAKaVEKzKnhBw1rWstZ17C09Z9fAPTByj028UzP/wiLA
WoXXNhHBLiLZxRREQkOlDFQGOOR8eYArC7CloWEPUOxniPw0oY8i8BL5oUdp
V1w3hu0+Z7lOYOch5NgD0S0AWWfaVxi2Bbp1lmaZpJrHqKYhirGfrO8m69pJ
2maSuoGkqiEpK0jyEpKsgCTJJYkzycIUMj+BwouhcqKprE9U8COV8Z5KfUcl
vaXg31CvXlMxr6lnr6jHUdSDl9TdF9St57T1Z7TVZ7Slp7T5J/TZx/SpSHqQ
bDRIFs4YfMToD5ZYWIis6yGz8yevENbt/Y3mHxv4bmvoRse/eJl+9Aph6UNY
4yGs+GlN/Kw6fl4Vv6iMX1bErcrj1mVxW9K4HUnsnjj2UBR7LIw5FcRc8GMu
+V+ueV/w3M9EzmcK5wuNHUeHExlQChNMB4AsiJkHMwpY9GI2vYxLq+LRavm0
BiGtRURrF9O6JbQ+GX1QTh9VMCaUjBk1c14DLGnBVR24oYe2DfCekXVoYp+Y
OWcWLsbKu7LxcXYBwS4kIyIqKqaHxgulfFlohootCcCiACAMMAR+Gt9P5oWe
U+PY3iuWBwN7ziD3MeA6YLp2Gc4tumOdhq5QkUWKfZZsmyJZx4iWYYK5n2Ds
wRs6cPpWnK4Rpwm2tVXXyrJrRTFOno+T5uDEGXhRCkEQ/E7GELmfSOx3ZPgt
GXhDpr8mU16Tia/IuCgKNopy8ZJy8oJy+Jyy95y6/Yy68ZS6+pS29IQ2/5g2
GxkiG4+gj4Yzhh8xBh4x+m69um+9Or55fcMKbp9DtzVuyf61V6i4QpUVP6qP
H9fF32LFzarj5lVxi8rYZUXsqixmQxqzJfmyK/6yL/p8KIw+EUSf8z9heB+v
uB9wnPfE4JtnfaBA0VQwhh5c4RlJTFoKQE0HKVkQOdgM57NJxRxiGZdYySfW
CIj1QmKziNgmIXZKSb0y0oCcPKwkj6soU2rqrIa2oKUv6xjreuamEdgxgfsm
6MgMn1pY51b2pY1zZefiQ8OEAioqZKAiwCEWSENjihxRABYGQEGAwQuN65DZ
fgLLj4N9WNB3AXjPmKFHogc09y7VtUVxrpMdK0R0kYDM4pEpnH382jp8ZRm4
MvdiTZ2XxrZLQzMmtHOswWgqMKpSjLIII/96Kcu5lGRgxSlXwoRrQQyO9wnP
eUdkRZHgKBIzikR7SSK/JOFfkK9ekDHPyafPKUfPKPvPKNtPqRtPqKtPqEuP
afORtJlI+mQEfSycPvKIMRQssTBG78NbrwfMUH3dD3k13wea7oGNt3czbm/5
/otXqLjiB43xw4b4EX38mC5uQhs3pYmbUcfOqWIXFTHL8phV2ZcN6ect8edd
UfS+8NOR4OMp7/05990l5+01+zWe9YoEvyGD7ynMj1T6Zxo1hk6OZxCTAEIK
iE+HcFnwdS7rKp9zVcTFlvKwFXxstRBbJ8I2iq9aJVcd0utu+XWfAjekxI+q
CBNq4rSWNKcjL+kpqwbqhpG2ZaLvmhkHFuDYCp5ZIYwNvrazCXYOGeHSUD4T
FYAOoUAc4IlCw6UsfgDiBZhcP43tp7D8RMiPA/1Ypu+C7juleY+o3n2yZ4fk
3iS61/CuZZxz4doxe4VOYZFxjH0EYxu4sPaeW7rOzO1npuZTY8OpvvZUV3Wi
LT9VF5+qCk6VeWfy7DNp+rkk5UIUvATEYPnRV9x3OPYrPPycCD4nMp4TKc9J
hGek62ckzDPy2VPy0VPy/hPK9hPKxmPqymPqYiRtLoI2HUGfCKePPqIHvQZ+
6XWL1XLvFuse2JDYYQs9/PqZ7NYrfsD4o9eoLm5cGzepiZ1Wx86qYhYUMUvy
L6uyz+uS6C3xp13Rx33B+yP+u1PumwvOayw76hp+QYBekoDXZPpbCvU9lfyJ
FmyZ8LGM63gmNhG4TIEw6fBFJus8h332lXNWwDsr5p+VCc4qhWc1orMGyXmz
9LxNdtEpx/QoMAOqy2E1dkxzNanFzejw83rCkoG4aiRtmCg7ZuqBhX5iYZxb
gUsbiLNDRDuLgrBpKJeJ8iAHXygK8IUBLj/A5gUgTgBg++lwaI6RBPjxTP8V
3Yeh+s4oviOSb5/g3cF7N689a1fuZax7AeOavXBOnTvGz9DhU2TgxN57bOs6
srYfWloOzY0HproDQ/WBvuJAV3qgLTpQ5x+qco8UWUfytGNp8qk44UwYcyEI
LjLvsJxX16xneOgJgfmUQH1KJD4lXj8hYZ6QTp+Qj56Q9x5Tth5T1iOpy5HU
hQjaTARtMpw+9og+HBby6gt6PfjJ6x7QfA9ovAs23AXrE9vtt162n0rMHP+j
lyFuWB83Giqu2Cl1zIwqZl75ZVH+eUUWvS75tCn+uCN8vy94d8R7c8p9dcF+
iWU9w0FPCcALIj2KFFq631LxH2hXn+iXnxkXMcyzOOA0ETxJho5SWYcZ7MNs
zkEu9yCfd1DEPygVHlSIDqrFh3WSw0bpUYv8uF1x0qU87VWdDajPRzQX41rM
lO5yVn+1aLheM+K3TMQ9M+nQQjm1UC+sdKyNibcDRDtEQWA6ygJQDuTgCgUB
Pj80b8/mBGC2H4T9DMhPBfxkhp9A911TfZdk3znRd0LwHuC8u1fezUvvGsa7
dO6ZP3PPnLgnj11jR87hA8fAPtq7h3Tt2dt3bS071sYdS922uWbbVLltKNvW
F2/rCnY0ebvq7F1l5r4i9UCWdCiJPxYFL+KfznnvMJxXwY/lGorEMx8TqI8J
xMfE68dEzGPS6WPS4WPybiRlM5KyGkFdjKDOhdOmwmnjj+gjYfTBh0EvRsjr
PrPtW3F9w7oD1obGAH4kC5aYJf6bV78xLug1oo8b08VOaGKm1TGzyi8Lis/L
suhV6ccN8Ydt4bs9wZsj3qtTzssL1jMs/BgHPiEwnhGpL0jEKDLuNQX7lop5
Tz/7yDiJZh59AQ5iwb14aDcJ3klhbadxtjK5W9m8rTz+VoFgq0i4VSreqpBs
V0t36mQ7jfLdFsVeu/KgW33Ypzka0p6Ma0+ndefzesyy4XLdeLVtwu2b8Udm
4pmFjLFSrmw0vI1BsjOpCEhHIABlQQ62iB8QcAM8ToDDCsCwHwT9TMBPY/gp
ND+R6sORfVii7wLvO732Hl159y+92xfejTPPyoln8dgze+iZ3HeP7bmHd1wD
287eLUfXJtq+gbasI43rtvo1a82apXLNXLZmKlkzFK7r89e1uRuarE1V+rYy
ZUeeuCeNOxB/ORJ+POG/PedGYVhPr6BwPBCBp0YQiJGEq0jiRSTpOJK0H0ne
jqCsR1CWI6jz4dTpR7SJn70ehLw67jNDxXU3VFwhrO/B6tAYW6s9NL/RYYvv
ssZ3W+J7TXE/ecWOaWMmg16qL3PKz4vy6BXpx3Xxhy3Ru13Bm0Ne1Ann+Tnr
CRYKxwGRBPpTIvk5Cf+SfBVsh15TT9/Sjt7TDz4wdz8B25/BzRhoIw5eS2Ct
JrFXUrgr6bzlTP5ytmA5T7hcIFopFq+USlYrZGvV8vU6xUaTcrNdtd2j3hnQ
7I1qDya1R7O640X96arhfNOI2TFhD8xXx2bcuYVwaSVd28gEG5Vsp1MRBgMB
ABSEHbCIGzovxmMFOLCfBfohZujcBJ3mp1B8JJIPT/Rd4X2Ya98Z1nuM8R6c
e3dPvVsnnrUjz/KBZ37PM7Pjnth2j2y6B9bdvWuuzhVX+4qzZdnRuITWLSI1
i/bKRVv5oqVk0Vy0aMpfMuQt67NXtJlr6rR1VfKmImFbFrsr/nwg/HDED64/
wa908FN6hGM+wlPC8YQIAjaCeBZBOoog7UaQNyMoK+GUhXDqTNArjPazV9e3
A7B3gaY7wI9Yd6CqxGbkG1locLTzm5f5m1fsiO7WS/1lRvV5XhG9JPu4Kvmw
IXq3I3i9z4s65jw/Yz2+DL6N4DeHFiz24Pr8nIR5STmLoh69pu2/oe+8Y2y+
B9Y+giufoKXP8GIMaz6OPZfAmU3izqbwZ9IEMxnC2WzRbJ54Nl8yVyydr5At
1MiXGhXLbcrVLtV6n3pjWLM1rtmZ1u7N6w6W9UdrhpMt4+mu6fzQjDkxY88t
15dW/LWNSLCRyHYKDaExEDqAMmEUFHECQlaADwW4oJ/N9EN0P0DzMyh+KslH
JvgION/1lQ+L9V5gvKfn3qNT796xZ/vQs7HvWd31LG675zbdU+vu8TX38Ipr
YMnVs+jqWHC1zrkaZ511M46aGbRyJvQotmTGVjRjLZg1582ZcuYNWQu69CVN
6ooqaU0RvyGL2ZZE7wnfH/JfB7/YF6xILPgQxwjDkR/hceEETDjxJJy0H07a
CievhlMWH1FnH9Emw2ijD+mDDxi99xld95htd5nNd4DGO2Dd7RRi5V2oIqkp
NCYaOpzSZo/vsMZ33R5n7gsdP48d1sWMab9Mqj/PKKPn5Z+WpR/WxO+2hG92
+VGH3OenrMcYKOwaeISjRYRW5qunpIvn5OAuY/8lbecVfeM1Y/UNc+ktMP8e
mv0AT39kTUazJ75wxmO4Y3G8sQT+aLJwNFU0liUa/yqeKJZMlkunamQzDfLZ
FsV8h3KxV7U0qF4ZVa9NajZmtFsLup0V/d664WDbeLRnOjkynZ2aLy4sl1jr
Fc6KI9rwZDuRhpAZCBVEaTDKELMCQijAB/1cZuiEJkz1gxQ/g+SjEXxknI94
5cNd+q4uQscrzk68x0fegwPP7p5na8ezvuVZ3ggNss6uuKeW3WOLruF5V/+s
q2fG1THtbJ10Nk44a8edlWPOsjFHyRhaNIYUjNvyJqw5k+asKWPGjD5tTpu8
qE5cVsatyb5sSj7uCt8e8INr0dNz+BEWeICjheGIj/DYR4SzcOJhOGknnLz+
iLL0iDIbRp18SBt5SB94wOi5z+j8ubi+A2u+C2KBFfehsuRGJLEJiQ+R2UOn
9jqtobPMvabYAUPMT17RM8pPC/IPy9J366I324Kofd7zY/bj2//9IY72CE+M
IFw9Jp0HO9VnlN3n1M0X9NWXjMUo5uwrYOo1NPEGHn3LCj0f/8AZ+Mjtj+b1
xfD7EgX9acL+LNHAV/FgkXi4TDJSLR2tl403yyfbFVPdypl+1dywemFMvTSl
WZnTri3qNlb1WxuGnR3j3r7p8Mh0fGo+vbCcY60YnBVLtF1R7DiancBASCBK
gVGqGAoIgQCf6efR/WyqHyb7QZKfSfDRcT7KlY906cNfeK/PvJcn3vMj78m+
53DXs7ft2d70bKy7V1fdS8vu+UX3zLxrctY1NuMamnL1Tzh7xp0do87WEWfj
sLNuyFE16CgbdBQNOvIH0bwhJGfYljVqyRgzpU0aUqZ1SXOa+EVlzKo8ekPy
YUf4+oD34oQdeQE9uGI+wFEe4nFhhItHhKNHxN1HpI1H5KWwn7we0AfuM3ru
MTruMlvuAA3fAbV/DI1kV9wDyx5CJan1SHJD6BhRkCx0xLLdGtdlCf2ugH5D
zJDuy5j2c9BrVvFxQfZ+RfJ2Q/hqh//igPPklBWOAe9fB6ubFE64iiCeBxue
J5Sdp9T1Z7Sl54y558ypF8DYC3DoJTwQxeqNYoeGT95xO6J5HbH8jiR+R5qg
M0vY9VXUXSTuKRP3Vkn666QDjbKhVvlIp2KsVzkxqJoaUc9MqOdmNAvz2qVl
3cqafm3TsLlr3D4w7h6b9s/MhxjL8ZX1FG89J9owFDuWZr9mIngQJcIoSQwE
RIyAgO7nUf0csp9F9EN4P3Dto2N9VIyPdO4jnHqvj73YQ+/Fvvd0N3Sg6WDD
s7vm2VoJncJYWXAvzrnnZlzTU66JCdfomGto1Nk/7OwZdHYMOFv7nU19oYG9
6t7QMFhxjyO/B83pRbP67BkD1rRhc8qoMWlCnzCjiVtQflmWBTu0tzuCqAPu
01NWGAa8d017gCM8xF+GEU7CiHthpI0w8nLQ6yF14gFt5D69/x6j6y6j7Q6z
6XugLnQeFqy4C5Y9AEseQUVpdUhKfehMZXwTEtdsj2uzhX5FQI8ppt8YM6T/
Mhr0Un2aVXxYkL1bEb/ZFEbt8p4dsSPOoAdY5v1rSlhoKb6IIB5FknceU9ae
0Bae0KefMMeeAkNPwb6ncNdTVvtTdssrTvN7TtNnblMcrzGJ35jGb8oSNOcJ
mwtFraXitkpJe42ks0Ha3SLrbZf3dysG+5XDQ6rRMfX4pHpyVjOzoJ1b0S2s
65e2DKu7xvUD4+aJafvMvIux7F9ZjvDWE6LtjGK/oNkvmQgWRK9hFC9hBEQ0
v4Aa+o0QHKKfhfdD1z4A62NgfLRzH/nURzz24g68V3tezI73fMtzsuE5XPXs
LXt2Ft2b8+61WffytGthwjU75poecU0MuUYHnUP9zv5eZ0+Ps7Pb0drpaOp0
1Hc4qtsdFe1oSTta0IHmdKIZXWhajz2l35I8ZEoc08dNaYL7oOhl2fsN0etd
/vPgR3cO3cMy712THuCuHuJPHxL3w0ibD8nLDymzD0Jew/fpfXcZnXcYrd8z
G/4I1PwBrLgDlt0Hi8PAwggoP6MGSasNndFLbEDigmQt9th2a2yXOabP+GVQ
/3lUGz2h+jQT9JK+XRW/3hS82OM+OWaFXYB3r+gPcMQw/OUj4nEEaSeCshZJ
nY+kT0YyRkKPTcHOCKg1nNX4jFX/ml37gVPzmVsdz61K5lWl86uzBNV5gppC
YW2JqK5C3FAtaaqXNDdJW9tk7Z3y/4+s9w5v4zyzxf/93b2bTW6cxCkb23E2
cbzrrJNYlsQmUY3qEiWzi0UUSbH33nvvFCn2XsUiSpQoiiLFXkESvffBzGDQ
MQOABIvs/L6h7M3evfI8j+nHEvBhznfec877vQNV1UG1DYpHzXBDG9LYhbT0
om0Dyo5hrHtM1ftM3f9CM/RKMzytHZ3VPZ3XP1vUv1gxTK4bpzbx6W38DZWY
pRNzTNOCdPtQTDkUrh/yVw+5K4fspUPmwgH97cHOzMHW9MHm1P765P7Ki/2l
Z/vzT61vR61vhq2vB62T/XsTvXvPuvfGOvaG23YHW8inn3oe73bWW9rqLC01
lsYqS32FubbcXFVmLi81l5SYC4tNucWmzGJT2vE0ZmyZKaLcFFJFBNcaghq0
AS0qf2AAeiGvJxKw2+++4N6YZl6ao51f3Ly4vHRpZcZpddJp7anT+tAlEq+2
i1uNF7Zrz+9UOFJLztLyHWjZZ+npF+ipTvSkq+SjK3FR2eSjyqF5xMMCIqCQ
8C/B/cuN96v092u1fg0q32YSr3vdkCeJl+ibcb7zS871aebF43e8tLzktDpz
Ze0FUEzSkYKEvtNIHgfQy50YhVeZuc6sbFd2hhc7zY+TGsBNCeamhPNSovgp
cYLURGFaqjA9Q5SZI87Kl+QUSfPKpAWVsqIaeWk9VN6oqGyBazqQum60oQ9t
HFQ2D2NtY6qO5+rul5reKU3/tHZwVjc8rx9d0j9dMTxbN05sGl9u45NUYopB
vGGb3sooB5KNA9HagWDlgLd0wJk/YL49oM8cUKcPtl8dUF7ur0/srz7bXx7b
Xxixzj2xzgxap/usr3r2XnbtPW/fG2/dG23effJ4d7B+t69ut6fG0llpaSu3
tJRZGkvM9UXm2kJzdYG5It9cmmcqzDPl5Zmy8kxp+aakAlNskSmixPSwjAgC
+aheC2y2Xyfs3Sf3GBZ/84x/8xX78izdcXHr/NLyxeXZS6uTl9aeXiLx6r5I
ab2w1XB+uwaQ6yy10IGWa0/POEdPvURPukKPv86IvcmIjs4kIgFkOeQXOAQV
EP5FhH+p8X6F/n6N1q9e7duk9G5D7nVBHv1St2HR3XH+rZfsq28Y5+Z3zi+t
XVyec1p9Beh8eWMAaOXl7UYnavVFkO8YeVeZmc7MNDdW8j12gh87LoATG8yN
CefFRPFi4vgxiYLYFGFchjAhW5SUJ04ulKSWSDMqZFnVspw6eX4DVNikKGmD
yzqRyh60uh+tG1LWj2CPn6qan6tbX6o7pjRdb7Q9b3V98/qBJf3QimF4wzi2
ZXxGxV8wiFdsYppnmpVv7kvX98Wr+8Llff7CPndunz2zz5zep73a33m5T3m+
vzG+vza2vzxsXRyyzg9YZ3utb7r3XnfuTbbtvWjZe9a4+7Rhd6Ru90nN7kCV
pa/c0l1q6Sy2tBWaW/LNjbnmhmxzXZa5OpN8hKo0w1R0/JxOdqYpPcuUlEPE
5pGPHoCsBCy3P6hULUrvLoXngNRlTHD7BefKG8bZhZ1zS6sXlt9eXHmP1+DF
ja4LlJbzW/XntqvO7pScoebb07LO0tMu0JMu0+Ov0WNuMqKcGeGx6QSALCKL
CMshgvOIgALifjF+v8zgV6XzrVP7PMa8WxEvgFef1HVYdGecd3OSffkN/ezC
9vmllYsrM5dWJ5zWnzhtdpGFF6gkrdiRkX2VkebMTHRjxd5jRfmxwwM5ocGc
4HBucBTvYRw/OJEfnCIITReGZYkicsVRBeKYYklcmTShUpZcK0+tl2c0Qtkt
itx2uKALKepFSwfQ8ifKqlGsZlz1aELdMKlunNI0v9G2zuk6FvXdq/r+DcPQ
tnGEZhxn4hNsYpJHvBaaZqANq2zNKl22ihetwnkrf9bKfWNlTVkZk1bahHX7
mZUyZl0ftq4OWZf6rQs91rdd1pmOvenWvVfNey8f703U747X7o5V745U7A6V
WgaKLX2Flu48S2eOuT3L3JJhbkozN6SYHiWbapLIZxXLEk3Fiab8JCInhUhP
I5IyyEdTgTcArsC/Ug92vk8r4tkrA/fQ+Tn36mum49yO4+Lq+eW3F1YmL66N
XVwfuLDReYHSdG6rznG74sxOkT01x56Wfo6efIkef5Uec4MeeZsRdpcREp9K
fslGVAYJWUgOEZRH+BcSfiVGvwq9b43GpwHzbkG9Oo/xekLidWOSdWmGdnaB
cn5p8eLKa3JvbPRdpLSAqutILT5Dz7zMSL7NiHVlRtxjBfuxAgPZ/iEc33Au
+UxoHM87ke+dIvBJF/hlCe/nih4UiIOKJMGlkrAKaUS1LLpOHtcAJTRBya2K
tA44oxvJ7kNzB9GCYWXRKFbyTFX2Ql01pamb0TTMa5uXdO1r+q5Nfd+2YZBm
HGbiYxz8OY94KSSmxKY3irU9aGVPtrQnWdgTvd0TzOzxXu9xXu2xXuwxnu9R
n+5tj+xRnuytD+yt9u4tde0tdOy9bd2badp93bD7qm73Rc3u88rd8bLdsRLL
cKFlKM8ykGPpyzT3pJs7U8ztSebWBPIx7ccxpvpoU22UqSqKKI8iHxAuiCFy
4oj0RCIplSQCqFpg//tV63waleA2ug2Kncd5V18xz73dObu4dm6JxOvC2tiF
9f4LGx3nKY8dt2rObpc6UPNtaZlnaCkX6AlX6DHX6ZG3GKF3GA9dGIGJSUR8
ChGTSkSlE2FZRHAOEZBP+BXhfmUG32qtzyOVdxPq1a5w75W5DImcn/KuT7Iu
ztDOLGyeW5o/3hvDFzc6AYsdd0oBf0GlvcWIcmUGezH9/VjegWyPELZLOOdu
NNc5jnc7kXc7hX87XeCcKbybI3TJF7kViT1LJd7lUr8qqX+tLLBeHtwIhTUr
ItsU0Z1wXC+SNIimDSuznirzJrDCSVXptLpyVlOzoKlf1jat6Vo39Z3b+h6a
YYBpfMLBR3n4uJCYEBOvpKbX8OqeYnlXvrArndsVz+6KpncFU7u8l7ucCQtz
3EIftVCHLduDFkqfZb3bstppWW6zLDRb5h5bZust07WWqSrzZLn5RYn5WaH5
aZ55NNs0nGEaSjUNJJn6Ekw9sabOKKI9nGgJNTUGmxoeEnVBRE0QUfGQ/OaE
wjAiJ4pIjyO/aiYyg/waLr9Sg0+d2qsVduuT3BnjX5tknZulnlkAeM2eX3l5
YW3k/Hrv+c22c5T6s1uVDjtFdtQcO1raOVqiEz32GgCLDsAKcmE8cGP4pcQT
iYlEfDIJWUQ6EZpFvv79fMK3xOhbofOpVXs/Vnq1we7dMpdBEq9rL1kXSLw2
wN44vzJxYX3w/Gar41aVPTX3HC0J7IRvGIFeTG8/lmsg63YI+2o451I091wc
90wizz6Fb5chcMgROOYLLxaLLpeJr1eKb1dLvqmTujfIvJrkvq3yBx3Qw25F
WB8cNQjHDiOJY2jqc2XmSyxnCit4oyqZU1csaqpXtI/WtY8pupYdfTtd3800
9HGMQ3x8RIg/FRPPZcRLyDSFLO/CixZo3iKftUjfWMRTFuGkhT9h5j4zs8fM
zGEzfchM7Tdv95gpXeb1dtNqi2m50bTYYJqvM72tNs1UENOlxFQRMZlPvMjB
n2fi42n402TjaIJxONYwFGUYCDf0hxh6gvRdAfp2f0OLn+Gxj7HWm6jyJcr8
icJAIieUSIsm4hOJsAzCL5/wqdR6NaFuPbI7I4KrL1mOsztnFlYdl2bAPTy/
Nnx+vfvcZrMjpe7Mdpn9Tr4NNeMMLekCLe4KPfIGPdSZHvQNw9+N4ePB8EqL
IVLATkgg4pKI6FQiPJ0IziIe5BK+hbhPmd6nWnOvAfNqgd275C4DYudR/rUX
rPNvaA4L647k3nh2fr3PcfOxw3aJLS31Mj3KmR7gwfD0Zd4OYDmFsB0i2Cdi
OF+kcr/M5v21kH+iVHC6UmBXIzxbJzpfL3ZqFF9rltxqld5tl7l1yry65T59
kP+AImhIEToCRz5FYp6jCS/RlFfKjGkse1aVP68qXlKXrWqqNrR1W9oGqq6Z
rm9jGbq4hl6+cUCID0vwMRnxDCJewKZX6JIFmTcr3pqhN2bZa7PklVn8wiR8
ZuI/NXFHTOwnJuaAid5LULuJ7Q6C0kpsNBFrj4mVR/hSDb5Qic+V4bPFxpkC
43SuYSrL8Crd8DJF/yJRNxGnexalHQ/XjoVoRoM0ww/UT/zUA97qPi91t4em
