diff options
Diffstat (limited to 'post-submission work.nb')
-rw-r--r-- | post-submission work.nb | 2286 |
1 files changed, 2286 insertions, 0 deletions
diff --git a/post-submission work.nb b/post-submission work.nb new file mode 100644 index 0000000..9743f76 --- /dev/null +++ b/post-submission work.nb @@ -0,0 +1,2286 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 94957, 2276] +NotebookOptionsPosition[ 88074, 2163] +NotebookOutlinePosition[ 88407, 2178] +CellTagsIndexPosition[ 88364, 2175] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalPhi]", "[", "N_", "]"}], "[", "X_", "]"}], ":=", + RowBox[{ + RowBox[{"-", + SuperscriptBox["N", "2"]}], "+", + RowBox[{ + FractionBox["N", "2"], + RowBox[{"Tr", "[", + RowBox[{ + RowBox[{"Transpose", "[", "X", "]"}], ".", "X"}], "]"}]}]}]}]], "Input",\ + + CellChangeTimes->{{3.793462980655712*^9, 3.793463026272648*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"aca4f188-900e-4e2f-82cb-6708cc7e7dd7"], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.793463471723394*^9, + 3.7934634727823687`*^9}},ExpressionUUID->"2eb28450-94b1-4d41-8878-\ +74ef319b339f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"ssmat", "[", "N_", "]"}], "[", "v_", "]"}], ":=", + RowBox[{"FoldList", "[", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"#1", "+", "#2"}], ",", + RowBox[{"Take", "[", + RowBox[{"v", ",", + RowBox[{"{", + RowBox[{"#1", ",", + RowBox[{"#1", "+", "#2", "-", "1"}]}], "}"}]}], "]"}]}], "}"}], + "&"}], ",", "1", ",", + RowBox[{"Range", "[", "N", "]"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.793463230474427*^9, 3.79346334132347*^9}}, + CellLabel->"In[7]:=",ExpressionUUID->"74ea7e40-fb7c-42ad-8f65-2bd70fc9b5c0"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"ssmat", "[", "3", "]"}], "[", + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], "]"}]], "Input", + CellChangeTimes->{{3.793463327164769*^9, 3.793463335123438*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"4e9ad724-362c-4e7a-9eba-cdeeee19cbcf"], + +Cell[BoxData[ + TemplateBox[{ + "Take","seqs", + "\"Sequence specification (+n, -n, {+n}, {-n}, {m, n}, or {m, n, s}) \ +expected at position \\!\\(\\*RowBox[{\\\"2\\\"}]\\) in \ +\\!\\(\\*RowBox[{\\\"Take\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\ +\\\"a\\\", \\\",\\\", \\\"b\\\", \\\",\\\", \\\"c\\\"}], \\\"}\\\"}], \\\",\\\ +\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \ +\\\",\\\", RowBox[{\\\"{\\\", \\\"a\\\", \\\"}\\\"}]}], \\\"}\\\"}], \ +\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"3\\\", \\\",\\\", \ +RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\"+\\\", \\\"a\\\"}], \\\"}\\\"}]}], \ +\\\"}\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\).\"",2,8,4,31323197559230362610, + "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.7934633353696213`*^9, 3.793463342933799*^9}}, + CellLabel-> + "During evaluation of \ +In[8]:=",ExpressionUUID->"4e796e7b-8de1-4aff-a02c-0d0b747b2413"], + +Cell[BoxData[ + TemplateBox[{ + "Take","seqs", + "\"Sequence specification (+n, -n, {+n}, {-n}, {m, n}, or {m, n, s}) \ +expected at position \\!\\(\\*RowBox[{\\\"2\\\"}]\\) in \ +\\!\\(\\*RowBox[{\\\"Take\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\ +\\\"a\\\", \\\",\\\", \\\"b\\\", \\\",\\\", \\\"c\\\"}], \\\"}\\\"}], \\\",\\\ +\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ +RowBox[{\\\"4\\\", \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \ +\\\"+\\\", \\\"a\\\"}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", \ +RowBox[{\\\"Take\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", \ +RowBox[{\\\"a\\\", \\\",\\\", \\\"b\\\", \\\",\\\", \\\"c\\\"}], \\\"}\\\"}], \ +\\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \ +\\\",\\\", RowBox[{\\\"{\\\", \\\"a\\\", \\\"}\\\"}]}], \\\"}\\\"}], \ +\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"3\\\", \\\",\\\", \ +RowBox[{\\\"{\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ +\\\"}\\\"}]}], \\\"}\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]}], \\\"}\\\"}], \ +\\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"6\\\", \ +\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"4\\\", \\\"+\\\", \\\"a\\\"}], \ +\\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"2\\\", \\\"+\\\", RowBox[{\ +\\\"Take\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"a\\\", \ +\\\",\\\", \\\"b\\\", \\\",\\\", \\\"c\\\"}], \\\"}\\\"}], \\\",\\\", \ +RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", \ +RowBox[{\\\"{\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\"}\\\"}]}], \\\"}\\\"}], \\\",\\\", \ +RowBox[{\\\"{\\\", RowBox[{\\\"3\\\", \\\",\\\", RowBox[{\\\"{\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"}\ +\\\"}]}], \\\"}\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]}]}], \\\"}\\\"}]}], \\\"}\ +\\\"}]}], \\\"]\\\"}]\\).\"",2,8,5,31323197559230362610,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.7934633353696213`*^9, 3.793463342938555*^9}}, + CellLabel-> + "During evaluation of \ +In[8]:=",ExpressionUUID->"99833ccf-f7f6-4574-bc6e-56a9fa33fd14"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"1", ",", + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"{", "a", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"4", ",", + RowBox[{"{", + RowBox[{"2", "+", "a"}], "}"}]}], "}"}], ",", + RowBox[{"Take", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"{", "a", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", + RowBox[{"{", + RowBox[{"1", "+", "a"}], "}"}]}], "}"}]}], "}"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"7", ",", + RowBox[{"{", + RowBox[{"5", "+", "a"}], "}"}]}], "}"}], ",", + RowBox[{"3", "+", + RowBox[{"Take", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"{", "a", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", + RowBox[{"{", + RowBox[{"1", "+", "a"}], "}"}]}], "}"}]}], "}"}]}], "]"}]}]}], + "}"}], ",", + RowBox[{"Take", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"4", ",", + RowBox[{"{", + RowBox[{"2", "+", "a"}], "}"}]}], "}"}], ",", + RowBox[{"Take", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"{", "a", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", + RowBox[{"{", + RowBox[{"1", "+", "a"}], "}"}]}], "}"}]}], "}"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"6", ",", + RowBox[{"{", + RowBox[{"4", "+", "a"}], "}"}]}], "}"}], ",", + RowBox[{"2", "+", + RowBox[{"Take", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", + RowBox[{"{", "a", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", + RowBox[{"{", + RowBox[{"1", "+", "a"}], "}"}]}], "}"}]}], "}"}]}], + "]"}]}]}], "}"}]}], "}"}]}], "]"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.793463335405059*^9, 3.7934633429439383`*^9}}, + CellLabel->"Out[8]=",ExpressionUUID->"4aada9fb-0136-4a39-9c2a-913465c6acfe"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"xx", "=", "\[IndentingNewLine]", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "a", ",", "b", ",", "c"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "d", ",", "e"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "f"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], + "\[IndentingNewLine]", "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.793463374110407*^9, 3.793463394189417*^9}}, + CellLabel->"In[9]:=",ExpressionUUID->"debf31e8-beab-4af1-a670-3db5979cd1c2"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"x4", "=", + RowBox[{"xx", "-", + RowBox[{"Transpose", "[", "xx", "]"}]}]}]], "Input", + CellChangeTimes->{{3.7934633974629793`*^9, 3.793463402821336*^9}}, + CellLabel->"In[10]:=",ExpressionUUID->"8886b158-c9fd-464d-85c7-fa6c18e364ab"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "a"}], ",", "0", ",", "d", ",", "e"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "b"}], ",", + RowBox[{"-", "d"}], ",", "0", ",", "f"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "c"}], ",", + RowBox[{"-", "e"}], ",", + RowBox[{"-", "f"}], ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.7934634032724943`*^9}, + CellLabel->"Out[10]=",ExpressionUUID->"8f8dddef-1985-4a97-a6bc-505f27bcc547"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Transpose", "[", "x4", "]"}], ".", "x4"}], "//", "Tr"}]], "Input",\ + + CellChangeTimes->{{3.793463405254016*^9, 3.793463412421341*^9}}, + CellLabel->"In[11]:=",ExpressionUUID->"54e4a5a1-16be-4de6-9f0d-ce2e33df826d"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["a", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["b", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["c", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["d", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["e", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["f", "2"]}]}]], "Output", + CellChangeTimes->{3.793463412635048*^9}, + CellLabel->"Out[11]=",ExpressionUUID->"a214a07c-8435-4ab9-8f4c-9012e4af817a"] +}, Open ]], + +Cell[BoxData["Skew"], "Input", + CellChangeTimes->{{3.793463029318808*^9, 3.793463043063738*^9}, { + 3.793463202738372*^9, + 3.7934632034497747`*^9}},ExpressionUUID->"60ab5996-56b2-4116-a22b-\ +4351bfe6a76c"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"x3", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "a", ",", "b", ",", "d"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "a"}], ",", "0", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "b"}], ",", + RowBox[{"-", "c"}], ",", "0"}], "}"}]}], "}"}]}], ")"}], "//", + "MatrixForm"}]], "Input", + CellChangeTimes->{{3.793463132972478*^9, + 3.793463166081422*^9}},ExpressionUUID->"7d739818-5a8a-4e64-8a11-\ +c3eb86c80f79"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"0", "a", "b"}, + { + RowBox[{"-", "a"}], "0", "c"}, + { + RowBox[{"-", "b"}], + RowBox[{"-", "c"}], "0"} + }, + GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.793463135335209*^9, 