summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--log-fourier.cpp24
-rw-r--r--log-fourier.hpp4
-rw-r--r--log-fourier_integrator.cpp27
3 files changed, 49 insertions, 6 deletions
diff --git a/log-fourier.cpp b/log-fourier.cpp
index d5ac17d..345e490 100644
--- a/log-fourier.cpp
+++ b/log-fourier.cpp
@@ -190,7 +190,7 @@ Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, con
return ((2 * Γ₀ * std::conj(Rt[0]) + std::pow(β, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
}
-Real energy(const LogarithmicFourierTransform& fft, std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β) {
+Real energy(const LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β) {
unsigned n₀ = 0;
for (unsigned n = 0; n < C.size(); n++) {
if (C[n] > 1 || R[n] > 1) n₀ = n % 2 == 0 ? n / 2 : (n + 1) / 2;
@@ -221,3 +221,25 @@ Real energy(const LogarithmicFourierTransform& fft, std::vector<Real>& C, const
return β * E;
}
+Real C0(const LogarithmicFourierTransform& fft, const std::vector<Complex>& Ĉ) {
+ Real C = 0;
+ for (unsigned n = 0; n < Ĉ.size()/2-1; n++) {
+ Real Ĉ₂ₙ = Ĉ[2*n].real();
+ Real Ĉ₂ₙ₊₁ = Ĉ[2*n+1].real();
+ Real Ĉ₂ₙ₊₂ = Ĉ[2*n+2].real();
+
+ Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n);
+ Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1);
+ Real f₂ₙ = Ĉ₂ₙ;
+ Real f₂ₙ₊₁ = Ĉ₂ₙ₊₁;
+ Real f₂ₙ₊₂ = Ĉ₂ₙ₊₂;
+
+ C += (h₂ₙ + h₂ₙ₊₁) / 6 * (
+ (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ
+ + std::pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁
+ + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂
+ );
+ }
+ return C / M_PI;
+}
+
diff --git a/log-fourier.hpp b/log-fourier.hpp
index b5bb4c0..9c7c237 100644
--- a/log-fourier.hpp
+++ b/log-fourier.hpp
@@ -43,4 +43,6 @@ std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(LogarithmicFou
Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β);
-Real energy(const LogarithmicFourierTransform& fft, std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β);
+Real energy(const LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β);
+
+Real C0(const LogarithmicFourierTransform& fft, const std::vector<Complex>& Ĉ);
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
index 0e05366..5ff27a4 100644
--- a/log-fourier_integrator.cpp
+++ b/log-fourier_integrator.cpp
@@ -138,14 +138,33 @@ int main(int argc, char* argv[]) {
std::vector<Complex> Ĉₜ₊₁(N);
std::vector<Complex> Ȓₜ₊₁(N);
+
+ Real C₀ = 0;
+ Real μ₊ = 0;
+ Real μ₋ = 0;
+
+ while (std::abs(C₀ - 1) > ε) {
+ for (unsigned n = 0; n < N; n++) {
+ Ĉₜ₊₁[n] = ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real();
+ }
+ C₀ = C0(fft, Ĉₜ₊₁);
+ if (C₀ > 1) {
+ μ₋ = μₜ;
+ } else {
+ μ₊ = μₜ;
+ }
+ if (μ₋ > 0 && μ₊ > 0) {
+ μₜ = (μ₊ + μ₋) / 2;
+ } else {
+ μₜ *= C₀;
+ }
+ }
+
for (unsigned n = 0; n < N; n++) {
Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n));
- Ĉₜ₊₁[n] = ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real();
}
- std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
-
- Real C₀ = Cₜ₊₁[0];
+ std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
if (!std::isnan(Cₜ₊₁[0])) {