zV3b6KardTOWe+JFfnj2QzwlCo9OwgOzCO9SvVeD0q1L5jxM4nVmdsdhYcVx
6c25lWfn1obOrXc6bjae2aq23y62pWbb0lIcafFOtKjr9NDb9MC79PuuDG8P
hocXwyUjgkiLIpJjiIR4IhbwN5UIzSACs4+3RLHBu1J7r07l1YS4d0AufRLn
Ef71CfaFaZr9/MbZpdlzK+Pn1rvPUupsd3LP0uJu0IPcGO4+zGsBTIcQ1n/G
sf+YxfmsmPt5Fe+LR/wvGwV/axGebBPadogcusTnusWXeiRX+6Q3+6V3BmSu
Q3LPYchnFPIfUwQ+g0Mm4IiXSMwUGj+tTJ5Vps9hWYuqvBVV4bq6dFNTua2t
oWnrGbpGtr6Va+gQGHpExn4JPiTDRyFiHCYmUNOkcsGMvjUhMybFtEn+yiR7
SUieE6JxQjBK8J8Q3EGc3Yczu3F6J05tw7ebjZRG40a9ca3WuFplWC43LJYa
For0c/n6tzm6mUzdm1TtdJLmdbxmKlr9KkI1GYK9DFK+8EcnfNHnXsi4OzLm
Co/cRYbuIL3Oyg5n1eM72opvjIX3yO+NTIjGQ1Jx7wKjVx3m1im/Pcy//JJp
/3bbYWHp7NLrcytPz631O260nd2sd9iqsNvJP03NcKAlXqBFX6WF3aQH3aH7
uTK8PBhuXoy7Psxb2SF4ZhieFoknx+Dx8XhMEhGeSgRnEv45hE8B7l2mv1ej
9nqMerQpXHukd54Irj/jXHhNt5vfPLP41nFl3HG9y4FSfWon/SIt/A7dy4tx
9QHzZBjrkyz27yq4nz7m/Vs777Me/r/3C/48JPzLsPDEiOj0qNh+VOw4Jrk4
Jr3yVHrjqcx5XO7yTO4xAXm/UNx/qQh8BQe/RsLfINGzaNycMmlRmbaMZa6p
cjfUBVvqkh1NOV1bzdQ+4uge8/TNAn272NAlNfbJjYMKfBghniqJ55jpJTZn
Us4Q6DQBTxGKl7h8ApeO45JRXDRsFAwaef1Gbo+R3WlkthvoLQZqo2GnwbBV
p9+s1q9X6NfKdCvFuuUC7VKudjFLM5+umUtWzyWo3sZgs5HK2VB0JgiZ8Yff
+EBvPOXTrrLXd6RTtyST1yUvrkqeXZGOXJH3XYVbr2NVt/X5nnhqMB6RgHvn
4p61KpdO2a0R3qVXDJs5isPi/NnlScfVEce1nrMbzWcotfZbJTY7OaepgFxx
TrTw6/QgZ/p9F7qXO8PFi3EbEMGP6ZQXSNI2MxRPjcCTovG4eDwqCQ9NIwCF
ffMI72LDvUqN1yPMowV27ZLdGRTeeMoFb2c7t3X8ds/PrnXZUyq/piZfoQW4
0W/5Mb6OZv1rCftfm7m/7ed9PMb/3QT/314JPnst/I9p4ZfToq+mxaemxXav
JWdfSy++ll6Zkt2Ykjm/lru8hjymIe83Cr8ZOGAWDp5DwhbQqEU0blmZuIal
bmAZFFXOtjqfpi5maMpY2iqutpavaxDqm8T6NqmhEzL2wMYBBH+iJEZVxLjG
9EI9S2DTuHIKR17i8IQRGjfKx4zSYYN4yCDqNwh6DLwuPbddz27VM5v09AYd
7ZFup0a3XamllGs3S7TrhZq1PM1qtnolQ7WcqlpKxJbilItR6GIYvPhQsfgA
WvSRLXpIFl3Ei7eFi9cEi5d4C+e482e4s/bcaXveizOCkXPSDiek4qY+yweP
jsa9s3GPWuybbsn1pxzH11Tb+TWHxRlwAx1Xh86ud54BmkKptN0uOEXNsKMm
nKdFXaEF36L736V7uZFg3fJhXPFjnn/AdCj0xfP88exAPCMYTw3HE6PxmHg8
PBl/mE7czyYAi++V67xqVR6NiFuH/G6fGGyPyy+YZ2Z27BaWzyy9PLPaa7dZ
dZKacIPm7UU/E8H8dQ37lwPcX07yfjXP/80q/7cbgt9RhP9GEX6+Kfrzhviv
6+KTqxLbFenZJemFRdmVBdmNBbnzAuSyAHksKO4tKPwW4YAl5OEyEraKRq6h
sRvKBAqWso2lU1VZdHUeU13I0ZTytBUCbY1I90iib5TpWyBDB2zsRo19GD6k
JkY0xFOd6blm2qiaMmIvjeiEARk3wGMGaFgvG9JL+/XiXr2oSyfo0PFaddwm
LfuxlvlIy6jV0qo01HLNdqlmq0hNyVdv5qg2MrH1NGw9WbmWgK7FwGsRirUQ
aC1AtuYrWfcUr38j3LjJ23TiUM6yKHY0yqntza8oG3/ZXPszZfk/qLN/YT63
EXRcgAvuGGPDca9s3K0Bud0vdJpg2r7dsltYPLP06uzK2Nm1vjPrrQ6bdXZb
pae3c05SU85QYy/Rwq7TApzp91zpLp6Mm94MJz/mmQfMU4HMv5R44KDM5gFx
DMDTg/HkcDw+Bo9KwENT8YBMwGLiXoneq0rt0YC6tUJge9weElwb55yfop2e
27RfnHFYGbbbeHRiJ/EWzdWP8Yca9s9fcD/Y4H3A4f2Mz/m1kPOxiPt7Ee+P
QsHnQtEXPPFf2ZKTDIktTXp2R3ZhS3ZlU35jQ+68DrmsKTzWFPfWYL91+MEG
8nATCaWgkVvKmB1lPBVLpqvSmKpMtjqXqy7ga0qE2nKxtkqqq5PrGxT6ZsTQ
pjR2qYy9GnxAiw/riTGD6Zl2yqB+aVBNGLBxPTqmR4Z1iiEd1K+T9WqlXVpx
h1bYqhU0a3iPNdx6DbtWzapWMyrU9FIVrVhFLVDt5GLb2cqtDCUlFaUkIpQ4
mBIFUcLklCDp1n3Jlpdo24VPvcmlXmXQLm7THdcY9ouMUzPMr6aYX75gfPGc
/qeJ7T+8Xv396uTfOHVO6rgQ3KNQf7cDCADbYXrHZn7FfvHNmeXnZ1aHzqx1
OWw02lOqbbeKTu5k2lATzlEjr9Ae3qT5fkN3c6ffuse45Mewf8D8WyDzT6Gs
jyvuGktcye9SzvPBsx7gacF4YgQeE4uHJ+FB6bhvNn6v0OhVrvWsw9ybYJcO
2Z1+0U1AsQnmGfJ9V+0XJ+1XO09sZd2i3Uln/myG8y985k/llN8g679Trv1B
ufE5SvkC2fkSpv8NYp+Q805JRTYSqZ1AdpYru8iSX2HIb9AgZyrksqPw2Ibv
bcN+28iDHeThDhpKRSNoymiGMp6JJbFVqVxVBl+dI1TnizRFEm2ZTFsJ6Wpg
fT2qb8QMrWpjh8bYo8P7DfiQkRjFiXHtpE4zoVOP61SjOuWwDh3UIv1aRY8G
6tLI2jXSVo24SS18rBbUq3m1Km61ilOhYpVhzGKMUYjR85S0HCU1E6WmITvJ
8E6CYicG2omQU4Ol1AdimreQ7sZn3GUxb+2wrq2znRa5597wHCb4NiOCE73C
v7SJ/vxY9Hmd8I+1vE+bqJ+MjX0tCI/C7zZDTuMs25ltm/llAJbD0sSZlRFQ
nQC57Dce2VHKT2/nndhJtafGXqCGXqP5O9M8XenOngwnX4adP/PLQOYnMazf
prF/W39LW31bX3IHL3THc33wzAd4SggeH4VHxuPBKbh/Ju6Vh3uV6jyrVe4N
qGsrdBdQbEB4fZQLeH3mNfXU3Jrd4ivbtebL1Htj7B8hy78yvvrU/PyP5ol/
N7/8MzH9F+Pbr/RLJzUbNqptOyXjDMJxVAjOy8UXZbJLIvlVPnSTC91hK1xZ
Cg8m7M2A/RjIAwYSxERDWGgEWxnNUcZxsUS+KkWgShepsyTqPJmmENKWwNoK
RFet1Nep9I81hmatoV1v7DLifTg+SOAjJnxc91Kjfa7RPNWoRzTYkEbZr0F7
NHCnWtGulreoZE0qyWOV+JFKVIsJqjF+BcYtU3JKlOxCJSsfZeagjCyEkQ7T
U2B6ooIeB9GjZPQwKSNIzPQTsrx5bA8mx2Wb67zGvzEvuDIluvhUfLZPatci
P1UNnSxUnMqATyfApyOQ0w+RkwHyP8U5TtBPzS3YLMzYLb62X3rpsPzMgQSr
32GtA5DLbrPGZqvk5Hb219SkM9QoJ9rDGzSfu3QXd/pVb4bDfcZfApn/msD6
TS77NxWc37RfUzZeV9fc1JU44wXueLYPnhaIJ4bh0TF4aBIekI575+BeRXrP
So3HI6UboFi77E6PGEB2Y5h3dYzj9Ix1foLh8Ip6an7GWv8f5qyT5tzTlhKb
vVoba5vNwaDN/jOb3df2pvmzhtXzuq2LarqTknMFEVxTiG9Aspsy6LZYcVeo
cOPDnjzYm4v4cZEHXDSIi4bwlOF8ZZQAixViCSJVskSVJlNnytU5Ck0Boi1W
asswXZVaV6vV1+sNTQZDm9HQhRv6CMOQyThiNo7rX6h0zzDtGKYexlSDGNaL
KbswpB2DWzBFIyZvwGR1SkmNUlylFFUoBWUovxjlFaLcfISTi7CzYFYGzEpV
MJMhZgLEjJGxIqWsEAk7UMjx53F9mTyvHb77uvCbebHzlAQ43Mu90IUm+HwF
cjFH6RSPXXmouu6uuXXZEHTWUnxCufBLV5r9ia1su7Vm+9Veh5UB8gI/rHU6
rLfYb9Tbblae3ir8eifjFDXekRp+mRZwi+bpQr/lST/vyzjxgPlxAuvXhexf
PeL8qoPzq4GLUJcT3HwVq7mhK3bG8zzwzPt4cjAeG4mHJ+CBqbhPFu5VYPAs
03rUYEAxXVugb0BV7JY494qde0V3uiTfNENuRbq0e0b6R0/gr0KxC99objsZ
gp1M6Zd3Ky9b250ORi7tv7pkmbtCrF7Tb93QMm6pOM5KwR1EfBeWfQMpXGSw
uwT2EsE+QuS+EAkQokFCNESoDBcpI8VYjASLl6mS5KpUhToDUWejmjxMU6jW
lmp0FTpdjV5Xb9A1GXVtuK6L0PeZ9ENm/YhFP66fQHXjqHYU1TxB1P2IqgfB
OhG0DUGaEbgBgeoQeTUqq0Ql5Yi4FBEVI8JChJ8P83JhbjbMzVBw0hScFIid
KGfHyTjRUk64hBsi4j7k8QJYgvtUoc+myGtJ4v5G5vIcch6Eb7SiN6uVznmq
u/Fqlwdad2dj1GVLocNBzxea2Y8WOf/sQ/+3C9SAr7dybTce2a+1krQCF6iE
6412G7W2lLJTW6AYptlQY89RQ6/S7t+mubrSr96j291nfBbN/FUh68NGzi/6
Ob94zv3FMwfhsKOk54Ki6QpWeUNXcBfPvoenBuLx4XhEHB6Ugvtm4p55Rs9S
rUeVyv0R6gooBoxHuwxcLq1y13rEvUQbnIDnORun/sxifdoj+zwLcQhXXfcG
y8bj75hL7+y13jkYuX3w+tbugjOxcddAddGyXNU8N0zojko8ELknrPCC4Hsy
xFeK3JcgARI0SIKGSJVhUmWkDIuBsDiFKhFWpaDqdEydpdLkajQFWk2JTlOh
19QYNPVGTROubSO0XSZtn1k7ZNGN7OrGDc9h/VOFbkShHVRo+iB1N4R1QMoW
CG2EkHpIUauAqhTycoWsRCEpgsX5sChPIcxRCLIU/AwFLw3ipUDcJDk3QcaN
lfGiJLwIET+Mzw/hCB4yRAHbYv81qe+83HtK4TmGuHYr3R6rPEvV3mla3xB9
sLsp6+Zew1nr2H+qFz5lc/+lif3BPfqJy1S/v+2k2GyW22002K832wNmrTfZ
bzTYbVbbUEpPbuV+tZNiS405Tw2+RvNxpt11p1/0ZnwVwPhlFuvDevbPn3B+
9ob7wTrvg5m/Ml+e4o04iLsuKOqvqItvGnPd8TR/PCEUj4zBHybhfhm4J8h6
JTqPSrV7HVga7NqscGmBXJoh18ewe7XKI9cYHovnuOM9jtDSH3ZYnw1JvihH
zqSobodpfXzwJC9L1T1rt9fBc4+Dt+67q57ElpeBcU/H8VYLvDGxj1Lmg0C+
MOwLI34KxB9CA+ToQzkaAinDIGWEAotGsFgUS1CqklWqNLUqU6PK1aoKdapS
varSoKoxqupxdROhbjOpu8zqPotmcFczsqsZNz6TG8bk+mGZbkCm6ZWpu6Sq
NinWLFU+lqKPpHCNTFEpg8pk8mKZtFAuyZOLc+SiTEiYDgnS5IIUOT9Jzk+Q
8eNk/BgJP1rMjxQKInjCMJYolCYJpkiDVuQBbxX+k6jfMObbqXrwSBNUqAtJ
MEQ/MBd5WNuv7r04pVr9dy7vF4PcD8OZv3alX79ADT6xnW5L4lVPIkVC1mRH
FsPv8QJo2u5En6c+vEbzvkNz9qA7+jK+iGJ+WMb6eR/npzPcn9C5PxYyfrH+
x5WFz2mTJzhPHCStF9GKa7o8FzzdF08IxiOj/4GXxz/wQlybFCRYzQrwM8DL
s8AQnISnBuHlNw0jjpKV/6CyvnwqPVmPXslVe8brQx4S+UG7zYH7IwGHb+5b
l+9bKPdxur+B7a/l+6tF/pjUXyn3RxX+CPwAQQJgNBBGH8JoCKIMQ5QRKBal
xGIxLEGFJauVaRplllaZq1MW6pWlBmWFUVmDY/UE1mTC2sxYp0XVu6sa3FON
7KmfGselhlGJfkis6xdre8SaDpG6VaRqEmH1IrRWhFSJ4XKxolQsL5LI8iXS
XIkkWyrOlIrSpcJUmTBZJkiUChKkgniJIFYsiBEKo/nCKK4okiWJoEnDKfLQ
FUXIWyT4JRY0rA7p0kbW62IKDQnxppJga6fX/isnzfppgeDTUd4nCexP7jGu
XKMFAC9hs1Vst1F3DFbr8dUMuGa7UWNDKTu5lffVTqrNzjG/qACvWx70M76M
PyQzf97A/mCC8xMq90fS7Q+xpY8Zfxim/H52/jPqs5P8bkeo9oom/44xwwdP
/AEv3wzcI8/oUaJ1r1K51aGAUy7v+dVCQuZej3pWaIAniUzAswLx2jv68cvS
jZM0nv1zxcUmlWexLiwVT4+2NERbn0Qevg47WA7epQSb6MFG9kM9P0gjClJL
AjFZoBIKRBWBKByEIkEoGoyiISgapkQjlGg0hsaq0AQ1mqxB07Rolg7N1aOF
BqTEiFbgaA2B1pvQRjPaakE7d5W9e8oBKzZsxZ7iT0XGEaFhUKjvE+i6BNp2
vqaFr3rMxx7xlTV8tFKAlAkUxQKoUCjPE8pyRNIskSRDLE4Ti1IkwmSJMFEi
TBAL4sXCOJEwViiM5YtiOOJopjSaJo+iQFGrSNScMuqVOnJUG9erT2k0ZJYS
ham77dGHL/2I9Vtyvs0r4Zdp3C/8mC5X6ZE2OzkOlGqHjSaHtXbSZoDMtdYB
hOxYv+psNitObRV8tZ1+cifWkRpyhQrq4W13uoMv49MM5s862P9nnvMjIf2n
6rmP9kY+E/+hhPlp/9rvFqe+ZPU7SB85qfJvGzO8SX5FROOBybh3Ju6Rb/Ao
07hXY271x+RqlZP61UFeLm1yt2YFSGfexYaIdCInknh8zzB1V0a/vCO9/Qzz
adHFlBuzMi2P06zDKYfTCYer0datKDMjEueEG/hhWlGoWhqikgVj0EOl4qES
fojCwSgSokRClUg4hkRiSLQKiVMjCRo4WQun6eAsPZxrgAtwuISAK0xwtRl+
ZIEbLXDrLtyxh/RYkYF9dHgfHcPH+MYnPMMAT9/D1XVyta0cTRNH3cBR1XKw
Ko6ynIOUcOEiriKfB+Xy5Vl8aYZAki6UpArFySJRkkiYKBImiITx4BIK4wSi
OL44jiuJY8ni6PL4bUX8OpqwiCVOa5Ke6zKGDPkdeGmtubFw/2nGwWq4lutN
lV+pE50P4wZdZmZf2mq+sDbkuDJ2hrxGHFaevPeH9mudADK7dUCx6tOU4q+3
sr7aSXDYCXei+oEw60Y760v/fSbzg172jzc4/1u+8QvTs0/NuaeQUw8Fv6ve
/mRy5nP6oK2k/hKJV5oPDiJ5WCz+IAX3zMI9ivTuFWq3OiVJrhb53f/yh/3C
24PC20MC5ycC136JbysaVmoqTTMNhBk2AqRAlLGwMX1GG15SZWkrsj7NP3yb
dbSRbKUmWljxBDfGIIzSiSM00jC1PBSDQjBFsBJccMjxFYbB4So4UgVHqxWx
GkWCVpGsg9L0UKYBysGhAgIqNkHlZqjaAtXtQo/3oJY9qMOq6N5X9B/ATw7g
MWKUgw+xjf0sQzdL38HUtTC1jUzNI6a6holVMpVlTLSYhRSw4Fw2lM2RZ3Jl
6VxpKk+SwhcnCUSJQnAJE4QkWPFCUbxAFM8XJ/AkiRxZIhNKpsIpFGXaqipj
Tps9pS96hlcPmR637w40HMxV7TNz1Yq4efhhiSTZh1fvSpm+Nke/Nsk6O0O1
I5PyNEjKDstjDitDDqt99quddmstwDQCip2k5P9tO/U0KWGB16luLrSL3vTP
U5kf9LB/vM35J2T5l9bB3+Mxtkp7T/Hv8qkfj739IxXgVXdJnXvHmHIfjw7H
HybgvulkMXQv1bpVY64NCJCtux3SO93i233Cm0N8kJovP2c5vgYrIY+2nZY3
Al5K0tvMPRWWlXytNE2gzl0wVo6ZGsFnqd+fqjpcLjnazrEyMiycVEKQaBDF
6STRGlmkWh6ugkIxRahSQYKFweDnMEwRrlJEqqFoDRSrhRJ08iS9PNUgy8Bl
OYQs3yQtNkvLLNKqXWndnqzBKmu2ytr35d0H8v5DaOgQGiVGmPggw9hLN3bR
DW00fTNV20DV1FHVVVRVORUroSkLaUgeHc5hKDKZUDpLlsqWpnAkSVxxIk+c
wBclAIx+wCsBwCcQJ/ElyTzw26B0JpxJVeZQ1AWrupJ5Y/U00fLC3De692Lg
kNJ3IGnX6Wrn1VVNyHAWdydxDIsqJA87XDpl56ZoNvPLdotv7Jde2C8/tV95
Yr9yDNl6s+1G3enN0q+3cv5KUizsMtXbmXbDk/5VFOODVpJf/wtZ/vCg//d4
hI3S3l3ySTb1o9GZz2i9drKKy9osN2NCIB4ejfsn4x5ZuHuRzq1S5froGKx2
mXO3+Fa/8MYT/rVRjtNzssVhu7B4Zq3bnpZ4g5n6gDlWvAGPvrBuDYAShRna
aabet5Yno9bJnoOllqOt2kNm6R433yzIwkWpekmiVhankUeroIhjgI7xUgCi
kdipoHA1FKGRR2nlMTpZvF6aZJCmGCXphCTbJMkzi4ss4tJdceWeuNYqrt+X
NB1I2g4kXYfSviPZ4JFsxPSERgxQ8Z4dY8e2oXVL37ile7SlraFoKijq0i2s
aEuZv43m7CBZVEUGDUqly1OYsiSWNJEjSeCK43mAU8Lv8SILoyhRJE4G1VIg
S+dDWVw4j6UsoqvLt3W1G8bGZVPfwu6zt9bZ10fsmSPlG5N5ik68mdVzX3Dw
0brdpYvcia954O6dn6SfmtuwXZg/7nIcQ7b8A2RrTTYbtac2S77ayjwBVGwn
6BpJsXM+9N9UsH7ylvNP0NrPrIO/wyNtUDt38cd52x9NTP6Z1eoI598wpvji
UeF4YCLulYG7F+rdKgBY6DdNACzpD2Dxro4edzYm6TazW+QC1ptecX6yLfxT
PZQ2rOSu8/dFm4f6t7h5Wrw3Q7HOTB+sjR9R+99xmvf5tbuiMpMk3yjL1MtT
NFC8WhED6h4GhynhULISkniFYBDAC9TJcMA+rTRaL4kzSBKM4mRclGYSZZqF
uRZhwa6wZE9YYRVW7wsfHQgbD4Wth6LOI3HvO/HgO8mw6ck20U8hujfx9g1j
84ahYV1ft66rWteUr6uL11UFG1juBpq1iWRswanboMTJk2iyBIY0niWJ4wCp
AoIFZIs0G8ByJIiFSRLgQ8TpYmmWWJ4rVBQJ0HKuqpata2YYu2nm0Z29me39
je0jIe07HfPAylXti2ErjijfGaaw3aaYIc7P7RanTs9uAbxs5pdsF2YBZHYA
sqVx++Vh+5V+u9Uuu7Vmm426HyCLObcTcIN6x512Kpbx0yH2Pwto/2Ie+5iI
PYXaeAo+Kl/77cLwSWGlkzbDwxgTggfF4/feg1WpcnmEfNMM3emQ3u4R3RwQ
XP8BrAsvGGenqDYz5Bouj7NGzoh1sSW7+peSPUSJH+mRd7sCyz4TOaBzDhnr
R9yZd8KxQ0mPVdpkllfjULFekQP8AzASKiQGQyKUSJgS2Aw4mLwUwH6EqOSh
almYVhqhk0TpxTFGUTwuTCIEqWZ+hoWfvcvL3+MVW3ll+7yqA17dIe/xEb/l
Hb/jnaDnW+HAO+GwaXjT1L9OdK/hbavGphVD/bK+ZllXsawtXdYULqvyVrDs
VWXGGpK6DidvKhK35Ak7sjiaNJYhjmGJYrjCGD6whYJYEWnpgbFPkglT5aIM
MqZJC2RQqQypkWCNYm2XyDgsNE0K9paEBwzxkVT6rQH99kCz/w7fe3d4sP/d
d2YL18ICsn5pgvker9PzKzbzC99Dtjhpt/TcbnnMbnnIbqXXbrXdZr3h1EbF
CQoojHGOO4E3qM6etC8LmD9Z4fx/2te/NqV8jZz0Zf+27fWf6I3n0CwXY2ww
HhiPe2TibsVa12rlN48Vd9pkt7vEt/qEN4b410a4V8bY78FyfEUjjwbINWza
LcxcZubIhEff7Zn3v7VaD787MH97pNk7QrVHcsk7BeNbZPkImdxHnljQdgJ9
ZFCWghgF8hSmTFAqo1FlODDwCLDxwMzDQUpFELCLwDSqpaFaSZhOFGEQRhsF
sQQ/wcRLtnDTdjlZe5xcK7vwgF16yK48ZNcecRoAed9x2t9xe95xB97xRszD
a6aBFaJ7GW9bxJsWjI/mDVVz+rI5bdGcJn9enTOvylhUpi2hyStw4poifkMe
S5HF7AC7Lo5iiqI4wiieIFrIjxHzY6W8RBkPJOgMSJCtEObD4hJEVoEqHqFo
G9np0j9DiLfILkV5wFUdIdpvjcbvDna/++7g2+++/e67v//9u++++/bvXcoX
dm+2AV4n5zZPz62dnl8+huyt7cKM7X+htgRQewJQs11ts1l/dHKz9K9baTY7
YVeprh60v9Sy/kW89WNL0V8UX4Zs/HamwwHKdDFGhuF+ybhbnt61UvVNA3yn
lUTqZp/w+hDv6gj38hj70jPWxQnG+Zd0EixgM47XQO6ZubWJN/vf/v1bcnl/
/+5b8G+w3l3rt7jxOyP6nYF3pN/c183sascIbZdBU6/VlKo0OagqDcYSFFg0
