summaryrefslogtreecommitdiff
path: root/src/measurements.cpp
blob: 7d5d53936fef8f98130bf19c855ef51835fd82b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

#include "measurements.hpp"

bool trivial(boost::detail::edge_desc_impl<boost::undirected_tag,unsigned long>) {
  return true;
}

void update_distribution_data(std::string id, const std::vector<unsigned int>& data, unsigned int N, unsigned int L, double beta) {
  std::string filename = "fracture_" + std::to_string(L) + "_" + std::to_string(beta) + "_" + id + ".dat";
  std::ifstream file(filename);

  uint64_t N_old = 0;
  std::vector<uint64_t> data_old(data.size(), 0);

  if (file.is_open()) {
    file >> N_old;
    for (unsigned int i = 0; i < data.size(); i++) {
      uint64_t num;
      file >> num;
      data_old[i] = num;
    }

    file.close();
  }

  std::ofstream file_out(filename);

  file_out <<std::fixed<< N_old + N << "\n";
  for (unsigned int i = 0; i < data.size(); i++) {
    file_out <<std::fixed<< data_old[i] + data[i] << " ";
  }

  file_out.close();
}

void update_field_data(std::string id, double tot, const std::vector<double>& data, unsigned int L, double beta) {
  std::string filename = "fracture_" + std::to_string(L) + "_" + std::to_string(beta) + "_" + id + ".dat";
  std::ifstream file(filename);

  uint64_t N_old = 0;
  uint64_t tot_old = 0;
  uint64_t tot_2_old = 0;
  std::vector<uint64_t> data_old(data.size(), 0);
  std::vector<uint64_t> data_old_2(data.size(), 0);

  if (file.is_open()) {
    file >> N_old;
    file >> tot_old;
    file >> tot_2_old;
    for (unsigned int i = 0; i < data.size(); i++) {
      uint64_t num;
      file >> num;
      data_old[i] = num;
    }
    for (unsigned int i = 0; i < data.size(); i++) {
      uint64_t num;
      file >> num;
      data_old_2[i] = num;
    }

    file.close();
  }

  std::ofstream file_out(filename);

  file_out <<std::fixed<< N_old + 1 << " " << (uint64_t)(tot_old + tot) << " " << (uint64_t)(tot_2_old + pow(tot, 2))<< "\n";
  for (unsigned int i = 0; i < data.size(); i++) {
    file_out << (uint64_t)(data_old[i] + data[i]) << " ";
  }
  file_out <<std::fixed<< "\n";
  for (unsigned int i = 0; i < data.size(); i++) {
    file_out << (uint64_t)(data_old_2[i] + pow(data[i], 2)) << " ";
  }

  file_out.close();
}

std::vector<fftw_complex> data_transform(unsigned int L, const std::vector<double>& data, fftw_plan forward_plan, double *fftw_forward_in, fftw_complex *fftw_forward_out) {
  for (unsigned int i = 0; i < pow(L, 2); i++) {
    fftw_forward_in[i] = data[i];
  }

  fftw_execute(forward_plan);

  std::vector<fftw_complex> output(pow(L, 2));

  for (unsigned int i = 0; i < pow(L, 2); i++) {
    output[i][0] = fftw_forward_out[i][0];
    output[i][1] = fftw_forward_out[i][1];
  }

  return output;
}

std::vector<double> correlation(unsigned int L, const std::vector<fftw_complex>& tx1, const std::vector<fftw_complex>& tx2, fftw_plan reverse_plan, fftw_complex *fftw_reverse_in, double *fftw_reverse_out) {
  for (unsigned int i = 0; i < pow(L, 2); i++) {
    fftw_reverse_in[i][0] = tx1[i][0] * tx2[i][0] + tx1[i][1] * tx2[i][1];
    fftw_reverse_in[i][1] = tx1[i][0] * tx2[i][1] - tx1[i][1] * tx2[i][0];
  }

  fftw_execute(reverse_plan);

  std::vector<double> output(pow(L / 2 + 1, 2));

  for (unsigned int i = 0; i < pow(L / 2 + 1, 2); i++) {
    output[i] = fftw_reverse_out[L * (i / (L / 2 + 1)) + i % (L / 2 + 1)] / pow(L, 2);
  }

  return output;
}

ma::ma(unsigned int N, unsigned int L, double beta) : L(L), G(2 * pow(L / 2, 2)), bin_counts(log2(L) + 1, 0), N(N), beta(beta) {
  ad.resize(pow(L, 2), 0);
  cd.resize(pow(L, 2), 0);

