summaryrefslogtreecommitdiff
path: root/lib/src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/src')
-rw-r--r--lib/src/graph.cpp124
1 files changed, 92 insertions, 32 deletions
diff --git a/lib/src/graph.cpp b/lib/src/graph.cpp
index 10f62b7..3d5647f 100644
--- a/lib/src/graph.cpp
+++ b/lib/src/graph.cpp
@@ -8,6 +8,14 @@
#define JCV_FLT_MAX 1.7976931348623157E+308
#include <jc_voronoi.h>
+double mod(double a, double b) {
+ if (a >= 0) {
+ return fmod(a, b);
+ } else {
+ return fmod(a + b * ceil(-a / b), b);
+ }
+}
+
graph::graph(unsigned int Nx, unsigned int Ny) {
L = {(double)Nx, (double)Ny};
@@ -84,45 +92,97 @@ class eulerException: public std::exception
}
} eulerex;
+graph::graph(double Lx, double Ly, std::mt19937& rng, double relax, double step) {
+ L = {Lx, Ly};
-graph::graph(unsigned int Nx, unsigned int Ny, std::mt19937& rng, double spread) {
- L = {(double)Nx, (double)Ny};
+ std::uniform_real_distribution<double> d(0.0, 1.0);
+ unsigned int N = round(Lx * Ly / 2 + d(rng) - 0.5);
- unsigned int nv = Nx * Ny / 2;
+ unsigned int nv = N;
vertices.resize(nv);
-
- std::normal_distribution<double> d(0.0, spread);
// the coordinates of the lattice, from which a delaunay triangulation
// and corresponding voronoi tessellation will be built
for (unsigned int i = 0; i < nv; i++) {
- double rx = (double)((i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2))) + d(rng);
- double ry = (double)(i / (Nx / 2)) + d(rng);
- vertices[i] = {{fmod(L.x + rx, L.x), fmod(L.y + ry, L.y)}};
- }
-
- // to make the resulting tessellation periodic, we tile eight (!) copies of
- // the original points for a total of nine. note that the index of each
- // point quotient 9 is equal to the original index (we'll use this to
- // translate back)
- std::vector<jcv_point> points;
- points.reserve(9 * nv);
- for (const vertex &v : vertices) {
- points.push_back({v.r.x, v.r.y});
- points.push_back({v.r.x + L.x, v.r.y + 0.0});
- points.push_back({v.r.x - L.x, v.r.y + 0.0});
- points.push_back({v.r.x + 0.0, v.r.y + L.y});
- points.push_back({v.r.x + 0.0, v.r.y - L.y});
- points.push_back({v.r.x + L.x, v.r.y + L.y});
- points.push_back({v.r.x - L.x, v.r.y + L.y});
- points.push_back({v.r.x + L.x, v.r.y - L.y});
- points.push_back({v.r.x - L.x, v.r.y - L.y});
+ vertices[i] = {{L.x * d(rng), L.y * d(rng)}};
}
+ double max_difference = std::numeric_limits<double>::max();
jcv_diagram diagram;
memset(&diagram, 0, sizeof(jcv_diagram));
+ std::vector<jcv_point> points(9 * nv);
+
+ double rstep = sqrt(step);
+
+ while (max_difference > pow(relax, 2) * 2 * N) {
+ double cur_diff = 0;
+ // to make the resulting tessellation periodic, we tile eight (!) copies of
+ // the original points for a total of nine. note that the index of each
+ // point quotient 9 is equal to the original index (we'll use this to
+ // translate back)
+ for (unsigned int i = 0; i < nv; i++) {
+ const vertex& v = vertices[i];
+ points[9 * i + 0] = {v.r.x + 0.0, v.r.y + 0.0};
+ points[9 * i + 1] = {v.r.x + L.x, v.r.y + 0.0};
+ points[9 * i + 2] = {v.r.x - L.x, v.r.y + 0.0};
+ points[9 * i + 3] = {v.r.x + 0.0, v.r.y + L.y};
+ points[9 * i + 4] = {v.r.x + 0.0, v.r.y - L.y};
