diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/bound_set.c | 14 | ||||
-rw-r--r-- | src/break_edge.c | 2 | ||||
-rw-r--r-- | src/get_current.c | 9 | ||||
-rw-r--r-- | src/graph_create.c | 269 | ||||
-rw-r--r-- | src/net_notch.c | 3 |
5 files changed, 153 insertions, 144 deletions
diff --git a/src/bound_set.c b/src/bound_set.c index 9c67f82..f513aa1 100644 --- a/src/bound_set.c +++ b/src/bound_set.c @@ -16,7 +16,9 @@ double u_y(double x, double y) { return sqrt(r) * sin(th / 2); } -void bound_set_embedded(double *bound, uint_t L, double notch_len) { +void bound_set_embedded(double *bound, const graph_t *g, double notch_len) { + uint_t L = g->L; + for (uint_t i = 0; i < L / 2; i++) { double x1, y1, x2, y2, x3, y3, x4, y4; x1 = (2. * i + 1.) / L - notch_len; y1 = 0.5 - 1.; @@ -24,10 +26,10 @@ void bound_set_embedded(double *bound, uint_t L, double notch_len) { y3 = (2. * i + 1.) / L - 0.5; x3 = 0.5 - 1.; y4 = (2. * i + 1.) / L - 0.5; x4 = 0.5 - 0.; - bound[i] = u_y(x1, y1); - bound[L / 2 + i] = u_y(x2, y2); - bound[L + i] = u_y(x3, y3); - bound[3 * L / 2 + i] = u_y(x4, y4); + bound[g->bound_verts[g->bound_inds[0] + i]] = u_y(x1, y1); + bound[g->bound_verts[g->bound_inds[1] + i]] = u_y(x2, y2); + bound[g->bound_verts[g->bound_inds[2] + i]] = u_y(x3, y3); + bound[g->bound_verts[g->bound_inds[3] + i]] = u_y(x4, y4); } } @@ -44,7 +46,7 @@ cholmod_dense *bound_set(const graph_t *g, bool vb, double notch_len, cholmod_co bound[g->bound_verts[0]] = 1; break; case EMBEDDED_BOUND: - bound_set_embedded(bound, g->L, notch_len); + bound_set_embedded(bound, g, notch_len); break; default: if (vb) { diff --git a/src/break_edge.c b/src/break_edge.c index 4e1559b..daed1c5 100644 --- a/src/break_edge.c +++ b/src/break_edge.c @@ -41,7 +41,7 @@ bool break_edge(net_t *instance, unsigned int edge, cholmod_common *c) { unsigned int dw2 = instance->graph->dev[2 * edge + 1]; if (instance->dual_marks[dw1] == instance->dual_marks[dw2]) { - int **cycles = (int **)malloc(2*instance->graph->ne * sizeof(int *)); + int **cycles = (int **)malloc(4*instance->graph->ne * sizeof(int *)); unsigned int num_cycles = find_cycles(instance->graph->ne, instance->fuses, instance->graph->dev, instance->graph->dvei, instance->graph->dve, cycles); for (unsigned int i = 0; i < num_cycles; i++) { diff --git a/src/get_current.c b/src/get_current.c index bc786f9..8493370 100644 --- a/src/get_current.c +++ b/src/get_current.c @@ -8,9 +8,12 @@ double *get_voltage(const net_t *instance, cholmod_common *c) { cholmod_dense *x = CHOL_F(solve)(CHOLMOD_A, factor, b, c); if (((double *)x->x)[0] != ((double *)x->x)[0]) { - printf("ERROR: GET_VOLTAGE FAILED\n\n"); - CHOL_F(free_dense)(&x, c); - return NULL; + for (uint_t i = 0; i < instance->graph->ne; i++) { + printf("%d ", instance->fuses[i]); + } + printf("\n"); + printf("GET_VOLTAGE: value is NaN\n"); + exit(EXIT_FAILURE); } double *field = (double *)x->x; diff --git a/src/graph_create.c b/src/graph_create.c index 2746310..5573064 100644 --- a/src/graph_create.c +++ b/src/graph_create.c @@ -1,17 +1,17 @@ #include "fracture.h" -unsigned int *get_spanning_edges(unsigned int num_edges, unsigned int *edges_to_verts, double *vert_coords, double