pAyH0BAFGgSjAQgcgCoClPJAlQxEs2CtOEQvDDMIInFetIkbZ+Yk7rJS91gZ
VmbOAbPgkFF8xCh/x6h+x6h/x2h+x+h4x+x5xxx8xwJ4LZsGFk3d80T7HN40
a3w0Y6h6oy99oyt4o819o8mcUaXNYslzaMICErekiFmFotZlkRRJBFUcwRBG
sAURPH6kkBcl4cbJOElysp2YBXPzEF4xKqjERI9U0ha1okejHNFpJw3GJYOF
hu+LTUcqy7cm63cHh38Ht+DvAK1//LKZ2T4F8Hq7eWpu/RSAbG7l9PzS6flF
m/l5m/m3NgC4hde2i5O2ixO2S09tl4dsV3ps1ppPbVT+dSvDfifoLu1cC+tH
+/2fiD/K6bGVJvsY/RNw13y9S43yTpP8dqf4Rp/g2hDvygjH6Snr4jPmhQnG
OQDTJO3sKypAyn56B4BFFsO3lPdr+O9rI1cKFnx08PcD07dW1dGuaN+ys2ua
I4inOmO3St+AaMshTb5UlS7BEsXKGLEyXIIGS9FACHkAI/cRxX2l3B+TPlCL
A7XCh3pBiJEXTnAiTawYCzN+j5Fspacd0LIOqXlH1KJ31LJ3O9VHO/VHO81H
Ox1H1J4j6uARbcQ8Mm8eeGvqmSXa3+BNr42PpgxVx0/4509qsyY16a/Uya+x
hGll7CwSPaeIXITCV2RhG5LQbVEoXRjK4ofxeOEiTpSUHSdnJUHMdJiZgzIL
lawyFbtWzW3UCjp1kiEDNIEr50zaTQvO3duFDg60R+8s7747BDv3/wIL/DoG
i3J8bZLX3MbJufWTx9gdX6un5lZOzS2fmls6Nbdwan7u1Pzs6fnp0wuTNovj
NssDp9ce/+d2XAfrn/tOS9wy8TuPoRs9witPuJfGWOefMRwn6Gdf0hxeUe2n
duxf79hN79hOb9sCgI4xOg0uQKvZ92B9v4b/sby/k9Xg8NtvzYdH6r0DsclK
1VkWMOK5wtgn1TcJtZV8dQFXlcHBErnKaC4axkcfCpEACXJfjvjACh9U7otJ
/dRif60gQM97aOSEEKxwMyNqlxZrpSYcbKccbmccbeUcUQqPNsuONqqPNuqP
NpoPN9sPN3sOKQOHWyPkBX4A/7nZDv7X8W+oJn8z+CNbOeCPgxcBLwVeELws
eHHwFuCNwNuBNwVvDRYAlgEWIzk+MgDLA4sESyUXTJ6cFoCPAD4I+DjgQ4GP
Bj4g+Jjgw4KPDD44+Pj/434cw0TeK3DTwK0DNxDcRnAzwS0FNxbcXnCTwa0G
NxzcdnDzAQQACAAHAAVAAwACMAGwAGQAOAAfABFACQAFsAJwSYgB0CTcy8fQ
r77fCe93Bbk93u+T92uY3fqfeB3DBTYb2HJg44HtBzYh2IpgQ4JtCTYn2KLk
KXyZCmxacuumw2Abg80MtjTY2GB7g00OtjrY8GDbg80PKACIAOgASAGoAQgC
aALIAigDiAPoA0gEqAQIBWgFyAUoRhIN0A2QjqRePaAhICOgJCAmoCcgKaAq
ICygLSAvoDAgMqAzIDWgNiA4oDkgO6A8ID6gPygCoBSAggDKAigOoESAQgHK
BSgaoHSAAgLKCCgmoKSQhYWUhP+bX+CmgUL0lgIwAqUJFChQpkCxAiULFC5Q
vkARA6UMFDRQ1kBxAyUOFDpQ7kDRA6UPFEBQBkExBCURFEZQHkGRBKUSFExQ
NkHxJEsoKKSgnIKiuvAaFFiyzM7Pg5JLFl4SwbXv1zAL9sn2/2AXWDAo46CY
g5IOCjso76DIg1IPCj4o+6D4AwkAQgDkAIgCkAZSIJLkQCyAZHzfDI9gAykB
ggJkBYgLkBggNEBugOgA6QECBGQIiBGQJCBMQJ6ASAGpAoIFZAuIF5AwUsiA
nAFRI6UNCFw1EDsgeUD4gPwBEQRSCAQRyCIQRyCRQCiBXALRBNIJBBTIKBBT
IKlAWCHyvCAcSC0QXCC7QHyBBAMhBnIMRBlIMxBoINNArEnJ3gUS9u0xYuAf
wLRvgbifJm/XBqAVAAsgBQwAsAHADABLAIwBsAfAJACrAAwDsA3APAALAYwE
sBPAVABrAQwGsBnAbADLAYwHsB/AhAArAgwJsCXAnACLAowKaTKBaQHWBRgY
Ug1fk5ZmAQC3AEzOaZJum+/XACwQWQO+Iw3HsTU6ADYJmCVgmYBxAvYJmChg
pYChArYKmCtgsYDRAnYLmC5gvYABAzYMmDFgyYAxA/YMmDRg1YBhA7YNmDdg
4YCRA3YOmDpg7YDBAzYPmD1g+YDxA/YPmEBgBYEhBLYQmENgEUmjCOwiMI2c
ZmAggY0EZhJYSmAsgb0EJhNYTWA4ge0E5hNYUGBEgR0FpvSHfmbQ+/4z8r7/
rAwHVhYYWmBrgbkFFhcYXWB3gekF1hcYYGCDgRkmLbFmD9hjYJKBVQaGGdhm
YJ6BhQZGGthpYKoBWMBgA5sNzDaw3MB433qPVJsMGHJgy4E5BxYdGHVg14Fp
B9YdGHhg44GZB5YeGHtg74HJB1YfGH5g+4H5BxEABAEQB0AoOEZtiIwJx6jZ
kajNHkO28n7PgHABIgYIGiBugNABogcIICCGgDACIgkIJiCegJACogoILCC2
gPACIgwIMuSpU4YcRBsQcH44vzjuh8fwQQgCUQgEIhCLQDgCEQkEJRCXQGgC
0QkEKBCjQJgCkQoEKxCvQMgCUQsELhC7QPgCEYwMYoIeEMpANAMBDcQ0ENZA
ZAPBDcQ3EOJAlAOBDsQ6EO5AxANBD8Q9EPpUx/3M42bm8UX2n8NASARREQRG
EBtBeAQREgRJECdBqATREgRMEDNB2ASREwRPED9BCAVRFARSEEtBOAURlQzL
M1sgtL4HC8RYEGZBpAXBFsRbEHJB1AWBF8ReEH5BBAZBGMRhEIpBNAYBGcRk
EJZBZAbBGcRnEKJBlAaBGsRqEK5BxAZBG8RtELpB9AYBHMRwMowvjYNg/gNk
S99zfHEKRHgQ5EGcB6EeRHsQ8EHMB2EfRH4Q/EH8N4/uGLtpumaGqpaNlnMV
RQJ5rlCaJRanHx9hJJHnF8L35xf/6IdzpPEsWQJDnkQju6yp20jGFpq1ieVu
qAo21MVks0JXRTYuDA3rxuYNvH2D6N4k+immJ9vvJMPvxINH4t5DUeehsPVA
2LgvfGQVVu8JK3aFJRZhgVmYaxJl4qI0ozjZIEnQS+K00v9qZoZhZD8z5H0/
UwmHYnCYCo5UK2I0ULxenmKUZZok+buisn1+LUleav/B2rh1ZnpvhmKeFuvf
4qLNw3X+/rCSWw+lbQv/9IrzE7v1JtuFecCv85P092DdeMK71S907hbfbZd+
0wS5PkLdKkiwvDLI5lJUOJ7ii+ffMLY6wpN/Zm1/NCH+OA+1c8cjbayDv4PW
fvaW808VrJ/40H/jQjt3jermuBN0Yif2B8hq7daa7Fc7yWbX8hOy8fU9ZPMA
L7AAl2Zo4mve0kXuaN3uCw4+q+fSCbKNdqR8c8Sesc6+3n321tS3YGxc1tVu
qMu3lUV0OI8FZXFl6XxJqkCcLBT99/OL45a4OJ4nSeBKEzmyJJY8hQml0hUZ
NCSLiubsKPO3saItdemWpoKiraHoHpHtQUPrlrFjG+/ZIQaopie0I9nIkWzw
UNp3IOk6kLTtS5qs4vo9ce2uuNIiLjWLi0ySPEKSbZSkG6QpemmSThavlcdo
5FFqKEIFhb/vYf63fmaYimxmRmtlcXpJIi5KNQuy9rj5h8zSo63ag6UW62SP
5cmoqfetoZ0Gt2JbA5bRF9biDfgBc+wGM9WelnhmrZtstL6mOj1nXiPB4v8A
low8/H3PrCKdRxbZtg2PxhMC8Sw3Y8Vlba+dbOYzGvWjUckn2Up7dzzC5qD/
98jyhxuc/9XK/nEU4wNP+lfOtBuXqd4OQMt2Er7eyjm9WWoLWLbe/D1kK/8F
2Rub+eVzUzSXTpl/Dvl3GCWOYVncnSZkeF5dpdPVHkjaDyl9ey8GzH2jRMsL
Y/W0rmReXbCqzKHAmVQonSlLZUuSeeIkvihRIPrH+YVQlCAQJ/DFiTxJElea
wjnuirMUmUw4h4Hk0ZWFNKyEpionm+2aOrLxrm+mGtpoxi66sZeODzKIEeYh
NHoIDR3I+/fl3VZZu1XWvCdr2JXWWaRVZmmZSVpMyPJxWY5BlqGXp+rkSVoo
QQPFqqFolSISU4ST/ed/9DNDVVDo+2amThJtEMURgkQLJ9XKyDjazjlcLtmf
qtodqDc1thsrx9S5C9I0wUq+tqfCkt5mDngpcVomn72ym19zfE29/Jx1fZR7
c4h/u094B4DVISXBakDcqjH3Uq1HntE3nTwWiQbkuo/n3jHWXVIP2kre/pFK
/XhM/Lt8pb0nHmNrHQR4/XKb80897B+nMj/wpn/uQrt4nep2nhp4eif6b9up
Jyn5NpsVthuP7NZaAGQOq33k8c3ymMPShP3itN388tkZ6rVJ1rU5uitl2odX
XyJJnocfqhVx+8zcgznwWRpMj9vx6iF90TNt9pQqY06ZtgqnUECJkyUyJYkc
cQJPFM//R0ucPL8gL3GSQJLCl6byZOlceSYXyubAuWykgIUWs5Rl5DGWuoY8
0tI2ksdb+g6moZtl7GfhQ2xilHMAjx3AT/YV/VZF9x7UsQe17EKPLVCdGao2
QeUEVIxDBQYoRw9l6qA0rSJZo0hQK2JVcPRx8zlcSfafj4uhIhg77meq5aEa
aZhOHGEQRhHcGAsr3kpNPNpIPnybZX2ab2krwkuq9BltWNiY2H9tI0A6EGYo
TSP/niDfVtS1X+L8RHB7SHB7UOgMaNUrvtMtudshc2mRuz6G3eqU7hVqjyK9
ZxZ54BgWSx4+pvng+beN9ZdUAK+Zz+nbn0wKfleNnHpozj1levapfOMXG5z/
3cv+cSbzA1/6791oZ2/R7jhR/Rx2wr8iKZZ1mlJsu1Ftt95AnmKvdTp8P0f3
hBxSXRlzXBm7sDZ0aav5MjM7jBtUJzpPlV/Rcr0PVsP3n2aYGwvx0lpDfocu
Y0iT9BxLnEYTFhXx6/L4bVkcXRLH+kc//IfzC2EiecgrThZJUoWSdKE0QyDP
4kO5fEU+Dy7iIiVcZTl5TKyqJY+MNU0cbStH18nV93ANAzzjEx4+xt9Hx/bR
YSsysIf07MIdFrjVAjea4UcmuJqAK3C4xAAX6OFcHZwF/IMGTj7uPMdhSDSG
RCqRcCUSiiIhKOk3yIPvH/qZIVpRqIEfhnNAeI+0bkUdrkYfTidYh1Msj9OM
WZm6mHLMp0V6+xn98s7UXdnje4acSPIpSO9ig2cd5tascGmTvz+X/366rEnh
Vo+4V2MeZRqPfIN3JnmgHxFNHu5neJN4PXJS9TtIp75krf1ukflpv/gPJXsj
n6nnPhLSfzrP+VEH+/9kMH/my/jUne7gTLt9herjSA05CVRsO/3UVgGg2PG4
SOMPE3Rdx6MI7eRYAqXaZifnKj3Sj+mSxv3ilfBLOd+GWL91+NJvtz2aKEw1
ZJbqUxq1cb3qyFFl1Cskag6KWpVHUcj+ajRTFMMRxpL9cGA2BO/PLxLJIQry
CCNNLMkQS7NEshyRPE8IFQoVxeToBVopUNaQwxiqx+Rghradr+sS6PsEhkGh
kXzOUmTFnlqx4T3lwK6y14J2mtFWE9pIoPU4WmNEKwxIiR4t1KG5WjRLg6ap
0WQVmoChsUo0WolGoGjY8QDJ9/1nVEGOl2CyQLUkUCMK0vODjOyHJjo5iHKw
HHz4Osz6JNLSEI2nR+vCUlWexYqLTTz75xsnaeOXpbV39FmB5HCLdw7uWaFx
r0ddf5h+cWlWHJMLda9SeZQcF8MMcmAmMpocnskA/LpjrL2i6XaEnp3kz39G
pfx+lvGHYWzpY+n2h1TujyY4P2lgf5DM/Lkv4w8e9DN3aLeuUb3PU4NtgFHc
ST25lWdDKbPdqPlhfO79hE8TOS6yVfw1NekaLeAe40oC+5NR3icCwaea9dP7
r5ysnV6mkmBDQrwuplAbWU9+rVLQMBL8UhHyVh66Ig2nSCJookiWMIorjOYL
YoTkMNL784tEqTBZJkyVidLJsSVJtlSaSw4yyYskilJytAmpEqO15LCTqokc
fNJ0iLQ95CiUfkhsGJUYx6V76qd7qpFd1aBF1WvGOk1YG4E14Vi9UVljUFbo
laU6ZSGIURplFshTKiwZwxKU5OBcFKKMQJRhMBpyPKYViCAgNT9AFf7HLU1y
oEvLJ4e7cLq/hUKOex2+ub8/ErDbHEjkB+lDHqo949ErudKT9awvn678B3XE
UVJ+05AahAcn4Z4FBvdqFTlg1nw8YNZ0PGBWp/SoVHuU6DxzyVG093gBfqX7
4nkueMU1XetF9ImDZPIEZ+Fz2vofV4SMX9C5P57h/qSP89My1s+jmB/6Mr7w
oDveoTlfowG8HtoCCdtJObmVa0Mptd2s/n/G58pPbKdfoAa70q+HM389yP2Q
y/uFavXf916csrZfNRd5GKIf6EISNEGFqgePMN9O1G9Y4T8pD3grDVqRBFNE
oTRhGOt9M5wc84uRkCN/CTJ+EjkEKEiTC9MhUSYEYpokTy4tlMuLyaFBRaUM
rpGhj8hhQqyZHCxUd0k1veSooX5YZhiTG5/JdzXju5oRi2bQrO4zqbsIdRuu
bjKq6g2qGr2qUqcq1aoKNapctSpTpUpTqpJRLAHBYo8PCyIgZZgcDZGjDyE0
QIH4w4gfDPsikK9S5oOJfdQCbx3H28C4R2x57a56Hrx1P3juYe0mxyzxJC+t
j4/qdhhyJkXyRTnrs6GlP+z0OEI57nh4LO6RawR4HQ+YfT9d5vYYfo+X53/H
K4Yc/kzzx3Pd8eKbxvor6q4LihEH8ctTvJm/Mtd5H7zhfvCE87N69s+zWB8G
MH7pzfjKnX7RmXb3Gs0H8MuWCvj1PV52m9X2JL+ajsdTyfE5m81ygOZlqt89
+okm9gds7r+oFz61jv3nXsNZU9ZNfbC71jdE7Z2m8iw9nlzsVniOyb2npL7z
QJRFAduChwx+CIcfxudFiMjDi1gZOVKbJOelQLw0iJ9BDtwKcxSiPIU4H5YU
wbIScigXqlIoahVIPTmsq2whB3fV3ZCmD9IOkgO9+qcKw3N4Vzdu0Y2YtUMm
bR+h7cK1bUZNk0FTr9fU6DQVWk2JRlOg0uRi6ixUnQ6rUhSqRAiLk2ExUmWk
VBkmQUPIMWMkQIrclyG+EHwPVnghck9U4oEJ3dU8Ny3L1UB1ITbu7i44H7y+
dTBye6+VHGbG4+9o3Z1V170Rh3DZ51msT3um/szKczYGJ+DuJVrXeuT76TJS
vwDFYPdHqEcVuD1aT1APM8mB6og4crg6NZActC64i1fe0DVdwXouKIYdJc8c
hM+55GB2I+cXhawPo5m/us/47B7dzpV+9TbN9Srt/jlqqA019sRO2qmtPFtK
md1GLdAvh/XvJ8CBkAHT+PVW7gVqgA/93xY5/6yZ/eig5wtLoYMx6jJYttrl
gepuvNI5D71ZDd9ohZwHZS7PJe5vRF5LQp9NwX0qL4DFfcjjhog44RJOtJQd
J2MnyjkpECdNwc1QcLPJgXZ+PiwsJEfcxaWIpByRVaLyahSqI8fgkWayu4V1
kuPx6n5E8wTRjpJj8/oJ1KIfN+tHTPohQt+H67qMujaDrkmvq9fpajS6CrW2
FNMUopo8RJ2tUGfIVakyVZIEixdjMSJlpFAZTg7wo0HkMD9yXwT7SGAvGewO
KVxg2TeI+K5ScEfFcdYybum3bhCr1yxzV/ZfXToYuWRtd9qtvGxKv2wIdtLc
dsIufAN/FUr/6EnaPaNbkY48pu+SOPeK3vtD4DpcWyC3BsSjBvMs03oVGHyy
yAcWwhPIhxeSg8kHGfI88GJnvOaGrvkq1uUED1yEOjjkgw+F7F8lsH79gPmx
L+OEJ/28C/3WLZrnZVqAIzX8FDX+652M01uFtpuV9hv1DustDv/whwP2q712
a80ntrJdafbKhV9aik8Ygs5qbl1WXXfHrjxUOsUjF3Pg8xXQhSbZ5V7Jjadi
5ynhN/N893We1w7Xl8nx57EDhawQCStSyoyRkQ+D/P98vddzHFmWp/kX7D7s
zJrNTHdbi2m53b1V012TWZVJLQEQJEESIEEQWgsSBEForbXWWmutVQABILQO
dw+ttZbuAUXyZf0iM6uqa8bW7BiNTwxafH6u3+vh5/vl6gT5ekGRQVhiEJUb
xZVGSTUYHpE1mBRNYJxE1WbWdJi13WDMxDAARk7MY2D8xDoLRlEcyxbnmsW1
afV5VjHPIuqe87qnPO4xt3vI5e5zuLpsznaLs8XsaDA6avX2Kq2tTGMrVlkL
FNZcuSVLZvkkNadLzGliUzIYkzHGio1REkO41PBWrn+t1L/U6J7rNE/1ykCj
LMAs8rNBj5zsB27qPez49vnejas1MJJzOQTGc87qfucr/62v5LvLrn/+/phw
c4d3b+P6MdSyKHBB8nxG/mJCGTysed1nCO00v222h9W48D1JXCEYC/qYAUaE
CuLBuFDVG28djuyps/eJbTjA3CQCg0VZgj+LR/48Gv51OHzzDeT/EgoO5Ec8
4ife4qXje4nvOKW/Y9f9yGy7yejF2woMLlEWb5LXbpC2fjwFj+6/J57c2YC0
/5hp/C7O+NtEw2/fG36bpf++SPddtfb7VvWPA8rbU4oHKzK/XWngsTiIJgrm
CEMRQbgEiZLDCUooVQ0GrDJ1YNgqzwAXGuASI1JmElSahNVgLEvcYJY2gUEt
RbtF2QlGtzR9Vu2AVT9sM4zaTBNgvMsyB0a97Ctg7Mu5Zce8q6h30eud9Xin
XJ4xh3vY7u63unrMrg6js9XgaNI56jT2apWtQmErkVkLpdY8sSVbZM4Umj8K
TO8RUzJsTADDaIYoxBAu0IcK9SFi3Qup7qlC66/RPNQqH+hl94yiO2b4lpXz
o53xOxfpO8/Rv6P7v/Zt/SsYf1v/e8/O3xjJ/3VZ+H885r37gdb/4+nO90Qa
eMSxgeCnZhzZy3FVyKDuTbfpbas1rN4ZVgEG7pLywPDd53QwiFccC4byqnFk
L7ytz11dzxwFwr/IEPxFPPJXMcivIuEf38KPQqCgIP7bAH7MfV7KDbAY5v+W
U/Ejq/EGo/MWfRCMBOKwwEkZPNz4gcB5tCp42a9LS/cu/08Z76+WJX/TJ//7
dsU/dSj+tUf+6yHZbyalv1uU3NwQ3z0QPjoVBNCRZ1z4pQB6LeWHy3mxSl6S
mvteCwYYs/TcXAOvwMgrNvHLzFCFGa4GA4+CBouoCYxAStqtsi4wFKnss6kH
wZikbsyun7Abpx2mWYd5AYxS2lbBWKVj2+lFVz3okts75/RO2z0TNs+IxT1o
cvUaXF06Z5vG0axyNCjsNXJbpdRWJrYWCa35iCUHNn/mmz/yTO+5phSuMZFj
jAUjn4Z3XH0oTxfM1wXB2kCB1k+seSDT3Fapf1QrfqeVfK8T/sYA/ZuR+ysT
61/MjH8y0/7OSP9rLevPpMj/RRD9n4XIf8YPs79hl4CnQ6fbvzum3trnPt5A
ni5KXkwrgkc0b/oM+OksrNHxrtoTWQrGWtNywIhr9nsw7loSC0Zfq99660K8
TS89KYK/jEf+MRb5tyj4xjv44Rvo2Svo9VN+pB8/8S7vw+94Wd9xi39g19wA
r3/33qKNgZFb8vo1LMrNfa7fivDliDq02oUfyTse2bb/TUT971TO3+1B/7gB
/8s68qtN5N934e8J8I1T6A6N/4DD84d5T8WcYCk7TMGOVrES1GAoOF0HBoSz
jax8E7vIzCk1c8stvCowSgzVW+EmMFwMfoXvAuPGsn67fBAMIKvHHJpJh24a
DCYbF5ymZZdl1WXdAGPLjl23G1tzocsO74LdO2P1TJo9Y0b3kN7Vr3V1q50d
SkeL3NEotdeJbVVCWzliLYasBTxLLtf8mW3OYJk+MI0pDGMi3RBLM0SBwWp9
KF0XzNAGMbWBbI0fV3Ofr74Nq34Qqr6TKP+HXPEvctk/KSR/rxD/d7noL6Wi
/yaS/GeG5D9tiv9Tm/D/joL/7hk/5Dfc7B8ZnTcpCzdOCb8lMu/t8gNWRc/n
ZK/GVa8HdaHdprAW27s6V3g5GlcMhsfTs8AgeW4aGCovjQMD5tXvvHWh3njk
17HI91HIrXD40Vv4aQgUHAS9e8KPe8hPvcX79B0v77ecsh/Z9TeZHXhz3aZN
3aYs3yLt/Hhy+sMRG+/r59Ny/I4ZVur9lOateuEZuW9Y/53s8NcI+Z95tH8F
w/LMf2exvueA8fnbAuYjEeOphP5KTn+rpEWqwKB9sg4M3WcYaFkmeq6ZXmBh
FFuYZVZWpY1dY+PUg4F9fosdbgcj/MIeh7jPIRkEo/2KMadyEgz7a+ZcugWX
YRlIAEwbbssW0ALY9z1AEYCu2NBFi3fO5JkyeMZ17hGNa0Dl6lU4O2WONomj
SWSvR2zVkK2CZy3hWApZljyGOYtm+kQ1fSAbU0nGxFND3Ik+CogLdKFAYqAN
OtEEnmr8SOr7FPVtquoHuvI7hvJ/MBX/ypL/E0v+twzZX1Olf3Es/bNtyX+d
Ef+XNuF/eY/8tzDoViA//Dte1o/MFrA64TeRE/ItAvfxJvJsUfJySvl6RBva
awxrt75rdIZXeaJL0cRCNC0XiBqyPwJpQ1ESEDhUxHirI72xyM0o5F4E7BcG
P3sNB7+Ewp5BMX78pHv89B95Wd/zin7gVN1kNd9i9tymjwJZBHn95inhh+un
l09WRPjlEdpuCS8FiomSCG/TU9fII+PiXfXmLdn+DcnhDaCkOLkrPn0oAZKK
53IgrAhVAXlFrA6ILFINp+kmUqaZlG0h51spRVZqqY1WYadX25l1QIXBaXZw
24AcA+p2In1AlyEedknGXLIJoNFQzrnVC27tMtBrGDY8xi0g3LDse22HqB3b
