summaryrefslogtreecommitdiff
path: root/least_squares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'least_squares.cpp')
-rw-r--r--least_squares.cpp18
1 files changed, 10 insertions, 8 deletions
diff --git a/least_squares.cpp b/least_squares.cpp
index d80fd2d..827ede0 100644
--- a/least_squares.cpp
+++ b/least_squares.cpp
@@ -225,14 +225,16 @@ int main(int argc, char* argv[]) {
x(0) = sqrt(N);
for (unsigned sample = 0; sample < samples; sample++) {
- QuadraticModel ls(N, M, r, σ², μA, μJ);
- Vector xGD = gradientAscent(ls, x);
- std::cout << ls.getHamiltonian(xGD) / N << " " << ls.maxEigenvalue(xGD) << " ";
-
- ls = QuadraticModel(N, M, r, σ², μA, μJ);
- Vector xMP = subagAlgorithm(ls, r, N);
- xMP = gradientAscent(ls, xMP);
- std::cout << ls.getHamiltonian(xMP) / N << " " << ls.maxEigenvalue(xMP) << std::endl;
+ QuadraticModel* ls = new QuadraticModel(N, M, r, σ², μA, μJ);
+ Vector xGD = gradientAscent(*ls, x);
+ std::cout << ls->getHamiltonian(xGD) / N << " " << ls->maxEigenvalue(xGD) << " ";
+ delete ls;
+
+ ls = new QuadraticModel(N, M, r, σ², μA, μJ);
+ Vector xMP = subagAlgorithm(*ls, r, N);
+ xMP = gradientAscent(*ls, xMP);
+ std::cout << ls->getHamiltonian(xMP) / N << " " << ls->maxEigenvalue(xMP) << std::endl;
+ delete ls;
}
return 0;