summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--fig-stiffnesses.gplot2
-rw-r--r--fig-stiffnesses.pdfbin95086 -> 94997 bytes
-rw-r--r--main.tex7
3 files changed, 4 insertions, 5 deletions
diff --git a/fig-stiffnesses.gplot b/fig-stiffnesses.gplot
index eb800d7..ae3a2f8 100644
--- a/fig-stiffnesses.gplot
+++ b/fig-stiffnesses.gplot
@@ -84,7 +84,7 @@ plot "data/c11mc12.dat" using 1:(100 * $2) with lines lw 3 lc rgb cc3, \
C10(x) dt 3 lw 4 lc rgb cc4
set ylabel ''
-set y2label '\scriptsize $[C^0(C^0/C - 1)]^{-1} \cdot \mathrm{GPa}$' offset -5.5 rotate by -90
+set y2label '\scriptsize $[C^0(C^0/C - 1)]^{-1} / \mathrm{GPa}^{-1}$' offset -5.5 rotate by -90
set title '(d)' offset 5,-2.7
set format y2 '\tiny $%0.2f$'
diff --git a/fig-stiffnesses.pdf b/fig-stiffnesses.pdf
index 794e956..2edab9b 100644
--- a/fig-stiffnesses.pdf
+++ b/fig-stiffnesses.pdf
Binary files differ
diff --git a/main.tex b/main.tex
index f4f2b71..9be54af 100644
--- a/main.tex
+++ b/main.tex
@@ -410,12 +410,11 @@ $|\Delta\tilde r|^\gamma$ for $\gamma=1$. \brad{I think this last sentence, whi
\urusi\ as a function of temperature from \cite{ghosh_single-component_nodate} (green, solid) alongside fits to theory (red, dashed). The vertical yellow lines show the location of the \ho\ transition. (a) $\Btg$ modulus data and fit to standard form \cite{varshni_temperature_1970}. (b) $\Bog$ modulus data and fit
to \eqref{eq:elastic.susceptibility}. The fit gives
$C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$,
- $b^2/D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp
- q_*^4\simeq0.0038\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare}
+ $D_\perp q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare}
$\Bog$ modulus. (d) $\Bog$ modulus data and fit transformed using
- $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is prediced from
+ $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from
\eqref{eq:susceptibility} and \eqref{eq:elastic.susceptibility} to be
- linear above $T_c$. The failure of the Ginzburg--Landau prediction
+ $D_\perp q_*^4/b^2+a/b^2|T-T_c|$. The failure of the Ginzburg--Landau prediction
below the transition is expected on the grounds that the \op\ is too large
for the free energy expansion to be valid by the time the Ginzburg
temperature is reached.