summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--poster_aps_mm_2020.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/poster_aps_mm_2020.tex b/poster_aps_mm_2020.tex
index 90e3794..b156dbe 100644
--- a/poster_aps_mm_2020.tex
+++ b/poster_aps_mm_2020.tex
@@ -4,7 +4,7 @@
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[]{amsmath}
-\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow}
+\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow,bm}
\usepackage[font=normalsize,labelfont=bf]{caption}
\usepackage{tgheros}
\usepackage[helvet]{sfmath}
@@ -96,7 +96,7 @@
\hspace{1em}
The modulus tensor of \urusi\ anomalously softens over several hundred
- Kelvin and is cut off by the \ho\ transition.
+ Kelvin and is cut off by the \ho\ transition, seen in Fig.~\ref{fig:plots}(b).
\textbf{
We show that only one order parameter symmetry is consistent with this
softening and the topology of the phase diagram.
@@ -108,7 +108,7 @@
\hspace{1em}
Resonant ultrasound spectroscopy drives a sample with sound and measures its
- resonances by looking for spikes in the response. Using the sample geometry
+ resonances by looking for peaks in the response. Using the sample geometry
and the location of sufficiently many resonances, the modulus tensor
$C$---which gives the energetic cost of strain---can be calculated.
\textbf{
@@ -149,7 +149,7 @@
- \section{Landau--Ginzburg theory}
+ \section{Landau theory}
\Large
\hspace{1em}
@@ -158,8 +158,8 @@
only if they correspond to the same irrep. Higher order couplings lead to
thermodynamic discontinuities but not diverging responses.
\textbf{
- The anomalous softening of \urusi\ suggests the hidden order parameter
- couples linearly to strain.
+ The anomalous softening of \urusi\ in Fig.~\ref{fig:plots}(b) suggests the
+ hidden order parameter couples linearly to strain.
}
\hspace{1em}
@@ -202,7 +202,7 @@
\hspace{1em}
\textbf{
- This theory has a \emph{Lifshitz triple point} at $\tilde r=c_\perp=0$.
+ This theory has a \emph{Lifshitz triple point} at $\bm{\tilde r=c_\perp=0}$.
}
The three phases that meet are
\begin{itemize}