tKKrZnTJ6J03eGZ0ngm1e1TpGpK7+qTObrGjXeBoge0NfFstx1bJspYxLEU0
Sz7ZnH1qyjwxpRONqYeGJIIh7kAfta8L39OF7mmDdzVBu5rAPbUfkIeobu8r
fwQ6EcW/78t/tSf/5x3ZP2xI/3ZZ+tfTkr/sF/9FnfDPPwr+PAr+n6+hZ35g
nij3Bqv5Nm3s+gs8/oHIfrgDB66IX8zKQ8Y0oQOGsE7Lu2Z7eK07sgLIT1IK
0PQcoEPJ+QjUKMUpQJNSEe+NQh5FIAFh8PM3cHAwFBYERT+BEh7x0+7wM3/L
y/sdt+wGu+4Wq/02o/8ObeIOdfE2eRv/uN8RWfjH4ZdH8Kjmbbs1vBwoXPKT
vJVvvS3PXYNPLFP+hkU/7ZqfetMfiF92n6n2Xqj3QzQHb7UHETpCjIGQYDxM
MR1+MB9lWIhZVmKu7bjQflpiJ5U7yFUOSq2T1uCkNwHhDLvDxe0GChpowI0M
u4WjQE0jmQaaGsWCR7UExDXaDa9+y2vYBUIbMwG1EDELtmVG143oit67oPXM
qj1TSveYzDUscfWLnD2IoxNytHLtjWxbHcNWRbOWky3Fp+YCojnn0JR5YPy4
Z0zbMSRt6eM39dEbuvA1beiqNnhFE7SiDlxW+y2rHiwp7ywpbywqfrsg/82c
/NfTsn+dkP4/w5J/6JH8bZP4b0qEf50q+KtY5Lsw2P8FFPaAn/Y9t/Amq/UO
fewOZfXW6dGPx8z7e9CTNdGLeVnIhDp0SB/WY3rXZgtvcEVUeWPKgGIoLR/N
yEE/fwbqoYIPQENUmuyNQJ6FwS9D4dchcNgLKOoplODPT73P/3iTn/1bXtGP
3Mqb7KbbzK47jKG7tOm7lJXbpL2bJ6QbR5zHW8jzBenrUW1YhwXv4uR8IEoq
TgDLbNMrT88Lx0iQdTLIPPfCuPgS6JVW3xjXw4wbkabNGNNWgnk72bLz3rr7
0bb32b6fYz/IdxCKnUdlTmKl66TGdVoPJE7UFjetHWidWL0eTr+HNwR0T8g4
UD+JZ73SeSCDUqwCMZRmC9XuAFWUkYCZjjAgj8K2DeiGDl3VeJdU3jmFZ1rm
nhC7R4SuQdjZy3d0cRxtTHsz3VZPsVafWiuIlpJDc+G+OXfX9HnLmLFheL9m
SF7Wxy/pYhZ0EXPatzOakGn1iyn10wmV/7jy4Zjy7oji5pD8hwH5d72yf+uU
/qpF8i+14n8qEf1DpvDvkwX/bxxyE2+E1/CbQCjhNj8TKLZYHXfp43cpq7dJ
hzeOGff3+U82hEGL0uAp1ZsRXVif8V2HNbzZEVHrjqoECq+UIqDz+pQD1F65
GUDzVfQeDYODQ+HQEDj8JRT9HIp/AqU84qff4X/+gZ/3A6/0Bqf2Frv1DrP3
Ln0UaMQoa3dIBzdPKLcOuf5bgqAF2esxTVi3ObzehbfwxxygI8PbtibK2/jW
2/7a0/vaOfTGMR5qnwoDErP5KNtCrG0pwb6cbF9Nc6ylOzYynZvZzq08104h
0KDtl7sJVZ7DWg+xAUjSSG1eSqeX1gPkaaxBIFLjjaPQJIrMAMGaeBHI1uRr
mHITU+0ACZvuAAjZjMc+E+nMgO3o0E0NuqbyLsu9C1LPjNg9KXCPQa4hnrOf
7ehmODqo9haSreHYWntordy3lO6Yi7ZMeeumrBVjxqLhw5w+ZUafMKWLGddG
jGrC8KPSoPplv+pZrzKgS/moQ3GvTX67WfZjvey31dLflEr+R774Vxmif3kv
/E2y8Gac4FEk8jwUfhsExT2G0n/g59/k1N1h9tyjT90D3+HhzRP6vQN+wKYg
aEkaPKN8M6YNGzC867ZEtNojGlyR1d7YciDKSysE0rzMHCDQy8tECzLQUDjs
NRzxCo4JghICoRQ/6MN9fuYtfs7veEU3uJW3OA138KuC2X+PPg40fZSNOyQC
EPdd83qxKHs9oQnrM0U0O/BLIrUI6P4KPgL1X3U80AC2RKLt4WhPhGcgyj0c
4x6Lc00kuKaTgTxwLt298Mm9lOVZyfWsFgDB4GaZd7sSKAf361FCE3rUClSE
p91AS0gdwOjDGGsM6Ap500BdiCwAjaF4zSfd8Mm3gd5QfQBUh7rjM8PpmZF8
rsN2NeiWEl2Xe1ek3kWRZw5xT0Guca5rmOUcoDt6KI7OU3sr0dZ0YK3btVRt
WcrWzcXLpvwFY/as4dOUIX1cnzqiSxzUxvZpI7s1YR3qN62qV83K5w3KJ7WK
x5XyB2WyO0Wym3nSH7MlNzLFtz6K76aJHiYL/eMFz6MEIWFI+CsYv/4/3OXn
3OCV32G33GMOAl0kZeMu6ejWCeM+gR+AX/MrkuBZxZtxTdiQIbzHHNFui2xy
RtZ5oiuBiDKlBPwck5EPBJXZ2WjeZ/Q1HBUMx76AE55BKQHQh0fQp7v87B/5
BT/yym5ya26zm++yuu4xh+7RJ4EGk7J1l3QIxJiH4AfKF8vS11OqsEFDRIct
qt6N//sfioBUszATCDarU4FssykRiDc7EtDuRLQ3CRtIwYbT0NF0dOITEHXO
5ABp50IRtlSKrVQAmedmHRB77rb49tuB6pPYA7Sf5CGgAKWPAx0oZxaoQaEl
oAkVbZxJtoA4VLEPJKJqIhCK6snnBuqFGttTojtydEPiXRV5lxDPPN89w3FN
MF2jNOcg2dF3Yu86tLft25q3rfUbluoVc8WCuWTWVDBpzBk1ZA7pP/brP/Tq
Uru0Se2a+BZ1TKM6ql4VXqN8W6l4XSYPLpa/LJQF5UmBNDVT8vyjOChN9DJZ
GBwvDI0ShIchMSFI0jM4/SGUc4Nfcodbf4/d9YAx+oC2cJ+yfZd0fOuE+YDA
f7J9zWtO8WYSb2B9OH7ld1ojWx1RDe6oGm9cJdC9ppYA9StAlge+22A4/gWc
+AxOwa8EPyjjPpR1C18J+cU3eZW3OfV32G33WD33GSNAMEtbvv6sIyCePeL6
7yBBq5LXs8qwUV1Erzmq1Rld602uANLanHwgsC3LBDLbuo9AbNuSjranA9Vt
TwbQ3g5mYcM5QIQ7UeibKvbNlAFB7kL12XLd2WoDEOdutgGJ7l73OaHv/GgQ
yHVJY0C0S58B0l3OIhDwwutAxivaAWJeGQFIelUnQNiro1zoaRdK7ECO7krQ
LZF3HfEu8z0LHPcs0zVFc42RnMPHjn6CvXvX3rFpa1mzNixZ6hbMNbOmqilT
+bixdMRQNKgv6NPlduuyOrSZrZqPTer39arUGlVSlTKhXBFbIo8ulEXlySKy
pUBKnC4OTxNHJIsi44UxUYL4d4KkEOT9c/jTYzj3FlR8h1d7n9P+gDXwkDH1
kLbygLJ3j3R6+4T1kMAPxK/5VUnIvCJ0So1/jeEDpohuS2SbParJFVXniakG
OuXkMqBWTi8CmuXP+ehLOPk5nBoIffCHMh5Cn+9CuTf4hTd4Zbe4NXc4TXfZ
HfdZfffxC4M+8+Ca1z3y0Z1T6h0i138PCVoXhywo3k5qIgaNUV22mGZXXC2Q
Qn8qBYLowgIgi67MQWuv9dHN2UAl3ZmLdedhfQVAMT1c4hst841XAPX0TO3Z
XP3ZYhNQUq+2n290nW/1AFX1/uAFYeTiaAworEnTQGdNXwBqa84a0FzD20B5
LT4A+mv5MVBhq8lAi61jXMoxggTdE6LbiHeD71nleBYZ7jmqa/rUNU50jhw4
Bnft/du23g1b96q1c8nSNm9umTE1Tprqx4w1w4aqAX15r660S1vUrs1v1uQ2
qLNqVZlVyoxyZXqJ4n2hPDVPlpItTcqUAul3mjgpSZQUL0qJEqa9E6S/FnwK
QrL94YI7cOk9fu0DbutDdt8j5tgj+vxD6sYDCuEeiXL7hPP4AHq6LQS8Fq55
jenCB40RPZZIfLFqcUY3uPHrP64KSMtTr5HhjfCpEA2C057C6QFQxmPo830o
5zZUgPfvLby5uHV3OS14F99nDTxgjD2kz15fG9v3yUd3SdTbJ1y/A/j5pih4
WfZ2Rh0+po8aMMd02uOa3Ql1QL3+qQLNKUMLS4CSvfJaz15fBFTtrcVYRwmQ
t/eWA5H7ULVvtBao3acaz2ZazubbgPJ9pft8rfd8cwCo4PdGLw7GLw4ngSL+
dO6SvHBJWwbqeNY60Mjzd4BSXkgAennpCVDNK6lAO69lXkmwQyG6D6M7PO8m
27PG8CxT3Ask19yxa+bIOXXgmNi1j23ZRtZtgyvW/kVLz5y5a9rUMWFqHTU2
Dxka+vR13brqDm1lq6asSVNSpy6qVuVXKHNLFTlF8qw8eWa27FOmFOj00yQZ
SeKMONGnKGHmO2HWa0FuEFLgjxTfgyse8Ose8Vofc3qBnJ8xA3I3qDsPyMR7
JNrdY67/AfxsS/hyVfoa5zWtfofzGjJG9pnxKz+6zRHd5Iqp98TUgFAAfNVK
KwMxATiyp/DHJ/AnP+gzvtLehfJvQEU3+eW3edV3uQ33OG332d0PWIMPmeMg
gIC28pC6/YB8eI9EvnPKfnwIPd0RvlqThi4ow6e0UaOGmH5LXJcjodWd2IC+
rwMxBzlVIPKg5Dr+oLoCq6/AmipBLEJ7NYhI6K3zDTSA0ITR5rOJtrOpDhCm
MN9zvtR/vjoIQha2xi52Ji72p0D4AnH+8mTxkrwMQhnoG1esrSvODghrgAgg
uEF0DEIcZBQQ6KBifNGwvgixIxg94KG7HO8207NF92xQ3Gsk18qxa+nQubDv
mN21T2/ZJ9dt48vWkQXL0Ky5f8rUO27qHjF2DBjaevXNXbrGNm19s6amQV1V
o66oVJWVKUuKFMX58sJseUGmLD9dCuIqksR5ceK8KFF+mLAgRFgUJCj1R8of
wdWPoUY/Xrs/txfEXjCnQWgUbfMRlfCQTAJhHET+k30kaEv0alX6Bl+jcF7j
uohhQ2S/OarbGt3uiG5xxTR6Yuq8cdUgeiOlAsRwpJeiT+BMfzjrEZRzH8q/
DRWCwA5+5R1e3T1uE1h12b0PWUMPmROP6HMg5oO6/ZBCeHD9iQ+J/MB95OWm
+PWKPGxeFTmpixkxxg1YE7odSe3u5Bb0fSMIE8muA8EixdchI9W1WF0diB1p
aQARJF1Nvt4WEEoy1HE22nU20QPCSmYHzheGzpdHQIjJxuTF9vTF3iwINzla
ujxeuSStgdAT+vYVc/eKvQ/CUKCjL8jJFyEJhKRIqSAwRcn6quZ8RbATCCXy
0EOO94Dp3ad7dinu7VPX5rFr7dC5su9Y2rEvbNrn1mzTy9bJBcv4jHlk0jQ0
ZhwYMvb2G7q79Z0duvYWbUujpqlW3VClqitT1RYrq/MVlTnyikxZebqsLE1a
liQpjROXRorLwkTlIcKK54Iqf0FNANwQALU84XeCKBnOyBPWVABzMYC+7kfb
e0w5fkim3TvlPD6Cnu4JXmyKQ1ZkbxaUYdPq8J94DZijeqzRnfaYVmdMkzu2
3htbC6JtkqpAzM37cjQAznoM5TyA8u7isKDiW/zyOz81F7flAacTX3gfsoYf
4bwYc6CdaVuPKAcPyaf3SfT7J7yAQzhoVxiyIX27rIiY00RP6WNHTQmD1qRe
R3KXK7Xd+74VRPZkN4P4nuImrKwJBPrUtoBwn5Y2X3s7iPvp7Tob6Dkb7gUx
QBODIBJobux8cQKEBK3PXGzOgdig/eXLw9VL4jqIEyJvX9H2rhgHIGaISwSR
QzDpi4ACQogkDBBIpGB/VXG/IRgFwkg89ITtPWZ6j2geAsW9f+raJbq2CM6N
fcfatn1lw760altYss7OW6anzZMTpvER48igcajXMNCl72vT9TRpu+o1HdXq
tnJVS4mqqUDZmKNoyJTXpcvqUqW1idKaWElNpLj2rag2WFT3TFgPwpiQVhDM
xO99yhsEUU3s6UDm4hPGegBt15969JhCfkBiPsS/OgL8fFf4akOCX+2h8zgv
TfiELnLEgN9Wonut0V32mHZHTIsrttETi7dYLQiQSq4CewM/OPchlH8PKryN
w4LK7vAr7/Jq73Eb73NbH3C6HrL7H7GGQZQY4LUMwqqo+4/ARUK9T2I/JkLP
DgSvtsVv1mXvlpVRc5rYaX38uClx2Jo8YE/tc77vdqd3ejM6sKx2LK8dRGWV
dYDYrNpOX0MXCNJq7wGhWr0DZwODIGZrbPR8cvx8ZhLEby3NXqzOX2wsgliu
vbXLg43Loy0Q10Xau6IeXNEPQYwX5+QLn/QFpoB4LxEDRH3JOF8V3G9KPs6L
DmE0Hkphe0lM7wnNQ6S4D0/dB0TXHsG5s+fY2rZvbNjXVmwri9bFOcv8lHl2
3DQ9bJzsN473GEY79MMtusEGbX+NprdS3V2q6ipUduQq2z8r2tLlramylkQp
CDKLkDSHipuDRS2vhG2vBB0vke4XUO8L/mAQbzSIOwlC51lLT5nrgfSdANqh
P/X0MZn+gMT1J0JPDwQvtkXB69I3y/K386p305oIwMsYNYjzssTgm7cOR2yr
C8SxNXjj6kBAW1I1mlKFPoLz70OFdwAsfCWsuMuvvserv89tfsBtf8jpfsTu
B/dK5oQfYxbEwNE2/Ki7j6lHjyjkh2Tmw1PekyP4xb4wZFsSti6PWFZFL2jj
ZvSJk6bkMUvqiO39oCN9wJXR58nsRbN6sNzrQLrSHl9lr6+mDwTVNQ+A0Lqu
4bPeURBjNzJxPj51PjUD4u0WFi6Wly7WVkDs3c7G5f7W5eEuiMMjEa4oR1f0
YxCTxyF/4VG/QHQQnydkgSg9Ke+rnP9NCeO8WBDG5KJ0tpfK9JJpnlOy++TE
TTxyHR44D3Yde1uOnXX75rJtfcG6OmNZnjQvjprmB42zfcbpLsNkm368STda
px2p0gyVqQcKVf25yr7Pyp50RXeqvCtB1hUt7YyQdL4Td4WJukOFPW8Efa+R
gRB4OJg/+oo38ZI784KzEMRaec7ceMbYDaQfBlBP/Sg0EEd4wg88RIL2hK+2
JK/XZKFLirA5dfi0NmJcHzVijMZ59Vlium2xOK82Z2yLO67RA6IP60AMYlIN
+gAuvAcV34ZKbkPld/lV+P7zPq/hAbflIbf90S+8/HBezFkQGkVf96ft+FEJ
fpSTx2Taw+tPf3aIvNoXvdmWvtuQR62oYhc1CXP6pBlj6qT5/bg1fdSeMeLM
HHZnD3lyB9H8Qaxw0FcyCCIga4ZBHGTz2Fn7OAiI7Js6H5w5H50DwZHTixdz
yxdLqyBQcmPzcnv7cm8XBE0SCVenR1fkYxBAySCDMEou/QvEBPGUQg6IqpRC
X+XwN6UA58WFMDYXZbFRBsNLo3koZDf5xH165Do+cB7tOgibjv01++6SbXve
ujltWR83r46YlgeMiz3G+Q7DbLN+pl43Va2dKNeMF6lH81Qjn5XD6YqhFMVg
knwgXjoQKxmMFg9GiYYihMPvBCNhyNhbeOINf+o1bzaEuxDMWX7JXn/B3Api
7D+jHwXSTgOoND8y+zGJH0iEg/BFaUf8ekMauioPW1SGz6kjprSRv/CKwXn1
2GI77bHtzrhWFwgVbfTG1YOY0cRa9B5cfAcqAVmxUOVdfs09Xt19XiM4MnA7
HnF6HrMH/NgjfqwJf+YMiDGlr4JIU9q+P5XoRyE/JjMekblPTqCgI0HIvujt
jjRiUx69popb1iQu6lLmDWmzpvRpS8aULXPSkT3hzB135497isa8JeNo+ThW
Oe6rmThrmATRq+0zIIa1b/58aBEEs06uXMysXSxsgMDWtZ3Lzb3L3QMQ5HpE
vDo5uSKdgoBXBvULi/6FywTBrzAHhMCKoa9SGMTCKkQ4L4iP8bgoh42yGV4m
1UMneWjHbsqhi7TvPNlxEjcch6v2g0Xb/px1d8qyPWbeHDKt95lWO43LrYal
Rv1CjW6uXDtbrJnOU09lqSYzlSDK9r18IlU2niwdTxRPxIsmYoWT0YKpSGQm
HJ59B82/5S+Gcldec9ZD2FuvWLsvmYQgOvEZjRRIpQVQ2H5kfuAxHEQQvNoT
hWxJQtdlYcuKdwuqiFlN5JQuatwQPWKMwXn1W0CYcpc9rsMJ4nrxFmvygMzl
ehBQdRcuvYZV8Yfm4jU95LY+4nY+Brz6/djD/qxxfEcawJwHYcH0DRAcTCME
UE/8KVQ/CtOPzHt6Ar88Erw+EIftSiO35TEbyvg1TdKKLnXJ8GHR+HHenDln
zZq15c448mecRTOukhlP+Yy3cgatmcXq53xN82ct8+cdi+fdSyDyeHjtYnz9
YmoTRCEv7l6u7l9uHICI5D3iFeHkikgC0ckUGohRZjK/cNggWBnmgZBlEfJV
IgCxywrxN8SH8DGIi/JZKJfh5VA9LJKHceymH7qoe07ytvN03XGyYicu2A5n
rAcTlr0R8+6AebvbtNluXG8yrNXqVyp1y2XapWLNYoFqIU85n62Yz5SDwOgP
0rk0yVyyeD5ROB8vWIhFFqPh5UhoJZy/FsbbeMvZfsPeDWEdvGIevWScBtEp
z2iMJ1SOP5mPf0tBhwJ8LXq9IwndkIWtKt4tKSPm1ZEz2qhJffQYzsuE8wIx
5T/zcgBerW6QZv4Lsp9g3YNwWDX3+XUPeA0Pec0PuW0/8fLj/MRrLABsSucC
mEtPGGsgmJu+B0K6qaDNAygsfwr/2Sn8iih4cyh+ty+N2pXHbisTNtXJ69q0
NX36iuHTsilryZyzZM1ftBUuOkoWneWLrqpFd82Sp34JbVrGWlewjlVf99pZ
3/r54ObFyNbFxA6IGp/fv1wmXK4dgQjy3dOrA9LVEQVEk5MZX2isL0w2iCzn
8UF8OYJ8FQlAoLlM/E0h/Qb7hHxMwEFhFgrRvTyKh3vqYRPdTIKLseukbTkp
aw7ykv10znY8ZSWOWQ6HzAe95v1O026bcadJv12v26zRblRq1svU68WqtQIl
CGHPloFA9o8SEM6eKlpNFqwlIutx8EYMtBnF347g7b7j7r/lEN6wiCHMk1cM
8gs67TmN9ZTKDSRDz08Q/JIOPhC93pWEbsrC1uT4Di1iQR05p4ma1kVP4LyM
McOm2EHLT7zicF6djrh2Z3yrC0TPA2Te+Ebvz7Cg6vv82gf8+ge8xoe8lkd/
xMufPeTPHg1gTQawZp4wF54wVwIZG/iGJ5B+EEgjBl43eyCV9YTCe06Cg08E
oURR+KEk+kAWt6dI3FGlbGs+bOk+bugzN4zZ66a8NUvhmrVkzVa+5qhcc9as
u+rX3U0bntZNb8cm2r2F9W37BnfPRvbOx/cvpggXs4eXi8SrleOrjdOrbfLV
PvXqkPblmPGFxPpC5XxhcL+y+F+58FcI+YoIvwpF38SSb1LpN7kM5yXmYyIO
JmCiCM0LU7z8Ew/vyM05cLF2XMxNJ33VQVu0U2ZspAnr6ajleMhM7DcddRsP
OwyEVv1Bk26/XrtXo96tVO2UKXeKFdsF8u1c6XaWZPuTePujaPu9cCdFsJME
7yZA+7H8g2geIZJ7FM45DmOfvmFRQhi0V3TmCxrnGZX/nAy/PBEEHwnx9Sd0
V/J2S/ZuXR6+ooxYUkXOa6JmtPg5KHrcEDNqjB02xw5YYvuscTivbsArHufV
5orHW6wFBNAnNHl/gXXdXHy8uZoAL17bY5wXt9uP0+fPGQxgjwSwx5+wpp+w
5gKZS4HM1aeMzaeM3af0g6fX6/MzGu0ZFb+QeM8pcDBJEHoiCidKoo9k8QR5
0oEydU+dvqv9tKvL2jHkbhsLts3F25aybWvltq1m21G/42zacbXuujv2PN37
3r4DdIiAjR76Jo7OponncycXi6cXK6TLdcrVFvVql/6FwPxCZH055Xyh8L7S
+V9Z8FcO8pUv/AqLvgkl38TSb1L5N7kC5yXlYRI2JmaiQppXQPbCxx7o0M3f
d3G3XZx1J2vZwVyw02dttCkrddxCGTGTB02nfcaTbsNxu47YoiU2ao7q1IfV
qsNyBaFETiiUEfKkhGwJ4bOIkCEkfBAcpiFHyTAxgX8cxzuJ4ZIiOZRwNvUt
i/GGyQphcF7S+S+o8CsSEnIifH0kCj0Qv92VvtuShW8oIlaVkUuqqAVN9Kw2
eloXM2GIGTPGjphih8xxA5a4Pltcjx3nFY/z6vg9L9BiCc2e+zgsqObn5rrm
9ehnXh1+gFevP2cggDMcwB57wp4MZM0EsuafMpefMteeMbZAQDaD8JxOfE4n
BdGpQTRmEI0bRIOCKUgoWRhxKo4+kcYT5clHirRD1UeCOpOgzT7Q5x0Yig6M
pfvmigNL9YG17sDeRHC0Epwdh67uI3c/0TNE9I6eoBOn2DTJN0c+W6Scr9Au
1ukXW4zLXdbVAfvqiPPlhPeFDH2lwV+Zgq9s4Vee+Css+SaQfhPJv0kU32TK
b5BPzsNkbEzKQMVUr4jkFRI9CMEN77mhbRd/w8lddXCW7ewFG2vWypy0MMbM
9GEjbcBA7dVTOnXkNi2pWU1qUJ3WKE8rFSdl8pNi6UmB5CRXfJIlOv0kOE1H
SGkwORmiJPKpcVxaNIcRyWa9Y3HeMnmvGVAwHQmhCN6QhKHHorf4PeJAEr4r
i9iSR24oIleVUcvqaBzWnDZmRhczaYgdN8aOmvDmihu0xPVbf+IV3+34mVe7
6ydkCS144bxqHgBY183Fb/yPvLr8uDiv/gDOIHiuwh4PZE89Zc0+ZS08Yy0/
Z649x/erzN0gxsELBvEF4/QlnfKSznhFZ7+i817RkVCaIJwiiiZL4kmy5FP5
+xNlxrHq87Eml6gtIOqLiYZyoqmKaK4jWhqPbS3H9o4TR/eps+/UNURyj5K9
ExR0horO07Alhm+VebbBOt9mX+xxLwm8yyP+1Qn0hYx8oQq+MoRf2eKvXMlX
SPYNkX8TKb5JlN9k6m98n5KLKViYnI7KKKjk1Cs+9ogO3cIDl2DXiWw54HUH
tGLnL1l5cxbutJkzYWKPGllDBmafntGtZXRo6C1qeqOKVqegVclp5TJaiZRW
