diff options
-rw-r--r-- | fig-stiffnesses.gplot | 2 | ||||
-rw-r--r-- | fig-stiffnesses.pdf | bin | 95086 -> 94997 bytes | |||
-rw-r--r-- | main.tex | 7 |
3 files changed, 4 insertions, 5 deletions
diff --git a/fig-stiffnesses.gplot b/fig-stiffnesses.gplot index eb800d7..ae3a2f8 100644 --- a/fig-stiffnesses.gplot +++ b/fig-stiffnesses.gplot @@ -84,7 +84,7 @@ plot "data/c11mc12.dat" using 1:(100 * $2) with lines lw 3 lc rgb cc3, \ C10(x) dt 3 lw 4 lc rgb cc4 set ylabel '' -set y2label '\scriptsize $[C^0(C^0/C - 1)]^{-1} \cdot \mathrm{GPa}$' offset -5.5 rotate by -90 +set y2label '\scriptsize $[C^0(C^0/C - 1)]^{-1} / \mathrm{GPa}^{-1}$' offset -5.5 rotate by -90 set title '(d)' offset 5,-2.7 set format y2 '\tiny $%0.2f$' diff --git a/fig-stiffnesses.pdf b/fig-stiffnesses.pdf Binary files differindex 794e956..2edab9b 100644 --- a/fig-stiffnesses.pdf +++ b/fig-stiffnesses.pdf @@ -410,12 +410,11 @@ $|\Delta\tilde r|^\gamma$ for $\gamma=1$. \brad{I think this last sentence, whi \urusi\ as a function of temperature from \cite{ghosh_single-component_nodate} (green, solid) alongside fits to theory (red, dashed). The vertical yellow lines show the location of the \ho\ transition. (a) $\Btg$ modulus data and fit to standard form \cite{varshni_temperature_1970}. (b) $\Bog$ modulus data and fit to \eqref{eq:elastic.susceptibility}. The fit gives $C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, - $b^2/D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp - q_*^4\simeq0.0038\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare} + $D_\perp q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus data and fit transformed using - $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is prediced from + $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from \eqref{eq:susceptibility} and \eqref{eq:elastic.susceptibility} to be - linear above $T_c$. The failure of the Ginzburg--Landau prediction + $D_\perp q_*^4/b^2+a/b^2|T-T_c|$. The failure of the Ginzburg--Landau prediction below the transition is expected on the grounds that the \op\ is too large for the free energy expansion to be valid by the time the Ginzburg temperature is reached. |