diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-04-12 11:41:22 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-04-12 11:41:22 +0200 |
commit | c0636131197d2d48de5b42b42411e16c55429d7d (patch) | |
tree | 6827a359c94bc6973a106c9720327f186b91039a /least_squares.cpp | |
parent | 4bdde3b2c1b6ea5e828a987211437f30587356ae (diff) | |
download | code-c0636131197d2d48de5b42b42411e16c55429d7d.tar.gz code-c0636131197d2d48de5b42b42411e16c55429d7d.tar.bz2 code-c0636131197d2d48de5b42b42411e16c55429d7d.zip |
Some small optimizations, and better judging of the endpoint for minimization.
Diffstat (limited to 'least_squares.cpp')
-rw-r--r-- | least_squares.cpp | 38 |
1 files changed, 16 insertions, 22 deletions
diff --git a/least_squares.cpp b/least_squares.cpp index 7b9c2c9..f69f117 100644 --- a/least_squares.cpp +++ b/least_squares.cpp @@ -40,7 +40,7 @@ Vector normalize(const Vector& x) { } Vector makeTangent(const Vector& v, const Vector& x) { - return v - (v.dot(x) / x.squaredNorm()) * x; + return v - (v.dot(x) / x.size()) * x; } Real HFromV(const Vector& V) { @@ -167,31 +167,24 @@ Vector gradientDescent(const QuadraticModel& M, const Vector& x0, Real ε = 1e-7 return x; } -Vector findMinimum(const QuadraticModel& M, const Vector& x0, Real ε = 1e-12) { +Vector findMinimum(const QuadraticModel& M, const Vector& x0, Real ε = 1e-5) { Vector x = x0; Real λ = 100; auto [H, g, m] = M.hamGradHess(x0); - while (g.norm() / M.N > ε && λ * ε < 1) { - while (λ * ε < 1) { - Vector dx = (m - λ * (Matrix)m.diagonal().cwiseAbs().asDiagonal()).partialPivLu().solve(g); - dx -= x.dot(dx) * x / M.N; - Vector xNew = normalize(x - dx); + while (λ * ε < 1) { + Vector dx = (m - λ * (Matrix)m.diagonal().cwiseAbs().asDiagonal()).partialPivLu().solve(g); + Vector xNew = normalize(x - makeTangent(dx, x)); + Real HNew = M.getHamiltonian(xNew); - auto [HNew, gNew, mNew] = M.hamGradHess(xNew); + if (HNew > H) { + x = xNew; + std::tie(H, g, m) = M.hamGradHess(xNew); - if (HNew > H) { - x = xNew; - H = HNew; - g = gNew; - m = mNew; - - λ /= 2; - break; - } else { - λ *= 1.5; - } + λ /= 2; + } else { + λ *= 1.5; } } @@ -301,10 +294,11 @@ int main(int argc, char* argv[]) { for (unsigned sample = 0; sample < samples; sample++) { QuadraticModel leastSquares(N, M, r, σ, A, J); - x = metropolisSweep(leastSquares, x, β, r, sweeps); - std::cout << " " << leastSquares.getHamiltonian(x) / N; + if (β != 0) { + x = metropolisSweep(leastSquares, x, β, r, sweeps); + } x = findMinimum(leastSquares, x); - std::cout << " " << leastSquares.getHamiltonian(x) / N; + std::cout << " " << leastSquares.getHamiltonian(x) / N << std::flush; } std::cout << std::endl; |