KKbliWhZQvonAT0dZqRBzGQ+K5HHjuNyozm8CBYUxoRDGYK3NGEYWfTuVIwv
MhGH0oh9WeSOPGpLEbWhjF5VRS+rYxY0MXO62Bl97JQhdsIYN2aKGzHHDVni
Bqzx/bb4Xls8zqsL5+X8Pa8EnNc1sgfQT7DqH17zesRvxnk9xnnx2v24nXiL
+XP7AjgDTzhDTzijgeyJp+ypZ+DYvvCctRzEWgtibr5g7rxk7uPboVfMk2AG
GV+6QxjM1wzOGwY/lIGE04XRNHE8VZpMlb2nKDLIyiyyOo+sLSTpSkn6SrKx
hmxqIFuaydZ2iq2Lau+jOgdprlG6e4LhmWF651noEhtb5fg2uGfbvPM9/jkB
viAil6eCS7Lwiib6wpB8YUu/cmVf+fJviOKbUPVNrP4m1eC81ByfioUpGaiC
6pWTvbJTj5TolhBc4n2naMch3LQL1mzIshVesECzZmjKxB838ob13AEdt0fL
6dRw2lTsJiW7XsGulrMrpOxSCbtQzM4TcrIFnEyEmw7z0vj8ZB6UwIVjOUgU
WxjJFEXSRFEUcRRJEn0sjT6S4jfxmD15zI4iZlMZu66KXVXHLmliF7Rxc7q4
GX3clCHuGlb8iDl+yBI/iMOyxvddw8Kb6094tbl/QvYLrN/zarrm1Qp48UCL
+XN7Arh9T7g4suFAzuhTzsQz9tRz9uxz9kIQe+kFa/Ula+MVazuYtRfCIoSw
iK9Zp2+YlFAW/S0LXx+44SwogiWIZonimZJkhvQDQ/6Jrsymq/LpmmK6tpyu
r6Yb6ujGJrq5jWHpYlh7mfZBlmOE5Zxgu6Y57nmuZ4nnXeWjmxC2A/v2kbND
wTlReHEqvqBILmnSK6bsii3/wlV8hZRfEdU3ofqbWPNNqsV5abmYho2pmaiK
7lVSvQqSR3Hilh+5ZAdO6Z5Dsm0Xb9jEq1bRkkU4ZxZMmwQTBmREDw/q4D4t
3KWG2lVQsxJqkEM1MqhSCpWKoSIRnCeEsxHkEyxIhwSpfGESV5zAkSSwJPF0
CX5NxpOl8Scy/BYQfyiP31fE7yrjt1XxG+r4NXX8iiZ+SRu/oIuf08dPG+Kn
jPETpvifYA3/BMsGYPXaf+Hl/IlXQrsL1C/IHv4RrJ958ZuvebX5AWSd/rzu
AG7vNbLBQO7wU87oM874c87Uc85MEGf+BXvxJXvlFXs9mL0Vwt59wz4IZR++
ZePbJNI7NjWCja/q7Gg2N4YDxXEE8RxxMkf6gSP7xFbksJUFbHUJW1PB1tWw
9Q1sYwvH1MGx9HCtA1zbCM8+zndO813zkHsJBkm9mwJ0R4jti3yH4rNjyTlJ
ek6RXdDll0zFFUd5xVN9gdRfEM1XofarWPdNqsf3G3o+puNiWhaqZXg1NI+a
4lGdupVEl/LQqdh3yHfssk2bbM0qXbZIF0ySGaN40iAe04uHtKJ+jahbLWpX
iVoUoga5qEYqqpSISsWiQqE4TyDJQiQZsDSdL/vAlb1nydIYsjSaPJUiTz1V
pBwrUo6UyQfK5D1V0o46aVOdtK5JWtUmLusSF3WJ8/rEWUPitDFx0pQwbkoY
NSeMWBKGrAmD1oR+W0KfLaHXntDjSOh2JHQ5EzqdCTisDtd/4NXm/gXWf+D1
iA9azA8g6/D/CRmv5wm3L5A78JQ79Iw78ow79pw7GcSZfsmZe8UBj19COKuv
ORtvONtvOXthnIN3nKMIzkkkhxzNocZyGXFcdgKXl8SDUniCNL74A1/6iS/P
4SsL+apSvqaKr63j65v5hnbI1A2Z+2HLMGwbR+xTAsecwLUkdK+KPJti744E
3Zdih1LfseyMJD+jKs7pyguW6pKjvuRprmDtF4Hui0j/VWL4KjXg52UjhBl4
mIGD6lleHd2jpbq1JLfmxKU+cqoPHKpdu2rLply3KFbMikWTYtYonzLIx3Sy
Ya2sXyPrUck6lLIWhaxBJquRyisl8lKRvFCoyEOUuZAim6fMYis/M5WZdOUn
ijKDpPp4oko/Un0gqN/vq9/vatK2tKkb2tQ1XcqKPmVJn7xgSJ4zJs8Yk6ZM
SRPmpDFz0qglcdiaOGRNHLAl9tsS++z/f7B+5gXqF1gNv6yHv7QYjoz/E7J2
HFkAr+sJjozXG8jrf8obfMYdfs4dDeKOv+BOveLOBHPnQriLr7nLody1t9zN
d9ztcO5eJJcQzTuK4Z3E8cgJPFoSn5HCZ6dBvHQIyoAFmbA4G5HmChRFAlW5
QF0t0DYIdC0CQ6fQ2Cs0D4osoyLbpNg+K3YsSpyrUteGzLMj8+7L0UMFdqz0
kVRnVNUZXX3O0lxwtJd83SWsvxIYrkSGLxLjF5npq8BnhjETHzVxUSPba2B4
DDS3nuzSnzp1RKeO4NDu2bTbVs2GRbNqVi+Z1HNG9bReNa5TDWtVA2pVj0rV
oVS1yNUNMnWNVF0pVuP/yTJYXcJXF3HVhSx1PkOdR9PkkDXZp5osoubzofbT
gTZjV/dxW/dxU5++rv+wYni/ZHi/YEybM6XOmFKnzCmT5pRxS/KoNXnEmjxk
Sxq0JQ3Yk/rsib2OxB5HYrcjESf1MyzX/xbW/8LrT5ABan78Vn9+mz+/I4DX
+YTXHcjrecrre8YbeM4bDOINv+CNvuRNBPOmQngzb3jzobzFMN7KO95aBA8/
8u/E8Pfi+IQEPjEJOk2ByGkQ7QPMzIDZmQgvWwDnCgQFQnGxSFYmVlSKVbUS
TZNE1yYxdEuNA1LziNQyIbPOyOwLcseKwrmhcG0rPfsq76EKPVZjJI2PqvUx
tGcs3TlXf8E3XMLGS4HxSmS6kpi/yMxfhD4rglkg1MJDzRyvmekx0d0mistI
chqPHYZDu2Hfpt+x6jct+jWzfsmkmzfopvW6cZ1uRKMbUOt6VLoOhb5Vpm+W
6BpFunqBrhbSVfN0lRxdOVNXStcVU3RFJF3BiT7/SJ9L0Ofs6bN3DJ+3DJnr
xk+rxoxl08dFU/q8+cOs+cO05f2kJW3cmjpqTR2xpQzZUgbtyQP25D5HUq8j
qceR1O3ESYHqdCX+b0i5r+v67+3/Ky9Qj36hdo2s2Y/f4n9NLYDf8YTfGcjv
esrvecbve87vf8EffMkffsUfDeFPvOZPhfJnwvjz7/iLEdBKFLQWA23GQTsJ
8H4yTEiFie+R048IBd8MZwmYuUJOvoiP38FLxcIKiaRaKquTKhtl6ha5Fv+i
ehXGIYVpTGmZVlrnVfZllWNd7dxWu/Y0HoLWe6xFSTqMqvcx9D6W4YxrPOeb
LmDThdB8KbZcSS1XcusXkc8uwGwwauOjVq7XyvJYGG4L1WUhO80nDvOR3Xxg
M+1aTVsW05rZtGw0zRtM03rThM40ojENqkz9CmOPzNglMXaIjG2IsRkyNHIN
9WxDLcNQTTPg29ryU2Mp0Vh8aCzaNxbsmvK3Tbkb5pw1c9aK+fOiJXPe8mnW
mjFt/ThpSx+3fRi1vx+xpw050gYdqf2O1D5nSq8zuceZ3O1K7nIldbqSOgCp
xHb3T/ULoz+pP+FV/0eFI7suqPExqCY/qNkfVEsA1PYEag+EOp5CXc+g7iCo
9wXU/woaDIaGX0Ojb6Dxt9DUO3gmAp6Pghdj4JU4ZD0R2UxGdtIE+x8EhxmC
489CUraIkieiF4pZJRJuuQSqkiK1MvzOLm2Ry9sVqi6lpleFX+TGEY15UmOZ
1VqXtPY1rWNL59zVuwl6D9HgPTWgVCNGN/pYpjOu+YxvPkcsF0Lrpdh6KbVd
yW1XYp9DiDkQ1AGhdq7XzvbYmG4bzWUjO22nDivRbiXYrLtW65bFum62Lhut
8wbrjM46pbFMqCxjCsuwzDIoMfcJzT2IuYtvbueaW1nmZoa5gWquI5trTsz4
ybGCYCnbs5TsWIo3LYXr1vwVa96SLWfBlj1ny5q2Z07aP407MkYdH0ec6UPO
DwPO9/2u932utB5Xarcrpcud0ulO7gCV1H5dbe5EvFo9ia34nz/v3v9Qf8rr
F1JQ3R/XI6j+p3oMNfhBjXj5Q00BUPMTqCUQbnsKtz+HO4Lgrhdwzyu4LwQe
eAMPhSIjYch4BDIZhczEIPNxgsVEwUqyYD1NuJUu3P0kOvgsOsoRn+SLyUUS
WpmUWSll18h49XK4SSFsU4o7Vfi9XtmvVg9rtGNaw6TONKO3LBhsKwb7hsGx
Y3QdGN1Ek+fU5KWYUboZY1l8XMsZ33qG2M6Ftgux/VJqv5Q7cF4uIeZCUCfk
dfK8To7HyXQ76C4Hxek4dTiIdgfB5tizOrYsjnWTY9VgX9bZFzX2OZVtRmGb
ktnGJbZRoXUIsQ7wrb1cazfL2sGwtlGtzSRr44m1/shWe2Cr3rVVbtvKN+yl
a/biZXvhoiN/zpE348yZcmaPO7NGXZnDrk9D7owB98c+d3qv+0O3532XJ63T
k9rhSW33pLR58UpuBZXUAiqxxfP7Svh9/UdkP8G6fhhV9wCqA8fnP1TNQ1C1
eD2CQT2G6/zgen9QDU/gxkCk6SnS8gxpDULaXyKdr5DuEKT3jaD/rWAwXDAS
KRiLFk7GCWcShPPJoqU00Wq6eOOTeDtLspcrIRRIicXS03IZpUpOr5WzGhXc
FiV+5BF0q8V9aumgRjGqVU3otNN6/ZzBuGg0r5jwRrBvm537FteRxX1i8ZCt
XroVZdkwjs3Ht58h9nOh41zsuJA6L+XOS4nPI8LcAtQNe918r5vjcbPcLrrL
RXG6SA4X0e46tLkOLK5dk2vb6NzUO9e1zhW1Y0nhmJc5ZiWOKaFjArGP8u3D
XPsAy95Ht3dT7R0kR9uxo+XQ0XjgqN911G45q9edFavOsiVXybyreNZVOOXO
n3DnjnlyRjxZg57PA97MPu+nHu/Hbm96J/qhA33fjqa1oWmtaGoLmoJXM5p8
XUlNoBKbvD9XszcB1O+p/cwr/prXL7B+ZoTX9UPF6gd4wVW/r4fX9QipfoxU
+yE1/khtAFL3RFD/VNDwTNAUJGh+KWgNFra/FnaFCnvChH0RosEo0UisaCxB
PJksnkkTz6dLlj9J1rKkm7nSnULZfon8qFx+Uq0g1ylpTUpmq4rTqeb3aJAB
rWhYKx3Tyaf0qlmDZsGoWzYZ18zmTbN1x2Lft+Kt4Tq2ucl2D83uZdpRjgPj
O3yw80zoPBe7zqWuC7nrUurzijGvEPXCXi/f6+V6vCy3l+HyUp1essNzavMc
WzxHZjfB6N7Xu3e07i21a13pWpW7liSuBZFrFnFNQ84JrnOU5RxmuAaorl6S
q/vY1XHoatt3Ne+4GzfddWvumhV31aKnYs5TNu0tmfQWjXkLRtC8ITS3H83u
xbJ6sMwu7FMHltGOZbRhH1ux9BYsvRn70IS9b8LSGrHU60ppwJIbsKQGLLEB
TWz8uRKavKCun/H+hAw89W1zPfgjXvd/JlUFCq68D1dcV/kDuPwhUv4IKX+M
lPsh5f5IRQBS8URQGSiowuupoOaZsPa5sC5I2PBC1BQsanktagsVdb4Td0eK
+2LEg3GSkSTJeKp06oN0NkO2mCVbyZWvF8q3SxR7FQpCtfK4XkVqVlPb1Iwu
DadXyx/UISN64YReMm2QzxuVSyZ8y63bsBi2LaY9q4Vgsx3ZHSd2vE3c+JfP
cKJsF8Zz+WCXT+A+E7vPpe4LuedC6sPEGCZEMcSLQl6U60HZbpTpRBkOlGZD
KVYvyew9MXrxWyFB59nXeHaVni25Z0Pqwc96SwL3AuSe5bmn2OCx2CjVM0Ty
9B97eg89Xfue9h1v66a3ac3bsIzWLqDVs2jlFFY+gZWO+oqHfIUDvoI+X36P
L6/Ll9vhy2n3Zbdi2S1YVjP2uQnLvH7HL6MB+1iPpddjH+qx9/VYWj3QgqXU
Y8n1WFI9Cqg1oAk4ssY/IAO/pwBe7p9g3ef/DOv655XKe3DFPbj8Hlz2AC57
CJc+gksfI6X+SEkAUvIEKQlESp4JSp8LSoMEZS8E5S+F5a+ElcHCqhBR9WtR
7RtRfai48a24OUzSFi7piJJ2x0r7EqSDybLR97KJj/Lpz/L5XMVSgWKtRLlV
odqtURHq1cRmzWm7htqtZfTp2EN63pgBnjQIZ42SBZN82axcs2i2LLpdK74J
Nx3aLcd2fM+A34lcNJeb6fLiILhuDPL4BJ4zkedM6j2Xe3FePjHmE6I+xOuD
PT6+28dzYXgnsuwYw4rRLBjFhJIM6IkOJWpQggrdV3h3Zd4tsXdd6F2FvUs8
7zzbO8v0TtHQcTI6coIOHqL9+2jPDta5ibWtYS3LvsZ5X/2Mr2byrGrsrHIE
vJFS1u8r7fWVdPuKO8HLYIWtvoIWX34zlteI5TZgOfXgbcysOuxzLZZZi32q
xTJqsY+12Ida7H0tllaLptahKXVoUh2aWI8m4NXwB2Tg98rrFsN5/Qmsu3D5
XbjsGhZOquQxXOyPFAcgRYFI0VOk8BlSGCQofCEofCUoDBYUhQiL3giLQ4Ul
b0WlYaLycFFlhLgqUlwTJamPljTGSlvipG3xss5EWU+SvD9VMZyuGMtUTOUo
5wpUiyWq1Qr1Zo16p15z0KwltutOu3XUfj1j2MAeN/KmjPCcSbholqxa5BtW
JX623bPpCHYD0WE6ceDbchvV5WC4XCw3fm/y8Dx4E+Gt5BOhZxL0XIaX71yC
nYvRM6H3DO872HUGOX08uw+/2bEtPqbZh+8tKXqMpMVO1BhRiRFk2L4E2xFi
mwi2zsdWONgiE5ujYTNkbPLEN3bkGz7wDeyc9W6eda2dtS+dt86fN8+cN02e
N4yf1Y+c1Q2e1fSfVff4qrrAC3sVbb7yFl9pk6+kESuux4rqsMJarKAGy6/B
8qqxnGosuxrLqsIyq7FP1VhGNZZejX6oQdNq0NRaNKX2GlndH5CBX5Z/4XX/
5+b6BRb0E6zSB3DJI7j4MVzkDxc+QQqeIvnPkPwgJO8FkvdKkBsiyH0tyA0V
5L4V5oUJ88OF+RGiwihRUbS4JEZcFiepiJdUJUprkqT1KbKmVFnre3nHB3n3
R0XfJ+VQpmo0SzWZp54tVi+Ua1aqtRv12p1m3UGHntijPx0wUIeNjHETe9rE
nzcjSxbRmlWyaZXv2FT7ds2hQ3fswM+8ZorLSnfhW3QH2+PiedyQ14OvewIU
E6E+CXYmw87l2AVODe81sedc5D4XOM8RxxlkP+NZwf6fbTpjGs5oujOK5oyk
OjuR+46kPoLItyc424bONrlna6yzZfrZAuVs9vRsing+fnA+sns+uHXRt3bR
u3zRvXDeOXveMXXeNn7eOnLWPHjW1H/W2HNW3+mra/fVtvpqmn3Vjb7Kel9F
HVZeg5VVY6VVWHElVlSJFVZg+RVYXgWWU4FlV2CfK9DMSjSjEv1YhX6oBqMH
qTVo8h8hi29A4wGyn1sMwOLX4LDA+1FQxZ1fYD0EsAr94YIncP5TJO85kvsC
yXmJZAcLsl4LPocKPr8VfH4n/Bwh/BwpzIoWZcWIcuLEufHi/ERxQZKkKEVS
miotfy+tSpfVfpQ3fJI3f1a0Zyu7cpR9earBAvVokWayRDNTpl2o0q3U6zaa
9TvthoMeA3HASBoxUSfMzBkzZ97CX7YiazbRlk26a1ccOFRHDu2JU092Gaku
M8ONn4LtXI+D73Xhm0AB6hWhKH7PkmI+ue9MiV4ovNc3MveFxHUhcl4I7ef4
nh+ynPNM5xzjOUt/ztCe09TnFMX5qez8WHJ+KDw/gM93eedbnPN15sUK9WKR
dDF3fDFNuJzcuxzfvhzduBheuRhcvOifO++bPu+ZOO8ePe8cOuvoP2vrOWvt
PGtu8zW1+BqbfA31vrpaX20NVlOFVVVileVYRRlWVoaVlmIlpVhRKVZQiuWX
orllaHYZmlWOZlagGRVoeiX6oQogS7lGBnjVofEA2R9aDOd1j199zaviDmiu
0vsAVtEvsPKeIrnPkewXSNYrJDME+fRGkPFW8DFM8DFcmB4pTI8WpseI0uNE
HxNEGYniT8nizymS7DRJ7gdpfrq0KENWmimryJJX5yjqcxVN+cq2QlVXsaq3
TD1YoRmt0k7W6GbrdIuN+tVmw0a7cafbdDBgIo6YSRMW2oyFuWDlrtigdZtg
2y7ec8gITgXRqT51aSkuPc1tZHrMbI+V57XjJywEdQlRN74hlGCozIcpfD41
eqn0Xio8l2CviG/vHRci24XAeoGYLyDTBc9wwdFdsDQXDOUFVX5Bll6ciC6I
ggsCdLnHvdxhXW7SL9fIl8snV4tHl/MHl7O7l9Obl5NrF+PLF6PzFyMz50OT
5wOj5/1D5739Z909Z12dZ51tZ+3NvrZGX0udr7nG11Tla6zA6suwulKspgSr
vp7TqSjCyoqw0iKsuAgtLELzi9HcEjSnFM0qQzPLf0b2vgpNvUaWVPt7Xn9o
sXu/NBcOC7wrBZfch4sfwYV+cEEAnBcI5zxDsoKQz6+QTyHIxzdI+lvB+3eC
tAhBapQwJUaYEidMjhelJIpSksWpqeK0NMmHD5KPH6WfMqRZmbLcLFlBjrw4
T15WoKgqUtaVKBvLVK0V6s4qTV+tdqheO9aom2rRz7UZljqMa92mrV7TXr+Z
MGI5nrCSZ6z0BRtrxc7bsMPbDuG+U3LolB27lCS3murW0T0GlsfE8Vr4XhuM
2gWoU4S5JJgH38bLfajyDNN4r9SeK6X7UuECxzH8EC2xXYoslwITeNLI119y
tZds9SVTcUmXXVIklyTh1TF8dcQD7xvsMq62qVebpKv146vVw6vl/cvF7cv5
jcvZFfAi6+TsxfjU+djY+cjw+VD/+WDP/1fWeTC3cd5p/GskN05z7uLEvsSx
nXNOlmSJKpbVLVFWJSX2TrH33sVeRUkkVUiKRZTYKfZeAIIAuAV9ASx6r+8u
OsCZ09LxJTc383yD3/x339n3/3vW8azd8bTF0dnoeFxHtteQbZVkaznZXEo2
FVMKVX0BUZdPPMojqnOJqlyiIpcoywUleaA4DxTmg7wCkFMIsopARglIKwUp
ZSC5AiRWgvgqaps3poZaE/15xGyRFK+qoJ+H6yRccgopOoMUfofkn0dyLyLZ
l5EPsNKvo6k30Ie30KQ7nIR7nLhQTswDbnQ4NyqSGxnNi4jlRcTzIhP5Ucn8
6IeCmFRBXLowMVOYnC1KzcUy87CcAnFBkaSkVFJRLq2pxOur8eZHso56+dNG
RU+LsrdNNfBY9eaJerRLM9mjff9Ct9CrX+k3bAwatkeMu2Mm5pQJmjWjC2be
ikW4bsW2rFKaTbZrUzLtarZdCwEdShi4hIlPmIWkVUTaxA671AHkdo/M5sGt
HonZIzZ5REaPUO/haz1cDfUZH1F4IJmHLfXsYZ5dIXVPvcXxbsDeVbZ3ec+7
SPfOb3tmNzwzq56pJc/EnHt8xj064X476nrzxjU04Broc/a/cPZ1OV89cb5o
dzxvcXQ3OLpqHU+ryScV5ONSsqOYbC8kWvOJllyiKZtyFeszidpM4lEmqM4E
lZmgPAuUZoPiHFCQC/LyQU4ByCwC6cUgtRQ8LAdJFSChEsT9C6/IOju15dtg
C6J4fRiu8hNw6Um4+JBXwTkk7zyScwnJuoKkX0NTg9Hkm2jibTTuHic6lBMZ
xgmP4D6I4t6P4YbE8UISePeS+JQTmioITRM8yBCGZwmjckQxeaKEAiy5SJxW
Is4qk+RVSIuqpOWP8Oo6WX2DvKVZ0dGqeNahfN6p6numHuzWvH2hHX+lne7X
zQ3ol4YNayPGzXcm2riJMWVmz1rgRQtnxcpft4q2bGKaHWfY5Uyg3AdqmNCi
hJ5HGvmkSUhaMIdV4rBJnUBh88qtXpnFKzV7JUav2OAV6bwCrZev9nKVXlRO
3W/uS7wszMsQ+Ohc3w7q24J8Gyzv2p53le5d3vIurnvmVzyzC56ZWffUlHti
3D32lrIwRvpdb166hnoo+6m/w9nX4njV4HhZ63he5egpJ7tKyGeF5JM8sjOH
6Mgi2jOI1jSiJZVoSiUaUkBdCiUIV6eCyjRQng5KM0FRFijIAbl5ILsAZBRR
aurDMpBUfsirCsRUg6gaEPnoX3lVnjx8GJ6ASyhecOFZJP8cknsByb6EZFxF
Uq8jyT+iCbfQ2LtoVCgn/AHnfgTnXhT3Tgz3VhzvxwTejSR+8EN+cCr/Rrrg
x0zhzWzh7VzRvXzR/UIsohiLKRUnlEseVkoyqqW5tXhhvaysUVbdIq9vU7Q8
Vj5+ourqUr98ru5/qRnu046+1k0O6d+/MSy8M66MGTcmTdvT5t33FuacZX/R
iqzYuBs2wbYdo9slDCBjAQVEqBBCwyF1PNIgII0ih1nssEicNtxpV9p8CqtP
bvbJTD6p0SfR+zCdT6ihbjN5Ch9H5kOkPkhMLX4w+T4G17eL+GiQb5vl3WR4
N2jetS3vyppnadmzMO+Ze+9+P+meHnVPvnFNDLjGel3vnrtGnjmHHzuHWp0D
jY7+WkdfleNVGfmymHxeQPbkkF2ZlKb9JJXofEh0JBHtiURrAmhOAI0JoD4B
1CaCmmRQ+RCUp4KSdFCYBfJzQE4eyCwAacUgpZTyvBIq/i+v2kNe9T/xKv9/
vHIuIFmXkfQfkJRgJPEmGncHjbqHht3nhIRzbkdyf4zhXo/jXk3kXUrmXUzh
n0/jn88QnM8SXMgRXswTXikQXSvCbpRgt8vEoRWS8CpJTI00qQ5Pa8Czm2SF
rfKydkVNp7LhqbK1W9X5Qt3zStPbrx0Y0I0M68dH9NOjhrlx49KUaW3GvDVr
pi1Y9pas7BUbvGbjbNj523YRHYj3AM4m5BChREk1l9TyHXqhw4g5TGKnReq0
ypw2ldWntPgUh7xwg0+q94m1PpGGunrmK/xcmR+V+hHMDwn9+3wfi0PtMTL2
fXSmd2fXu73j3dz0rq9SesXynGdxmhKaZt+53w+5p/tdky9d492u0U7nuzbn