3.793463144677956*^9}}, + CellLabel-> + "Out[3]//MatrixForm=",ExpressionUUID->"5e118c38-3841-4e44-a4f4-\ +4c504b5cc22c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Tr", "[", + RowBox[{ + RowBox[{"Transpose", "[", "x3", "]"}], ".", "x3"}], "]"}]], "Input", + CellChangeTimes->{{3.7934631023473177`*^9, 3.7934631552982683`*^9}}, + CellLabel->"In[4]:=",ExpressionUUID->"33d7f345-4f7e-463b-8a47-f9a31fac8992"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["a", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["b", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["c", "2"]}]}]], "Output", + CellChangeTimes->{3.79346315553784*^9}, + CellLabel->"Out[4]=",ExpressionUUID->"b8e16ebb-99fc-421d-8b9f-17c8b7116188"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Integrate", "[", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "\[Beta]"}], " ", "n", " ", + SuperscriptBox["x", "2"]}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Beta]", ">", "0"}], ",", + RowBox[{"n", ">", "0"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.7934637531788597`*^9, 3.793463806724815*^9}}, + CellLabel->"In[14]:=",ExpressionUUID->"a5e5313a-3cbe-4ee7-bf9f-86d6d149c6fe"], + +Cell[BoxData[ + FractionBox[ + SqrtBox["\[Pi]"], + SqrtBox[ + RowBox[{"n", " ", "\[Beta]"}]]]], "Output", + CellChangeTimes->{{3.793463799306137*^9, 3.793463807151404*^9}}, + CellLabel->"Out[14]=",ExpressionUUID->"9fbd9d22-95ab-435b-9d32-a01694cee41c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + SuperscriptBox["c", "2"], + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"]}], ")"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]}]]}], + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}], ")"}]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"]}], ")"}], " ", + SuperscriptBox["\[ExponentialE]", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]]}], + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}], ")"}]}]]}], "/.", + RowBox[{"c", "\[Rule]", "0"}]}], "/.", + RowBox[{"b", "\[Rule]", "0"}]}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{"a", ">", "0"}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.793464485231653*^9, 3.7934645207379704`*^9}}, + CellLabel->"In[26]:=",ExpressionUUID->"c80114c3-359b-4431-b57c-41ec3ec86c28"], + +Cell[BoxData[ + RowBox[{"Cos", "[", "a", "]"}]], "Output", + CellChangeTimes->{3.793464520980328*^9}, + CellLabel->"Out[26]=",ExpressionUUID->"ecb93ba9-a956-4222-b24f-e0206d97dee4"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"]}]], "Input", + CellChangeTimes->{{3.793464559625558*^9, + 3.793464565208747*^9}},ExpressionUUID->"1e05e21d-787c-426a-9b90-\ +e83b24238655"], + +Cell[BoxData[ + RowBox[{"Clear", "[", "b", "]"}]], "Input", + CellChangeTimes->{{3.7934667475081577`*^9, 3.793466752977477*^9}}, + CellLabel->"In[73]:=",ExpressionUUID->"66f37bdc-cf01-4316-9982-d4a449b28fe5"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"b", " ", "c"}], + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}]]}], "-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "b"}], " ", "c"}], "+", + RowBox[{"a", " ", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]}]}], ")"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]}]]}], + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}], ")"}]}]], "-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "b"}], " ", "c"}], "-", + RowBox[{"a", " ", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]}]}], ")"}], " ", + SuperscriptBox["\[ExponentialE]", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]]]}], + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}], ")"}]}]]}], "/.", + RowBox[{"c", "\[Rule]", "0"}]}], "/.", + RowBox[{"b", "\[Rule]", "0"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"-", "20"}], ",", "20"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.793464222606069*^9, 3.793464305454688*^9}, { + 3.793464449270852*^9, 3.793464461038485*^9}, {3.793466655978685*^9, + 3.7934666677943993`*^9}}, + CellLabel->"In[68]:=",ExpressionUUID->"4c3c31ca-4388-4656-980a-b8756fc51dde"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwUmnc8Vf8fx+2d7ES4xrXXRSjyOd+shkoSUtkrpJJQ2QmVNERmyCg0ZUTy ++ZSVhp2dvbn3INnjd35/3cf7cT6f936c83o+HlfS6ZKFKwMdHZ0+Mx3d/3+D +J44tbG9rIjn3yINd2lQwflPoX++GJkq6a37ZeAcVHOcZWC5b1USXPI/xPxme +BaR9lzcv/dVEESGKNn13ZsHXu4/ZBsc10cPGl6mHf8wAJYmznJUjmsie3X1k +IWkGPPkgzZ00qInSjVNW7rnOANe+Yn7zHk00klsenrA+DdhUO8XRL020aDK7 +AxOdBle+ZkimfddEoacd/LMGp0CPlYdMYL0m6mXRymbMnQKFoasK6l800YHm +qlttilPgeIvo3sxiTfSM5sY7qjgJnvg5HA1L1UQ/ub8lbWyNgU02hePnkjRR +/QulB49LxoBb+ry5boImEpoMdLPwGgM6dRFWc3GaSHWvJeVs+yjo2ZXr6BCh +ifw9KWYjaSOA9GkqALugib7Jp9oGcAyBQvqrOXQ6mihFljzR1NcBdE8VsCRr +aqKA2SPadTwdoC5nyIOiroleVs99qjT8DQZNzVWcFDTRBWb15Ka8NiAUp1Ja +LaqJeCMZ98c7NYMIkcn6KDpNtCKrE//jSjWw0Tw/w/VdA/nTrvw93/MGjkc+ +OZZbp4Emvoge7mwtglc7frw9UK2BLNnKnHN1SmHc9f1+PpUaqMBs7qXgViWs +hrs2m95oIPUpQ4Et/VqoatbKHR+vgXztzlr9PdgCmV1NNXaf10A3niXSHRz5 +A1vtKNYzZzTQCxtOxieJ/fCZjWjQZysNVCygPvju0ADUNsNrHc01UMRPg3tP +LQehm+bTMwWGGmiuK73rwOsh+I1+IkxPUQMp+ShJ7tcfhU/Wm3N3yGmgJ57X +Xj+/Owod/lV8H5DWQLYPjjzT6xqFq5NxApFiGmjj0ojfwuUxqNis/fInjwby +mrb+j5Q0DmOfRTWdX6agAgOOlPWKSWiTdHlRbZGCImVEOnasT0KZx7a7GeYp +yLTJMFl6/xT8fFvVOW+agvbRP/92omQK0rw7lmh/KIjrUn2ce8Y0rHBDol96 +KEi8rjLconMaRjkUYPGdFNTy7qiqKvcMlLAMuavTQkHOa0aCbwNnoLmerHhY +DQXNb+yXTsdm4Z69PIYWX4j4vZJZbZdm4aTqmrtMFQUpP6X7OJ0+C8OlGt9/ +K6Mg/f8a/D4szcLjez52pBRTUFOWU7KjJBWKCD1f935PQeXq/pZTR6iwiN3f +mLeQgvh3/uIITaHCEEYHz5EXFPTpTPnQHUSFRzYPPyjJoaDjdx+xeIxR4fCc +WPeZZxSUZRd+NUmJBvm7ar2fP6Igbss2zpx8GkRKWTGRcRR0//Vl/qe1NOgd +GpTjdo+CmLSvqtkP0mCdrGaf4m0KSmZzy/Dkw+HVG9wrXBEU5DeqseOVAg5J +jVP8eAgF7bqtXl0FcHjjWubRD4EUtNX+pNzSA4dyDTfdE65RUGB4xaWOGzhs +32N9K8CXgpaG08/IxuIw/LJGxplLFPR4la/JMA2HqjU7Pul5U5DJhzhN1UIc +9u6a6hC7QEF3+pSXRj/iMMarZmHblehPRskj91oc7oUZ3MNOFJQe/zy2pBmH +w3w3FWvsKWintfT1xh4cPnCzMsk7R0GplZL/3o/gUL+C4hRzhoK6I4wL7Gdw +OLVjR4inFQUdSl0+1jmPw0THyWSzUxQ0teWSJbyMQ8OS6hJVcwoK4wm/Ir2O +wzm2jBaeYxTkH8v6dHkTh+nnblAXDlPQKZaQpSfbODzy7jT7bxMKyvurFbZO +2MuMFHKZIQV5GB1SVyLsHGuu/5IxCqqKyeCWIe6fLJw4d/MAsX85VNXxVRxu +bX0NPL+fgkK437278g+HhRbPngAdCrLMUoF1OA5t8q6/k9Qi9nfR79HYJA6Z +1yx/MlKIeoxtPRsHcVh0TH1yTIWCDBf8ksI7cWifxcn0TZGC+AL3+G//xCHX +v3GJAjkKiudwvXDoCw7LD33Vi5WhIKki0dFzxTh0S0u39pGkoNa1L84H8nDI +Pxd41VycgiQpd65MJ+IQGVo+0BCloLMqx567ROFQZIajfkmAgnQNLq59dcRh +vcH4cBcvBX0oyrz98hgO/R5/2argpiBhZd/187o4bNwXqB3KRkFJJz9T9Thw +ePP+KQtHZgo6Nmqr6DZPg/JDqj6GDBT0y/RXi3MnDUbEjOWybqgjtk4V+z8Z +NKjWh75MraijVI8gh7MRNNinlvbnxz91pCxhxvjemQa1Oy0EH+LqiI+sNjgh +RYPTZBQpPKKONlMXj7yIp8Kn11Mz1wbU0cFv0ueZL1Kh0S//yr4+dbS0YyzR +2JgKn/mpLGZ2EPevXnjiuzALLapTnBW+q6P/5t2fFoJZKNM+2l9fp46kD3hn +aXPNwqVRVVu3anV0P/gHb3jnDExmqTbPrlRHHI3f0897zsDBwzMHxN6qI9GA +2i83wqdhke3e8k+F6ihzx4MVY6NpeMsrVMv2pToSSraaH2WehrL3+ZWeZqkj +0+v/2ebfnoIXm/WEeZ+oo3sOzYbpAZPQYOh2/NuH6uh1DpObNWUS8iw0cR+/ +r4461bi2N6YmYDG/C/O9KHVkbqLlsMtmAq5ZxS4wXVdHWtmpXGNy4zDmT9/P +lfPq6EXzhxszSSPQliZ76KmtOiJV12wuHhyBytuXq/daq6NqZqfTUrPDsInE +XOFrro7cP2fvWNEbhkIuKi9mD6qjqKT5yK2WQZg9HRw+KKeOHDNc4K7SXngT +P+D9cEQNbd7V+xW1+QumOepMYn/U0GkV0o6Tfj9hZZu6y3yHGqqre8tIN/0d +bpVJn7P4roZyTuz1P9xaDyPC2M0E3quhM2152P6kL/Au72+lpBA19Idl5ujb +PTkwRdN7JmO3GhJZEX0jIFkDPuW6upvzqyGd5IQLMW9rQd8u+xG6HWrIc4ge +yByoB+IbJ3sd6dTQvj3pbomnv4PnNTo/pCdUkSzTWeZe/WaQf5qx8EWxKnoY +SytvwDrAx4AUz7cnVJHohMLo7u+DQMrlSm7XIVW0ZDjF0y87BO6bHxqkP6iK +LlpNvuuOGAJOCkunLbVUUXDr1G033WHA2Xvyv1VhVcSRL7vPOXkE2BmwCxsO +q6D4/UfeXlIbB98UBy28e1WQOXX73bfgcaCxq+x+QrsKCl0TLxP5MQ5Y51wY +J+tU0LbxtcpUpwnwLgvRYgtVkC3fzpb3kZOAkTmwtsNPBR3sWrQ/83ga+Mwf +p6PzUUH5Z32fljZOg64/ZD0FdxWkLdR+tod9BrwqbXt384wKUosr/eEZNAOs +PNTSSAYq6OoD7/3uFrMAWbJ0HtZRQedSOTzeRc4Cxf/+8F5VV0Gds/6Sr0pm +wfbue9G1UirIOUjIsoifCl7+GPf1ZFVBgwp8A1WQCvg+fn4dT6eCDASRnOME +FQTnPJmsXFVGUkGr33J30IBF8EG7nbPKSPHCEbmdVjRQeWF3su6YMooM+5Cg +HkgDslZzbY79yuj70BVITaKBddVnh4ublVFbFrft3g4acBO9FvmnQRn5NLhv +VS7QQDOrGWSpVkYfopRre3bgYP+i1JpapTISOHzsyn05HOQMrmqdKVFGodLm +HW0AB9y/mi9FvFFGL27bdb2ywsH18hcFhS+UUbuGhfcubxwcf3yatJWsjLof +cFxJf4yDGxo7D5vGK6PB6y5Jntk4yGv9duVhrDK6g3OqtRXhoNU3IqX7tjIK +PnomugPhYItPv1oqVBkxctsz+v3CgeKHfzNegcpooHlOoLALB1an3gqUXCHi +38k/cHMYBxF/PQ5seSojdZF57tFpHLyOl3IzdVFGW6r0imPzOOjS7It7eF4Z +nfWaAiHLOGBqTyjrtlJGG8OPed+u40Dd78SglLky4hn6eilgCwfnBNjZvQ8r +oysbe/Q6t3EQU/yVUnJQGe2/LuPSSNjFlkG2W3rEPJb1Z84R5wcX994y3auM +/rtYMBhB+ONKwAsfqiqjQt+HLhgRT3dvfnu3nDIybp/LSyDycfnttCklqYze +BORPRBD5Pry2R9ZbhJjfvSv+bEQ9lYIdx0v4ifyYOopkiXonSx4EbHER9Xju +5er/iQMBq8OZpizKiBuvoFcj+oUtMTQ83FZC3O02UiJEP70SK+e7V5SQsfRX +rsznOEjU9heRXlBCP946X/ryCAdfO9QMvWeUUIvHObbQUBzQ/Ke8SkaV0NCa +X263Fw5EdmU/2fqjhMqRkEwrMV+TsnOfTTuV0CrjwSsXMBz4WguNP2xWQjJx +t+5kyuPg+9M7OtLVSsj247LtwiINLOkYOnhXKiGz+RTbnd00INW1EVNSooSG +t0SLmj/RwA3hyz2mL5VQI7J4ZhxMA3kfFRgfZSmhE51jf9fP0kCrzYhST4oS ++huyIHVuHw0oJFsFe99XQtiF03tJc1RguY8nryRKCfFfY7aIbqCCsO6Gxq1Q +JZR0vKriWRYVdO0+QHrkq4Taj/FHjR2jgpgU6eoSayX04ERUE+vTWVC8/8/M +ljnRj2MZb8lus2CwJ1Hg0BElZCAxHcaoNQt0RTncevSV0BFRkW7WnzNgMnWO +bVtSCbm/XH/qR50Gpumfjx+aVUTGnI53BFYmwdz9vg2mcUWUY/DBgfZxEqSE +rBd8GVBEr1gEvv8OnASz9vtY9doUkUjaSdXOfxPgsVQJVKlQRAIJ5vtmRsdB +/4tX6vwxiujY7kyu18mjwL8ola9fWhExmr4ObRrpB6TsCpQipogO69mnFmn2 +g4b4bh/rXYpI1ST0/sWIP2DPtV0/mjkUkfclN4WoPX3gq078rep5BcR/xoGL +0agbcH++u/gSKiB3PY5UC7c2kFd/vePqWQUkwbTA0vKqEiRr+BvmWyog33FJ +WUezchCb7vuu/5gCqiZ/f/xrugT4XvW6exhTQOyyj5+/OfwGHJA4byBBVkAr +bzb9TCSug3Z/LO87TR4dUTJrvni/HDLIsvpLRsijzTERzzsv2+C/h4wjVjfl +EV2ph8uEfzucXN8+Eesnj3oTnnucMfoNG1tWFJbd5NHMRmSiZV8HTA6e/vPz +qDyaJtuAF9vdUP33L+NAQXk0qXyiaIF5EEpj34tec8sjW23v0znOg1CosE5i +hFUefWN9vJ2EBuFGGFw9tiaHMgKvFO0PHIL1yu9fSw/IoTuyvlGzf4ahXeQT +waaXckhn54uUh6FjsBEssQY+l0PKlPr7pt/HIFi3XiOlyaGUQqk70gLjkOQr +OuD7QA7F9nuzgdxxOGz//KWQvxxSGPGRLamcgBaiTKnwkhxK3yEmZkw3Cas7 +XO97XJBDzsneoyMHJ2HOMQXfinNyqPzky0DD2knopvdOz85QDp2uURgwrJqC +HUu8qqwH5BDfSB/GuDYFTYuukt5pE/HtmJI/a01DeQUdZgZFOWQl7bm1+8U0 +nBaqaszlkUMR165laYbOQNtWiS/HOeTQpdWoq7FFM/DH/fAPy4xyaEFcar5x +dAa+YjJOOrwsi+7OfRJkN5mFPgs/HKl/ZNHpbNMwsfVZ2P9axTKxUxYt6Pr0 +x5Gp8MSFByagRRYZhfRb9x6nQvVBC6VHNbIoVFdaeTudCjNTi8X2V8mieyvv +vdqqqZDXWohnpEwW6WqLPwyapMKFX92LWoWyqCkBtZiq0qDTHb2JPzmyqLUl +leJ+ggbbjNK7o57JojumFeunL9Fg8SeHqq5Hsmg6QqMzrZAGZQK+vgu/J4tW +ktvvLtTTYIKGTLbibVlkY+lE5RuhQf/8ieigQFn0kYH3zltBHI67HL5B9pVF +v7qTaxVUcGhNKvRu9JJFmrwLZZ6GOPzWy2Uf4CqL6i9cD7tig0Pdpz4nSfay +aG/e6NED3jh8adFs2GAji1Q7jE/9CsHhbm4NbV8Lol9kgT7SQxyuRf4TqTGW +RdrNq7U73+LQE7PecRHIopu3defyKwmeWv+4LbhPFhX9B1SZG3BoViayUKUh +i279GmaUbMdhpW/QqLuyLGrJC6ff/INDZdX+Dh5ZWRToxFaTNE7wzhRoKJeQ +RSMP/i3+peKQOzfrk9NuWeQhfv4I9yIOQxwY33DyyyJeo5moiRUcvmsyjWvn +kkWrmodvXN4g+Mwg1iedRRaZHZOLqtnCocCb5uNudIRtzP5khOAjEzFBNbU1 +MjIYE0n+RdiBsWd2rvwlo3Vf9cQI4nzBejqOqGQ09bLuKQPhr89zuOnOBBld +O8BQeoyIx90j+85iiIx+rr4RcPmLQ+yw10PRXjI64mAwYkzk6/vx7eXRdjJS +Ga4993eM4DG5RfPXjWTEk7tR703U25GoS/H/RkaLnboBRW04ZGMJ5gVfyYg3 +yftbzTcc7r/2ZZ61koyeu0qRc4h+eo8ytzaXkFGs/HWGk0S/n506UpT8loys +aiWGfmTisPlr3GOnfDJyP2h+TPARDhk02nyVssmoNvh7v0oYwVs85zQ/J5JR +mKAQR5MtDpNCM/mjHpKR3YdGrjMmOPxOG/17/C4Zif17xFKiTvDxr4vFg8Fk +VPbkgeo4PQ4d9Iue5AeQkXPVb9LnSRp8XLjk53uFjGYFVR5faKTBpTuhe5lc +yUj4ktGSSSINQpNHpXJmZJT7r+mUhjANLpT8TpwzJupzoIS2/aNCGbJIQDkg +I8j04NSpViqMYczWOapJnP8Rcn4xmgrNUfFHHxEyqpJ2kRgdm4URaqtJOgJk +lH+H9dLzillY/OzAdTpuYj7HUo4ejZuFwsF1+x7Tk9Hhry1uzhqzcHBfV0XJ +pAzKDrSI7r84A/ny96SGDMugb0evWUntn4FGwo43Tftk0JZmm6Y98wx8uTSl +190kg96XHdn9M2kaXv6wXrlRKoPIr92KXn2YgnQqEtDwtgxqrnvvdf3TBAwS ++s/udogMOtTgyv/YdwIubztt1gXIIHZkIZcpPwFprXl6RzxlCN47/DX/0Tjs +DVT9aH5CBpVb7n/YYj0GS2sOvD+/WwbFxZirxpUNw4vnzmUHvJZGmik2hQB2 +w0njkIPledIoeivgmPhqF3RRyxxay5BGQfPZjEOULmjLMCoR8lgaXdrDJqad +2QEPvfRKiwyQRoY79d/tvtIGZRZvJDz6TxqNje59FtTZAHvuJUcX/pZC3Kd6 +jQuiQ0BbLemVQ5MUyjZL5zHXeQJ+br9oFmyQQv6f6SqWXDNB1dXS3WGVUmiG +NX3GZ+UVeH62rdAyWwrtMfJL2WL5BDyVdjRvXpZC4uc8JKznG8D69zBhcy4p +lG56Wld/uQssMrEdYGaRQg2P16Xl3nUDmsEDx4ptSVTs/rqB36MHDBalF8j8 +lURZqky9v9t7QU1Khf5qtyTyJl8O183qB7Geiw7PX0gi4TmPnZXbQ+B2zs3b +1lmSKGPLKi/TYhiE9DMUcKVKogt8CgNNOcPgsgXvX/84SXTIMCWa3nQEWO5X +vX30miRaZ10Lt40YBXs4PPIXD0oiR/Gdzw62jgO7qp+xUvqSyN2U6dEB8QmQ +5Uu5bL6XOF+9nq10YQLI9q5pv5KTREF2F5Pa1ieA2qv7Nc5ckqjgDR68xD8F +fB0WXjxilkTq+qwDKtZToFjA+h7cIiFp4d3RBslTQDeYZCE6T0IZdPs+Duye +BgePfxho/U1CL6wL8WauGRDJIFxN10RCvVtLQeEmM6C+NChP9RsJvfl8pnkx +ZAaYSZhcvFtBQtaHKhN2zxI8Nde19l8GCU1+MnLdVTYLknIO9F9KIqGGfM87 +yeOzoNfm+Zf0RyT0W/ZQ7A8BKnD44hWzeouEast8urQvUsGFx1uC7z1IqMlv +Jv4vwUuvTJxX+x1JqGZ1yeyzBg3Q1ur7uM6SkK38t19yBD/5Oj/K9jhGQhu9 +0vVdBC8V71qKSjQhIfI1Vt09H2lg+YetZw0goTNiUY5rv2kgSEuGQtIg8gsT +Cw8neKlqMkbguBIJ1Ye4zssRvESfTl2+KUPU617D7ULwktFJi958MRJ66Hwe +ahF6Ooq5rKpTiMjfvWM1idDb38pFnzPzkJCJqUvtA0KPc/iE3dZkJ6GOrd/7 +hAl+MpMa83BkIKF9BzNCKQQ/ib+OTxJflkAjJsNNPYTezxY8b39jSgLN/Az0 +4/+CA/kQWdmOXgkU6bpR30Pw06txfJbSKIFeL/3aq96NA8qJ8g/3kQT6fHPP +fv4RHJSWRdyYKpJAQQwzjrdmCP4jmf1nnCuBgkcFj4Yt4ADGCLJlPSX86Vvn +sK8Q9cz3N27ckUBNT4+oSGzgoOHMywSbIAm0NHypFBE8dPzrlXPFPhLo7GMV +SRrBS22KetI8jhJIiqXV/gVh28QzTXudkkB2Ck+uzW7i4M/6r3f1xhKozCze +//MaDpxcngZI60qgi/od0SJLOBj/6WAQqiiBUh4dHmCcI/hmryJz7x4JpAA+ +V1+fJHiEufyF/04JRBq7/C9/gODN36ZH+BgkUJaM3pDfb4IPcztmXy+Ko0re +qNWeBhzcveb64PCEODK/eBb1VeLgsfEiZaxbHLn9tau/8QYHKYK32sN+iqPS +tfq3Jc9wUFCSufvje3GUNWq3zHQTB0W31SpP5Ygjp3sp4yLuOKg4XWWHJ4oj +lzLjzuaTBA/9682WDRJHHtotUSRpgm9rPU2++oij9w6sJyvZcdCTsDp53lEc +fWj/T3ODRgNTe3epJpiIozuip7e8S2hgjjmvWX2fOIo9et47M5EGVn5rXf2p +JI6qwauNIH8aYPO3+MjIK45sVNi0dIh95jEZss1gFEfKMrZdu7hpQFjo8ub+ +JTG01+Zs8otJKpAvvX/Qt1cMGea/5+5NpgL1qD1jOxrFUJTTYe2Iy1Sga1UY +nY/EEMsYzWHAmAoOLX37OZgrhiznnY2rZ2eBuzaT9YnLYkhy4LPABaVZ4MMS +vzrtJIawpYqPy8szwL9DMi3qtBgKDffpM6ueAVH+YOjzfjGUbUg3fcpqBuSV +3vBSZhZDyTs0mXb7TIMx7flQ9pQ9SHigLaPBjeAjljCp3Ng96JxmDf0CaRIs +dnDXYqF70O4uGRpnzwRgClDmCHTZg+63VfWRDk8AmTL3J+Oqe1BhQnOHvOg4 +cNbpf1ldLYrGV6T6sx+NALeXOlYmZaLIRfN7pvbBEeC5+xFjQ4EoOiv7N2vH +AvH+XDe0a3wkihze/kp7cmIYBMF8/m57UXR0nTP7PMMQeGJ6LYS2LoI87Dde +nI7vA3XWXJa7tUTQ7dPbR99Qm0HDN1f6NDkR1Cm03pur3Ax+7oNvxEVF0Naa +fOD270bQKurLLsMgguT02UbxHz/AwEBnlWrzblT4rEDoSWEtWHHPVjDy3o3y +VAOlOOKKgGLg/m2fHGF0gOvDy+XjEKI/xxVHEoWR1u9Hvjanv0ArQ+fT1neE +0dnOjyY+DNUwgju2EPgII6HNxNKVM3WwO+ePNY+uMJrO/LvzysZPGNMS9u79 +j11oj/cRZbXtdiiuk9BLrtqF7J8QgPDjNyxOy2dJebcLecb8R/2c2AEH3VvP +RSTsQv8CXW5gil1QZ0ua/ZT9LnS5gzOGzqgXjivWOy4uCKFba3Pfz6YPwqCH +vbEeY0IotXOMMWV1EPIt4WV9nULIIPJfnODpIWjwRZi7tlIIiXMmg2L2YZhg +7VmREEWc91a/LXFhBBpF7uDXERFC51WKJQ9vjsGeKUmDQi4h9JBV2+f20XF4 ++YT2BYltQZTWGMP+NWkcporYQ9ZRQbTGz+2oqj4BF9698+p6LYh2hu1PuGYx +CbP+nKq5/h/x/Lye4ZLjNNQY1Vhr1xJEbkUuJu9SpmHNNK+6urwgsul5e92h +dRqOLzeljnMLIpYT0Q0pBjNQkc/s6qk+AeQ18eC7Pscs/CSslP+mSQANLjBV +X9w/C80kOAbYqwXQN+2m95EXCH5S/nYE5QsgrgOR0udrZmGRiZGUSoAAOnI/ +LyPamwoNj0nbxHgKoJhz50zK4qmw/RRD3Mh5AfReL+oCLKfCJQe0mmwkgBpi +u7FTDDQY7Z6h9k9HAJkl/pHok6FBYZ8QV3MlAcSuLNeiY0KDejf1W1j4BJBj +oEq4020a/BkuyurELIC0Lv1gU8umQbuYNf3PK/zITuCuXwOkwbCEjy+vDvAj +6TXD+87/aJA37Wl/Yys/4lF+L+XIjcPnz/0FFOv40dhvnYvysjiseasVNviK +H41fdAvgscDh6VL+Ur1MfvTpnH2YmhvBV5ULM4nx/KhtRKZF4DoOA6pbJBei ++JFL3cwreJfQ89/fWR+7wY+2MlSd1VJxmNz84P7Li/zo4LfiE84FOFTs9Klm +dORHWZ+Semw/Ejz059iqnSWRD/vxQMFaHB4bVVarMOVHxjV5+Y+bcdg/zekq +qMePLgR1rbf04PDy/HTKZVV+xFoWxtY2gkP6lYbmH5L8aIX28lrCDA4fb71k +kRPkR0d3ff8nvIBDaeYY/Qg2ftSS1WR6fhmHxZzuvn/W+ZAru4iO0zoOjflM +XurifKhgICxVjuCfDmFyf/wwHzpuZ3nmNcFH7hJMAvhvPpR5087xL2GvkEcO +H2ngQ2kRI+9WifN3lL+G5lbyISnV5ycRwUsimlkldO/40FvTtjOmqzgs3Bc2 +czabD51okJ+NI/hNH7OXLEvkQ7MRP3We0nD4y8TAmu8uH5I0tAt0mMCh3TGx ++xeD+VDgrfl/0/04xE9tfP12mQ+dTOJg1vmNwzDb3hVpFyJ/l1QW4+845HWs +UA215kMGD7fdBauIebonu/QcIe4brzx/+Q6Hmj6BKXsN+NA5nxcHtrOI+fpZ +Nz+k8KGi63e/736Mw4lwQX1TYT5EQjEH031wyBH8Fo/n4EM1A8Znrc4QPBR4 +OHtwgxfJFU++zziIQ3+fYI4bQ7zISS301AQPDlMu7Kqqa+NF+0o/jk0Q+1Xl +8v4Kfx0vsl0+ZBTcTYMsZ8e6XhXwouc8V155pdGgolVo7GoaLzI6fDmi/iYN +Hj+5GzN5wItm5f0+fz5D8L3psRcDV3lRlj3/u1Begv+1Sq7xHeBFXFqDmncu +U+EhtRMK9mq8SEN00HPCiAq9Faf6CiV50S7TRmPaLiosJokZGbPwonCOK3u3 +ymeh4Y7bfIFNPOikLH2kC20GurFJ1NV84UEd3OV/jT7OwLuM5dd5i3nQ/Y3T +WoNhM7B1dXawIIkH/fK1tjvJPQOdxi3f/nHkQeTv9swXRKZh1BDNSdGSB5V3 +TB/07JmCBX0xQgEmPMgiQkxHP3kKLrRWBvMo8SC8rdrQjn8KMoQeToqa3ImS +P/dOz69OQECZajm5YyeiG2MM2x8/BqPkxPbNzHMjlmrBvO//jcFGsZOZkR3c +SM1k8qIjPgrtOMp9yjK4kaSDHHuR6SgMGonhFNPgRr1XO8aPUodhRYK88aTV +DnRf1PXG5M5ByHZ2wplefwcKFN6eXXEZgFakvAgRyR2oruvR6OeX/XChQBqZ +zXChi9Yc0pjyH6iAxPXeh3IhzsYMWz6ZHpg0LUC58ZITDZZUFoX0t8FrgF6M +a40dbXy38TH9VwG/MiE98gA7si0BN5+nlUGe7yG2BjXsaBflVszCwWL4ynLj +6eU4dvRMlf8Kn0ghHL2wzPdbih3FtQTadujoQYsnVLZnR9mQU9zDLBlYAdSn +uhfV0lmQSdyxG3EtbcBvTkVhVyQLig4bzOF/2A4+Loef3/JkQXtfb11pPPYb +/MeiWPdTlwU9EFNoqq/rABbSN55eaGdGn45i7tuvu8G18yL7szmZUZgu0+Dx +owOgwsXH5+4CE1qhGsZ2rA6ALa+vz690M6GYa3dqHp0aBFE3PDmxF0xI9aXN +xdWtQZD0tKKv7yATmhUVKu08NgwqWmxDhW4wokescbZsDaNgq+vNh00HRgT5 +ocM/gTFwcJBhctSUEWlsQyqfwxj4QSsw/yDIiHbIWO9q/zsG+jjXJc3fM6Az +wX0tErwTgMR/wkoniQF1Wl+lO2g1AVxFsu+KhzKgdumAyJCUCUCTP/p31owB +TbyN26VP6J9t49SaO5P0SEhcWC2CNAWMjuErl5voEX86+yM1uykQY2moYlNK +j8pls46OpEwBHueZBNlIenQzdjTEkncaSIXpuVdL0KNnllw08YVp4Bb9ILWA +hR6Rzg0OQ7kZUBA30vSISocynloknz43AzTT7+k6fKJDIk/cgfXXGWBU0cu+ +aUWHpk8/cgsOnwVvCnL31evRoZgAnRKzolkgnHrpwiMSHbJEUhzNQ7OgY5nl +8dH2bej4whBM61NBQVfK/ED6NswUi6MP9qCCkHLVk37u2/A0Z0Dcp8dUQL5p +xZO+tgW9dRr8tEaoYOXs9CVKzRbsrcOUvNhp4Kd+SFPt/S0YG57uZqJKA35b +uXE00hY8e/pE68hVGjg0sI8WMb0Jq5SP/Xn+hAZE0a9ju4o3YQxPnhRdMQ18 +Df/HhZluQmkg+uUBoa8Tne54t/NsQtZ+5AcJ/X3BUOynR88GfN+4sCuG0Of6 +Mu+VNrM3oO6dC2GTejjgYTa+9+jiBhzvkHkyYIGD0bGuabLOBrzzMPCwtwcO +PtZ5H6mg24AdGcIv7gfhwD7mCftI/DqUTFD/djcTBxoX5C8EnF+HHCctZlze +4YDlSOU3Trl1ONQv699cReh/RXP5zLk1qJTa9+XnDxy84RyN1qpYg/KO+3XP +dBK8Mhsw8e3WGiy0zDt1bQgHp39xmp4/tgbfzChlkKYJvnuTkTcvtAZP6ISX +2s7jYCNOkyVqcBUuenGaSC/joPlSvatIwSp89nKY48Y6wYfmZ2vfXF2FXzfa +W+0IPvOn4DKGB1Yh82uPoBaCx47w3YrsZFmF90r/LP3fFv8rNOrVvAILH6oe +dCDOL7QVGNKlrEBMhedSEOGvrtgg+4nzChF//pksES85oZVBQWUFnnm4wmhP +5OPt7+b0eWkZinAxDpGJfDHrtS8n0TLc7ZV55yZRj4BunOT4nWVIi9/p5EDU +OyksFX7j1DJ8wrl/oJ3oR+VqySC32DKcfvUmqpvo14Oew1j2+BLMyEil+RD9 +dPr0J0Pn3RLsiav/nED0WzvtyvaP60uwX+Ju4fEHBD8HM9s7GC5B9vzq0BRi +Pn/OJ1ctci3BewrtfDeI+UVKfAkWy/wHr87pK6wQ87ahO/3n/YV/MLEh4G0S +sQ/KQ5P6Jpr/oORNnbVmYl/anvNs+NQtQj4X38QdrTSQdyvnLOPDRSgfz3JR +gNi3Gy66n56eWYSKzlp8H4l9lJJ1uIFm/0KxmTu3ek/SwOX8tyu8/H9hNa0h +teoTwV/cPrcODi5A2bSgk0kJVDDvq8x99fUCPJrg+MbUhwp89fOl200X4L3Y +s6kqe6jgWtPz44lB85Ah1SvIyHMWaGs5dtcdnodxZNNTq/tnwVKShMuy0Dzc +5zwQ+IhjFgQ4pV23eT8HK8RYzl3NmwF/p5UO7/2Jw5aRiYy9LdPAr/ilXSKh +6/baHfmknzwNloLJfst0OFz0I6XoOEyDFR6JjPK9NDhQ8ukl78wU2NDm+3cg +Yxb2yHsHJy1OApZbK5kmvlOQv8u/Qqx7HESbXSt9wTUFEw6zdUc+GgdsQgs/ +2F5Mwq+Kd+zZDo8DjvyZpe+9EzDSUW335ZIxsLOp3+yE8Ti872dsKxA5CoRF +a1eshUfguuJJu3PrQ8DKTTqrNagb0t/WWi5t6QJ3r1yNeVzSBTPpOf2f7u4C +n4OqL1nQOiGDWJhdnEMnkIl3Nmi174BPpZ/f6J35DRZgdm/LwTb4eK5CsHyl +FYhrHlJ+zvsdys6/w5+ONIC5pGSX+eQIqOnWkDWYHAGCGJ7UmuheAFE7tBWM +dC9A1RTnegHtB+CtvlxK7d4H8JRmV2XUfzmAYYk5UBnLgVfcvKZqnpSCVYNT +aSb3SyEdXcm2c1U9ENz8cPlpaj2s/9l9V/NUF8jXS2k7U9UJPQJ76s8qdQNR +nk9isVFdkE2mlymSsQf0lWnk5B3rhkdu9oW0f+gF+lymS5e7euBPhQHfawID +YFlbMMp14A/0MPR93Ts9DC5YuZkV/B6CuskLP3CrEZByo9SfTm0YsuG+04zV +I4CRS3dvdPQwzE+5KqecOgrUpmjvhLRH4PS8X1bQ0XGgrSt3ryVmFHpnBiSI +vZoC6Rr7jwbQT0D9peUPFOFpMPDSWoXfbAJymQW2GkdOA0ej7eO5CRPw9XLg +Th/iOxEAGbAM8iSkHb9xp4qLCowDq9kf6U7Bqpy1F62BVBDxkVx/+8YUjFu7 +UTc+Suxx7O8h609TUC3vJuPOzzSgF3nvTcy+afgxpKrqrfYc+Mv7halJbgZm +5m/9KveeA/NkuSIHhxkY027wp/r5HHgv+lao4ukMtFGE653c82Ay9u3eCoZZ +uPob6tJNzIOsxETtNw2zcJiO7hCH2ALQj/F9obcyC78rYdYCpxaAFCdTdgiZ +ClPC0TV5uACSro/oiAVR4X6VL0XmT/+C9EZjjpjdNLi3vSOxquEv0PP7Y6+m +R4PqN2dvKG/8Bf33lVwLztKgbMMuQzbHRRCbtBEqlEyDkpdV5PzjFwFP32lN +5lIa3LPLkHO0dhH0jCm0fm2hQX5Xnzao+A94BHc9yGPGITdXZJnK+X9g5L1e +4XcxQm9/SE5NffAP5KwZFJZr4ZDZ9m0o+9d/4I8nzyvfIziko691Dlj8B5gf +jv1etMPh+ose0zHZJRDWwnge+OJw6fic0qkzS+Cizbfwk5E4nE0TXVStWgKP +G84ON+QQ+t6Q0pU2twSSHdN6VT/gcHjapJJDehksi1+l2iCCrx6dyww8vQzS ++UQSTIn3Qreub+R4NPE8me3cWgcO2weiPSwrlkHYynLn5UEcNkelm32dXQZe +ARMFBZM4/KHyQV1dYgUEc5JuvcBxWNf+TeDZyRXwK0xH1P0fDr/c7F/hjFwB +lsr8+6cIHqqUWuy7XroCFKSni1Q2cVjWwP5lYnIFXF02cdUi+KroskTuadFV +8GON7cAmYb/etfdO9bFVoM3iqhFD2C+rjlykhK2C+Pqxw7+J+zmuDiczilZB +wBOvJ6NrOMzg8t+7Y2wVRH9VUitdIvjkw73dN3etAdvbbw2P/P//h7ZZm5OH +10DTyVbWrGkcPqIvG7IKWgOC9fBzxTAOY1/+rK15swasxOY/PO3GYfSJ4XyN +oTUgKqJorNuEw4il5fuZ/Ovg491rXWnVOAxO3+HLbbIOXhlJDtWW4jDQSNoq +KHAdqL4q7//wEodXZ3T3TxesA4UvTOfdk3Ho8/i4uM2fdVBWtPF3MAaHnvtc +GOp2bgDX1QZTyQAcug5eH9c8uAEiVyrZFFxw6BD94HuW3wZIkzX9u3ICh+dU +c9/sfLEBwj//bXq0H4cWQc3+M5ybwKJYo0qSi+Bn6XHbMwabwGWZP13kLw0e ++r5uUH95E6xGZLMNdtGggbAca/bvTUBnP5XdnkmD+6D+DA/bFjiPnadjuUWD +Wm4WTSH7t0Do/OhBNhcaVCoOfmqbsQXUi21PR0oR+382/ua3li3wwEv0HR0d +DUox5NtrM20Dvs2bLKf6qFDYvF2O78I2mFuw0At9RIUM/oJ9LrvpsJwXRmcl +aLPQ1qGg9aMWHeb5oGqmqmoWFh0BDVzmdFjC0NbOnXGz0EniQmlxFB0WejSU +8bv8LPz6rfIh0yIdVlbddXn2+AwU+XAy2mYnPZbtwcptITgDfdPHg18p0mOH +onWyb/ZMQylfHi9LR3psZVMhhOw4DW+JuhjnNNJjZ+Lp70k5TME+5lW9lSl6 +zOvR7l1Le6ag1tx9DTNmBqyOPSwpp2sSjtaUSSzqMWABA/s2n5lNQiMfzjXD +fAYs77/TH53lJiDTl6I3I7cYsYOfQbxC4Sg8V2iaq5PBiN2tXVs/YD0KixP6 +Uu9VMGLXLIQ5XBlGoYsnyx3NeUYs+Ytn8trpEVjLb+t8y44Jy6KbdypaGIJR +bvTC0vuYsf43yludnP2Qlcs83InGgvXvzm0TcGmBNnK2SJudFTu1vMElm9AM +Cw66bHPIsGKfUypiV+82wePXA4M/nGHFuq15QwwO/YSJ45nXmWpZsV+DamJX +i2uh7Jf5K3mpbNht13mX6Pp30Ng/3mn6EAfW7OiVmGv3FSQ+Ss+qcubA1Klv +4naw1oDJVy8GH4dwYN8K/A49eVMLYkc+2ekVc2DwMOnZh7VvoN181DZWghML +6ivJ07zdBFyU9p5SXeLEyt8A/lSFDnBrsMPQN3sHRokek60VHAL95UcvBlbu +wODCUA2/5xDYH48SQ37vwApfZm6XfR4Cc8YFU3dZuTEu9eiYRadhYFcY/CDb +ixszkqZwj+eMgP3+Mr3tmjsxKbXTtxiZxkHiiWSmXrOd2LP5j4V6ZuNgXp5b +dch1J6Yl8fdlcvw4eNm7HEZ9uhMrTzD4r1JiAgj990OWZWMnlsfNkH1SZRKs +Mu8rF3XiwU4u79wZIzoN8nz//nrmw4NtCbE7TllOA8uB18OSN3mw1I/fdx6+ +Pw3efZTikn/CgyV8NcLX1gh+8uKy16rjwd7yTnTSGmaAQFfd1bJWHsxz730q +2/oM+GoUHrN/gAe71f7jAK/SLBATX3qPrfBgiSwQG4ueBe3NA0zHFHkxx+oR +Jk8t4jt5IGV3szYv1nhmuKfmHKEHCyxVTxnyYkGRF93oIqng3q0G6zPneDHS +4ap8/iYq0J275d3nwYsdjlqMmFyggvFzBuH213ixI++LLZMEaeCg9ocC1zhe +7CJ9dMYtaxqYe34RTqbwYl/mMuIr/Wng2U75dq8XvNg82wX/H4Q+XZ1M27yC +eLE3kUI33X4Reva0Nd+/n7xYsrrU1bkJGrD8yisX2M2LCX35j8WMHgfvUqPM +QxaIfA3H5f3UcfCDP2piJx0fZvZqlJvtEA7G790OydrBh5HO9zNo2eGAnum2 +oKYoH1bS9YF52RcHe4IiX9XI82HFQyHy5lE40Fm8ZWilzYf91UmPNUjCgYX3 +rZ4JQz4MS6lw/vISBxdHI65cP8mHPeHqwTvLcBBzLoKN054Pk3ayuxVeS/BM +e3hGmjcfRubkC//cgoMqs3Bt1Rt8WANZ9dy9Phx014T9gtF8GE+rQ9L0GA4W +9cNcTibwYae/tTb0UHGwsyR0ffg5H6auoZxwdhEHiiqhj/3e8WFRtUlvvVdx +YJwbosBSxYfdkfzRv2MTBw5iIejpDz7szcXtFQOCj24mBFsrdBP57N8c3Sbs +xB3BtIpxPkz4uXCKOWG/vx1022yRDwt5q0GiEPd/bt7c00/Pj7nSlT/IIvxP +XLv54dJOfqzrdQ7vcyI+A+3GEXoxfuyqX+CABg0HYm43hh4r8mNp4gaGluM4 +0O2/Hiijy489VL/1lOUPDk5ZXd9ZasyP+XdYmh5pxYFPY2Ce6Sl+LEpAr1Gi +Dgd3TAIPdDvwY8n7ND9Gf8RBTlVAu6cPP+b2JD8rIh8HUDvAa+MmPxbu5avD +m0zw6Bt/hrg7/BjU/aqtFU3wb8Y19fc5/JhWz7WP++1xoLTrWv3BIn5M07uN +hXQYByYP/OzaIT8mVJ1olU7BQVDo1djlHn5sc+q+kcsWDTxd9pW+M8mPcY4r +qL8bpoGiS74VIkv82ELYUFlSLQ1M2l+ZPMArgHXvuT9uFE0DjF2XQ5vEBbAp +6ltbTjcaEDe/LOSoLICFflFi9jMk9hG7ZBRpKoA9l1000lijAkS6mPk9WAAr +eBff+MiaCnqTvHXO3RPAbC9mjSUpUcESj3cjNUkAu/TT9LT51ixQpvfa4CkW +wLSp6Ve6MmZB0pCHjfW0AFYYH296t20GfDjjgU8uC2AhJ1SdzNNnQGOLe9QN +ZkEsFR2v7HKdAUxf3YrTSYIYf/kh7f1/p8Gl5y48o1aCWGCTcdSd7SkQdz05 +Lc5ZEMPUUo78rZ4Cb8wb5fddFsRYkyZKbKOnAG1L57+4O4LYD48WdmXOKeB9 +ltNXt1IQk1CpuC/GOgk8BYraYiWFMKWT7xoiWsfA3Zlxex1VIaxiXxTbavQY +KPgqOju0XwgTOHPI+an+GJi6fJtJx1IIG39tamSTPQo8ftnsHYoSwlzE8t2A ++whwi9pO3DsrhPHVvwl0+jEIos5rSQ+uCGEXLQblGv0GQZ7Whbd3mXdhhnue +/34iNgjGhlvrB8R3YU0/WT6F9/QDF5C3cufkLqz3YU7aFEcfcFoxs+0v3YWl +ikaTW3Q7gJ1nilh0uDDGU77x+O5qNVjvZm+cvy+M2VlYzhZf/gqSDl8POZci +jBVwPEhQmUCgRd5mgPJBGMPK7undzfkEjCYEs/pGhTEvpZSM4rtvgILLIxmN +Q7sxtNvjtrFINlw8H6P0h1sEcy1Pe/rL5hd8+Gu511RUBPNVPn5kq6cRqhxw +jy2SE8HuXyv4zaDaDN32mFCjMRHs+pthY7XXLbC7h/Gthq8Ipilev2WR3Q6r +rEM1Yn6LYEw3xPIfefTAOyf992mmiWIWjaLU6Phh+PinoverfFHsj+Iz/uHp +YZhmOvCMXCaKlQY7Jrn+NwLfHTjEJNwqikXsIF3unhmBXQoiTRuse7DQNkMP +Tu0xOEyIDX/BPVgMk9gJ06gxOCtxSwuX2oNNsivRPfg9BumEZpOHDuzBuD3w +z5pXxqE8Q5VL3dU92KXSKoaraRNQI9j3KQjfg72jlz76epTgsRXZ7x/jCP/e +n4O7lCahOe2BWmH+HkxVdnLnv9JJGNDjuPZgYA/WeygnbR5OwbDTQirs1D1Y +cD1f0vntKXi3+bt9xNoejDRLS39+YBo+q9Os9RMUw3Q+Kf18VToN64qYH545 +KoYVPRgvCkiZgc0qFV9bbcQwT3mNF47NM7Dnpc+/o25i2N1VOg4e5llIe9Zp +axAuhkl3+LS+85yFK7tj75fFiWFOQkxlz1JnIUMChtTTxLCnfPpsh37MQqF7 ++WTpMjFM3Yo7tkaWCkksdjZpNWLYR5237+ItqFAxnO+eYKsYxsWhKisUTIUG +ATfnWKliGN1JtzsqjVTo6nzs06yUOOYtvCxyzYEGffrpaa7q4th/jvRHXofT +YOCZUtLAAXFM5SzH2XtZNBh7QiKqxUYcEwowitX8Q4OJ39s+HnETx9js0ljX +V2gw0zhmpvqqOGYaaifqzI/DYr1589I4cSz74NmLPEY4rCrNvaWWJo4lDp+4 +dcoWh98otqUv88Uxdw29IY1LOGx9xT0lWSaOXSEdS3kdgcM+uWrR1Boi/sqt +lq9PcDj+POC4QKs49kGltPxKLg7nxJTD7w+IY7evpSaUF+NwLWnwAwtVHKPK +/S5L/opDJoGE8dA1cYw09y+Cl+ALPloINx+rBOZ4nsbnQ/CH5DcP7Rx+CSxp +VzDfQ4JP1J9b2GmTJDDfeB+5AIJfDIL0o74pS2B1CSWM0gTfHLOSfWO7TwLL +1PZxjSf455w6T8essQQ26jUo9I3gI0+Otc0QCwlsSTSChgh+uj46Qua1l8Co +ZSuNwQRfxVT9OpbtJYE9Pi/yYouwE5PKru0NlMCaw2hXDAk71zcrvT5SAuvZ +80bbjLhfbHav9swj4rl3Ndtuwv9X2WvUmXQJbEOpgbWA4L8WOnvBkAIJrPz8 +Hfttgg8Hew4d4CmTwEbS1k13T+GQVqzh+rxaAhP7e5B5heDLzbg997WaiXx1 +CidSO3HIdYGlpK5PAnNdzj3K/AuHIoZzfTZTEtiTobpkrS84VBDrYZr5J4GB +L9BEkehv2rpjogE9Cbu5frZtnOh/9qRVQTQrCXvx9OZPz0SCL79irbsFSBhZ +idPvx1Uclr/dO+4kQsJ+il8KzHfAIUpTXCskkbAPepSEk2Y4bPIXkDJQIWGm +0T6mjCQcdjiza0drkjCvq+GPudkIfjbfOty8j4SVSPI6TtBocFZx8oqTCQn7 +Yivrz1xOg4u7/twuNCNhGye7m83SaHCdqTV50YKEHT13otM1hAY5Bj59ibIn +YTVvAh/yAhrk/fnud5MrCfPLzCvOE6NB4fLcKWFvEhbf4efOt06FcvEPeAsD +SZjdfzd6fIuoUDUskrwYQsJkTi+7e8ZSofbF6/sO3CZhB2GkuIErFRqZOjs2 +PSJhMfUpYmH8VOi0rv3+bwFR/6zA1VSnWXhhUqlW/z0JaytSZM/SnIWXf5O6 +b5eRsJP6uYIPGWdh6FsOeuEaEnZexJlVI3MGpjn3m+v/IWF9l/s7Pv2chp0/ +bs9F7pTEJDTNXD8vTsInBunGp4UkMX3jykL87SS0eF+cQhaTxH53brkzek7C +xsQRozpFSSyfUW6zt2cC1jn+l8xqIomle14Kff12HJYub/x3N0gSk3H3lu6W +H4WJ0n7xD6YkMcqbPErRRB+0TLw3aT8nienEmj6IkOmDfOzZB9SXJbGx5gJT +LodeGEdrmWhmksJ26hwLvNTWDaPK1fT5SFKY56fVkiuvOqD/iZnRJ1ZSWH3T +hLS/WjM8fdNJO6VaCnMLiVR+MpgLE9MFWJYbpLAC8+6cCvYM2AHrfp9qlsKc +DzG08Z18DK2YlK7t+COFXYx9n5kZHQRs7v/9ELYkhW2MRa7tp3sNbDMiKe4K +0tiZfbY2tLFq4FCdp6z1QBpTe6gimXugA2SO2Ww8TJDGRmzaGvdsdIAhVs6f +1FRpLH5dYqCwvBM4mV3yevFSGsujj9NZoHQD5986BSJfpTFq7qituVAfcJv4 +Jkf/Txrzbdi5a7ON+H6z31w+vy6NzdV4/TqgOAQmlFTqK+hlMIbogJ/NoUPA +4/IjNz9uGcz8y1XpQflhcGH1TO6EnAyWW3VU39R3BHhzzkg12spgT/8dE/YY +GAMz1yuYOB1lsIPRrDs75caB5+SdcVN3GexeGHu4z6Vx4F4rX/Dlqgx2iufx +JufGOHAKdaOUxMpgjn0BB8o4JsEQdS//wmMZjOPugwoJs0ngcI75n2qyDLan +99af1NhJYLcv5+PLXBlMl37dvJZjCpz5OwTSqmQwOx3V+JT1KdDl+F6yu0YG +O2w6l3t+7zSwag5jFPohg7XnB9RL+hB89lqi/kGnDHZJuzMjp28amLufP35r +TgZ72+T5yvb1DGj6rayOlmSwVNu0lZn+GXDcaIN3c0MGQ+0bcj47Z8FRydTf +/uxkDIhr9h64OAtMervOeUqRsYyDF2O6Ramg9vBLgxfyZOxbnl0qMqICo48B +pFFVMraQVrxy15sK/ksQGj2vR8bufVN7VP2R0J+M47Up/5Ex7cTRcdU/VGDg +W/Ki05SM5VnsqwygowH9E5ZeJy3JGP6MFp9G6NdPn6WPxdmSsascSuz+zjSw +X/mv6g8HMhZP7RyRi6ABHfbHC0YXCf+e1xR5KmmgNMCxPfwqGbsoJ+ps1EkD +WuPqpVXXyZgt+/sUs3ka0Khuuq4bRcbU/mmJ/ZYkeIOScfZaLBlrbGJ9eEoX +B+qZPgeKHhPnHfNOPj+GgzfcBhJ4EhlrzfjxGDniQCV4B71yBhnzvFvz4LUf +Dl7N9A175JKxvckBDz0IPlO0fVWTW0jGNj55Tc4l4iD/28284fdkbHOicck4 +DwfyOkdjJD6SMV2tIFn3Yhy8yBXxPFdFxswj6WmnvuBAVmD6aHINGYv+ktPE ++QsHuRHlKh3fyVhplseZuE4cyMzH7ORvIWMKGzzk3kGC5+xt5k90kjGxV7Jd +85M4kGqUa4v9Q8Yq6dalW3EcZOovFzeMkLFbFQW1N//hQKKwLpFlmowNJ5Ci +aARPWWZ8LP8+R8b0+TU5nAjeuhtf0Be3TMw374SPO8FjMDpt22KLjK19tkwl +vm9g8Wac1C5mWWxEMuyuHGErXg4z7uWUxdYOXjIe3sCBvYuvRwafLPb9h/i4 +KuH/iY3LPefdstiVgKn/tXDn0VRtfwDAUVKGXpFnKBK6N+693HMvorz2t8Gj +0iRDEs1lKEUlKqWEZIqUypAkKhVFItVGKCpjSObhmu5wMj1Dht9prd+fe63v ++u69z3evs76ftfbat+Uor5VZ2r6ga9CghhkYdZHypNhaiyo+jQYpTpLaVyhv +GhquGk5n0WBzxrcUZcqjrjpMpdMGNChsjQlcR3k1UU19lfFqGuQOuyAxyrN1 +Cxc4Tq6lwYrXkY5WlHdl5kj45VvQIGhvgq8J5WGYGEq6uo0GvKf2ltkxJPIS +8YotbGngKpcfWBpA1a+jvlfWkQZ7No6Nn6K83V5XKlN1kAZ6azf5ZzuSyBI/ +32HvQQPD80XxUpTfr2TeP63mTeW/XGyirESiN6mRMe0XafDL7Zx48aQIad44 +0+wSSgP5ScmG0Y8itOvqUTG9mzTYPmfE0++RCIV522sN3qXBtudplk8DRGhs +3z8u51Jp8DQh2K9nrQh9IyRHrhfSQFcy8A73qRBJ0EaVtpXSoFqn6eSAnxAZ +q/atUqikQVvsznhHWyFKkvjmF9tMg7CfzQkWUwLkXRMt+2yMBmvlgv9JWi1A +Lz4F6p+cocFw3kszmbkC1JnnbWUwhw6+F+LPcym/bU3ec+edAh2QpfZgGeU1 +7TPa2t/06DAg2f3U4UI/2u3yt3mkIR2uJ7fumYX6UYTjXFcbUzqQMg5pF8X6 +0YSZIL15Ix3mfkD2vy/1ocq/s1aLDtGhYMDnnJNHLzqfs37nX7F0aGhWyr6s +0Y04eyp/7X1Ah2uyh43/rueh/pk94RmpdODfkpmpDOWh3eZepTuy6PBX0Lmh +opEutKruMYr+RgexoWjf8fedaGxIjqkitgKEqxQUzan/t5f+j9lah1dAbUS7 +/ZB8PTqZcizbSF8HErH5+lle93BLxeJb84104En8o0JyYTLeMl52qttUB2Ru +GQkGe55iXUsd4vYmHYjvrdaaNM/CXQO8tJHDOnAwYl9K5UA+tvtn74OsOB3w +OlWfb32wHJccme8X+lAHPmj5CebOqcQGN947HXqqA7OcitrSGirxgs7FSxbl +6MCNyyrWdy5W47JrP26fqtGBOrj4Zvp9LV7zfUcoR1oXvgW+jMfSTfjZlJib +9EJdGDz/W2mwvAkvpmds7FDShaipM1tqIpvxmM98qajlulBY8WHnRYVW/Grp +l8sDoAsf+MH38yXa8XK3DWczzuqCSeh48cHyThwdPWRz7SIVHyHdJNLqwhIf +kgz2BeiC+rwJerh3F25ZID74101dOCyeMDCuzsN3st8fO/FCFzR333+2ZF83 +lpVYeUCPpwsNZ1coOWf04tyzs3Z283Xhnvrvm4jqV44IK9YnDOqCsWab95RR +H87/4bx8vhgDTEvqCzVy+/Cp9Hu9QlUG3Jd7sSg7vR9rLD/a8GgZA+4+Ikw8 ++vvx13vcMscVDNAcLkua1OJjWuDXtG+GDFj6dCvr3E3KT3um3Z9vZ4D0uJrn +14MCHFRdtvewHQMyu0uziqMF2MAiZruaEwOkjJI9LhQJcDiXzQlzY4Cso9+0 +ioYQr34yqWnmyQB+1POiyc1C3KteqjDlzQAJn7CBaC8hXit9YORYIANerneX +afkkxKJLet3aYQwwyWIcDBEJ8b2Ribqmmwy45/DPaLcC1Y+23cyxfMCAes1F +W5J2i/AD231PZj9mwM/i57+m/9zH+sq89+4Flb/2aPQsql99/Kb4PPMdA866 +mP47Uy/CNqyoY12FDKg19kofGhJhiYdOjnGlDHjWwqy4Pp/E6cqMrdaV1Dh5 +h89HOuWP8NE1svUMqIyyiIxDJJ43u0i/qJkB4xPD8xRtSZztc0PjQhcD3tsU +8xhuJP7rsI6EYIABh3oC1IlIEr/7OTL4cIwB/uNu5WpJJHbeXtjpMMMAdsLp +oEcvSaxYEv5dYQ4TXg7tvfcJU/5Y7VD8RZYJsmMvj/p/JfGJl/RsfwUmNN7I +3fuD8sQS+nDKalUmPG+7LVHSTuLSuPyYIQ0qvh/aNlOe8pIPu5ZGZ8LnS9fv +uFCe0rpm73NQjwnEFVqj+iiJK6eWuy42ZIKNS9pRt98k9j01uLtmNRPKFt+W +2zZNYt2+D5tD1jFhqbzls1LKS/VOIabrNzKhtmQJt5EaX/1ux/q9jQlJnuse ++FPxxCZt9UxbJrAVOyQ/Uvla8K/5bo5MMCmT9rtLzRdi+H5G8xATpN2y1kgN +ktg4LfjXT1cmXLjw3k+WT2Kehm17lAcTrrv0Rj+hfBh1W7N6kzcTAqV/NLT8 +IDGSJQslLlH5fGQ+PKP8JLicl/k2gAnDRANWoPx0ZzQo2TOUCcLLLscXZZLY +7Lj1Ld2bTFi0PuNQ+sM/70vkiZ24y4RM4htrIeXb5DeaxzLvM8Fpo0G7qT+J +JSQG1pk+Y0KBdXHqsCOJOfRdL/xeMSFfRkrnykYS77fEKsU5TIg+mnWyiUv5 +6nbYry3FTPAetX05MZvEZN6wQ9QXJgQ/SvXK54uwervDp7oqaj3r58XaVomw +L0M3YW8LExpqFFTH7ojwqvySzR6jTDBMDF6hryrCLjzWm9dTTHhyqeTL7VEh +viN9S3NiFgte7Elm/KgR4lHrg+NXFrDguMO5x8JrQpzVN5MSrcMC+Y6leaE8 +Ae6cf1S+QZ8FEquuKPNzBVjeoNxXzYgFGp95+/XDBNjjYpx1yjoqfsX5xJNs +AdZTMJHIcWDB4pRKn7mufOxonHh8cj8LPNT6Yz4b8nGoo1QDOLOg5PKOAF8x +Puan1qaXnmaBfe5ZyfKofvzY1NOxMYwFy7/RrM3S+rDWkbScacyCRrFRZsjz +HmwVIq+9voQF7pcUDR+69OArGT4RQV9ZsOFYgG2tdg9umzA/sqCBBXExNy5E +3enGCRFdCpqDLJiWMd797gyP8qLaCTNtPRhNmnmycV4nnj6YunghQw8Kvhy4 +4vWyA3fNJz43EXpQTmeFfNnVgTMObVh2GunBWmKF0XRyOzZf4FaTtFsPJPrf +rhzjtmGvozkrxSL1QCmzubhx709cq7hTLG9KD67sqHKK/l2G3+Y3PQucrQ9a +osT4uh2lONHtiL2VjD48ND0UOpzyCR8r8HnVp6wPAf/ZBS3YWoRnH088pGyg +Dz/FLj/6ppWHDYqEn8+46gPHObYy/rI4jvK8Fsmu14dtfu/yT46XoYmvz3Ku +NetD/GNOR1XAV3SAXtXa1qkP4TkvxBYtLEfcJhW9yF/6cGtXRth0ZCXqT7Lh +jc1mg5Cp5dIQV4NCZXsu26uzobfMeeJ5SAPKN/G5FbCMDd6XlhzbYfYTDR+R +efJSmw1rlvH9BVM/0Z4C/cp5DDbIzFJ5KnBrQiwvb/W3K9kQIUu3tlzVispb +5+Wp7mBDqn7VfKMtHUhCLq78X2tqvi9x69UTO5DRKr0OTzs2bLgxKLt5sAMl +RFvN++LIhq5whs/h6E50YmOs3XlXNpzaIUUzq+hCCzKZw43+bPBvux8qqdaD +NrR9kJobxIZc+tXMogM9yFtux2KD62wQUzW6die1B7UdPbMu9AYbJkZkPE/p +9aKXSz7cMI1nww7nqz+fsfuQVeA2Vnw2G1YOVWRISPJRiv2vjbm5bDBQNGuo +NOGjcWbkkdp3bAhCI69jjvNRYk31fbmPbMj6TvsoVc1HQg1b+YsVbNDPres0 +DRcgGP5P7141G2KMxTTi3gpQ9KeYzdm1bLgVtDSIxxOgVe4NV0WNbLj52MaW +bSJE1/L2jDr1smGXc9GXc9VC1BQ+pXCez4bIpJS+mREh0j+QwI4RsQG83SwO +KotQ3dw2l4phNqRk7nmA7UVIp8kvkD9K7S/PQyvbW4QupC97KPWbDfwAq/8C +bouQlu3BJiROgLHzMeXn5SLkpTN73GE2Abu33bOQ6BOhsslkRW8pAjxVokKY +EiQ6+bB7a4YcAUPVeUGTVL9b5BXk9nUBAem9RhcS/yWR0qYV13oVCBgxXzqh +6ECiD79cCjRUCRBbtzbQ049E8kXSLaZqBOwndRi7Ikl0OCZtYpcGAXkv+YGy +D0iU42qpdEaLgGnnFPGIdBLJrhFyI2kErJw/96/Wd5QfFoZvf65DgK+Yld7k +ZxK96tI7XsokgNbh2M+rIdGcnIpgnj4B9ySTGmKbSWQfcjJFnEvALFfDBLVu +qp93WvhRzYgAb/ManusfX3BetZqYEPBIt8XFf4hEOyV3TtqYEnDj/gHyyBiJ +Un4MKXsiAjrcVMwVKb9MpEUbhq+j1mfnsiV8mkRbLhlaPTUjYHuQc/+f+32J +VnXuJRYEhO1tXtj2x0PLz4Z0bCZgeHrNxxwq3mJc6fH0VgJOr309bw+VL/Zr +TpGqFQGfrZUnS6n5RPft241sCLjZSL6ToDy07tTElNUu6nvd9zg3R0SiW//G +qp5wIKCp6pJ7LbWfXhXTlSFOBPCbUlpOtJDIVNi0M3U/AdqFqkvqvpMoIt/3 +5MdDBITPy/KfW0aijpvqYa1HCUhFAl+pDyQyOoqf/HYlQHrWz4s1GSQKXrWv +RMmdgIYHzDnHk0jUJCfeyfUg4Me/9Pvfoyj/tj+Y2XaagMTs2DbpKyTyz1q3 +5NhZqj7xXccWnKS853DVJtmXgF2feCtCLajv75EtP/syAa0Y0pYRJLoW1Ftx +8CoBBhbGqtbKJOJlWm7SCiEgNEdtZXSHCC0quyjlH06Ag0uvRXKxCK1ryyjq +iKTO3xzRfNtUEUqUVURJd6j6di5lJB8RoXJN80nxOAKCcMH+9RtEaMrYJ3f/ +fQJezDjLXdcQod2Hm7nLUgiYUX3FWlQrRIofHq1IzCSgYPhY6WY9IdrwvZ43 +k03VwzbhlK24EHn2z3u49y0BmiHtor9rBJRX3NWWFlD11VJ8UOApQNdPGMkn +lFPnW9t48e8kPsoNcK6YqqLqcddHbsDtz3sW90Ida6n9fntc/4LLR2afp+eo +NRHA224xKxT3I7Fln37H9hGgXnhe4+/SPqS/cjznt4CAMfqChpvX+pDTFoaX +wy8Cus0ne0T/9qE8n4hfqqMEnO3OKbTI70Ve1Xa8u7M5IBfeYdb2qAfx/XvL +Y5Zy4O6TR8ePIx5SvacaOqrJgWn93fUmoi5kkWG50Y7Ggdbn66aU4rpQSlPG +x79ZHJi1clhLeaQT7TP0ybm1igObGVmpN+I6UF33vKSbNhy45RIWHRncikqs +g+Nyd3FAnmdn96ChBWUXzo1pdeBAhvfn7ZdWtKDbCVKhjAMciJ1LP1BQ2IRs +bCW9PrpzYOnasiqN/gb0vVhs01AQB8x8e94GSH9H1cmjA1ZvOXD/ePGRZkWM +CuXPCrzfc6DU5FzphpE89Mrvv+6EfA7kFlrKxdTkoKg9I439JRxI7i9z9Q57 +hXYsGiq+UsOBoba1H227Y1Clv+juKwEHiq9K7PQlMnH5Ad5a+aVceB+xzOub +XhVun506dkuTC4oN8gw5qWo8nOKcrkLjQuOHLgP3lmqswucvWcbiQoq3TYHr +9e/40KnBUf3VVHwIJ4VVV48n/Geeb7HjgkrQmlhJgxYsRys4VLWbC5Xn/smN +GW/BGp+vLLZx4kJmjTWkvW/FZrJzgvcc5kLS3ccH7iS24RvRsofcTnEB69d+ +3KXagWmPVFSDI7gQ715wta6jC5uYN1bK3uRCXM/Hy8ErediyLy7oxm0uTM8u +cTcK4WEPlsZITDwXHlQFzRzX78bvXtMqU9K4YI+6tbtde3CFXW+gbjoXomqu +n5rI7sEd40/+efGKC4Xyij/6xHux1BpW2utcLhSs4Z3bHN2LrUq4gUWfuND7 +6vy5nKd9+LDziKnFFy60h19xWS/sw97Sb4a+lHNBfJFwcbheP47fump/TS0X +TCOywPZ5P+6tA9OOTi4MVwQZOMby8YS3xNDhHi686RX5Rtbwsdzioid9/VxI +CFVe5C4twJy95koDA1x4nd2dqHhagM3E55WfHuGCeXTIxcYUAd71sOzq2BgX +HJM4Z9EPAXY1C119YZILbPGKFWiuEP//vU74/3ud+H+5JLkh + "]]}, + Annotation[#, "Charting`Private`Tag$852617#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-20, 20}, {-0.9999993575792578, 0.9999999496884054}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.7934642265558367`*^9, {3.79346425859669*^9, 3.793464306101451*^9}, { + 3.7934644554334497`*^9, 3.793464461383195*^9}, 3.7934666695829*^9}, + CellLabel->"Out[68]=",ExpressionUUID->"f8286c1f-f644-4bfb-83c7-8ed63b92cbce"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", + RowBox[{"-", "1"}]}], "}"}], ".", + RowBox[{ + RowBox[{"MatrixExp", "[", "x3", "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "//", "FullSimplify"}]], "Input", + CellChangeTimes->{{3.7934641442183743`*^9, 3.793464156873516*^9}, { + 3.79346671107231*^9, 3.793466764513672*^9}}, + CellLabel->"In[76]:=",ExpressionUUID->"8bae4557-85bc-4792-906e-cdf5f9954a44"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"a", "+", "b", "-", "c"}], ")"}]}], " ", "c"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + RowBox[{"a", " ", "c"}], "+", + RowBox[{"b", " ", + RowBox[{"(", + RowBox[{"b", "+", "c"}], ")"}]}]}], ")"}], " ", + RowBox[{"Cosh", "[", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "a"}], "+", "b"}], ")"}], " ", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]], " ", + RowBox[{"Sinh", "[", + SqrtBox[ + RowBox[{ + RowBox[{"-", + SuperscriptBox["a", "2"]}], "-", + SuperscriptBox["b", "2"], "-", + SuperscriptBox["c", "2"]}]], "]"}]}]}], + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["b", "2"], "+", + SuperscriptBox["c", "2"]}]]], "Output", + CellChangeTimes->{{3.7934641500492496`*^9, 3.7934641572882633`*^9}, { + 3.7934667247489147`*^9, 3.793466766544986*^9}}, + CellLabel->"Out[76]=",ExpressionUUID->"8c5d5347-5047-44ec-ab4e-1d6d37a085ad"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"a", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["r", + RowBox[{ + RowBox[{"n", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], "/", "2"}]}], "-", "1"}]], " ", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "\[Beta]"}], " ", "n", " ", + SuperscriptBox["r", "2"]}], "]"}], "2", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Pi]", + RowBox[{"n", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], "/", "4"}]}]], "/", + RowBox[{"Gamma", "[", + RowBox[{"n", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], "/", "4"}]}], "]"}]}], "/", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[Pi]", + RowBox[{"1", "/", "2"}]], "/", + RowBox[{"Sqrt", "[", + RowBox[{"n", " ", "\[Beta]"}], "]"}]}], ")"}], + RowBox[{"n", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], "/", "2"}]}]]}]}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Beta]", ">", "0"}], ",", + RowBox[{"n", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.793465164938962*^9, 3.793465276942292*^9}, { + 3.793465394288927*^9, 3.793465415723238*^9}, {3.79346555100313*^9, + 3.79346555531676*^9}, 3.793465637781562*^9, {3.7934657388041058`*^9, + 3.7934657487124987`*^9}, {3.7934660943107843`*^9, 3.793466111187224*^9}, { + 3.793466158296303*^9, 3.7934661605743647`*^9}}, + CellLabel->"In[50]:=",ExpressionUUID->"e95aa855-0ec5-4b02-9a2b-7b9f8ad86b9a"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "n"}], " ", + SuperscriptBox["r", "2"], " ", "\[Beta]"}]], " ", + SuperscriptBox["r", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "+", "n"}], ")"}]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"n", " ", "\[Beta]"}], ")"}], + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}]]}], + RowBox[{"Gamma", "[", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}], "]"}]]], "Output", + CellChangeTimes->{{3.793465255105665*^9, 3.793465277477212*^9}, + 3.793465453681077*^9, 3.793465555715981*^9, 3.7934656389289494`*^9, { + 3.7934657395221357`*^9, 3.793465749034925*^9}, {3.793466094794734*^9, + 3.7934661117947063`*^9}, 3.793466161150166*^9}, + CellLabel->"Out[50]=",ExpressionUUID->"28fe16a3-13d3-4ad9-b940-beced42022e7"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"b", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"a", "/.", + RowBox[{"{", + RowBox[{"r", "\[Rule]", + RowBox[{ + RowBox[{"\[Pi]", "/", "2"}], "+", + RowBox[{"\[Pi]", " ", "m"}]}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "0", ",", "5"}], "}"}]}], "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.79346630866848*^9, 3.793466387235531*^9}, { + 3.793466478960395*^9, 3.793466485768878*^9}}, + CellLabel->"In[65]:=",ExpressionUUID->"980574f0-a6f2-4bdb-9087-5c4edf46b08f"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LogLogPlot", "[", + RowBox[{ + RowBox[{"b", "/.", + RowBox[{"{", + RowBox[{"\[Beta]", "\[Rule]", "10"}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"n", ",", "1", ",", "100"}], "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", + CellChangeTimes->{{3.793466199858704*^9, 3.7934662491211367`*^9}, { + 3.793466488996272*^9, 3.793466499921826*^9}}, + CellLabel->"In[67]:=",ExpressionUUID->"d81a95b0-baac-41e2-85a1-56476d76e643"], + +Cell[BoxData[ + TemplateBox[{ + "General","munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"2985.836216774226`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"",2,67,17, + 31323197559230362610,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.79346649455048*^9, 3.79346650022822*^9}}, + CellLabel-> + "During evaluation of \ +In[67]:=",ExpressionUUID->"0276ced0-3e05-4431-85ff-80d6cff2f239"], + +Cell[BoxData[ + TemplateBox[{ + "General","munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"1998.7829219728292`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"",2,67,18, + 31323197559230362610,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.79346649455048*^9, 3.793466500247039*^9}}, + CellLabel-> + "During evaluation of \ +In[67]:=",ExpressionUUID->"683c37e9-522b-416a-9aec-0a641843f48a"], + +Cell[BoxData[ + TemplateBox[{ + "General","munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"1209.1402861317115`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"",2,67,19, + 31323197559230362610,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.79346649455048*^9, 3.793466500266004*^9}}, + CellLabel-> + "During evaluation of \ +In[67]:=",ExpressionUUID->"4eb8e038-2070-460c-b6a7-fc43b0c32baf"], + +Cell[BoxData[ + TemplateBox[{ + "General","stop", + "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \ +\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"",2,67,20,31323197559230362610,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.79346649455048*^9, 3.793466500285001*^9}}, + CellLabel-> + "During evaluation of \ +In[67]:=",ExpressionUUID->"be60879b-9aaf-4b71-b856-f45eacbe3f80"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVknk0lXsXx2U856lQZMh0q2NsUCkZOs/vV4aipMicMs/Oo+GNUJnJNZUx +ERkj15SoLtlmQm9mtzQgkosrGcvlPe8fe+31WXuvtb/ru7877CgjR04ODo5C +dv2/56Wlxnlr3CBfis03vF/XBiVVx2JnhhlyctPseXMIw4LwdfXDDGcUHNNO +aQICt5YhAwmry2glJ0M8wAaBZcjamgTDG0U4/9SYkUagf+y3Uslpf9Q/8ir9 +yzQJUuuZpfxWgUgwg7bpXAsJiR8O0GNRCFpMELq2mE/C5up6WwFGONI14Jgf +iyYhJNX4ZSwtEu0ZUDL97E3Cqs+XrYLTUeh7pmveRkcSrpn9xz2uKxbdP/In +1XGehMXtXHY0q7tI0jTrW4kuCQcjT8Wc7LyHossufruoQQJrJf5lBEpAPJl+ +fyQqk1DoMjTeWpaIuCNab0vLkTA+wBCiM5JRdt0ToTdSJOw84Yn0klJQlmDH +WoAICRcrn7nfoaWimgD63+KCJKTKriW3+T5AYjJROgEECf0Juo306TSUmmSh +ncFDwlbu2Fm9Sw9RXL+QouMGEs5cHZCM7MpAnKOtJfX/MkHneyxj7FEmmr8u +8LDwJxNGFSo0eKweIZFn+9y2LDMh0GbwrKxwFioZcp+fWmCCTMqqk05nFrKo +PHLm0DwTav77203HsGxk3ykS9WmOCVZ8OvGhKAfJZU9lfP3OhBXStSB3OQc5 +Boyp67I5+Xp0bVNZLmpZyi1emGXC4eKyvjG3PJTuVDk8y+aesb6/eRj5iG/Q +SkWFve8l9XOD3Id8lKR69PJzNvObSIvpJj1GN9IM2vzZ94qiju9zMixAVErh +K/8fTNBvdNIOoxUiOacVmWdsfRO/Ii3z6gpRU++u9Z2LTAhTKfFq9n2CiCXF +woYlJjDce8LGVYqQcNhoTsIKE+qzltJ4p4vQSunv2fG/mGDzTuKpXN4f6IDF +Sugrtl9rW3Cb7qVilN7uZizEQYJGYMRCWFcJWu0O8lNh++1xoT/UWKcUKVZZ +Rf7iI0HTZyJu9FEpWt0k8XWc/Z+/Sjblc1mVoaere7fu3ELC43bp8viqMjSo +OGJJCZPg/XV/zS7hchQ3XznyTpSEbTImPVqd5SjQ5RNFkyHhXEz6ejCqQLrb +KN7sfST8VlhCCKdVIKJT37DlIAn/NNVty1muQPJ19jWcR0iI/ndsd2PZMxS1 +cY9xNSKhzWOfOTejChXXKTEVjUhIiBO7Zx1RhSpqB5ytzUiwqeDsqJyqQmeV +f57Iv8DO869+5PrsObqQ2dJ/w5mdx99vy7/RfYl4ndKojbdI8C94u5jsWoNw +Qyj9ZjEJYldfvE4cqEP39/1H/+x2BGshxc719Ho06mgu5rMDwWhSNvc/mvUo +pXFG/4kCguKX0eTJzHq05w9KQ+UIAh1Ou/KfLg2Il0wTbDqP4MpdIvXSz0bU +2jJa230XQXuJlauiVCtytJo+6E7HcC/Br4/zdCtCpcHeZzdjsLzx4NiQbyta +NZBD6lswTB5/Lx472IouJyswt4ljoPVbvp6Pb0M3uIa0FhUwaK9a7AaiHf0w +5afM9DC8Omk+bbrciZRDgnmuRWH4y6tQrf5bFxJY4NU2kDgGI5ftDcPzB5BJ +7vtzRueOQ/FcmvGn4Q+oIFhlQrRdCz46pzycGBxGHh2Wz3PO6YBu0k5i9/oX +lPUsQ2105wl4sUygFyITSD1f1S9SVA9O38l0El6ZRCMrQWY2QqegzmKR+4X4 +DJoWke9KcTEApaJV/cSgWUSfYHzsaDAEX529yz9mv6O/j+4sGpM5B3+u1dh4 +3/qBHDwyKmfvGcEmw9zjtt/nkdT2gv5rvOfhTO3UJyp4EYkpWxs9emYCiXqj +tgz+ZSTL5yvJ8jWDKbf91ujWCnpeRjL8NS3gUNEHodubfyE37WMfvyAriAoZ +1pINWkVb5/c8Pc60hj5/HeXZbWtIe+vH1dNBl2BXrPm6TdY6cs+fVqWmbOCY +pC1DMpIDj2/iztYWsIMJjma5VKMNOPGWypEBE3sQPdDv2L6ZE3srVZaGxzqA +3gwz2bCJE++K75Ld0eYIV/80kXOK4sIBC400oR3OINsrNqesy437UtM3bLBz +gberv0tECfDgHu69yVPPXeFmuekRzT4erDhSv798zQ3Kn3bEpkfzYi/HD4EJ +0h7wuXFO554JHwZP40cOTE8wJl6N+ZvzYc7G5AmTY57QbHgn1NmKD48Ea6nr +6HhC0TuZpqO2fFjd8+iMlIEneM+e1v7qwYdTRJ3dqi54Ar9k/vGjIXy4ubyh +KcLPEzSvWqHxcj6cOGedlVjlCUk7GtU0BGm42Cvh9F8KLGA2mTNEhGg423yH +mdIeFnxxmRaY20bDO94Oz/kos+BgqcjXAgkaVuua7OVXZUEn6ZooLk/D6pqO +XFJaLOC+wD+3zKThFPvt9LoLLLiSZP6kyp2Gw/rib4nGsEBcYzopnkXDgXOx +aiJ3WQAfAoOoyzS8cdhSfWsCC/hln1jIe9PwdFAXD2cqCwqe/suXHMSeL2iG +Qy4LPr/Ncrh+n4ZjxDsEq6pZYLhxWupwCw0f39dx6MYEC1SpZSPD1zQ8/7DC +zuRvFkj2cEW4dtIw9wff9b0zLJhM3T6X3kPDgh2DPr0/WBCmdLKZ9zNbz7jU +lsU1FlTrZbMGl2m4232c544wBQoRFrV+SnSs8G3xwMBRCgSmHOYT99LxTvW+ +HxqIgkVDL8XS/XTsGcFTnXqMggbR8Pgvqmxe/XXujC4FF/MrnA206Fg45JJq +qCEFCc0CgjIX6Lj/i/7MPlsKOHiabeqj6djy/f5TloEUbBNptMuPo+O62w5O +YsEUKMnXO0TF03GZ9Lei7hAKzuu9cjG9T8djF1NKNSMoyI+u9JrMoeMD5Xpa +n2IoOCOSH7C1mo7fMEzF3R5QYC+fG7T0io7b8ngSv6VR4KOWHTJUR8eXL/vx +Oz6kIMsyIyKvhY570pj/GD6iYOFhcpxGDx37DseILuRRkCYfkWk3Scf2UO7v +W0ZBmVpY1olpOlZ2b/J9Xk5Bs15Izp5ZOhYQsT4595SCWfeAx4sLdHwl+6qu +RSUFWqU+pZEbCHxTMdh//iUF5nXXyyluAoct8eUKVlPg0X2t4jwfgR9nlYUq +1FCQNO/1XHozgd8/qLI/VUvBpJorlIsRWMvtJLZuoGBdz7k+WYLA8q/LB0wb +KRC2cmz0lybwL++XAqebKCBv2rbqMghsWd9tothCwb06i7fvlAlcrXfxa/Fr +tl/dZt21BwlMc5nZH9pOQfWoSW/OYQInHaC4zDooGOcxGmRpEnjol+2R6U4K +1PX1P3OeIPDk7rbw0bcUxEjU7pbTJzDxnjMqp4uCkSkVbz0DAtdsKjhk001B +VKwUf5wxgXtLuBxaeigYtrln8dSUwNp520ev9FKgepAvt9+CwEs/bJbE+ij4 +3DurKWVD4IfK3D3n+yk4nOcYju0JPFG/JXKSzZHe77rtnQgsez3wgc8ABR9P +GkqHuxLYJP0MJTlIgcr2RtdCDwL3sLS5/YYoeK/JFVPBInA60zJkme3X/wAH +ghje + "]]}, + Annotation[#, "Charting`Private`Tag$852402#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{9.398306502016513*^-8, -254.89001668325236`}, + CoordinatesToolOptions:>{"DisplayFunction" -> ({ + Exp[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Exp[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Quiet[ + Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , + Charting`ScaledFrameTicks[{Log, Exp}]}, {Quiet[ + Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , + Charting`ScaledFrameTicks[{Log, Exp}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None}, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->FrontEndValueCache[{Quiet[ + Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Quiet[ + Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& }, {{{0., + FormBox["1", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0.6931471805599453, + FormBox["2", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {1.6094379124341003`, + FormBox["5", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {2.302585092994046, + FormBox["10", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {2.995732273553991, + FormBox["20", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-0.6931471805599453, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-0.5108256237659907, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-0.35667494393873245`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-0.2231435513142097, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-0.10536051565782628`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.4054651081081644, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {1.0986122886681098`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {1.3862943611198906`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {1.791759469228055, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {1.9459101490553132`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {2.0794415416798357`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {2.1972245773362196`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {2.70805020110221, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {3.4011973816621555`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {3.6888794541139363`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {3.912023005428146, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.0943445622221, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.248495242049359, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.382026634673881, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.499809670330265, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.605170185988092, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {5.0106352940962555`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {5.298317366548036, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}}, {{-253.28436022934503`, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "110"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-207.2326583694641, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "90"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-161.1809565095832, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "70"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-115.12925464970229`, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "50"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-69.07755278982137, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "30"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-23.025850929940457`, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "10"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-230.25850929940458`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-184.20680743952366`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-138.15510557964274`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-92.10340371976183, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-46.051701859880914`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}}}]]], "Output", + CellChangeTimes->{{3.793466220564404*^9, 3.793466249380309*^9}, { + 3.793466494667863*^9, 3.79346650031164*^9}}, + CellLabel->"Out[67]=",ExpressionUUID->"92a6d277-5c42-4f63-b117-58768a23e8fc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"a", "/.", + RowBox[{"r", "\[Rule]", + RowBox[{"\[Pi]", "/", "2"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.793466168378406*^9, 3.7934661818634033`*^9}}, + CellLabel->"In[53]:=",ExpressionUUID->"19fa357b-b8b2-42f2-86cf-c70cabcec230"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["2", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{"4", "+", "n", "-", + SuperscriptBox["n", "2"]}], ")"}]}]], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", + FractionBox["1", "4"]}], " ", "n", " ", + SuperscriptBox["\[Pi]", "2"], " ", "\[Beta]"}]], " ", + SuperscriptBox["\[Pi]", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "+", "n"}], ")"}]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"n", " ", "\[Beta]"}], ")"}], + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}]]}], + RowBox[{"Gamma", "[", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}], "]"}]]], "Output", + CellChangeTimes->{{3.793466174263611*^9, 3.793466182245388*^9}}, + CellLabel->"Out[53]=",ExpressionUUID->"17ffa7ee-f62f-4e9a-b461-02cd24382398"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Integrate", "[", + RowBox[{"a", ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "\[Infinity]"}], "}"}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Beta]", ">", "0"}], ",", + RowBox[{"n", ">", "1"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.793465454645339*^9, 3.793465462602173*^9}, { + 3.793465562788645*^9, 3.793465581416975*^9}}, + CellLabel->"In[51]:=",ExpressionUUID->"ba8f198a-690c-424d-9cc7-343746fa1b85"], + +Cell[BoxData["1"], "Output", + CellChangeTimes->{ + 3.793465483432444*^9, {3.793465561747189*^9, 3.793465583809306*^9}, + 3.793465641281439*^9, {3.793465740366543*^9, 3.793465751406748*^9}, { + 3.7934660976848183`*^9, 