diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-09-24 17:53:55 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-09-24 17:53:55 -0400 |
commit | 5623bb1d61f811db3b06ce51068b632fc22b2429 (patch) | |
tree | f0c158340a966b5be5486df2ce9009ee31104d9f /main.tex | |
parent | 0a73432fb5e4dedb4cac14e9722fe8a26aa69e1a (diff) | |
download | PRB_102_075129-5623bb1d61f811db3b06ce51068b632fc22b2429.tar.gz PRB_102_075129-5623bb1d61f811db3b06ce51068b632fc22b2429.tar.bz2 PRB_102_075129-5623bb1d61f811db3b06ce51068b632fc22b2429.zip |
added some crazy ideascrazy_ideas
Diffstat (limited to 'main.tex')
-rw-r--r-- | main.tex | 54 |
1 files changed, 53 insertions, 1 deletions
@@ -45,7 +45,7 @@ \begin{document} -\title{Elastic properties of hidden order in \urusi\ reproduced by modulated $\Bog$ order} +\title{An exact relation between response functions of linearly coupled fields:} \author{Jaron Kent-Dobias} \author{Michael Matty} \author{Brad Ramshaw} @@ -125,6 +125,58 @@ applied pressure in comparison with recent x-ray scattering experiments \cite{choi_pressure-induced_2018}. Finally, we discuss our conclusions and the future experimental and theoretical work motivated by our results. +\begin{equation} + F[\varphi,\vartheta]=F_1[\varphi]+F_2[\vartheta]-\int dx\,b\varphi(x)\vartheta(x) +\end{equation} +\begin{equation} + \begin{aligned} + 0&=\frac{\delta F[\varphi,\vartheta]}{\delta\vartheta(x)}\bigg|_{\vartheta=\vartheta_\star} + =\frac{\delta F_2[\vartheta]}{\delta\vartheta(x)}\bigg|_{\vartheta=\vartheta_\star}-b\varphi(x) + \end{aligned} +\end{equation} +\begin{equation} + \vartheta_\star^{-1}[\vartheta](x)=\frac1b\frac{\delta F_2[\vartheta]}{\delta\vartheta(x)} +\end{equation} +\begin{equation} + \bigg(\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')}\bigg)^\recip + =\frac{\delta\vartheta_\star^{-1}[\vartheta](x)}{\delta\vartheta(x')}\bigg|_{\vartheta=\vartheta_\star[\varphi]} + =\frac1b\frac{\delta^2F_2[\vartheta]}{\delta\vartheta(x)\delta\vartheta(x')}\bigg|_{\vartheta=\vartheta_\star[\varphi]} +\end{equation} +\begin{widetext} +\begin{equation} + \begin{aligned} + \frac{\delta^2F[\varphi,\vartheta_\star(\varphi)]}{\delta\varphi(x)\delta\varphi(x')} + &=\frac{\delta^2F_1[\varphi]}{\delta\varphi(x)\delta\varphi(x')}- + 2b\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')} + -b\int dx''\,\frac{\delta^2\vartheta_\star[\varphi](x)}{\delta\varphi(x')\delta\varphi(x'')}\varphi(x'') +\int dx''\,\frac{\delta\vartheta_\star[\varphi](x'')}{\delta\varphi(x)\delta\varphi(x')}\frac{\delta F_2[\vartheta]}{\delta\vartheta(x'')}\bigg|_{\vartheta=\vartheta_\star[\varphi]} \\ + &\qquad\qquad+\int dx''\,dx'''\,\frac{\delta\vartheta_\star[\varphi](x'')}{\delta\varphi(x)}\frac{\delta\vartheta_\star[\varphi](x''')}{\delta\varphi(x')}\frac{\delta^2F_2[\vartheta]}{\delta\vartheta(x'')\delta\vartheta(x''')}\bigg|_{\vartheta=\vartheta_\star[\varphi]} + \\ + &=\frac{\delta^2F_1[\varphi]}{\delta\varphi(x)\delta\varphi(x')} + -2b\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')}-b\int dx''\,\frac{\delta^2\vartheta_\star[\varphi](x)}{\delta\varphi(x')\delta\varphi(x'')}\varphi(x'') +\int dx''\,\frac{\delta\vartheta_\star[\varphi](x'')}{\delta\varphi(x)\delta\varphi(x')}(b\varphi(x'')) \\ + &\qquad\qquad+b\int dx''\,dx'''\,\frac{\delta\vartheta_\star[\varphi](x'')}{\delta\varphi(x)}\frac{\delta\vartheta_\star[\varphi](x''')}{\delta\varphi(x')}\bigg(\frac{\partial\vartheta_\star[\varphi](x'')}{\partial\varphi(x''')}\bigg)^\recip \\ + &=\frac{\delta^2F_1[\varphi]}{\delta\varphi(x)\delta\varphi(x')}- + 2b\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')} + +b\int dx''\,\delta(x-x'')\frac{\delta\vartheta_\star[\varphi](x'')}{\delta\varphi(x')} + =\frac{\delta^2F_1[\varphi]}{\delta\varphi(x)\delta\varphi(x')}- + b\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')}. + \end{aligned} +\end{equation} +since $\vartheta_\star[\langle\varphi\rangle]=\langle\vartheta\rangle$, +\begin{equation} + \bigg(\frac{\delta\vartheta_\star[\varphi](x)}{\delta\varphi(x')}\bigg)^\recip\bigg|_{\varphi=\langle\varphi\rangle} + =\frac1b\frac{\delta^2F_2[\vartheta]}{\delta\vartheta(x)\delta\vartheta(x')}\bigg|_{\vartheta=\langle\vartheta\rangle} + =\frac1b\chi_\vartheta^\recip(x,x')+\frac{\delta\varphi_\star[\vartheta](x)}{\delta\vartheta(x')}\bigg|_{\vartheta=\langle\vartheta\rangle} + =\frac1b\chi_\vartheta^\recip(x,x')+\frac1b\frac{\delta^2F_1[\varphi]}{\delta\varphi(x)\delta\varphi(x')}\bigg|_{\varphi=\langle\varphi\rangle} +\end{equation} +\begin{equation} + \begin{aligned} + \chi_\varphi^\recip(x,x')= + \frac{\delta^2F[\varphi,\vartheta_\star(\varphi)]}{\delta\varphi(x)\delta\varphi(x')} \bigg|_{\varphi=\langle\varphi\rangle} + = + \end{aligned} +\end{equation} +\end{widetext} + The point group of \urusi\ is \Dfh, and any coarse-grained theory must locally respect this symmetry. We will introduce a phenomenological free energy density in three parts: that of the strain, the \op, and their interaction. |