SJNzuNYxVOUYKHP0F5F9eeSrbPJlOvk8hehJIroTiGdxxJMY4nE06IgCbVGg
JQo0RYP6GKo5oToBVCaBshRQnA4KMkFuDsjKB+mFIKXkH7xiKymN6J+86v7J
68QhrxOHvM7AP/HKvIyk/YAkByPxN9Hou2hYKBoSxrkVybkezb0Sxz2fwDub
zDuVwj+Rxj+WIfgmS3AkR3gkX3i0UPRtsSioBDtbLr5QKf6hWnLzkTSkThrR
iMc3y1Ja5Vkd8oJORdkzZU2PqvGFur1X87Rf+3xQ2/9GN/xW/27MMDlhfD9t
WnxvWp03by5adpatjFUra90GbdrRbTuPBgR0AtsjJGxCBpMKlFRxHRq+Qyd0
GDCnUeI04y6LzGVVW/0qi19p9suNfpnBj+v8Eq0fU/tFSr9ATu1QcSV+DuZH
hX6Y74M4PjbsY+779pi+3V0vbce7s+HdWvVsLHrWZj0rU56lMffCiHt+0D3b
65p57pp66procI43O0frnG+rHSNljjdF5HA+MZQNBjPAQKr9dbKtP8HWF2t9
FW19EWntCbd2hdmePLC137e3PABNYaA+AtRGg+o4UJ4ISlJAYTrIzQJZeYe8
iile8T/zivzA63/fX/W2k1DFhxzyKv0WLg6CC0/D+d/BOecpXqk/IEnBSOwt
NOIuGnofvRXOuRbFuRjLPZvAPZHEO5LC+zKD/3me4IsSwZcVwv+qFv69VvRN
PXa8ATvZKD7TJD7XLLnYLL3aLA1uxm83y0LbZNEd8uQnisxnyoIeVflL9aNe
ddNrTceQtuuN7tU7/cCYYWTSMD5tnJk1zc+bl5cs6yuW7TXr7oaNuWXb37Ej
dMBlAMEeIWIRkn0Sh0k56lDyHGqBUyty6sVOg9Rlwl1mucuqsfrVZr/S5FcY
/XJ9ANcFpJqAWB3AlAGRPCDEqTVFHubnCv0oz49wfBBMeROsPR+T7mVse+nr
3p0V7/aCZ/O9Z33SszrqXh52L752L7x0zXW53ne6pludUw3OyUeOiUpyohSM
F9rHcm2jmdbRNMu7ZMvbBPNIrGk4yjQUYRwIM/bfN/WGmF7cM3fds3Tetbbd
tTeFgPow8CgSVMaC0iRQlAryMkFWDtUA8LCYUpXjKiinMqoaRPzLcB3yqjxE
Ro0YpezBRafg/LNwzvdw5iWKV2IwEnMLDbuH3nmAXo/gXIzhnI7nHk3ifpHO
+7SA/1m54M+PBJ83Cr9oFX7VIfq6EzvyFDv2THyiS3K6W3KuW3qxW3q1Bw/u
lt3uloV0y8O7FTHdyoQeZfpLVUGfuvy1pnZI2/JG1/lO1zOu75s0DM8YR2dN
Uwvm2SXz0oplbd26tWmlbdv2aHb2rh3eAxwmwWcTIogUw6QUdcg4DgXPqRI4
NSKnTuz6wMso+8DLbdFaAmpzQGUKKA0BhT4g0wVwTUCqCkiUAbE8gOHUDrAA
o/bteTw/B/WhsA9m+6A9H5vuZW5599a9u8te2rxne8azNeHZeOteG3Kv9LmX
nrsWn7oWOpzzLY75emKuBsxW2GdLbO/zrTPZ5pl003SKcSrRMBmrn4jSj4fr
xu7r3oVoR+7qhu/oBm7p+24ZXtw0Prtlbr9lbbxjr7tvr460l8eBomSQl07V
oaTlg+RiEF8GYitAVBWIqAGUwvwzrH+cNw6RnYDKv4VLj1MuWMFpOPccnHkR
Tr1K8Yq6hYSGoDfD0MtRnNOxnCOJ3M+yeJ+U8v9Yy/9Ti+CzTuGfu0WfvxB9
0Yv9rR/7+2vx0UHJt4OSU0PS74bwC0P41SFZ8JD89qA8ZFARPqiMGVQmDqhS
B9RZA5r8IapVpv6drm1c/2zS8HLGODBnGlkwTSyZZ1YtC+vWlU3rxrZth2Zn
7NpZewBiAXSf4EGkECExjkPKdch4ToXAqRI6NZhLK3HpKV5uk+KQl8YcUJsC
KkNAqQ8otAG5JiBTBXBlQCoPSHA/JvGLML9QQCktPNTHhXwoy4cwfBDNt7/l
Za1595a8jDkPfdqzM+bZGqHaPzZ6Xes9zrWnjtUOcrUZrNTbl6tty+XWpSLz
Up5pMdO4kKpfSNLNx2nnozRz4erZUNXMXdX0beXkTeX4DdW7YNWb6+qB69pX
1/Vdwcb2H60Nt+019+0V0fbiRJCXBjKzQUo+SCymChyiKkFE9U+wbJTF3GCN
pHJ4nj/MB2oUMugDsqKTcP4ZOPs8nHYZTrxO8QoJQa+Ho+eiOUfjOZ9mc/+9
kvcfzfw/PBF88kL4p9fCz4ZFf36H/XUM+2pC/PWk5MiU5PiUNGgKPzuFX5iS
XZmSB0/Kb08qQieUERPK2AlV0rg6bVyTPa4tGNeWjuuqxvX1U4aOGUP3nLFv
wTS8bB5dtUyvW+Y2rcs7tnW6bZth32UCJhtA+wQKEzyUFHBIjOeQ8B24wCkX
OZWYSy2meOlwt+GQl1lnOdCaDzTGA7XhQKUPKLUBpSagUAXkygAuD0jxgETi
F4v8mIDyxQSonw9RhiaH4UNoPnjTu7/qZS96mbMexpRnd9RDf+OmDbh2ep07
PeT2U2KrHWw12zbrrBtVlo1S03qhcT1Hv56uW3uoWYtXr0arVsMUK6Hy5Tuy
pZuyxWB8/gd89go+cxmfvCQbvawYvqzqvartumZsDbbW3rFXhtuL4+25qSAj
GyQXgPgSEF0BwqtBeK09/JBURKM1oolKZKOV+r4B1QR9yH71SajqBFTxAdkx
uDAIzv0OzrgIJ12Do24id0PQq+FoUAznr+ncjyt5H7fxP34u+P0gVc/4hynR
H2exzxawvyyJv1gW/21F8t8r0mMr0pMr+NkV2fll+ZVlefCS4vaiMnRRGbGg
iltQJ89r0ue1OfPawjld2Zy+Zs7QMGdomTM+XjA9Xza/XjW/XbdMbFlnd2yL
dNsaw77FtNPZgAkR+zCBoCSXSwp4DpHAIRE6cZFTLnYpJS611KXF3TqZ2yB3
GxUek95yoDMfaI0HWsOBRh+g/kqmCShVAYUiIJcHZHgAl/ilIr9E4Me4fhHq
F0I+PsvHY/i4Oz50w4useqEF7/57D3vKzRpzMUecewOOvV6S0UPsPrXvttvo
TRZ6rZlWaaSVGGj5up0szU6qeidRuR2j2A6XbYfgW7clW8HizR+wjUui9Qui
1XOi5e9EC2ex999JJs7hb84rei9pnlw11gfbq0LtxbH2nBR7Wg5IKKJqvsKr
QFitLbzBGt5kCW82UyLzhzRbIpssp6BHp/drT+3XHaY2aL/mxH7VcajsKFQQ
BGV/D6dcgaN/RO7eQy5FoN/EcX5byv1NO/83fYLfjAp+Oyv83Yro9xuiP+xg
f6KL/3NX/DlD8hVD+neG9CgDP7krO0OXnafJr9AUwTvK29vK+1uqyE113Ibm
4YYmY12bu64rXtNXrBkerRka14xta6Yna6buNfOrdcvQlnV0xzpNty0w7CtM
+yYb0CBiDyHYKAlzSQ7fwRc4REKnGHPiYqdc4lJKXSqZWyN36xRuvdJjVHpM
BsuB3nygNx7oDAda/YFGG1BrAipVQKUIKOUBBR6QiwO4yC8V+CVcvxjxY5Bf
yKQaIfg7Pu6Gj7PiRRc9yKwbmXLBY05oxAENkPu9gN1jZz+xstosrEYT85GR
WaFnFmmZuWqqfzhZsRcr24uQ7oVI9m5hjGtCxmUB43v+7hkePYhL+5azfYyz
cYy7cpy38K1wKkg8clb28oKm9aq56g7VG5mVak/OBTElIKwSPKi1hTVaqJab
VlN4GxVKP2+l9NifBNgz7MbT7KbT7MZT7IYgdt0Jds3x/fJvoPxTUMYFOD4Y
vncPuRCBfpXF+XUz76PX/I+mBR+tCX9FF/2aLfodgv2ei33CE3/Kl/yFL/mS
L/2ahx/l4ic4sjOo/DysuAIpbuwr77BV95nqqD1N/J4mhaHN3NXl0/UldEMl
3VBLMzbTTO0001Oa+TnN0kuzDtKsI3TbBMM2y7QvscE6BHYQgsEhWFwS5js4
Agdf5BBiTrHYKZW6ZLhLIXOr5G6Nwq1TevQqj1HtMRktBwbTgcF4oDcc6PQH
Wm1AqwloVAG1IqCSBZTSgEIckIv8MoEf5/qliF+878eYPtGuT7jtE2x4+ase
/qKbN+viTju5Yw7OCIkOArTXjvRYkScWpM0ENxrgGj1cpoUK1VC2EkqRQ/E4
FCmBQjDophC6xoMuo9D38P4Z9n4Qk318j3WEwfyaajOmf8He+hJZ/po7c0w0
fFr+9KK++kd7YbQ9Ld0eWwgeVID7dRaqoq3dQBXddFKh9PPHxp+M5jOU/dp8
lmpvaDvDav+Q06zWIFbTCVbdMXbFESjvDPTwKvzgDsXr03Luv/Xyfjkn+AVd
8AtU+Euh4Fdi/scS3ic47zOc/zku+FIm/FqGHcElx3H8pFR2RiI/jymuCpU3
BKq7PPUDrjoa1SQg2lRYlw3pC/b1ZfuGaraxnm1qYZkes8xdLMsLlrWfZR1i
2d6ybOMs+zQbLEBgFSG2OASdSzL5JCR0oCIHD3MKJU5M6pLiLpnMpZC7VQq3
RunWqjx6tceg8Zj+B2Hs0kk=
           "], {{0, 144.}, {144., 0}}, {0, 255}, 
           ColorFunction -> RGBColor], 
          BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
           Selectable -> False], DefaultBaseStyle -> "ImageGraphics", 
         ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]], 
       EdgeForm[None], GraphicsGroupBox[
        TagBox[{PolygonBox[{{906, 912, 436}, {905, 913, 465}}], 
          PolygonBox[CompressedData["
1:eJw1m3fcz9X/xu/P52Q2jMyo7J2ZHcpK9pbsmb3JJlIIWWXviiKjIWnQoOzK
KEmRVUmhoZT6XtfvPH9/XA+vx+u81rmu87nvz/0+b3m7Dmw+IJmSkjI6pKTc
lBKRSsgv5BMSgtfzCHcLgRiv5WUtYOchN7VQgBpphLRCIaGgcLNwi1BMKMpa
OqEwMV67VShOTGpqFKRmbuFOoapQhdjbhBLkZBQyCaWEkkJm4XahjFAaO4tQ
Fl9WIZtwr1CO3MzEliI2K2tlic0ulCfHvTMI9zBDDiGnUFGoIKRnz95rEdbu
ECoRk52cCtT0Wi6hMjHpqFEEjnLBQRVizMVdwn1wkg/eHxDuhzNzV0uoiYbW
qbpQDd3yEVsDDr2P+sJDxOZlrTq1rFNtahZFp3rCg6x5zjrEFKPmQ8TkZ6aa
zFiFudsKD6OZeW8kNIQj89BaaIVm1qGp0ARdrENzoRmcVKFWG3QsQ2xjeK5I
rZb0Ks1aI2pZhxbUrETNNsxQnhotiTFX1r4BnJVlpmbMWBVtHmGP1eCxvdBO
6C70ECYLk+DZWnQUOmCbp074asJ7F6EztWoQ2x6ePUcv4VFyaxLbCQ0eYq2n
UBfdejDLg8T0xFcbLbsJXeldG7sLa3XJ7UZvc9GbGVrB2zBhqPCz8Itwq36w
3JKIvFub/kI/ODN3A4UBaNKYtb4p8Uw0wu5DrHUaRE4LtBkiDKa3tRvODLZ9
Nkbga8mMQ8lpTo3B1PTnrii81CXXOj5GjXbwPloYhUbmeZwwFtvcj8fXBe4m
ChPQrSOxY6jVAXs0uV2IHY9u5vVJYQoaWasnUuIZ6knMFHzd0MZn63F6d8Oe
yF58Nkeyp15o9xQ9hsLbXGEOOlmXGcLT2OZ9Jr5BcPeMMAvd+hM7Hd36YU8j
dxCxM9G0L2tT6W2d5jHDcHifj28IM3q22fQegu0ZfLaaMqfnKIym1rIOe/be
nxOeRQfrtERYjG3el+KbAG/LhWXoNJbYRdRwrdeF18idQOxSdDGvzwtr0Mw6
rRZWYU9hbTU6WbuVwgp6P469nLXJ5K6ktrV7gR5z4G2zsAkdrNPLwkvY5n09
vlnw9oqwAZ2eJnYdukzHXkvuLGLXo9k01l6kt3Xawgzz0O5VfLOZ0bNtpPds
bM8wGo7N7UJyn4XbV4Htz4RP0cE6vSVswzbv2/Etg7d3hLepu5jYN+mxCHsr
ucuI3Y4u5vUD4X14t047hR3Ya1jbiU7W5T3hXXqvwPYMC+jpXm9Q29p9SI9N
8HZQOIAO1ukT4WNs874H3wZ42yfsRaeXiN2NLuuwd5G7gdg9aLaWtY/obZ0O
McMWOP8U30Zm9Gz76b0Rex/a+LPwORpthdujwhHha+Gk8LdwHY3M85fCF/Bu
nr4SjlPDtS6nxN8j28hx7DE4M3enhVP02sbaUWqZ+xPU3IlW3wrfsPYec51g
7QNqfctsbzOLZ9xBjW/Yxy64PSucgTPzdEn4CY3M8wXhPLybpx+E71Pi7xCf
eZ+JBej2CbHn4PkgtS7S62PWzlLL3P9IzUNo9TMz7KfGRWI+YmbP+h2z7WWW
C3Cxg719Ta3P4N41D6PjVeEKPFuL34XfsM3TH/iOw/ufwjU0OUbsr9Q6in2V
3OPE/oEG1uJf4QZzmft/UuIZ+oaYG/hOMLfP1l/0PoH9J7V8Vv6j5hl4TOq7
SSIReTLX6WWnS0QdzEsq2TclIk/mOY3s1In4Gd7KPg6ji3McGxKxtn223eMC
XDvXNX9Al7SJWPMndLs5EWfw7z7/zvLPwPmsWQd/l3LMd+zBs/uPtx/R2rO7
pnXzZ+e2RPwOdgWeM8rOkIi2uc+UiL7f0O122ZkT0bYOWRLRdw0es8nOmoi5
znFsJnq4VwmheCLmOsexrnED3nPLzpWIGlq3O2TnTETbMV6z7y+0zCE7eyL2
ts+2Z7jOOXCuY/5F2zsTsUc6eCwiFEYTa5NPyIttHfLjS40OBYUCaBaIzcMZ
SWLfTW5qYvOjQYK1u+htnYoyw818Dy6GLy0zerZC9E6LXRAOzWV94SFyb8Vf
DBRnrR6aWacyQmls814WX1Z4u1coh2aZiS3FGciEXZLcrMSWRTPzWkWojGbW
qZJQETsXa5XQzLpUEMrTOzu2Z8hAT/e6h9rWrio9CsNbXaEOOlin+4Ua2Ob9
AXwF4K2WUBOd8hJbHV3yYFcjtwCxD6DZ3azdR2/r9CAzFIXzevgKMaNnq03v
Qti12HtOuKnAHr3XhkIDoZXQWhgmDEUH69REaIxt3pviKwdvzYVm6FSa2EZw
Zu7aCg+TW47YpuhShbU2zFWJGVphV2atNTp57pZCC3qXx27OWkVyW8KZuWsn
PAJn5qmH0F3oLfQRpgpPoYt16yh0QANr0VnohE41WGtP7erY7Yg1z13IqY0W
3YSu9LZWPZnBtj8rj+Krw4zdyalFja7ULAnHjdDMuf4s9qJGQ9b6sq8m8DxA
6I9t7gfiaw53g4VB6NaE2H7Uaozdl9zmxA5EN2v7mDACjazV8EQ8Q22IGYGv
Jdr4bA2hd0tsz9CAPfRBm0fgdZQwEl7M22RhEjpZl3HCWGzzPh5fF7ibKExA
t47EjkG3Dtijye1C7Hh6t2dtFL2t0xPM0BPep+Drxoye7XF6d8OeSKy1epKc
PvA6LRHP4M6g73xCG6FyiLxbi6eF6djWbQa+AegwE99AtJmFbxC8PoNvMFzP
xjcELebgG4puc/ENQ7d5+Iaj5Xx8I9D+WXxT2NvzwppE/Ex5Xy8KL8CjuV4k
LMS2FovxjUW3JfjGocNSfOPRZhm+keiyQHgOjs31CmE5trVYiW8Suq3CNxnd
VuN7gj2swTeKmRfSYwI9ljPDVLRbyx6X4n9b2I5m1uklYR22dXoZ3wx0Wo9v
JjptwDcLnV7B9ww6bcQ3G5024ZuDTpvxzUWnLfjmodOr+Oaj3Wv4VrP394Wd
7G06s6+FA3OxVXgD27q9iW8Rum3Dtxjd3sK3BI6245utM/5MiNq9Dnfm9h04
XI5u7+JbgW7v4VuJbjvwrWIPO/E9x8xvUN9789n8gD0+qd5TQuTK/DwVom8z
/EyTPTVEbszRDNlPh1jP+/1Y+EQ4L5xLxFjX2AKfXtsjXCDGudNDnMU1dlPD
uWeFj4RdwhnhO+zdrNk3S7kzQ+TWfNr2TFvh+0NqOPc0vfcK3zPDYeGIcFW4
IuwT9gs/Cj8IB4SDwk/CRdYOYDvGP6v6cSZ8Nj6npmtdptc+arnnIeFT4Wfh
Er2PCr8ywxzNPlf4RfZnxPrfX8g5SI1LzOTcY8Jv1LD9hfA7PttfCn/gOy58
JfwpXMM+IfyFz/bXwnV8tk8Kf+Oz/Y3wDz7b3wo38Nk+JfyL7zTc+2LqP2zr
lkhG3xm0TCaj7yzah2T0fcnM19jDOc7NTckYcwFeU8tOlYw8W5e0stMko22t
0iWj7ye4u1l2+mTMdY5jXeMivHrNOZfg/ZZkzDnPuXEvz3AZrTPIvi0Zny2t
Sol/o/tv9SvomjEZY35Gy1uTseZVdMuUjDG/olvmZPT9hm63J6Pvd3jIkoy+
P9Epu+xsyWhbpxzJ6PsbXe6QnTMZeXSOY7NS03XKCKWTMdc5js2BBuY5r5AH
zazT3cJd2EnW7LuB9rll50rG3vbZvoMzkELundQ2j/nocRs83SOUQEPrVkgo
iG1dCuNLjy5FhSJomIbYApyJ1Nj5yU1PbGF6p2ItH72tQ0lmyIgOpfBZM2tX
XChG71uwi8KhuWwiNCY3M/5SoDRrjdDMOpUX7sU27xXw5YS3SkJFNMtGbLlk
PAdZscuSm5PYCuhiXmsI1eHdOlUT7sPOw1o1NLN2VYTK9M6F7Rlup2dZ9pkX
3u6nRwl4ayDURwfrVFuohW3e6+ArAm8PCnXRqSCxNdGlAPYD5BYhtg6987N2
P72tU0NmKAnnjfAVQ7uHhHr0LobtGe6EI3NTlT16r03R9BGhnTBKGIkO1qmF
0BzbvLfEVxHeWgut0OleYpvBmefuKHQgtyKxLdGlBmvtmasaMzyCXZ21duhk
7R4W2tC7MnZr9nQfuW3pbe46MUMDeOoj9BbOCueEoN9JyRB1sW5dhS5oYC26
C93QqRZrnaldE7sTsea5Bzn10OJRoSe9rVVfZrDtz0o/fPWZ0bP1olY9cnug
VTm4bUqudetPjaasDRQGoJF5HiIMxjb3Q/G1hrvhwjB0a0HsIGo1xx5Ibmti
h6KbeR0rjEEjazU6Gc9Qe2LG4GuLNj5bj9HbWo5ghibsYQB76giv4+jRG96m
Ck+hk3V5XJiIbd4n4esBd08Ik9GtK7ET0K0L9nhyexA7id6dWRtHb+s0jRn6
wvt0fL2Y0bM9SW9rP4UZ+rGvp8npz15n4BsAzzPxDUKLZ4RZ2NZtNr4h6DAH
31C0mYtvGLzOwzccrufjewwtnhOexbZuC/CNQreF+Eaj5SJ8Y9BlMb7p7OMl
YR229/EyvvFwvUxYim0tluObiG4r8D2ODivxTUKbVfjGossSZngCrtcIq9HA
WrwgPI9t3V7ENxXd1uKbxh7W4RvHzEvpMZkeq5lhBlqtZ4+rWNsp7EAz6/SK
sAHbOm3ENxudNuGbg06b8c1Fpy345qHdq/ieRafXhdewrdMb+Bag01Z8C9Hp
TXyL4G0bvnXo9LGwm73NYvb18GCd3ha2Y1und/AtR6d38a1Ap/fwrYSjHfgW
w+tbzLAa7d6Hw+fR6UPhA2zr9BG+F9FpF7617GE3viXMvJ0e/mwNYk8z2at1
+4Q9r2eve4U9aGRd9gv7sK3LAXyb0eGQcJDcV4jdS03XPp+Mv2c2kXOQGm+y
72PCUTSyLkeEw9hvsnYEja3r58Jn9PZZ+JQZXqfGYWK2se8v6PEhPH0nnEYj
63JC+ArbunyNbwc6fCOcRON3iD0Or29jf0nuDmK/pvd21r6gt3U5wwy70Oos
vg+Y0bOdorfPwrfMsBtOz5HzCTpdgOOX0XAPa3vR4gfhe2zr9iO+/ehwEd8B
tPkJ30F4vYTvEFz/jO8zeL4s/IJt7q/gO4xuV/EdQctf8R1Fl9/w7WHm79nT
MXj7nZgv4fqa8Ac6WKe/hD+xzft1fCfh7R/hb3K/IvYasSdZu06sub5Bzhf0
/IMZTqObX8L8Lxm/K/k7kn/vdmXNOiZCjDlFjmP/Zc26+buWY/zs3c/c/Ry3
I3/7+W84f+fPAgfmIrViU4WokXVJJzttiJpYh5tlpw/xe9xNQj4hb4gaO8ex
aULk0Pu4XXbmEGs7xmvucQltbwmx5lV0ySQ7Y4gaW9fbZN8a4pprupZjLnJO
PItnvILOzs0QIo/mPavsLHBkHu4W7gpRM+uQQ3b2EHWxDnfIzsmevLf7hRoh
6ugcx2ZDkxRq3RliL8d4zT3/QdtcIdZM8L03DzP8i1bOzR0iV57Zs5qz65wV
z5KDWfILDzDTZc6593obWqQiJh+amZfCQiE0M89FhSLEWocC5KQhx7EF0cxz
lBFKE5uGtQLUsnbFqJkRXUoJJdHMc5UQirOWmVqlmC09sxSGmwDvedDMPJYT
ysKzeasm3Idm5qWCUB7NzHMloSI18qJddTTLTuy9aHYXtarSKxtr5ahl7SpT
825qVmeG3NRwbhW4ysKsZZgtJ7N4xgxwZG7ugXPzWBNNGwqNhL5CH3QwL3WE
2vBknh8U6sKj+zQRGqNLIWJrseZZmhJTgJha9CyKdvWoWRJdGjFLcbSrLzzE
Wml6NWK2IsxShz2VJLcBvc1jM2aoBnfthXbwbC1aCM3hyFy1ElqyVgHbMef5
GeVzexO6VaPWI/S6l1rN0Mza+b6nNb19FjowQ1VqOLctGlbFfphZKpHbij01
RJvecHMPfnN0Pzp2EjrCibnpLnSDY3PdU+iBBtaii9AZ3eoQ2xXNzNsAoT+x
tVnrgibu20t4FE2sTb8Qz1B9ZutNTGNq9iemLjP1YMYa7KEjHDWDy0HCQHg2