3.79346611407049*^9}, 3.7934661640146103`*^9}, + CellLabel->"Out[51]=",ExpressionUUID->"b1226115-e262-43fa-91ef-96afd5531fd9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{"a", ",", + RowBox[{"{", + RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "1"}], "}"}], ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"n", ">", "0"}], ",", + RowBox[{"\[Beta]", ">", "0"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.793465280424767*^9, 3.793465297775216*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"a69d3ea3-6c53-4757-98a9-c615f36923a6"], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox["2", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "+", "n"}], ")"}]}]], " ", + SuperscriptBox["\[ExponentialE]", + InterpretationBox[ + RowBox[{ + RowBox[{"-", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{"n", " ", + SuperscriptBox["\[Pi]", "2"]}], ")"}], " ", "\[Beta]"}]}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + FractionBox["1", "\[Beta]"], "]"}], "2"], + SeriesData[$CellContext`\[Beta], + DirectedInfinity[1], {}, -1, 2, 1], + Editable->False]}], + SeriesData[$CellContext`\[Beta], + DirectedInfinity[1], {Rational[-1, 4] $CellContext`n Pi^2}, -1, 2, 1], + Editable->False]], " ", + SuperscriptBox["\[Pi]", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"n", " ", "\[Beta]"}], ")"}], + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}]], " ", + RowBox[{"Gamma", "[", + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "n"}], "]"}]}]], "Output", + CellChangeTimes->{{3.793465287033741*^9, 3.793465298181282*^9}}, + CellLabel->"Out[31]=",ExpressionUUID->"de5bf86e-f71c-4d66-a846-9cdd3eec0bfa"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"6", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], "-", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], "-", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], "-", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], "-", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}], "-", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}], "-", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}]}], ")"}], "2"], "//", + "Expand"}]], "Input", + CellChangeTimes->{{3.793536642823517*^9, 3.793536686774036*^9}}, + CellLabel->"In[79]:=",ExpressionUUID->"76a5a6bf-8a98-4d15-942b-df42914ad53b"], + +Cell[BoxData["7"], "Input", + CellChangeTimes->{ + 3.7936296303941603`*^9},ExpressionUUID->"56f2956b-d07d-4363-8656-\ +bbcfe2c5f5f3"], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], "2"], "+", "cl", "+", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], "2"], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}]}], "+", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], "2"], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}]}], "+", + RowBox[{"36", " ", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}]}], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}]}], "+", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}], "2"], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}]}], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}]}], "+", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}], "2"], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"0", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "0", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "0"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "-", + RowBox[{"12", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "1", ",", "2"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{"s", "[", + RowBox[{"1", ",", "2", ",", "1"}], "]"}], " ", + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}]}], "+", + SuperscriptBox[ + RowBox[{"s", "[", + RowBox[{"2", ",", "1", ",", "1"}], "]"}], "2"]}]], "Input", + CellChangeTimes->{{3.7935394747462997`*^9, + 3.7935394748445168`*^9}},ExpressionUUID->"5ab2d411-f76c-439c-b4a8-\ +69e4391bfc67"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"A", "=", + RowBox[{"Sqrt", "[", + RowBox[{"1", "-", + RowBox[{ + FractionBox[ + RowBox[{"8", "g"}], + SuperscriptBox["b", "2"]], + RowBox[{"\[Eta]", "[", "x", "]"}], "\[Delta]Fo\[Delta]\[Eta]"}]}], + "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.793741067148281*^9, 3.7937411136426697`*^9}}, + CellLabel->"In[80]:=",ExpressionUUID->"fead141c-7cf2-478d-a297-838bebe09fc8"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sqrt", "[", + RowBox[{"1", "-", + RowBox[{ + FractionBox[ + RowBox[{"8", "g"}], + SuperscriptBox["b", "2"]], + RowBox[{"\[Eta]", "[", "x", "]"}], "\[Delta]Fo\[Delta]\[Eta]"}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]", "[", "x", "]"}], ",", "0", ",", "1"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.793743846800037*^9, 3.793743856039771*^9}}, + CellLabel->"In[98]:=",ExpressionUUID->"f60f6ced-d698-434d-b1b6-259a8d3625bf"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"1", "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{"g", " ", "\[Delta]Fo\[Delta]\[Eta]"}], ")"}], " ", + RowBox[{"\[Eta]", "[", "x", "]"}]}], + SuperscriptBox["b", "2"]], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{"\[Eta]", "[", "x", "]"}], "]"}], "2"], + SeriesData[ + $CellContext`\[Eta][$CellContext`x], 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[ + $CellContext`\[Eta][$CellContext`x], 0, { + 1, (-4) $CellContext`b^(-2) $CellContext`g $CellContext`\[Delta]Fo\[Delta]\ +\[Eta]}, 0, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{3.793743859432831*^9}, + CellLabel->"Out[98]=",ExpressionUUID->"ce625025-4360-455f-82b5-b9530ae4d111"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + FractionBox[ + SuperscriptBox["b", "2"], + RowBox[{"4", "g"}]], + RowBox[{"(", + RowBox[{"A", "-", + SuperscriptBox["A", "2"]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]", "[", "x", "]"}], ",", "0", ",", "1"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.793741117161496*^9, 3.7937411420266447`*^9}}, + CellLabel->"In[81]:=",ExpressionUUID->"16de18cb-0c52-4dab-9a12-e27dcf2d6fc9"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + RowBox[{"\[Delta]Fo\[Delta]\[Eta]", " ", + RowBox[{"\[Eta]", "[", "x", "]"}]}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{"\[Eta]", "[", "x", "]"}], "]"}], "2"], + SeriesData[ + $CellContext`\[Eta][$CellContext`x], 0, {}, 1, 2, 1], + Editable->False]}], + SeriesData[ + $CellContext`\[Eta][$CellContext`x], + 0, {$CellContext`\[Delta]Fo\[Delta]\[Eta]}, 1, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{3.793741142658823*^9}, + CellLabel->"Out[81]=",ExpressionUUID->"5c86022f-2a97-426d-a105-27ca644556d3"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"cc", "=", + RowBox[{"CC", "-", + RowBox[{"b", + RowBox[{"(", + RowBox[{"2", "-", "A"}], ")"}], + RowBox[{"(", + FractionBox["1", + RowBox[{"b", " ", "A", " ", "\[Chi]"}]]}]}]}]}]], "Input", + CellChangeTimes->{{3.793742041190386*^9, + 3.793742111131962*^9}},ExpressionUUID->"b204065d-c0d3-474e-bf46-\ +960ca97915f9"], + +Cell[BoxData[ + RowBox[{"Clear", "[", "A", "]"}]], "Input", + CellChangeTimes->{{3.793742928617783*^9, 3.793742934416638*^9}}, + CellLabel->"In[82]:=",ExpressionUUID->"e6e51249-1961-4ba0-8491-cc8826f3a222"], + +Cell[BoxData[ + RowBox[{"A", "[", "g"}]], "Input", + CellChangeTimes->{{3.793742935137989*^9, + 3.7937429381919527`*^9}},ExpressionUUID->"a1f9a74f-6349-479f-a0d8-\ +3afa27dbc2cf"], + +Cell[BoxData[ + RowBox[{"CCC", "[", + RowBox[{"CC_", ",", "b_", ",", "g_", ","}]}]], "Input", + CellChangeTimes->{{3.793742911774315*^9, + 3.793742922296541*^9}},ExpressionUUID->"2d175ba3-8b08-40f4-9f18-\ +393040950671"], + +Cell[BoxData[ + RowBox[{"FourierTransform", "[", + RowBox[{ + RowBox[{"1", "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{"g", " ", "\[Delta]Fo\[Delta]\[Eta]"}], ")"}], " ", + RowBox[{"\[Eta]", "[", "x", "]"}]}], + SuperscriptBox["b", "2"]]}], ","}]}]], "Input", + CellChangeTimes->{{3.7937439219808197`*^9, + 3.7937439253542013`*^9}},ExpressionUUID->"f35dc126-7704-4357-98fe-\ +523e0d2f75a7"], + +Cell[BoxData[ + RowBox[{"A", "=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Sqrt", "[", + RowBox[{"1", "-", + RowBox[{ + FractionBox[ + RowBox[{"8", "g"}], + SuperscriptBox["b", "2"]], + RowBox[{"\[Eta]", "[", "x", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "g", " ", + SuperscriptBox[ + RowBox[{"\[Epsilon]", "[", "x", "]"}], "2"], + RowBox[{"\[Eta]", "[", "x", "]"}]}], "-", + RowBox[{"b", " ", + RowBox[{"\[Epsilon]", "[", "x", "]"}]}]}], ")"}]}]}], "]"}], "/.", + + RowBox[{"ss", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{ + RowBox[{"\[Eta]", "[", "x", "]"}], "\[Rule]", + RowBox[{"\[Eta]s", " ", + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}]}]}]}], "//", "Simplify"}]}]], "Input", + CellChangeTimes->{{3.793743184168146*^9, 3.793743186360269*^9}, { + 3.793743225022057*^9, 3.79374323424545*^9}, {3.793743279128126*^9, + 3.793743292535133*^9}, {3.793743365160321*^9, 3.79374340324955*^9}, { + 3.793743451180779*^9, 3.7937434597540073`*^9}, {3.793743495073674*^9, + 3.793743544284822*^9}}, + CellLabel->"In[91]:=",ExpressionUUID->"86367330-ecad-4848-a0ba-bdf293b66e9d"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"AA", "=", + SqrtBox[ + FractionBox[ + RowBox[{"1", "+", + RowBox[{"12", " ", "b", " ", + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "2"]}], "+", + RowBox[{"4", " ", + SuperscriptBox["b", "2"], + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "4"]}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "b", " ", + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "2"]}]}], ")"}], "2"]]]}]], "Input", + CellChangeTimes->{{3.793743642172892*^9, 3.793743771520555*^9}}, + CellLabel->"In[96]:=",ExpressionUUID->"e00b5722-fae6-4282-a0c0-7c74db5258e3"], + +Cell[BoxData[ + SqrtBox[ + FractionBox[ + RowBox[{"1", "+", + RowBox[{"12", " ", "b", " ", + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "2"]}], "+", + RowBox[{"4", " ", + SuperscriptBox["b", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "4"]}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "b", " ", + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"qs", " ", "x"}], "]"}], "2"]}]}], ")"}], "2"]]]], "Output", + CellChangeTimes->{{3.793743748383366*^9, 3.793743772054668*^9}}, + CellLabel->"Out[96]=",ExpressionUUID->"acca43d1-2cf7-4c66-8f61-f765de6fa91f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FourierTransform", "[", + RowBox[{"AA", ",", "x", ",", "k", ",", + RowBox[{"Assumptions", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"b", ">", "0"}], ",", + RowBox[{"k", ">", "0"}], ",", + RowBox[{"qs", ">", "0"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.7937435458307056`*^9, 3.793743551747511*^9}, { + 3.7937437747541113`*^9, 3.7937437845120173`*^9}}, + CellLabel->"In[97]:=",ExpressionUUID->"0c450611-0015-4363-aeb9-daa06cff2241"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.793743633712516*^9, 3.793743858452667*^9}, + CellLabel->"Out[97]=",ExpressionUUID->"45be489a-043b-499f-bfbc-dadd66a9398a"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Convolve", "[", + RowBox[{ + FractionBox["1", + RowBox[{ + RowBox[{"d", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["qs", "2"], "-", + SuperscriptBox["q", "2"]}], ")"}], "2"]}], "+", + "\[CapitalDelta]r"}]], ",", + RowBox[{"Sqrt", "[", + RowBox[{"1", "-", + FractionBox[ + RowBox[{"8", "g"}], + SuperscriptBox["b", "2"]]}]}]}]}]], "Input", + CellChangeTimes->{{3.793743101140671*^9, + 3.793743172813489*^9}},ExpressionUUID->"b8eeb8b8-eb37-49ca-9ce4-\ +c9bfc4c7af57"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ss", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"0", "==", + RowBox[{ + RowBox[{"CC", " ", + RowBox[{"\[Epsilon]", "[", "x", "]"}]}], "-", + RowBox[{"b", " ", + RowBox[{"\[Eta]", "[", "x", "]"}]}], "+", + RowBox[{"2", " ", "g", " ", + RowBox[{"\[Epsilon]", "[", "x", "]"}], " ", + SuperscriptBox[ + RowBox[{"\[Eta]", "[", "x", "]"}], "2"]}]}]}], ",", + RowBox[{"\[Epsilon]", "[", "x", "]"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.7937433173696737`*^9, 3.793743362030386*^9}}, + CellLabel->"In[84]:=",ExpressionUUID->"7f8d0483-ea86-4a53-88fb-5f6501e09115"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "[", "x", "]"}], "\[Rule]", + FractionBox[ + RowBox[{"b", " ", + RowBox[{"\[Eta]", "[", "x", "]"}]}], + RowBox[{"CC", "+", + RowBox[{"2", " ", "g", " ", + SuperscriptBox[ + RowBox[{"\[Eta]", "[", "x", "]"}], "2"]}]}]]}], "}"}], + "}"}]], "Output", + CellChangeTimes->{{3.793743357437993*^9, 3.793743362322541*^9}}, + CellLabel->"Out[84]=",ExpressionUUID->"475ec955-d0ca-4d2e-aea6-c5be3d43ec81"] +}, Open ]] +}, +WindowSize->{954, 1055}, +WindowMargins->{{Automatic, 3}, {3, Automatic}}, +FrontEndVersion->"12.0 for Linux x86 (64-bit) (April 8, 2019)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 474, 14, 49, "Input",ExpressionUUID->"aca4f188-900e-4e2f-82cb-6708cc7e7dd7"], +Cell[1035, 36, 154, 3, 31, "Input",ExpressionUUID->"2eb28450-94b1-4d41-8878-74ef319b339f"], +Cell[1192, 41, 639, 18, 31, "Input",ExpressionUUID->"74ea7e40-fb7c-42ad-8f65-2bd70fc9b5c0"], +Cell[CellGroupData[{ +Cell[1856, 63, 287, 6, 31, "Input",ExpressionUUID->"4e9ad724-362c-4e7a-9eba-cdeeee19cbcf"], +Cell[2146, 71, 921, 17, 23, "Message",ExpressionUUID->"4e796e7b-8de1-4aff-a02c-0d0b747b2413"], +Cell[3070, 90, 2214, 34, 43, "Message",ExpressionUUID->"99833ccf-f7f6-4574-bc6e-56a9fa33fd14"], +Cell[5287, 126, 3189, 97, 105, "Output",ExpressionUUID->"4aada9fb-0136-4a39-9c2a-913465c6acfe"] +}, Open ]], +Cell[8491, 226, 734, 18, 170, "Input",ExpressionUUID->"debf31e8-beab-4af1-a670-3db5979cd1c2"], +Cell[CellGroupData[{ +Cell[9250, 248, 259, 5, 31, "Input",ExpressionUUID->"8886b158-c9fd-464d-85c7-fa6c18e364ab"], +Cell[9512, 255, 618, 18, 35, "Output",ExpressionUUID->"8f8dddef-1985-4a97-a6bc-505f27bcc547"] +}, Open ]], +Cell[CellGroupData[{ +Cell[10167, 278, 260, 6, 31, "Input",ExpressionUUID->"54e4a5a1-16be-4de6-9f0d-ce2e33df826d"], +Cell[10430, 286, 499, 15, 37, "Output",ExpressionUUID->"a214a07c-8435-4ab9-8f4c-9012e4af817a"] +}, Open ]], +Cell[10944, 304, 207, 4, 31, "Input",ExpressionUUID->"60ab5996-56b2-4116-a22b-4351bfe6a76c"], +Cell[CellGroupData[{ +Cell[11176, 312, 574, 18, 31, "Input",ExpressionUUID->"7d739818-5a8a-4e64-8a11-c3eb86c80f79"], +Cell[11753, 332, 741, 23, 83, "Output",ExpressionUUID->"5e118c38-3841-4e44-a4f4-4c504b5cc22c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[12531, 360, 265, 5, 31, "Input",ExpressionUUID->"33d7f345-4f7e-463b-8a47-f9a31fac8992"], +Cell[12799, 367, 323, 9, 37, "Output",ExpressionUUID->"b8e16ebb-99fc-421d-8b9f-17c8b7116188"] +}, Open ]], +Cell[CellGroupData[{ +Cell[13159, 381, 613, 16, 39, "Input",ExpressionUUID->"a5e5313a-3cbe-4ee7-bf9f-86d6d149c6fe"], +Cell[13775, 399, 251, 6, 62, "Output",ExpressionUUID->"9fbd9d22-95ab-435b-9d32-a01694cee41c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[14063, 410, 1943, 59, 108, "Input",ExpressionUUID->"c80114c3-359b-4431-b57c-41ec3ec86c28"], +Cell[16009, 471, 178, 3, 35, "Output",ExpressionUUID->"ecb93ba9-a956-4222-b24f-e0206d97dee4"] +}, Open ]], +Cell[16202, 477, 223, 6, 33, "Input",ExpressionUUID->"1e05e21d-787c-426a-9b90-e83b24238655"], +Cell[16428, 485, 205, 3, 31, "Input",ExpressionUUID->"66f37bdc-cf01-4316-9982-d4a449b28fe5"], +Cell[CellGroupData[{ +Cell[16658, 492, 2445, 74, 115, "Input",ExpressionUUID->"4c3c31ca-4388-4656-980a-b8756fc51dde"], +Cell[19106, 568, 30019, 511, 238, "Output",ExpressionUUID->"f8286c1f-f644-4bfb-83c7-8ed63b92cbce"] +}, Open ]], +Cell[CellGroupData[{ +Cell[49162, 1084, 452, 11, 31, "Input",ExpressionUUID->"8bae4557-85bc-4792-906e-cdf5f9954a44"], +Cell[49617, 1097, 1376, 45, 71, "Output",ExpressionUUID->"8c5d5347-5047-44ec-ab4e-1d6d37a085ad"] +}, Open ]], +Cell[CellGroupData[{ +Cell[51030, 1147, 1713, 48, 71, "Input",ExpressionUUID->"e95aa855-0ec5-4b02-9a2b-7b9f8ad86b9a"], +Cell[52746, 1197, 1154, 33, 76, "Output",ExpressionUUID->"28fe16a3-13d3-4ad9-b940-beced42022e7"] +}, Open ]], +Cell[53915, 1233, 564, 15, 31, "Input",ExpressionUUID->"980574f0-a6f2-4bdb-9087-5c4edf46b08f"], +Cell[CellGroupData[{ +Cell[54504, 1252, 482, 11, 31, "Input",ExpressionUUID->"d81a95b0-baac-41e2-85a1-56476d76e643"], +Cell[54989, 1265, 501, 11, 23, "Message",ExpressionUUID->"0276ced0-3e05-4431-85ff-80d6cff2f239"], +Cell[55493, 1278, 503, 11, 23, "Message",ExpressionUUID->"683c37e9-522b-416a-9aec-0a641843f48a"], +Cell[55999, 1291, 503, 11, 23, "Message",ExpressionUUID->"4eb8e038-2070-460c-b6a7-fc43b0c32baf"], +Cell[56505, 1304, 469, 10, 23, "Message",ExpressionUUID->"be60879b-9aaf-4b71-b856-f45eacbe3f80"], +Cell[56977, 1316, 11646, 238, 228, "Output",ExpressionUUID->"92a6d277-5c42-4f63-b117-58768a23e8fc"] +}, Open ]], +Cell[CellGroupData[{ +Cell[68660, 1559, 295, 6, 31, "Input",ExpressionUUID->"19fa357b-b8b2-42f2-86cf-c70cabcec230"], +Cell[68958, 1567, 1165, 37, 77, "Output",ExpressionUUID->"17ffa7ee-f62f-4e9a-b461-02cd24382398"] +}, Open ]], +Cell[CellGroupData[{ +Cell[70160, 1609, 509, 12, 31, "Input",ExpressionUUID->"ba8f198a-690c-424d-9cc7-343746fa1b85"], +Cell[70672, 1623, 345, 5, 35, "Output",ExpressionUUID->"b1226115-e262-43fa-91ef-96afd5531fd9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[71054, 1633, 463, 11, 31, "Input",ExpressionUUID->"a69d3ea3-6c53-4757-98a9-c615f36923a6"], +Cell[71520, 1646, 1608, 51, 56, "Output",ExpressionUUID->"de5bf86e-f71c-4d66-a846-9cdd3eec0bfa"] +}, Open ]], +Cell[73143, 1700, 825, 22, 33, "Input",ExpressionUUID->"76a5a6bf-8a98-4d15-942b-df42914ad53b"], +Cell[73971, 1724, 131, 3, 31, "Input",ExpressionUUID->"56f2956b-d07d-4363-8656-bbcfe2c5f5f3"], +Cell[74105, 1729, 4309, 126, 176, InheritFromParent,ExpressionUUID->"5ab2d411-f76c-439c-b4a8-69e4391bfc67"], +Cell[78417, 1857, 439, 12, 50, "Input",ExpressionUUID->"fead141c-7cf2-478d-a297-838bebe09fc8"], +Cell[CellGroupData[{ +Cell[78881, 1873, 550, 16, 50, "Input",ExpressionUUID->"f60f6ced-d698-434d-b1b6-259a8d3625bf"], +Cell[79434, 1891, 787, 22, 55, "Output",ExpressionUUID->"ce625025-4360-455f-82b5-b9530ae4d111"] +}, Open ]], +Cell[CellGroupData[{ +Cell[80258, 1918, 496, 15, 56, "Input",ExpressionUUID->"16de18cb-0c52-4dab-9a12-e27dcf2d6fc9"], +Cell[80757, 1935, 619, 17, 37, "Output",ExpressionUUID->"5c86022f-2a97-426d-a105-27ca644556d3"] +}, Open ]], +Cell[81391, 1955, 361, 11, 50, "Input",ExpressionUUID->"b204065d-c0d3-474e-bf46-960ca97915f9"], +Cell[81755, 1968, 203, 3, 31, "Input",ExpressionUUID->"e6e51249-1961-4ba0-8491-cc8826f3a222"], +Cell[81961, 1973, 177, 4, 31, "Input",ExpressionUUID->"a1f9a74f-6349-479f-a0d8-3afa27dbc2cf"], +Cell[82141, 1979, 219, 5, 31, "Input",ExpressionUUID->"2d175ba3-8b08-40f4-9f18-393040950671"], +Cell[82363, 1986, 437, 12, 51, "Input",ExpressionUUID->"f35dc126-7704-4357-98fe-523e0d2f75a7"], +Cell[82803, 2000, 1260, 33, 50, "Input",ExpressionUUID->"86367330-ecad-4848-a0ba-bdf293b66e9d"], +Cell[CellGroupData[{ +Cell[84088, 2037, 762, 22, 73, InheritFromParent,ExpressionUUID->"e00b5722-fae6-4282-a0c0-7c74db5258e3"], +Cell[84853, 2061, 726, 21, 75, "Output",ExpressionUUID->"acca43d1-2cf7-4c66-8f61-f765de6fa91f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[85616, 2087, 496, 11, 31, "Input",ExpressionUUID->"0c450611-0015-4363-aeb9-daa06cff2241"], +Cell[86115, 2100, 178, 2, 35, "Output",ExpressionUUID->"45be489a-043b-499f-bfbc-dadd66a9398a"] +}, Open ]], +Cell[86308, 2105, 568, 19, 56, "Input",ExpressionUUID->"b8eeb8b8-eb37-49ca-9ce4-c9bfc4c7af57"], +Cell[CellGroupData[{ +Cell[86901, 2128, 646, 16, 39, "Input",ExpressionUUID->"7f8d0483-ea86-4a53-88fb-5f6501e09115"], +Cell[87550, 2146, 508, 14, 58, "Output",ExpressionUUID->"475ec955-d0ca-4d2e-aea6-c5be3d43ec81"] +}, Open ]] +} +] +*) + +(* End of internal cache information *) + |