  // FFTW setup for correlation functions
  fftw_set_timelimit(1);

  fftw_forward_in = (double *)fftw_malloc(pow(L, 2) * sizeof(double));
  fftw_forward_out = (fftw_complex *)fftw_malloc(pow(L, 2) * sizeof(fftw_complex));
  fftw_reverse_in = (fftw_complex *)fftw_malloc(pow(L, 2) * sizeof(fftw_complex));
  fftw_reverse_out = (double *)fftw_malloc(pow(L, 2) * sizeof(double));

  forward_plan = fftw_plan_dft_r2c_2d(L, L, fftw_forward_in, fftw_forward_out, 0);
  reverse_plan = fftw_plan_dft_c2r_2d(L, L, fftw_reverse_in, fftw_reverse_out, 0);
}

ma::~ma() {
  // clean up FFTW objects
  fftw_free(fftw_forward_in);
  fftw_free(fftw_forward_out);
  fftw_free(fftw_reverse_in);
  fftw_free(fftw_reverse_out);
  fftw_destroy_plan(forward_plan);
  fftw_destroy_plan(reverse_plan);
  fftw_cleanup();

  update_distribution_data("na", ad, N, L, beta);
  update_distribution_data("nc", cd, N, L, beta);
  update_distribution_data("bc", bin_counts, N, L, beta);

}

void ma::pre_fracture(const network &) {
  lv = 0;
  as = 0;
  avalanches.clear();
  boost::remove_edge_if(trivial, G);
}

void ma::bond_broken(const network& net, const std::pair<double, std::vector<double>>& cur, unsigned int i) {
  if (cur.first / fabs(cur.second[i]) * net.thresholds[i] > lv) {
    ad[as]++;
    as = 0;
    lv = cur.first / fabs(cur.second[i]) * net.thresholds[i];
    avalanches.push_back({});
  } else {
    as++;
    avalanches.back().push_back(i);
  }

  boost::add_edge(net.G.dual_edges[i][0], net.G.dual_edges[i][1], G);
}

void ma::post_fracture(network &n) {
  std::vector<unsigned int> component(boost::num_vertices(G));
  unsigned int num = boost::connected_components(G, &component[0]);

  std::vector<unsigned int> comp_sizes(num, 0);

  for (unsigned int c : component) {
    comp_sizes[c]++;
  }

  unsigned int max_i = 0;
  unsigned int max_size = 0;

  for (unsigned int i = 0; i < num; i++) {
    if (comp_sizes[i] > max_size) {
      max_i = i;
      max_size = comp_sizes[i];
    }
  }

  for (unsigned int be = 0; be < log2(L); be++) {
    unsigned int bin = pow(2, be);

    for (unsigned int i = 0; i < pow(L / bin, 2); i++) {
      bool in_bin = false;
      for (unsigned int j = 0; j < pow(bin, 2); j++) {
        unsigned int edge = L * (bin * ((i * bin) / L) + j / bin) + (i * bin) % L + j % bin;
        if (!n.fuses[edge] && max_i == component[n.G.dual_edges[edge][0]]) {
          in_bin = true;
          break;
        }
      }

      if (in_bin) {
        bin_counts[be]++;
      }
    }
  }

  bin_counts[log2(L)]++;

  std::vector<double> crack_damage(pow(L, 2), 0.0);

  double damage_tot = 0;
  for (unsigned int i = 0; i < pow(L, 2); i++) {
    if (!n.fuses[i] && max_i == component[n.G.dual_edges[i][0]]) {
      damage_tot++;
      crack_damage[i] = 1.0;
    }
  }

  std::vector<fftw_complex> t_crack_damage = data_transform(L, crack_damage, forward_plan, fftw_forward_in, fftw_forward_out);
  std::vector<double> Ccc = correlation(L, t_crack_damage, t_crack_damage, reverse_plan, fftw_reverse_in, fftw_reverse_out);

  update_field_data("Ccc", damage_tot, Ccc, L, beta);

  for (auto e = avalanches.back().rbegin(); e != avalanches.back().rend(); e++) {
    boost::remove_edge(n.G.dual_edges[*e][0], n.G.dual_edges[*e][1], G);
  }

  num = boost::connected_components(G, &component[0]);

  for (unsigned int i = 0; i < num; i++) {
    double size = 0;
    std::fill(crack_damage.begin(), crack_damage.end(), 0.0);

    for (unsigned int j = 0; j < pow(L, 2); j++) {
      if (component[n.G.edges[j][0]] == i && n.fuses[j]) {
        size++;
        crack_damage[j] = 1.0;
      }
    }

    if (size > 0) {
      cd[size - 1]++;
      t_crack_damage = data_transform(L, crack_damage, forward_plan, fftw_forward_in, fftw_forward_out);
      Ccc = correlation(L, t_crack_damage, t_crack_damage, reverse_plan, fftw_reverse_in, fftw_reverse_out);

      update_field_data("Cclcl", size, Ccc, L, beta);
    }
  }

}