b/7/BKPQxbwMFYbAk7keLgyDi5rsrRMatiR2MLy3o9ZIerVgbRAaWIvHhBH0
9lxjmKEtNUYS05SZB8JZK2Yaxoz+WZQBzUpQy3sdS82OzDkOXw+0ekKYLGwW
toT4zsnplHjf4PsBP3f3c/pu8DhJeBydumFPRLOu2BNCvKtwDef6Wb/vSnw/
4ufyvhfozgyTqen7CN9RHONZ/QbZr4T4Tqjf67W9McR3DO2zvSnEd+bsmyf7
5RDfaff/a+jMTJ5lvPCxsDvE525+NuK7A98heDY/m/Zsvn85xN2B16axD8fM
xrbP9znrQ5zRs/m98RnswbObM8/iGK95Jt9VzSbX92b+3unPvD/r/r0wldr/
f5exCU2shfc4X/aCEO9ofFfzmuzXQ7xD93sStt8I8U7VvoWyF4V4B+S7oGWy
l4d4x+K7Fq8tDvEOyTG2l4R472Sf7aUh3gPZZ9s1nGufZ3EP1/ZMr4Y4k2fx
ey/utSLEeyD3XCt7XYj3Hr4Led5ahnhv4rsUa7MrxOfa1shn0TVdy2dytew1
Id7D+J7jKTgzV9ZsVYgxXvNdiGPdw7Wd494fhXjn4hleDHEmz+K7Gs9in23P
tDLEmq7lu6FLsn8K8T01vxu1x1yF+JzGzwZ+kf1ziO/d+N2RfeYqxL87/bfI
/hB9tv1d9qDsAyF+T8pNrGu6lnO85pxTfN89FGKOY6vQyzN5Fvf8NMQYr/ln
yxF/9kK8e/Ud7BnPHuLdpu84P/dZC/Fu3ffPR8lxrO+XvzU3Id6l+v70uLkI
8S7Z98dfheiz7ftj/2zpzGdtHLFfhHgX7ZyT1jrEu1vf4R4Lsad7+f76VIg9
3cv3s6dD9Nn2/axncQ3neibXdg3nusdzIXLgvY9g796j92YOzobIgffu+9sf
Zf8Q4nvffnf42RBjvOY73iuyL4f4HonfFfhe9oUQ/x+H3/U3l57Rs5lTr50P
8f8BOca1neNY9/DZuRjie6s+Q67tM+Oz4h5e80yexTGudS7E/xfmmu+6V4jf
uf13ld/1uBri76M2rO0I8TudY97Uv9tCfGbs5/hbQ/TZ9r2M194K8ZmiY3yW
/TPSPxt9prdb+xCfofg5mO13Qvwb2j7nOsZrruHefgelMjM41jP/36zC/wCW
KM8U
           "]], 
          PolygonBox[{{988, 987, 910, 440, 441}, {927, 937, 901, 461, 460}, {
           987, 928, 471, 470, 910}, {965, 963, 914, 496, 526}, {937, 986, 
           430, 431, 901}, {962, 1009, 376, 406, 911}, {949, 962, 911, 405, 
           375}, {963, 950, 525, 495, 914}}]},
         Annotation[#, 
          "Charting`Private`Tag$56188#1"]& ]]}, {}, {}, {}, {}}, {{
       LineBox[{2, 1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361,
         391, 421, 977}], 
       LineBox[{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 915}], 
       LineBox[{17, 16, 997}], 
       LineBox[{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 60, 
        90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 917}],
        LineBox[{916, 451, 481, 511, 541, 571, 601, 631, 661, 691, 721, 751, 
        781, 811, 841, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 
        882, 883, 884, 885, 1010}], LineBox[{510, 480, 964}], 
       LineBox[{510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 
        870, 900, 899, 898, 897, 896, 895, 894, 893, 892, 891, 890, 889, 888, 
        887, 886, 918}]}, {}, {}, {}}},
    VertexTextureCoordinates->CompressedData["
1:eJzNmzGoJtUZhi+msd1ACGwXJF1KW1kwuKQQJKkCWkRBQiohXTRlSrddrBSx
2HZPSKEXLNYixQgLwyaXZbKYfxydTMZxWGwslXv93/fwPjN/ZbM2w7P+/8yZ
8/znnO/7zrm/eO2N373+1NnZ2Tc/OTu7vPK/d966/upHd96/kVzMf/jozrXb
b52bb1/9/3vmv17itX/i84355u/XP/3ty/v4fmt++tPnbt199MB89b+vXZgv
v/3uzYe4f2d+8MMNzC9cPe8z86OrDxzw/N780jO/+vbZTz5HewbzJ3++/MQX
aN9ofvbqA/9DeyfzZWuvv/p/tH82X93u9ld4n8X89t3LN/ga/bmaf/jvMbh6
3b8Ws/yK5Vcsv/n5xiy/+f3WLL9i+RXLb96/M8uvWH7F8pvP783ym+0ZzPKb
7RvN8pvtnczym+2fzfKb77OY5Tf7c72R4/IxuI7Tfa/1mn4L/Bb4LfBb4LfA
b4HfAr8Ffgv8Fvgt8Fvgt8Bvgd8CvwV+C/wW+C3wW+C3wG+B3wK/BX4L/Bb4
3c67++O0euVVfsXym59rzPKb32/N8iuWX7H85v07s/yK5Vcsv/n83iy/2Z7B
LL/ZvtEsv9neySy/2f7ZLL/5PotZfrM/V7P8nlpH9+fdsvEo5lV+8/ONWX7z
e61ZfsXyK5bfvH9nll+x/IrlN5/fm+U32zOY5TfbN5rlN9s7meU32z+b5Tff
ZzHLb/bnapbfU3HR/jpaNuOSHsW8yq9YfvP7rVl+xfIrlt+8f2eWX7H8iuU3
n9+b5TfbM5jlN9s3muU32zuZ5TfbP5vlN99nMctv9udqlt9Tce5+XFTXUc67
HKf0ymvOz439inN+bjA/N5ifG/sV5/zcYH5uMD839ivO+bnB/Nxgfm4wPzeY
nxvMzw3m58Z+xTk/N5ifG8zPDebnBvPzNm/Zj3PLZt3kPMtxSY9iXuVXLL9i
+RXLb96/M8uvWH7F8pvP783ym+0ZzPKb7RvN8pvtnczym+2fzfKb77OY5Tf7
cTXL76k8dD9vKRhnNS7iOsp5l+OUXnnN9bfF+tti/W3tV5zrb4v1t8X629qv
ONffFutvi/W3xfrbYv1tsf62WH9b+xXn+tti/W2x/rb2m3WEx+BaV9jPQ8sm
rmUcxHWT8yzHJT2KeZVfsfzm/Tuz/IrlVyy/+fzeLL/ZjsEsv9m+0Sy/2d7J
LL/Z/tksv/k+i1l+sz9Xs/yeqhPt1xXKJk9hXMs4iOsm51mOS3oU8yq/ef/O
LL9i+RXLbz6/N8tvtmcwy2+2azTLb7Z3Mstvtn82y2++z2KW3+zP1Sy/ybXu
t18nKpu8k3kK41rGQVw3Oc9yXNKjmFf5FcuvWH7F8pvP783ym+0ZzPKb7RvN
8pvtnMzym+2fzfKb77OY5Tf7czXL76k67n7dr9aJWFdgHsq8hXEu4yKuo5x3
OU7pldeMnzvEzx3i585+xRk/d/Yrzvi5s19xxs+d/Yozfu7sV5zxc4f4uUP8
3NmvOOPnbV1+v45bNnUh1hGYdzJPYVzLOIjrJudZjkt6FPMqv2L5zef3ZvnN
9gxm+c32jWb5zfZOZvnN9s9m+c33WMzym/25muX31D7Lfl2+bOp8rAuxjsC8
k3kK41rGQVw3Oc9yXNKjmFf5zef3ZvnN9gxm+c32jWb5zfZOZvnN9s9m+c33
Wczym/25muX31L7Z/j5L2dRtWedjXYh1BOadzFMY1zIO4rrJeZbjkh7FvMqv
WH6zPYNZfrN9o1l+s72TWX6z/bNZfvN9FrP8Zn+uZvk9tQ+6v29WsE7Vujzr
uKz7sU7EugLzUOYtjHMZF3Ed5bzLcUqvvGb+29uvOPPf3n7Fmf/29ivO/Le3
X7H85vss5sx/e+S/PfLf7b72/j5o2eyrsA7Pui3rfKwLsY7AvJN5CuNaxkFc
NznPclzSo5hX+RXLb7ZvNMtvtncyy2+2fzbLb77PYpbf7M/VLL+nzins72sX
xJHn+F3XfRbW5VnHZd2PdSLWFZiHMm9hnMu4iOso512OU3rlNesbg/2Ks74x
2K846xuD/YrlN99nMWd9Y0B9Y0B9Y3vuZP+cQtnse3KfjPsqrMOzbss6H+tC
rCMw72SewriWcRDXTc6zHJf0KOZVfsXym+2dzPKb7Z/N8pvvs5jlN/tzNcvv
qXNE++dOCvK8c6w7dR+U+2bcZ2FdnnVc+WVdiHUE5p3MUxjXMg7iusl5luOS
HrN99Zr1q9F+xVm/Gu1XLL/5Pos561cj6lcj6lfbc2H754jK5lwC97G578l9
Mu6rsA7Pui3rfKwLsY7AvJN5CuNaxkFcNznPclzSo5hX+RXLb7Z/Nstvvs9i
lt/sz9Usv6fO+e2fCyuow5wjLqznFLivzX1Q7ptxn0V+WbdlnY91IdYRmHcy
T2FcyziI6ybnWY5Lesz21mvWJyf7Fctvvs9izvrkhPrkhPrk9tzm/jm/sjk3
lHH+vc25hPx8s9n35D4Z91VYh2fdlnU+1oVYR2DeyTyFcS3jIK6bnGc5LulR
zKv8iuU332cxy2/252qW3+R6Dnf/3GY955f153puSMxzJzynwH1t7oPKL/dV
WIdn3ZZ1PtaFWEdg3sk8hXEt4yCum5xnOS7pMdtfr/Kb77OYs/48o/48o/68
PVe9fw63bM71ZR5+b3NuKD/fbM4l5Pfbzb5nxhkXm32VvH+3qduKWfdjnYh1
BeahzFsY5zIu4jrKeZfjlF55lV+x/GZ/rmb5Ta7n5PfPVRf8js5RV6nn/Hgu
LPcXFuwv1HMJmec9QNx4gXXoIe5f91lYl2cdl3U/1olYV2AeyryFcS7jIq6j
nHc5TumV19xfWLC/sGB/Yft3D/vn5Mvm3C3PafJcH8+B8dwQz5nwXAL3sbnv
yX0y7quwDs+6Let8rAuxjsC8k3kK41rGQVw3Oc9yXNKjmFf5zb9beQyuf8ey
/3cPBfP8Oeqe9Rwuz23KL8+B8dwQz5nwXAL3sbnvyX0y7quwDs+6Let8rAux
jsC8k3kK41rGQVw3Oc9yXNJj9me9yu+pv0va/zuWgnX7HHXseq6a53DlN597
H99vUVd7gDz9AnH/Q9y/w7xU90G5b8Z9FtblWcdl3Y91ItYVmIcyb2Gcy7iI
6yjnXY5TeuX1zei/A/rvgP47oP8O6L8D+u+A/jug/w7ov8ONe9F/hx/93L+/
++Fv2v/8d/P3dHfufvDyz39aPetz/Hfni8d/d754ZOeLR3a+eGTni/H5xux8
Mb7fmp0vHtn52JGdjx3Z+diRnY/F82ez474jO044steVaO9qfuUv//74i7N/
ud/Vj+q35GJWv4nVb2L1W36+Mavf8vutWf0m1jwh1u8879+Z9TvN+w1mjfO8
/2iWl3zeVH9nRy/5/NksL2J5EctL9sdqD//4443nm/fquP3li4fPrt+t85Z/
H8er6wLxuxvMrgs8Yb9Djecn9Xf321//7P1b331pD0/K72R/vqvz4pM5713g
9/UQ96/jV7/z7wGYXRBW
     "]], {}},
  Axes->{False, False},
  AxesLabel->{None, None},
  AxesOrigin->{Automatic, Automatic},
  DisplayFunction->Identity,
  Frame->True,
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  ImagePadding->All,
  Method->{
   "GridLinesInFront" -> True, "ScalingFunctions" -> None, 
    "TransparentPolygonMesh" -> True, "AxesInFront" -> True},
  PlotRange->{All, All},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.02]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.8273952271817093`*^9, 3.827395238989222*^9}, {
   3.827395270301259*^9, 3.827395305430221*^9}, {3.827395394648394*^9, 
   3.8273954510449343`*^9}, 3.827395499869747*^9, {3.82739554866005*^9, 
   3.827395595065257*^9}, {3.827395808656426*^9, 3.8273958166193438`*^9}, 
   3.827395847104451*^9},
 CellLabel->
  "Out[100]=",ExpressionUUID->"7b2363ca-8275-4a47-8245-046941182984"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{"(", "\[Theta]0"}]}]], "Input",
 CellChangeTimes->{{3.827393172522952*^9, 
  3.8273931892343903`*^9}},ExpressionUUID->"b3967aa8-d9f4-4400-85cf-\
8bcd1f2ab4e3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   FractionBox["1", 
    RowBox[{
     SuperscriptBox["\[Theta]", "2"], "+", 
     SuperscriptBox["\[Theta]p", "2"]}]], ",", "\[Theta]"}], "]"}]], "Input",
 CellChangeTimes->{{3.82739288657297*^9, 3.82739290885294*^9}, 
   3.827392957254546*^9},
 CellLabel->"In[45]:=",ExpressionUUID->"ac9985f6-5e53-4c73-baf4-717d4796770f"],

Cell[BoxData[
 FractionBox[
  RowBox[{"ArcTan", "[", 
   FractionBox["\[Theta]", "\[Theta]p"], "]"}], "\[Theta]p"]], "Output",
 CellChangeTimes->{3.827392909052237*^9, 3.827392957670755*^9},
 CellLabel->"Out[45]=",ExpressionUUID->"960cd19f-1194-4599-8d56-09ed0f031dff"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"2", "/", 
  RowBox[{"(", 
   RowBox[{"15", "/", "8"}], ")"}]}]], "Input",
 CellChangeTimes->{{3.827394739791679*^9, 3.827394744807044*^9}},
 CellLabel->"In[77]:=",ExpressionUUID->"c1a5584c-2fbd-41f7-a170-624f78802f89"],

Cell[BoxData[
 FractionBox["16", "15"]], "Output",
 CellChangeTimes->{3.827394745198503*^9},
 CellLabel->"Out[77]=",ExpressionUUID->"57731670-f6f1-4925-9ad5-f29c3ddcba40"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"2", "/", 
  RowBox[{"(", 
   RowBox[{"0.326419", " ", "4.78984"}], ")"}]}]], "Input",
 CellChangeTimes->{{3.827394759072097*^9, 3.8273947713194017`*^9}},
 CellLabel->"In[78]:=",ExpressionUUID->"42ede6f3-4fa5-430e-b5f0-314429a92794"],

Cell[BoxData["1.279185592300865`"], "Output",
 CellChangeTimes->{3.827394771908967*^9},
 CellLabel->"Out[78]=",ExpressionUUID->"2b9fc3f0-2481-4b4e-8ffd-a6f477d0d541"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{"1", "/", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"(", 
       RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], " ", 
      RowBox[{
       RowBox[{"h", "'"}], "[", "\[Theta]", "]"}], 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"1", "-", "\[Theta]"}], ")"}], 
       RowBox[{
        RowBox[{"-", "15"}], "/", "8"}]]}], ")"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "0"}], "}"}]}], "]"}]], "Input",\

 CellChangeTimes->{{3.8274831460759163`*^9, 3.8274831854284153`*^9}, {
  3.827483258989862*^9, 3.827483317542597*^9}},
 CellLabel->"In[10]:=",ExpressionUUID->"7e931f21-b59c-42d4-9a08-0efc3abce952"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   FractionBox[
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"1", "-", "\[Theta]c"}], ")"}], 
     RowBox[{"15", "/", "8"}]], 
    RowBox[{
     RowBox[{
      SuperscriptBox["h", "\[Prime]",
       MultilineFunction->None], "[", "\[Theta]c", "]"}], " ", 
     RowBox[{"(", 
      RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}]}]], "+", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"15", " ", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"1", "-", "\[Theta]c"}], ")"}], 
         RowBox[{"7", "/", "8"}]]}], 
       RowBox[{"8", " ", 
        RowBox[{
         SuperscriptBox["h", "\[Prime]",
          MultilineFunction->None], "[", "\[Theta]c", "]"}]}]]}], "-", 
     FractionBox[
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"1", "-", "\[Theta]c"}], ")"}], 
        RowBox[{"15", "/", "8"}]], " ", 
       RowBox[{
        SuperscriptBox["h", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "\[Theta]c", "]"}]}], 
      SuperscriptBox[
       RowBox[{
        SuperscriptBox["h", "\[Prime]",
         MultilineFunction->None], "[", "\[Theta]c", "]"}], "2"]]}], ")"}], 
   "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", 
      RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}], "1"],
    SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {}, -1, 1, 1],
    Editable->False]}],
  SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {(
      1 - $CellContext`\[Theta]c)^Rational[15, 8]/Derivative[
    1][$CellContext`h][$CellContext`\[Theta]c], 
    Rational[-15, 8] (1 - $CellContext`\[Theta]c)^Rational[7, 8]/Derivative[
     1][$CellContext`h][$CellContext`\[Theta]c] - (
      1 - $CellContext`\[Theta]c)^Rational[15, 8] 
    Derivative[1][$CellContext`h][$CellContext`\[Theta]c]^(-2) 
