diff options
Diffstat (limited to 'main.tex')
-rw-r--r-- | main.tex | 7 |
1 files changed, 3 insertions, 4 deletions
@@ -410,12 +410,11 @@ $|\Delta\tilde r|^\gamma$ for $\gamma=1$. \brad{I think this last sentence, whi \urusi\ as a function of temperature from \cite{ghosh_single-component_nodate} (green, solid) alongside fits to theory (red, dashed). The vertical yellow lines show the location of the \ho\ transition. (a) $\Btg$ modulus data and fit to standard form \cite{varshni_temperature_1970}. (b) $\Bog$ modulus data and fit to \eqref{eq:elastic.susceptibility}. The fit gives $C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, - $b^2/D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp - q_*^4\simeq0.0038\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare} + $D_\perp q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus data and fit transformed using - $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is prediced from + $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from \eqref{eq:susceptibility} and \eqref{eq:elastic.susceptibility} to be - linear above $T_c$. The failure of the Ginzburg--Landau prediction + $D_\perp q_*^4/b^2+a/b^2|T-T_c|$. The failure of the Ginzburg--Landau prediction below the transition is expected on the grounds that the \op\ is too large for the free energy expansion to be valid by the time the Ginzburg temperature is reached. |