+ points[9 * i + 5] = {v.r.x + L.x, v.r.y + L.y};
+ points[9 * i + 6] = {v.r.x - L.x, v.r.y + L.y};
+ points[9 * i + 7] = {v.r.x + L.x, v.r.y - L.y};
+ points[9 * i + 8] = {v.r.x - L.x, v.r.y - L.y};
+ }
+
+ jcv_diagram_generate(9 * nv, points.data(), NULL, &diagram);
+ const jcv_site* sites = jcv_diagram_get_sites(&diagram);
+
+ for (int i = 0; i < diagram.numsites; i++) {
+ const jcv_site* site = &sites[i];
+ unsigned int ind = site->index;
+ if (ind % 9 == 0) {
+ double Cx = 0.0;
+ double Cy = 0.0;
+ unsigned int ne = 0;
+
+ const jcv_graphedge* e = site->edges;
+ while (e) {
+ ne++;
+ Cx += e->pos[0].x;
+ Cy += e->pos[0].y;
+ e = e->next;
+ }
+ Cx /= ne;
+ Cy /= ne;
+
+ double dx = Cx - vertices[ind / 9].r.x;
+ double dy = Cy - vertices[ind / 9].r.y;
+
+ double dist = pow(dx, 2) + pow(dy, 2);
+ if (dist > cur_diff) {
+ cur_diff = dist;
+ }
+ vertices[ind / 9] = {{mod(vertices[ind / 9].r.x + rstep * dx, L.x), mod(vertices[ind / 9].r.y + rstep * dy, L.y)}};
+ }
+ }
+ max_difference = cur_diff;
+ jcv_diagram_free(&diagram);
+ memset(&diagram, 0, sizeof(jcv_diagram));
+ }
+
+ for (unsigned int i = 0; i < nv; i++) {
+ const vertex& v = vertices[i];
+ points[9 * i + 0] = {v.r.x + 0.0, v.r.y + 0.0};
+ points[9 * i + 1] = {v.r.x + L.x, v.r.y + 0.0};
+ points[9 * i + 2] = {v.r.x - L.x, v.r.y + 0.0};
+ points[9 * i + 3] = {v.r.x + 0.0, v.r.y + L.y};
+ points[9 * i + 4] = {v.r.x + 0.0, v.r.y - L.y};
+ points[9 * i + 5] = {v.r.x + L.x, v.r.y + L.y};
+ points[9 * i + 6] = {v.r.x - L.x, v.r.y + L.y};
+ points[9 * i + 7] = {v.r.x + L.x, v.r.y - L.y};
+ points[9 * i + 8] = {v.r.x - L.x, v.r.y - L.y};
+ }
jcv_diagram_generate(9 * nv, points.data(), NULL, &diagram);
const jcv_site* sites = jcv_diagram_get_sites(&diagram);
@@ -167,7 +227,7 @@ graph::graph(unsigned int Nx, unsigned int Ny, std::mt19937& rng, double spread)
if (it1 == known_vertices.end()) {
vi1 = dual_vertices.size();
- dual_vertices.push_back({{fmod(L.x + e->pos[0].x, L.x), fmod(L.y + e->pos[0].y, L.y)},{{site->p.x, site->p.y}}});
+ dual_vertices.push_back({{mod(e->pos[0].x, L.x), mod(e->pos[0].y, L.y)},{{site->p.x, site->p.y}}});
known_vertices[t1] = vi1;
} else {
vi1 = it1->second;
@@ -176,8 +236,8 @@ graph::graph(unsigned int Nx, unsigned int Ny, std::mt19937& rng, double spread)
if (i1 < i2) {
edges.push_back({{i1, i2},
- {fmod(L.x + (site->p.x + neighbor->p.x) / 2, L.x),
- fmod(L.y + (site->p.y + neighbor->p.y) / 2, L.y)}
+ {mod((site->p.x + neighbor->p.x) / 2, L.x),
+ mod((site->p.y + neighbor->p.y) / 2, L.y)}
});
jcv_graphedge *en;
@@ -197,15 +257,15 @@ graph::graph(unsigned int Nx, unsigned int Ny, std::mt19937& rng, double spread)
if (it2 == known_vertices.end()) {
vi2 = dual_vertices.size();
- dual_vertices.push_back({{fmod(L.x + e->pos[1].x, L.x), fmod(L.y + e->pos[1].y, L.y)},{}});
+ dual_vertices.push_back({{mod(e->pos[1].x, L.x), mod(e->pos[1].y, L.y)},{}});
known_vertices[t2] = vi2;
} else {
vi2 = it2->second;
}
dual_edges.push_back({{vi1, vi2},
- {fmod(L.x + (e->pos[0].x + e->pos[1].x) / 2, L.x),
- fmod(L.y + (e->pos[0].y + e->pos[1].y) / 2, L.y)}
+ {mod((e->pos[0].x + e->pos[1].x) / 2, L.x),
+ mod((e->pos[0].y + e->pos[1].y) / 2, L.y)}
});
}