summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-28 14:52:29 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-28 14:52:29 -0400
commit37ac3decf6fca2cec79cfe205e52c5fe13d17fd0 (patch)
tree7a2019813d74833bf7b367b93f7428ec6ceaec67 /main.tex
parent672a84bf8e24408060509b24a5f53a41c597e90f (diff)
downloadPRB_102_075129-37ac3decf6fca2cec79cfe205e52c5fe13d17fd0.tar.gz
PRB_102_075129-37ac3decf6fca2cec79cfe205e52c5fe13d17fd0.tar.bz2
PRB_102_075129-37ac3decf6fca2cec79cfe205e52c5fe13d17fd0.zip
fixed Tc in the figures and fixed a minor mistake in the elastic susceptibility caluclation
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/main.tex b/main.tex
index c92400b..4264884 100644
--- a/main.tex
+++ b/main.tex
@@ -181,7 +181,7 @@ which implicitly gives $\eta$ as a functional of $\epsilon_\X$. Though this cann
\bigg(\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}\bigg)^{-1}
&=\frac{\delta\eta_j^{-1}[\eta](x)}{\delta\eta_i(x')}
=-\frac2b\frac{\delta^2F_\o}{\delta\eta_i(x)\delta\eta_j(x')} \\
- &=-\frac2b\chi^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta(x-x')
+ &=-\frac2b\chi_{ij}^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta_{ij}\delta(x-x')
\end{aligned}
\label{eq:inv.func}
\end{equation}
@@ -191,25 +191,25 @@ It follows from \eqref{eq:implicit.eta} and \eqref{eq:inv.func} that the suscept
\begin{aligned}
\chi_{\X ij}^{-1}(x,x')
&=\frac{\delta^2F}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
- &=\lambda_\X\delta(x-x')+
+ &=\lambda_\X\delta_{ij}\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
+\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_{\X i}(x')\delta\epsilon_{\X j}(x'')} \\
&\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\o}{\delta\eta_k(x'')\delta\eta_\ell(x''')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')}
+\int dx''\,\frac{\delta F_\o}{\delta\eta_k(x'')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
- &=\lambda_\X\delta(x-x')+
+ &=\lambda_\X\delta_{ij}\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
-\frac12b\int dx''\,dx'''\,\bigg(\frac{\partial\eta_k(x'')}{\partial\epsilon_{\X\ell}(x''')}\bigg)^{-1}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} \\
- &=\lambda_\X\delta(x-x')+
+ &=\lambda_\X\delta_{ij}\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
-\frac12b\int dx''\,\delta_{i\ell}\delta(x-x'')\frac{\delta\eta_\ell(x'')}{\delta\epsilon_{\X j}(x')}
- =\lambda_\X\delta(x-x')+
+ =\lambda_\X\delta_{ij}\delta(x-x')+
\frac12b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')},
\end{aligned}
\end{equation}
\end{widetext}
whose Fourier transform follows from \eqref{eq:inv.func} as
\begin{equation}
- \chi_{\X ij}(q)=\frac1{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q).
+ \chi_{\X ij}(q)=\frac{\delta_{ij}}{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q).
\label{eq:elastic.susceptibility}
\end{equation}
At $q=0$, which is where the stiffness measurements used here were taken, this predicts a cusp in the elastic susceptibility of the form $|\tilde r-\tilde r_c|^\gamma$ for $\gamma=1$.