summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile7
-rw-r--r--walk.cpp27
2 files changed, 30 insertions, 4 deletions
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..7e1ed7d
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,7 @@
+all: walk
+
+CC := clang++ -std=c++17 -Wno-mathematical-notation-identifier-extension -O3 -march=native -mtune=native
+
+walk: walk.cpp
+ $(CC) walk.cpp -o walk
+
diff --git a/walk.cpp b/walk.cpp
index 2e22395..cd07253 100644
--- a/walk.cpp
+++ b/walk.cpp
@@ -5,11 +5,13 @@
#include "randutils/randutils.hpp"
#include "eigen/Eigen/Dense"
+#include "eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h"
using Rng = randutils::random_generator<pcg32>;
using Real = double;
using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>;
+using Matrix = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
Vector normalizeVector(const Vector& x) {
return x * sqrt(x.size() / x.squaredNorm());
@@ -54,9 +56,26 @@ private:
public:
unsigned N;
- QuadraticModel(unsigned N, Rng& r) : J(N), N(N) {
- for (Real& Jᵢ : J) {
- Jᵢ = wignerInverse(r.uniform(0.0, 1.0));
+ QuadraticModel(unsigned N, Rng& r, bool diag = false) : J(N), N(N) {
+ if (diag) {
+ Matrix Jtmp(N, N);
+
+ for (unsigned j = 0; j < N; j++) {
+ for (unsigned i = j; i < N; i++) {
+ Jtmp(i, j) = r.variate<Real, std::normal_distribution>(0, 1 / sqrt(N));
+ Jtmp(j, i) = Jtmp(i, j);
+ }
+ }
+
+ std::cerr << "Beginning diagonalization" << std::endl;
+ Eigen::SelfAdjointEigenSolver<Matrix> es;
+ es.compute(Jtmp);
+ J = es.eigenvalues();
+ std::cerr << "Finished diagonalization" << std::endl;
+ } else {
+ for (Real& Jᵢ : J) {
+ Jᵢ = wignerInverse(r.uniform(0.0, 1.0));
+ }
}
}
@@ -142,7 +161,7 @@ int main(int argc, char* argv[]) {
}
Rng r;
- QuadraticModel model(N, r);
+ QuadraticModel model(N, r, true);
Vector x₀ = normalizeVector(randomVector(N, r));
x₀ = gradientDescent(model, x₀, E);