summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-08-23 17:42:32 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-08-23 17:42:32 -0400
commitd1158d2e35d690ddf2ce58c34cc3c71da1d83d0e (patch)
tree69a324e431df2c6276b0240c3f634cfc40197812
parent508e7e3b93ca48e9ac3da695c7c8fff1cd26b7c6 (diff)
downloadPRB_102_075129-d1158d2e35d690ddf2ce58c34cc3c71da1d83d0e.tar.gz
PRB_102_075129-d1158d2e35d690ddf2ce58c34cc3c71da1d83d0e.tar.bz2
PRB_102_075129-d1158d2e35d690ddf2ce58c34cc3c71da1d83d0e.zip
leave nothing undefined! better free energy notation
-rw-r--r--main.tex14
1 files changed, 9 insertions, 5 deletions
diff --git a/main.tex b/main.tex
index a458623..3c299ea 100644
--- a/main.tex
+++ b/main.tex
@@ -208,7 +208,11 @@ where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and
$\nabla_\perp=\partial_3$ transforms like $\Atu$. We'll take $D_\parallel=0$
since this does not affect the physics at hand. The full free energy functional of $\eta$ and $\epsilon$ is then
\begin{equation}
- F[\eta,\epsilon]=\int dx\,(f_\o+f_\e+f_\i)
+ \begin{aligned}
+ F[\eta,\epsilon]
+ &=F_\o[\eta]+F_\e[\epsilon]+F_\i[\eta,\epsilon] \\
+ &=\int dx\,(f_\o+f_\e+f_\i)
+ \end{aligned}
\end{equation}
Neglecting interaction terms
higher than quadratic order, the only strain relevant to the problem is
@@ -218,7 +222,7 @@ $\epsilon_\X$, and this can be traced out of the problem exactly, since
+\frac12b\eta_i(x)
\end{equation}
gives $\epsilon_\X[\eta]=-(b/2C_\X)\eta$. Upon substitution into the free
-energy, the resulting effective free energy $F_\o[\eta]=F[\eta,\epsilon[\eta]]$ has a density identical to $f_\o$
+energy, the resulting effective free energy $F[\eta,\epsilon[\eta]]$ has a density identical to $f_\o$
with $r\to\tilde r=r-b^2/4C_\X$.
With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz
@@ -270,7 +274,7 @@ The susceptibility of the order parameter to a field linearly coupled to it is g
\begin{equation}
\begin{aligned}
&\chi^\recip(x,x')
- =\frac{\delta^2F_\o[\eta]}{\delta\eta(x)\delta\eta(x')}
+ =\frac{\delta^2F[\eta,\epsilon[\eta]]}{\delta\eta(x)\delta\eta(x')}
=\big(\tilde r-c_\parallel\nabla_\parallel^2-c_\perp\nabla_\perp^2 \\
&\qquad\qquad+D_\perp\nabla_\perp^4+12u\eta^2(x)\big)
\delta(x-x'),
@@ -309,7 +313,7 @@ energy functional of $\epsilon$. Extremizing over $\eta$ yields
+\frac12b\epsilon_\X(x),
\label{eq:implicit.eta}
\end{equation}
-which implicitly gives $\eta[\epsilon]$ and $F_\e[\epsilon]=F[\eta[\epsilon],\epsilon]$. Since $\eta$ is a functional of $\epsilon_\X$ alone, only the stiffness $\lambda_\X$ is modified from its bare value $C_\X$. Though this
+which implicitly gives $\eta[\epsilon]$. Since $\eta$ is a functional of $\epsilon_\X$ alone, only the stiffness $\lambda_\X$ is modified from its bare value $C_\X$. Though this
cannot be solved explicitly, we can make use of the inverse function theorem.
First, denote by $\eta^{-1}[\eta]$ the inverse functional of $\eta$ implied by
\eqref{eq:implicit.eta}, which gives the function $\epsilon_\X$ corresponding
@@ -331,7 +335,7 @@ Finally, \eqref{eq:implicit.eta} and \eqref{eq:inv.func} can be used in concert
\begin{equation}
\begin{aligned}
\lambda_\X(x,x')
- &=\frac{\delta^2F_\e[\epsilon]}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')} \\
+ &=\frac{\delta^2F[\eta[\epsilon],\epsilon]}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')} \\
&=C_\X\delta(x-x')+
b\frac{\delta\eta(x)}{\delta\epsilon_\X(x')}
+\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_\X(x')\delta\epsilon_\X(x'')} \\