cut, unsigned int *n) { - unsigned int *spanning_edges = (unsigned int *)malloc(num_edges * sizeof(unsigned int)); +uint_t *get_spanning_edges(uint_t num_edges, uint_t *edges_to_verts, double *vert_coords, double cut, uint_t *n) { + uint_t *spanning_edges = (uint_t *)malloc(num_edges * sizeof(uint_t)); (*n) = 0; - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; + for (uint_t i = 0; i < num_edges; i++) { + uint_t v1, v2; v1 = edges_to_verts[2 * i]; v2 = edges_to_verts[2 * i + 1]; double v1y, v2y; v1y = vert_coords[2 * v1 + 1]; v2y = vert_coords[2 * v2 + 1]; - if ((fabs(v1y - v2y) < 0.25) && ((v1y < cut && v2y > cut) || (v1y > cut && v2y < cut))) { + if ((fabs(v1y - v2y) < 0.5) && ((v1y < cut && v2y > cut) || (v1y > cut && v2y < cut))) { spanning_edges[*n] = i; (*n)++; } @@ -19,13 +19,13 @@ unsigned int *get_spanning_edges(unsigned int num_edges, unsigned int *edges_to_ return spanning_edges; } -double *get_edge_coords(unsigned int num_edges, double *vert_coords, - unsigned int *edges_to_verts) { +double *get_edge_coords(uint_t num_edges, double *vert_coords, + uint_t *edges_to_verts) { double *output = (double *)malloc(2 * num_edges * sizeof(double)); #pragma omp parallel for - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; + for (uint_t i = 0; i < num_edges; i++) { + uint_t v1, v2; double v1x, v1y, v2x, v2y, dx, dy; v1 = edges_to_verts[2 * i]; v2 = edges_to_verts[2 * i + 1]; @@ -58,33 +58,33 @@ double *get_edge_coords(unsigned int num_edges, double *vert_coords, return output; } -unsigned int *get_verts_to_edges_ind(unsigned int num_verts, - unsigned int num_edges, - const unsigned int *edges_to_verts) { - unsigned int *output = - (unsigned int *)calloc(num_verts + 1, sizeof(unsigned int)); +uint_t *get_verts_to_edges_ind(uint_t num_verts, + uint_t num_edges, + const uint_t *edges_to_verts) { + uint_t *output = + (uint_t *)calloc(num_verts + 1, sizeof(uint_t)); assert(output != NULL); - for (unsigned int i = 0; i < 2 * num_edges; i++) { + for (uint_t i = 0; i < 2 * num_edges; i++) { if (edges_to_verts[i] < num_verts) { output[edges_to_verts[i] + 1]++; } } - for (unsigned int i = 0; i < num_verts; i++) { + for (uint_t i = 0; i < num_verts; i++) { output[i + 1] += output[i]; } return output; } -unsigned int *get_verts_to_edges(unsigned int num_verts, unsigned int num_edges, - const unsigned int *edges_to_verts, - const unsigned int *verts_to_edges_ind) { - unsigned int *output = (unsigned int *)calloc(verts_to_edges_ind[num_verts], - sizeof(unsigned int)); - unsigned int *counts = - (unsigned int *)calloc(num_verts, sizeof(unsigned int)); +uint_t *get_verts_to_edges(uint_t num_verts, uint_t num_edges, + const uint_t *edges_to_verts, + const uint_t *verts_to_edges_ind) { + uint_t *output = (uint_t *)calloc(verts_to_edges_ind[num_verts], + sizeof(uint_t)); + uint_t *counts = + (uint_t *)calloc(num_verts, sizeof(uint_t)); for (int i = 0; i < 2 * num_edges; i++) { if (edges_to_verts[i] < num_verts) { output[verts_to_edges_ind[edges_to_verts[i]] + @@ -98,7 +98,7 @@ unsigned int *get_verts_to_edges(unsigned int num_verts, unsigned int num_edges, return output; } -graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_bounds, +graph_t *ini_square_network(uint_t width, bound_t boundary, bool side_bounds, cholmod_common *c) { graph_t *network = (graph_t *)calloc(1, sizeof(graph_t)); @@ -113,14 +113,14 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->nv_break = (width / 2) * (width + 1); network->dnv = (width / 2 + 1) * (width / 2) + pow(width / 2, 2); network->num_bounds = 2; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); + network->bound_inds = (uint_t *)malloc((network->num_bounds + 1) * + sizeof(uint_t)); network->bound_inds[0] = 0; network->bound_inds[1] = width / 2; network->bound_inds[2] = width; - network->bound_verts = (unsigned int *)calloc(width, sizeof(unsigned int)); + network->bound_verts = (uint_t *)calloc(width, sizeof(uint_t)); network->break_dim = network->nv + network->num_bounds; - } else if (boundary == FREE_BOUND) { + } else if (boundary == FREE_BOUND || boundary == EMBEDDED_BOUND) { network->nv = 2 * ((width + 1) / 2) * (width / 2 + 1); network->nv_break = 2 * ((width + 1) / 2) * (width / 2 + 1); network->dnv = pow(width / 2 + 1, 2) + pow((width + 1) / 2, 2); @@ -128,15 +128,15 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->num_bounds = 4; else network->num_bounds = 2; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); - for (unsigned int i = 0; i < network->num_bounds + 1; i++) { + network->bound_inds = (uint_t *)malloc((network->num_bounds + 1) * + sizeof(uint_t)); + for (uint_t i = 0; i < network->num_bounds + 1; i++) { network->bound_inds[i] = i * ((width + 1) / 2); } - network->bound_verts = (unsigned int *)calloc( - network->num_bounds * ((width + 1) / 2), sizeof(unsigned int)); + network->bound_verts = (uint_t *)malloc( + network->num_bounds * ((width + 1) / 2) * sizeof(uint_t)); if (side_bounds) { - for (unsigned int i = 0; i < (width + 1) / 2; i++) { + for (uint_t i = 0; i < (width + 1) / 2; i++) { network->bound_verts[2 * ((width + 1) / 2) + i] = (width + 1) / 2 + i * (width + 1); if (width % 2) { @@ -148,47 +148,47 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun } } } - network->break_dim = network->nv + network->num_bounds; + network->break_dim = network->nv + 2; } else if (boundary == TORUS_BOUND) { network->nv = (width / 2) * (width + 1) - (width / 2); network->nv_break = (width / 2) * (width + 1); network->dnv = (width / 2 + 1) * (width / 2) + pow(width / 2, 2) - (width / 2); network->num_bounds = 1; - network->bound_inds = (unsigned int *)malloc((network->num_bounds + 1) * - sizeof(unsigned int)); + network->bound_inds = (uint_t *)malloc((network->num_bounds + 1) * + sizeof(uint_t)); network->bound_inds[0] = 0; network->bound_inds[1] = width / 2; - network->bound_verts = (unsigned int *)calloc(width / 2, sizeof(unsigned int)); + network->bound_verts = (uint_t *)calloc(width / 2, sizeof(uint_t)); network->break_dim = network->nv_break; } if (boundary != TORUS_BOUND) { - for (unsigned int i = 0; i < (width + 1) / 2; i++) { + for (uint_t i = 0; i < (width + 1) / 2; i++) { network->bound_verts[i] = i; - network->bound_verts[(width + 1) / 2 + i] = network->nv - 1 - i; + network->bound_verts[(width + 1) / 2 + i] = network->nv - (width + 1) / 2 + i; } } else { - for (unsigned int i = 0; i < width / 