    Derivative[2][$CellContext`h][$CellContext`\[Theta]c]}, -1, 1, 1],
  Editable->False]], "Output",
 CellChangeTimes->{{3.827483172946851*^9, 3.8274831857145033`*^9}, {
  3.827483266203372*^9, 3.8274833178135366`*^9}},
 CellLabel->"Out[10]=",ExpressionUUID->"f42be88b-bc68-4685-9bf0-cd79b3d47ff7"]
}, Open  ]]
},
WindowSize->{957., 529.5},
WindowMargins->{{Automatic, 1.5}, {Automatic, 16.5}},
FrontEndVersion->"12.2 for Linux x86 (64-bit) (December 12, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"c08a3e4e-4726-4b51-96f5-38c9f0dc1f4a"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2208, 59, 59, "Input",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],
Cell[2791, 83, 2867, 68, 168, "Output",ExpressionUUID->"fa3177c1-247d-40dc-9f56-c55f92b9bc73"]
}, Open  ]],
Cell[5673, 154, 337, 7, 24, "Input",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],
Cell[CellGroupData[{
Cell[6035, 165, 4321, 113, 128, "Input",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],
Cell[10359, 280, 4083, 95, 168, "Output",ExpressionUUID->"e864482d-d84f-4248-97a9-69e174917c6a"]
}, Open  ]],
Cell[14457, 378, 393, 9, 24, "Input",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],
Cell[CellGroupData[{
Cell[14875, 391, 6260, 169, 178, "Input",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],
Cell[21138, 562, 5069, 116, 168, "Output",ExpressionUUID->"a7d6bf32-3297-4ed9-9cc5-d1836ef7d9ac"]
}, Open  ]],
Cell[26222, 681, 443, 10, 24, "Input",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],
Cell[CellGroupData[{
Cell[26690, 695, 11753, 327, 394, "Input",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],
Cell[38446, 1024, 13251, 271, 167, "Output",ExpressionUUID->"753f522e-db04-4909-b8f0-e57c0454a0e0"]
}, Open  ]],
Cell[51712, 1298, 482, 10, 24, "Input",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],
Cell[CellGroupData[{
Cell[52219, 1312, 513, 15, 38, "Input",ExpressionUUID->"1fb1f920-f38c-4eb2-9e28-4bcb008fa2d2"],
Cell[52735, 1329, 153, 3, 25, "Output",ExpressionUUID->"d6edca36-a4cf-4c5f-83b3-574289a56af9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[52925, 1337, 1323, 26, 39, "Input",ExpressionUUID->"3411f987-6e0c-43e6-8774-8bab579534d3"],
Cell[54251, 1365, 967, 19, 44, "Output",ExpressionUUID->"b8cea288-1647-4b56-8f3d-dcdd2b6ae91b"]
}, Open  ]],
Cell[55233, 1387, 561, 17, 22, "Input",ExpressionUUID->"2cebc6d0-f18e-4865-b6ef-a0d1f3bf0805"],
Cell[CellGroupData[{
Cell[55819, 1408, 1292, 36, 41, "Input",ExpressionUUID->"b3488c4d-f657-46fb-9b11-630b0fd6d206"],
Cell[57114, 1446, 204, 3, 25, "Output",ExpressionUUID->"b33dc2d4-cae5-42eb-a0ca-3a6e33f3cb70"]
}, Open  ]],
Cell[CellGroupData[{
Cell[57355, 1454, 398, 10, 24, "Input",ExpressionUUID->"c7dac445-5908-4fa8-8a0b-bb252cb276f4"],
Cell[57756, 1466, 419, 11, 33, "Output",ExpressionUUID->"71c3cdc7-d817-4f4d-af37-5b9bfea1f179"]
}, Open  ]],
Cell[CellGroupData[{
Cell[58212, 1482, 901, 25, 24, "Input",ExpressionUUID->"6f05087c-413e-4fb2-b2c9-e923fdd92c6b"],
Cell[59116, 1509, 5736, 150, 52, "Output",ExpressionUUID->"e72062d6-2b09-4495-8402-b0e6bef938ab"]
}, Open  ]],
Cell[CellGroupData[{
Cell[64889, 1664, 2258, 46, 40, "Input",ExpressionUUID->"45253125-7b71-4e2c-bc30-668e3b338cbd"],
Cell[67150, 1712, 2040, 50, 41, "Output",ExpressionUUID->"b820a378-a24b-40d9-848b-d271118a47ad"]
}, Open  ]],
Cell[CellGroupData[{
Cell[69227, 1767, 1834, 40, 24, "Input",ExpressionUUID->"98be6fd6-d0c5-46ca-a3d5-250ea9c619bd"],
Cell[71064, 1809, 500, 11, 43, "Output",ExpressionUUID->"02273014-23dc-45c5-a3ff-2366921fabd0"]
}, Open  ]],
Cell[CellGroupData[{
Cell[71601, 1825, 275, 6, 25, "Input",ExpressionUUID->"cc5be459-b1a4-4071-bf81-958b4fbe4d9a"],
Cell[71879, 1833, 376, 11, 39, "Output",ExpressionUUID->"03b899db-cf29-4fc4-b21a-0c99949276e1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[72292, 1849, 397, 11, 25, "Input",ExpressionUUID->"72d5b6dd-c9d9-411c-ae47-018d1493f38e"],
Cell[72692, 1862, 510, 11, 18, "Message",ExpressionUUID->"c89d0736-26b9-4e13-a981-096b6f1d6e1a"],
Cell[73205, 1875, 9941, 182, 177, "Output",ExpressionUUID->"61e95316-b804-420e-87f2-f52b4b5bade1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[83183, 2062, 391, 9, 25, "Input",ExpressionUUID->"9437fa66-ad8a-43e9-8a53-854194067640"],
Cell[83577, 2073, 486, 14, 39, "Output",ExpressionUUID->"3f0d8dc4-237c-43ce-9a29-58fc7f4aeb47"]
}, Open  ]],
Cell[CellGroupData[{
Cell[84100, 2092, 1235, 28, 29, "Input",ExpressionUUID->"534a99d1-416f-43e4-94c2-fadc4c9725c0"],
Cell[85338, 2122, 120863, 1990, 187, "Output",ExpressionUUID->"841b2917-c78b-4172-8955-8980d32fc3ec"]
}, Open  ]],
Cell[CellGroupData[{
Cell[206238, 4117, 472, 11, 22, "Input",ExpressionUUID->"9c8e9828-9a2f-4f15-b149-d240b7e77eeb"],
Cell[206713, 4130, 339, 7, 25, "Output",ExpressionUUID->"4629de9f-997d-434a-b579-502d66aa00a1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[207089, 4142, 1469, 34, 24, "Input",ExpressionUUID->"e9b86a63-3e78-4de0-8cfe-6232fd09eb3b"],
Cell[208561, 4178, 11260, 208, 179, "Output",ExpressionUUID->"5cd5b531-c23a-42bb-bea0-db89ec6f1525"]
}, Open  ]],
Cell[CellGroupData[{
Cell[219858, 4391, 569, 12, 24, "Input",ExpressionUUID->"110a6801-f97d-466b-81da-59937fec81c7"],
Cell[220430, 4405, 78633, 1306, 275, "Output",ExpressionUUID->"df9e29c5-0d24-4bbb-91d1-382b57cb444b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[299100, 5716, 798, 23, 37, "Input",ExpressionUUID->"5707a3d0-1ca0-4632-af53-b2e5ab76b965"],
Cell[299901, 5741, 512, 11, 18, "Message",ExpressionUUID->"1a833013-cc34-42af-abf5-a8dfaa80161d"],
Cell[300416, 5754, 8517, 158, 175, "Output",ExpressionUUID->"c3a406bf-e1bf-4a93-9a41-58b5a6908c17"]
}, Open  ]],
Cell[CellGroupData[{
Cell[308970, 5917, 1667, 45, 41, "Input",ExpressionUUID->"1c60fc4d-168d-40ec-9dc9-800241fe6f2d"],
Cell[310640, 5964, 12312, 224, 179, "Output",ExpressionUUID->"8056aa05-0321-45e5-8da2-df8f351d8564"]
}, Open  ]],
Cell[CellGroupData[{
Cell[322989, 6193, 1561, 42, 41, "Input",ExpressionUUID->"bbfb8326-a554-4830-88ec-6a7a9e5c9f47"],
Cell[324553, 6237, 9075, 169, 187, "Output",ExpressionUUID->"8c65a08e-3559-435a-a819-b2b78b9896c9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[333665, 6411, 774, 21, 24, "Input",ExpressionUUID->"5b7a21c5-3f4a-4014-ac1d-c9e8a64be69d"],
Cell[334442, 6434, 11964, 217, 179, "Output",ExpressionUUID->"4b349b45-a209-4f2c-95d2-cc1f086f08a1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[346443, 6656, 1706, 48, 24, "Input",ExpressionUUID->"a965ddd5-a893-4434-9238-c098b3e4986c"],
Cell[348152, 6706, 188, 2, 25, "Output",ExpressionUUID->"b149c712-91a6-4ee7-8d16-92cad228d46d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[348377, 6713, 426, 10, 22, "Input",ExpressionUUID->"87d802ec-af41-45fc-bdcb-d506ef1418cf"],
Cell[348806, 6725, 569, 16, 39, "Output",ExpressionUUID->"3e6bf624-2d34-47d3-a821-004cfbb725e6"]
}, Open  ]],
Cell[CellGroupData[{
Cell[349412, 6746, 772, 23, 38, "Input",ExpressionUUID->"b6e097f9-9f11-4738-9df9-1bb1c5732eff"],
Cell[350187, 6771, 523, 16, 51, "Output",ExpressionUUID->"a5d9b280-e936-4513-a7bf-6c1d1444f0ed"]
}, Open  ]],
Cell[CellGroupData[{
Cell[350747, 6792, 425, 11, 24, "Input",ExpressionUUID->"41965605-2b79-48db-a227-2111a1e5bd93"],
Cell[351175, 6805, 1483, 45, 44, "Output",ExpressionUUID->"42c191f3-52e7-443a-b3d1-6dd6c714a8cb"]
}, Open  ]],
Cell[CellGroupData[{
Cell[352695, 6855, 926, 23, 24, "Input",ExpressionUUID->"92c22ee6-96dc-4a23-9b99-2945672a4526"],
Cell[353624, 6880, 19799, 344, 182, "Output",ExpressionUUID->"8c4b66cb-8732-4825-b27e-681a4d43fbfb"]
}, Open  ]],
Cell[CellGroupData[{
Cell[373460, 7229, 828, 24, 40, "Input",ExpressionUUID->"5073e95c-759c-4f6b-bccc-e97ba8930d41"],
Cell[374291, 7255, 1390, 41, 46, "Output",ExpressionUUID->"9f4fcd66-9d81-45fd-8f5c-1c2cd6ec6392"]
}, Open  ]],
Cell[CellGroupData[{
Cell[375718, 7301, 1129, 32, 40, "Input",ExpressionUUID->"b6d6ce4a-b418-42c4-a061-c998db199010"],
Cell[376850, 7335, 8562, 163, 178, "Output",ExpressionUUID->"347ea2ac-e790-455e-97dd-2b0a927b9cd9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[385449, 7503, 522, 16, 38, "Input",ExpressionUUID->"0f797cd1-c8f0-4dac-9564-88a85f1a227a"],
Cell[385974, 7521, 17337, 307, 179, "Output",ExpressionUUID->"e550adac-e0a6-4efd-b952-1d1016d97b7f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[403348, 7833, 953, 26, 44, "Input",ExpressionUUID->"d9105b21-3e64-4aac-abae-2d82f616b07a"],
Cell[404304, 7861, 521, 14, 45, "Output",ExpressionUUID->"574c6df6-7af8-4004-ad57-60b1a3aeebc3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[404862, 7880, 1308, 33, 41, "Input",ExpressionUUID->"f94b376c-aafb-420f-a0ba-4122dfe2f2a4"],
Cell[406173, 7915, 173, 2, 25, "Output",ExpressionUUID->"452e7106-44ad-423b-b013-47704d5fa045"]
}, Open  ]],
Cell[406361, 7920, 860, 24, 40, "Input",ExpressionUUID->"69c24b28-334f-4371-a917-fb68280ac4c6"],
Cell[CellGroupData[{
Cell[407246, 7948, 1077, 28, 42, "Input",ExpressionUUID->"47275aa3-a518-40c0-8636-2a1702e8b8a8"],
Cell[408326, 7978, 1093, 28, 54, "Output",ExpressionUUID->"4d62362a-0bd4-4ef2-b97a-6130a8ecb486"]
}, Open  ]],
Cell[CellGroupData[{
Cell[409456, 8011, 447, 13, 24, "Input",ExpressionUUID->"d1af5436-7da6-4fe1-ade5-4cbb449a5163"],
Cell[409906, 8026, 4875, 99, 179, "Output",ExpressionUUID->"f14d8dda-8aef-46f4-9268-1e49eb0a6ab8"]
}, Open  ]],
Cell[414796, 8128, 151, 3, 22, "Input",ExpressionUUID->"2a89c62c-d8e8-4906-9a9f-eb121a3679d1"],
Cell[CellGroupData[{
Cell[414972, 8135, 537, 14, 24, "Input",ExpressionUUID->"46cab2db-f51c-4f1d-9971-16ff4eabde9a"],
Cell[415512, 8151, 1646, 45, 171, "Output",ExpressionUUID->"745b57d7-b217-49b8-8db2-7ef71fa6ac32"]
}, Open  ]],
Cell[CellGroupData[{
Cell[417195, 8201, 1217, 33, 24, "Input",ExpressionUUID->"d97b0acd-9ab2-4bfa-a926-8144e113e7af"],
Cell[418415, 8236, 190, 2, 25, "Output",ExpressionUUID->"b9b7a5df-f22f-4613-aa7a-d1a79e12ed16"]
}, Open  ]],
Cell[CellGroupData[{
Cell[418642, 8243, 1658, 45, 41, "Input",ExpressionUUID->"b322468a-712f-49de-b702-6be478a69ce7"],
Cell[420303, 8290, 91631, 1519, 275, "Output",ExpressionUUID->"7b2363ca-8275-4a47-8245-046941182984"]
}, Open  ]],
Cell[511949, 9812, 211, 5, 22, "Input",ExpressionUUID->"b3967aa8-d9f4-4400-85cf-8bcd1f2ab4e3"],
Cell[CellGroupData[{
Cell[512185, 9821, 377, 9, 39, "Input",ExpressionUUID->"ac9985f6-5e53-4c73-baf4-717d4796770f"],
Cell[512565, 9832, 269, 5, 50, "Output",ExpressionUUID->"960cd19f-1194-4599-8d56-09ed0f031dff"]
}, Open  ]],
Cell[CellGroupData[{
Cell[512871, 9842, 242, 5, 22, "Input",ExpressionUUID->"c1a5584c-2fbd-41f7-a170-624f78802f89"],
Cell[513116, 9849, 171, 3, 39, "Output",ExpressionUUID->"57731670-f6f1-4925-9ad5-f29c3ddcba40"]
}, Open  ]],
Cell[CellGroupData[{
Cell[513324, 9857, 256, 5, 22, "Input",ExpressionUUID->"42ede6f3-4fa5-430e-b5f0-314429a92794"],
Cell[513583, 9864, 166, 2, 25, "Output",ExpressionUUID->"2b9fc3f0-2481-4b4e-8ffd-a6f477d0d541"]
}, Open  ]],
Cell[CellGroupData[{
Cell[513786, 9871, 713, 20, 24, "Input",ExpressionUUID->"7e931f21-b59c-42d4-9a08-0efc3abce952"],
Cell[514502, 9893, 2180, 58, 43, "Output",ExpressionUUID->"f42be88b-bc68-4685-9bf0-cd79b3d47ff7"]
}, Open  ]]
}
]
*)