summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/main.tex b/main.tex
index 374519e..6d133be 100644
--- a/main.tex
+++ b/main.tex
@@ -476,9 +476,9 @@ corresponding modulus.
shows the location of the \ho\ phase. (a) $\Btg$ modulus data and a fit to
the standard form.\cite{Varshni_1970} (b) $\Bog$ modulus data and a fit to
\eqref{eq:static_modulus} (magenta, dashed) and a fit to \eqref{eq:C0} (black, solid). The fit gives
- $C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, $D_\perp
- q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and
- $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of a quadratic
+ $C^0_\Bog\simeq\big[73-(0.012\,\K^{-1})T\big]\,\GPa$, $D_\perp
+ q_*^4/b^2\simeq0.12\,\GPa^{-1}$, and
+ $a/b^2\simeq3.7\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of a quadratic
term in $C^0_\Bog$ was here not needed for the fit.\cite{Varshni_1970} (c)
$\Bog$ modulus data and the fit of the \emph{bare} $\Bog$ modulus. (d)
$\Bog$ modulus data and the fits transformed by
@@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s
\end{equation}
and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is
\begin{equation}
- \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg).
+ \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg).
\end{equation}
The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that
\begin{equation}