diff options
Diffstat (limited to 'main.tex')
-rw-r--r-- | main.tex | 8 |
1 files changed, 4 insertions, 4 deletions
@@ -476,9 +476,9 @@ corresponding modulus. shows the location of the \ho\ phase. (a) $\Btg$ modulus data and a fit to the standard form.\cite{Varshni_1970} (b) $\Bog$ modulus data and a fit to \eqref{eq:static_modulus} (magenta, dashed) and a fit to \eqref{eq:C0} (black, solid). The fit gives - $C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, $D_\perp - q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and - $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of a quadratic + $C^0_\Bog\simeq\big[73-(0.012\,\K^{-1})T\big]\,\GPa$, $D_\perp + q_*^4/b^2\simeq0.12\,\GPa^{-1}$, and + $a/b^2\simeq3.7\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of a quadratic term in $C^0_\Bog$ was here not needed for the fit.\cite{Varshni_1970} (c) $\Bog$ modulus data and the fit of the \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus data and the fits transformed by @@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s \end{equation} and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is \begin{equation} - \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). + \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). \end{equation} The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that \begin{equation} |