summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-20 10:55:05 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-20 10:55:05 -0400
commit65bf2ef19238350df3b1ef5c5032a50a479e292f (patch)
treec91f05ad126155f2c9e10a0048c7d2ddec73b473
parent7550ebfb5245c71eeef8f7543c33e98d2c238c69 (diff)
downloadPRB_102_075129-65bf2ef19238350df3b1ef5c5032a50a479e292f.tar.gz
PRB_102_075129-65bf2ef19238350df3b1ef5c5032a50a479e292f.tar.bz2
PRB_102_075129-65bf2ef19238350df3b1ef5c5032a50a479e292f.zip
one more small correction
-rw-r--r--hidden-order.tex11
1 files changed, 9 insertions, 2 deletions
diff --git a/hidden-order.tex b/hidden-order.tex
index 4bf9bde..57ec702 100644
--- a/hidden-order.tex
+++ b/hidden-order.tex
@@ -121,14 +121,21 @@ For $r>b^2/4\lambda$ and $c_\perp>0$ or $r>b^2/4\lambda+c_\perp^2/4D$ and $c_\pe
\begin{align*}
\epsilon_*=-\frac b{2\lambda}\eta_*
&&
- \epsilon^{(1)}_*=\frac12\frac{e^{(2)}\lambda_{\Aog}^{(12)}-2e^{(1)}\lambda_{\Aog}^{(22)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
+ \epsilon^{(1)}_*=\frac{e^{(2)}\lambda_{\Aog}^{(12)}-2e^{(1)}\lambda_{\Aog}^{(22)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
&&
- \epsilon^{(2)}_*=\frac12\frac{e^{(1)}\lambda_{\Aog}^{(12)}-2e^{(2)}\lambda_{\Aog}^{(11)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
+ \epsilon^{(2)}_*=\frac{e^{(1)}\lambda_{\Aog}^{(12)}-2e^{(2)}\lambda_{\Aog}^{(11)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
\end{align*}
with $r_c=b^2/4\lambda$. For $c_\perp<0$ and $r<b^2/4\lambda+c_\perp^2/4D$ there is a local minimum with $q_*=\sqrt{-c_\perp/2D}$ and
\begin{align*}
\eta_*^2=|r-r_c|\bigg(3u-\frac{(e^{(1)})^2\lambda_{\Aog}^{(22)}+(e^{(2)})^2\lambda_{\Aog}^{(11)}-e^{(1)}e^{(2)}\lambda_{\Aog}^{(12)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\bigg)^{-1}
\end{align*}
+\begin{align*}
+ \epsilon_*=-\frac b{2\lambda}\eta_*
+ &&
+ \epsilon^{(1)}_*=\frac12\frac{e^{(2)}\lambda_{\Aog}^{(12)}-2e^{(1)}\lambda_{\Aog}^{(22)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
+ &&
+ \epsilon^{(2)}_*=\frac12\frac{e^{(1)}\lambda_{\Aog}^{(12)}-2e^{(2)}\lambda_{\Aog}^{(11)}}{4\lambda_{\Aog}^{(11)}\lambda_{\Aog}^{(22)}-(\lambda_{\Aog}^{(12)})^2}\eta_*^2
+\end{align*}
now with $r_c=b^2/4\lambda+c_\perp^2/4D$. Between the disordered and either of these phases is a continuous phase transition, and between the nontrivial phases is an abrupt transition.
We are interested in the response of the system near the critical lines. The susceptibility can be found by adding an additional modulated field $h$ to the free energy linearly coupled to $\eta$ and computing