2; i++) { + for (uint_t i = 0; i < width / 2; i++) { network->bound_verts[i] = i; } } network->ev_break = - (unsigned int *)calloc(2 * network->ne, sizeof(unsigned int)); + (uint_t *)calloc(2 * network->ne, sizeof(uint_t)); network->ev = - (unsigned int *)calloc(2 * network->ne, sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { + (uint_t *)calloc(2 * network->ne, sizeof(uint_t)); + for (uint_t i = 0; i < network->ne; i++) { network->ev_break[2 * i] = edge_to_verts(width, periodic, i, 1); network->ev_break[2 * i + 1] = edge_to_verts(width, periodic, i, 0); network->ev[2 * i] = network->ev_break[2 * i] % network->nv; network->ev[2 * i + 1] = network->ev_break[2 * i + 1] % network->nv; } network->vei = - (unsigned int *)calloc(network->nv + 1, sizeof(unsigned int)); + (uint_t *)calloc(network->nv + 1, sizeof(uint_t)); network->vei[0] = 0; - unsigned int pos1 = 0; - for (unsigned int i = 0; i < network->nv; i++) { + uint_t pos1 = 0; + for (uint_t i = 0; i < network->nv; i++) { bool in_bound = false; - for (unsigned int j = 0; j < network->num_bounds; j++) { - for (unsigned int k = 0; + for (uint_t j = 0; j < network->num_bounds; j++) { + for (uint_t k = 0; k < network->bound_inds[j + 1] - network->bound_inds[j]; k++) { if (i == network->bound_verts[network->bound_inds[j] + k]) { in_bound = true; @@ -203,13 +203,13 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->vei[i + 1] = pos1; } - network->ve = (unsigned int *)calloc( - network->vei[network->nv], sizeof(unsigned int)); - unsigned int *vert_counts = - (unsigned int *)calloc(network->nv, sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { - unsigned int v0 = network->ev[2 * i]; - unsigned int v1 = network->ev[2 * i + 1]; + network->ve = (uint_t *)calloc( + network->vei[network->nv], sizeof(uint_t)); + uint_t *vert_counts = + (uint_t *)calloc(network->nv, sizeof(uint_t)); + for (uint_t i = 0; i < network->ne; i++) { + uint_t v0 = network->ev[2 * i]; + uint_t v1 = network->ev[2 * i + 1]; network->ve[network->vei[v0] + vert_counts[v0]] = i; network->ve[network->vei[v1] + vert_counts[v1]] = @@ -221,13 +221,13 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->vx = (double *)malloc(2 * network->nv * sizeof(double)); - for (unsigned int i = 0; i < network->nv; i++) { + for (uint_t i = 0; i < network->nv; i++) { if (!periodic) { - network->vx[2 * i] = ((double)((2 * i + 1) / (width + 1)))/width; - network->vx[2 * i + 1] = ((double)((2 * i + 1) % (width + 1)))/width; + network->vx[2 * i + 1] = ((double)((2 * i + 1) / (width + 1)))/width; + network->vx[2 * i] = ((double)((2 * i + 1) % (width + 1)))/width; } else { - network->vx[2 * i] = ((double)((2 * i + 1) / (width)))/width; - network->vx[2 * i + 1] = ((double)((((2 * i + 1) / (width)+1) % 2) + ((2 * i) % (width))))/width; + network->vx[2 * i + 1] = ((double)((2 * i + 1) / (width)))/width; + network->vx[2 * i] = ((double)((((2 * i + 1) / (width)+1) % 2) + ((2 * i) % (width))))/width; } } @@ -236,8 +236,8 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->ne, network->vx, network->ev); network->dev = - (unsigned int *)malloc(2 * network->ne * sizeof(unsigned int)); - for (unsigned int i = 0; i < network->ne; i++) { + (uint_t *)malloc(2 * network->ne * sizeof(uint_t)); + for (uint_t i = 0; i < network->ne; i++) { network->dev[2 * i] = dual_edge_to_verts(width, periodic, i, 0) % network->dnv; network->dev[2 * i + 1] = @@ -245,7 +245,7 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun } network->dvx = (double *)malloc(2 * network->dnv * sizeof(double)); - for (unsigned int i = 0; i < network->dnv; i++) { + for (uint_t i = 0; i < network->dnv; i++) { network->dvx[2 * i] = 2*dual_vert_to_coord(width, periodic, i, 0); network->dvx[2 * i + 1] = @@ -262,27 +262,27 @@ graph_t *ini_square_network(unsigned int width, bound_t boundary, bool side_boun network->dve = get_verts_to_edges( network->dnv, network->ne, network->dev, network->dvei); - network->spanning_edges = get_spanning_edges(network->ne, network->ev_break, network->vx, 0.51, &(network->num_spanning_edges)); + network->spanning_edges = get_spanning_edges(network->ne, network->ev, network->vx, 0.51, &(network->num_spanning_edges)); return network; } -unsigned int *get_voro_dual_edges(unsigned int num_edges, - unsigned int num_verts, unsigned int *edges, - unsigned int *triangles) { - unsigned int *dual_edges = - (unsigned int *)malloc(2 * num_edges * sizeof(unsigned int)); - unsigned int place = 0; +uint_t *get_voro_dual_edges(uint_t num_edges, + uint_t num_verts, uint_t *edges, + uint_t *triangles) { + uint_t *dual_edges = + (uint_t *)malloc(2 * num_edges * sizeof(uint_t)); + uint_t place = 0; #pragma omp parallel for - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; + for (uint_t i = 0; i < num_edges; i++) { + uint_t v1, v2; v1 = edges[2 * i]; v2 = edges[2 * i + 1]; if (v1 < num_verts && v2 < num_verts) { bool found_match = false; - for (unsigned int j = 0; j < 3; j++) { - for (unsigned int k = 0; k < 3; k++) { - unsigned int t11, t12, t21, t22; + for (uint_t j = 0; j < 3; j++) { + for (uint_t k = 0; k < 3; k++) { + uint_t t11, t12, t21, t22; t11 = triangles[3 * v1 + j]; t12 = triangles[3 * v1 + ((j + 1) % 3)]; t21 = triangles[3 * v2 + k]; @@ -304,14 +304,14 @@ unsigned int *get_voro_dual_edges(unsigned int num_edges, return dual_edges; } -graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, - double *(*genfunc)(unsigned int, bound_t, gsl_rng *, unsigned int *), +graph_t *ini_voro_graph(uint_t L, bound_t boundary, bool use_dual, + double *(*genfunc)(uint_t, bound_t, gsl_rng *, uint_t *), cholmod_common *c) { graph_t *g = (graph_t *)calloc(1, sizeof(graph_t)); // generate the dual lattice double *lattice; - unsigned int num; + uint_t num; { gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); FILE *rf = fopen("/dev/urandom", "r"); @@ -329,11 +329,11 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, else run_periodic = true; intptr_t *vout = run_voronoi(num, lattice, run_periodic, 0, 1, 0, 1); - unsigned int tmp_num_verts = ((unsigned int *)vout[0])[0]; - unsigned int tmp_num_edges = ((unsigned int *)vout[0])[1]; + uint_t tmp_num_verts = ((uint_t *)vout[0])[0]; + uint_t tmp_num_edges = ((uint_t *)vout[0])[1]; double *tmp_vert_coords = (double *)vout[2]; - unsigned int *tmp_edges = (unsigned int *)vout[3]; - unsigned int *tmp_tris = (unsigned int *)vout[5]; + uint_t *tmp_edges = (uint_t *)vout[3]; + uint_t *tmp_tris = (uint_t *)vout[5]; free((void *)vout[0]); free((void *)vout[1]); @@ -341,16 +341,16 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, free(vout); // get dual edges of the fully periodic graph - unsigned int *tmp_dual_edges = + uint_t *tmp_dual_edges = get_voro_dual_edges(tmp_num_edges, tmp_num_verts, tmp_edges, tmp_tris); // when use_dual is specificed, the edge and vertex sets are swapped with the // dual edge and dual vertex sets. once formally relabelled, everything // works the same way if (use_dual) { - unsigned int *tmp_tmp_dual_edges = tmp_edges; + uint_t *tmp_tmp_dual_edges = tmp_edges; double *tmp_lattice = tmp_vert_coords; - unsigned int tmp_num = tmp_num_verts; + uint_t tmp_num = tmp_num_verts; tmp_edges = tmp_dual_edges; tmp_dual_edges = tmp_tmp_dual_edges; @@ -364,33 +364,33 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, // prune the edges of the lattice and assign boundary vertices based on the // desired boundary conditions - unsigned int num_bounds; - unsigned int num_verts; + uint_t num_bounds; + uint_t num_verts; double *vert_coords; - unsigned int *bound_inds; - unsigned int *bound_verts; - unsigned int num_edges; - unsigned int *edges; - unsigned int *dual_edges; + uint_t *bound_inds; + uint_t *bound_verts; + uint_t num_edges; + uint_t *edges; + uint_t *dual_edges; switch (boundary) { case FREE_BOUND: { num_bounds = 4; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); + bound_inds = (uint_t *)malloc((1 + num_bounds) * sizeof(uint_t)); bound_inds[0] = 0; vert_coords = tmp_vert_coords; num_verts = tmp_num_verts; num_edges = 0; - edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - dual_edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - unsigned int num_t, num_b, num_l, num_r; + edges = (uint_t *)malloc(2 * tmp_num_edges * sizeof(uint_t)); + dual_edges = (uint_t *)malloc(2 * tmp_num_edges * sizeof(uint_t)); + uint_t num_t, num_b, num_l, num_r; bool *bound_top, *bound_b, *bound_l, *bound_r; num_t = 0; num_b = 0; num_l = 0; num_r = 0; bound_top = (bool *)calloc(num_verts, sizeof(bool)); bound_b = (bool *)calloc(num_verts, sizeof(bool)); bound_l = (bool *)calloc(num_verts, sizeof(bool)); bound_r = (bool *)calloc(num_verts, sizeof(bool)); - for (unsigned int i = 0; i < tmp_num_edges; i++) { - unsigned int v1, v2; + for (uint_t i = 0; i < tmp_num_edges; i++) { + uint_t v1, v2; double v1x, v1y, v2x, v2y, dx, dy; v1 = tmp_edges[2 * i]; v2 = tmp_edges[2 * i + 1]; v1x = vert_coords[2 * v1]; v1y = vert_coords[2 * v1 + 1]; @@ -431,20 +431,20 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } else { edges[2 * num_edges] = v1 < v2 ? v1 : v2; edges[2 * num_edges + 1] = v1 < v2 ? v2 : v1; - unsigned int d1 = tmp_dual_edges[2 * i]; - unsigned int d2 = tmp_dual_edges[2 * i + 1]; + uint_t d1 = tmp_dual_edges[2 * i]; + uint_t d2 = tmp_dual_edges[2 * i + 1]; dual_edges[2 * num_edges] = d1 < d2 ? d1 : d2; dual_edges[2 * num_edges + 1] = d1 < d2 ? d2 : d1; num_edges++; } } - bound_verts = malloc((num_t + num_b + num_l + num_r) * sizeof(unsigned int)); + bound_verts = malloc((num_t + num_b + num_l + num_r) * sizeof(uint_t)); bound_inds[1] = num_t; bound_inds[2] = num_t + num_b; bound_inds[3] = num_l + num_t + num_b; bound_inds[4] = num_t + num_b + num_r + num_l; - unsigned int pos_t, pos_b, pos_l, pos_r; + uint_t pos_t, pos_b, pos_l, pos_r; pos_t = 0; pos_b = 0; pos_l = 0; pos_r = 0; - for (unsigned int i = 0; i < num_verts; i++) { + for (uint_t i = 0; i < num_verts; i++) { if (bound_top[i]) { bound_verts[pos_t] = i; pos_t++; } else if (bound_b[i]) { @@ -468,20 +468,20 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } case CYLINDER_BOUND: { num_bounds = 2; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); + bound_inds = (uint_t *)malloc((1 + num_bounds) * sizeof(uint_t)); bound_inds[0] = 0; vert_coords = tmp_vert_coords; num_verts = tmp_num_verts; num_edges = 0; - edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - dual_edges = (unsigned int *)malloc(2 * tmp_num_edges * sizeof(unsigned int)); - unsigned int num_t, num_b; + edges = (uint_t *)malloc(2 * tmp_num_edges * sizeof(uint_t)); + dual_edges = (uint_t *)malloc(2 * tmp_num_edges * sizeof(uint_t)); + uint_t num_t, num_b; bool *bound_top, *bound_b; num_t = 0; num_b = 0; bound_top = (bool *)calloc(num_verts, sizeof(bool)); bound_b = (bool *)calloc(num_verts, sizeof(bool)); - for (unsigned int i = 0; i < tmp_num_edges; i++) { - unsigned int v1, v2; + for (uint_t i = 0; i < tmp_num_edges; i++) { + uint_t v1, v2; double v1x, v1y, v2x, v2y, dx, dy; v1 = tmp_edges[2 * i]; v2 = tmp_edges[2 * i + 1]; v1y = vert_coords[2 * v1 + 1]; v2y = vert_coords[2 * v2 + 1]; @@ -505,18 +505,18 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } else { edges[2 * num_edges] = v1 < v2 ? v1 : v2; edges[2 * num_edges + 1] = v1 < v2 ? v2 : v1; - unsigned int d1 = tmp_dual_edges[2 * i]; - unsigned int d2 = tmp_dual_edges[2 * i + 1]; + uint_t d1 = tmp_dual_edges[2 * i]; + uint_t d2 = tmp_dual_edges[2 * i + 1]; dual_edges[2 * num_edges] = d1 < d2 ? d1 : d2; dual_edges[2 * num_edges + 1] = d1 < d2 ? d2 : d1; num_edges++; } } - bound_verts = malloc((num_t + num_b) * sizeof(unsigned int)); + bound_verts = malloc((num_t + num_b) * sizeof(uint_t)); bound_inds[1] = num_t; bound_inds[2] = num_t + num_b; - unsigned int pos_t, pos_b; + uint_t pos_t, pos_b; pos_t = 0; pos_b = 0; - for (unsigned int i = 0; i < num_verts; i++) { + for (uint_t i = 0; i < num_verts; i++) { if (bound_top[i]) { bound_verts[pos_t] = i; pos_t++; } else if (bound_b[i]) { @@ -535,20 +535,20 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } case TORUS_BOUND: { num_bounds = 1; - bound_inds = (unsigned int *)malloc((1 + num_bounds) * sizeof(unsigned int)); + bound_inds = (uint_t *)malloc((1 + num_bounds) * sizeof(uint_t)); bound_inds[0] = 0; num_edges = tmp_num_edges; - edges = (unsigned int *)malloc(2* num_edges*sizeof(unsigned int)); - for (unsigned int i = 0; i < num_edges; i++) { + edges = (uint_t *)malloc(2* num_edges*sizeof(uint_t)); + for (uint_t i = 0; i < num_edges; i++) { edges[2*i] = tmp_edges[2*i]; edges[2*i+1] = tmp_edges[2*i+1]; } dual_edges = tmp_dual_edges; bool *bound_top = (bool *)calloc(tmp_num_verts, sizeof(bool)); int *edge_change = (int *)calloc(num_edges, sizeof(int)); - unsigned int num_t = 0; - for (unsigned int i = 0; i < num_edges; i++) { - unsigned int v1, v2; + uint_t num_t = 0; + for (uint_t i = 0; i < num_edges; i++) { + uint_t v1, v2; double v1x, v1y, v2x, v2y, dx, dy; v1 = edges[2 * i]; v2 = edges[2 * i + 1]; v1x = tmp_vert_coords[2 * v1]; v1y = tmp_vert_coords[2 * v1 + 1]; @@ -570,10 +570,10 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } num_verts = tmp_num_verts + num_t; vert_coords = (double *)malloc(2 * num_verts * sizeof(double)); - bound_verts = malloc(num_t * sizeof(unsigned int)); + bound_verts = malloc(num_t * sizeof(uint_t)); bound_inds[1] = num_t; - unsigned int pos_t = 0; - for (unsigned int i = 0; i < tmp_num_verts; i++) { + uint_t pos_t = 0; + for (uint_t i = 0; i < tmp_num_verts; i++) { vert_coords[2*i] = tmp_vert_coords[2*i]; vert_coords[2*i+1] = tmp_vert_coords[2*i+1]; if (bound_top[i]) { @@ -583,9 +583,9 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, pos_t++; } } - for (unsigned int i = 0; i < num_edges; i++) { + for (uint_t i = 0; i < num_edges; i++) { if (edge_change[i]) { - for (unsigned int j = 0; j < num_t; j++) { + for (uint_t j = 0; j < num_t; j++) { if (edges[2*i+(edge_change[i]-1)] == bound_verts[j]) { edges[2*i+(edge_change[i]-1)] = tmp_num_verts + j; break; @@ -605,12 +605,12 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, } case EMBEDDED_BOUND: { num_bounds = 4; - bound_inds = (unsigned int *)malloc(5 * sizeof(unsigned int)); - bound_verts = (unsigned int *)malloc(2 * L * sizeof(unsigned int)); - for (unsigned int i = 0; i < 5; i++) bound_inds[i] = i * L / 2; - for (unsigned int i = 0; i < 2 * L; i++) bound_verts[i] = i; - unsigned int num_away = 0; - for (unsigned int i = 0; i < tmp_num_edges; i++) { + bound_inds = (uint_t *)malloc(5 * sizeof(uint_t)); + bound_verts = (uint_t *)malloc(2 * L * sizeof(uint_t)); + for (uint_t i = 0; i < 5; i++) bound_inds[i] = i * L / 2; + for (uint_t i = 0; i < 2 * L; i++) bound_verts[i] = i; + uint_t num_away = 0; + for (uint_t i = 0; i < tmp_num_edges; i++) { if (tmp_dual_edges[2*i] > num || tmp_dual_edges[2*i+1] > num) num_away++; } num_edges = (int)tmp_num_edges - (int)num_away; @@ -667,11 +667,14 @@ graph_t *ini_voro_graph(unsigned int L, bound_t boundary, bool use_dual, graph_t *graph_create(lattice_t lattice, bound_t bound, uint_t L, bool dual, cholmod_common *c) { + bool side_bounds; switch (lattice) { case (VORONOI_LATTICE): return ini_voro_graph(L, bound, dual, genfunc_hyperuniform, c); case (SQUARE_LATTICE): - return ini_square_network(L, bound, true, c); + if (bound == EMBEDDED_BOUND) side_bounds = true; + else side_bounds = false; + return ini_square_network(L, bound, side_bounds, c); default: printf("lattice type unsupported\n"); exit(EXIT_FAILURE); diff --git a/src/net_notch.c b/src/net_notch.c index c0ab9d7..48dce1e 100644 --- a/src/net_notch.c +++ b/src/net_notch.c @@ -20,7 +20,8 @@ void net_notch(net_t *net, double notch_len, cholmod_common *c) { crosses_center = (v1y >= 0.5 && v2y <= 0.5) || (v1y <= 0.5 && v2y >= 0.5); not_wrapping = fabs(dy) < 0.5; - correct_length = 0 <= v1x + dx / dy * (v1y - 0.5) <= notch_len; + //correct_length = v1x + dx / dy * (v1y - 0.5) <= notch_len; + correct_length = v1x < notch_len && v2x < notch_len; if (crosses_center && not_wrapping && correct_length) { break_edge(net, i, c); |