summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile2
-rw-r--r--integrator.cpp95
2 files changed, 86 insertions, 11 deletions
diff --git a/Makefile b/Makefile
index 25e23dd..3519e50 100644
--- a/Makefile
+++ b/Makefile
@@ -1,6 +1,6 @@
all: walk correlations integrator
-CC := clang++ -std=c++17 -Wno-mathematical-notation-identifier-extension -O3 -march=native -mtune=native -fopenmp
+CC := clang++ -std=c++17 -Wno-mathematical-notation-identifier-extension -O3 -march=native -mtune=native -fopenmp -g
walk: walk.cpp
$(CC) walk.cpp -o walk
diff --git a/integrator.cpp b/integrator.cpp
index e184de6..349e2ff 100644
--- a/integrator.cpp
+++ b/integrator.cpp
@@ -19,23 +19,66 @@ Real ddf(Real q) {
return 0.5 * p * (p - 1) * pow(q, p - 2);
}
-Real integrate(const std::vector<Real>& C, Real Δτ, Real τ₀) {
+Real integrate(const std::vector<Real>& C) {
Real I = 0;
#pragma omp parallel for reduction(+:I)
for (unsigned σ = 0; σ < C.size() - 1; σ++) {
unsigned τ_σ = C.size() - 1 - σ;
Real Cτ_σ = (C[τ_σ] + C[τ_σ - 1]) / 2;
- Real dCσ = (C[σ + 1] - C[σ]) / Δτ;
+ Real dCσ = C[σ + 1] - C[σ];
- Real dddC = 0;
- if (σ > 3 && σ < C.size() && C.size() > 3) {
- dddC += (C[τ_σ] - 3 * C[τ_σ+1] + 3 * C[τ_σ+2] - C[τ_σ+3]) / pow(Δτ, 3);
+ I += df(Cτ_σ) * dCσ;
+ }
+ return I;
+}
+
+Real integratePast(const std::vector<Real>& C, signed τ) {
+ Real I = 0;
+#pragma omp parallel for reduction(+:I)
+ for (signed σ = -C.size() + τ + 3; σ < τ - 2; σ++) {
+ signed τ_σ = τ - σ;
+
+ Real Cτ_σ = (C[abs(τ_σ)] + C[abs(τ_σ) - 1]) / 2;
+ Real Cσ = (C[abs(σ) + 1] + C[abs(σ)]) / 2;
+ Real dddC;
+ if (τ_σ != 0) {
+ dddC = (τ_σ / abs(τ_σ)) * (C[abs(τ_σ)+2] - 2 * C[abs(τ_σ)+1] + 2 * C[abs(τ_σ)-1] - C[abs(τ_σ)-2]) / 2;
+ } else {
+ dddC = 0;
}
- I += Δτ * df(Cτ_σ) * (dCσ - pow(τ₀, 2) * dddC);
+
+ I += dddC * ddf(Cτ_σ) * Cσ;
+ }
+#pragma omp parallel for reduction(+:I)
+ for (signed σ = -C.size() + τ + 3; σ < -1; σ++) {
+ signed τ_σ = τ - σ;
+
+ Real Cτ_σ = (C[abs(τ_σ)] + C[abs(τ_σ) - 1]) / 2;
+ Real dddC;
+ if (σ != 0) {
+ dddC = -(σ / abs(σ)) * (C[abs(σ)+2] - 2 * C[abs(σ)+1] + 2 * C[abs(σ)-1] - C[abs(σ)-2]) / 2;
+ } else {
+ dddC = 0;
+ }
+
+ I += dddC * df(Cτ_σ);
}
return I;
}
+Real integrateDelay(const std::vector<Real>& C, unsigned τ, Real Δτ, Real τ₀) {
+ Real I = 0;
+#pragma omp parallel for reduction(+:I)
+ for (signed σ = 2; σ < C.size() - τ - 2; σ++) {
+ unsigned τ_σ = τ + σ;
+ Real dC = -(C[σ+1] - C[σ-1]) / 2;
+ Real dddC = -(C[σ+2] - 2 * C[σ+1] + 2 * C[σ-1] - C[σ-2]) / 2;
+
+ I += (dC - pow(τ₀ / Δτ, 2) * dddC) * exp(-(τ_σ * Δτ / τ₀));
+ }
+ return I / τ₀;
+}
+
Real energy(const std::vector<Real>& C, Real Δτ, Real τ₀) {
Real I = 0;
for (unsigned σ = 0; σ < C.size() - 1; σ++) {
@@ -78,8 +121,10 @@ int main(int argc, char* argv[]) {
}
}
- Real z = 0.5;
- Real Γ₀ = 0.5 * (2 * τ₀) / (sqrt(1 + 2 * τ₀) - 1);
+// Real z = (sqrt(1 + 2 * τ₀) - 1) / (2 * τ₀);
+// Real z = 0.4833773593561142778087;
+ Real z = 0.4794707565634420155347 - 2 * pow(y, 2);
+ Real Γ₀ = 1.0;
Real τ = 0;
std::vector<Real> C;
@@ -87,12 +132,42 @@ int main(int argc, char* argv[]) {
C.push_back(1);
- while (std::cout << τ << " " << C.back() << std::endl, τ < τₘₐₓ) {
+// while (std::cout << τ << " " << C.back() << std::endl, τ < τₘₐₓ) {
+ while (τ < τₘₐₓ) {
τ += Δτ;
- Real dC = -z * C.back() - 2 / Γ₀ * pow(y, 2) * integrate(C, Δτ, τ₀);
+ Real dC = -z * C.back() - 2 / Γ₀ * pow(y, 2) * integrate(C);
C.push_back(C.back() + Δτ * dC);
}
+
+ for (unsigned it = 0; it < 20; it++) {
+ τ = 0;
+ std::vector<Real> C2;
+ C2.reserve(τₘₐₓ / Δτ + 1);
+ C2.push_back(1);
+ while (τ < τₘₐₓ) {
+ τ += Δτ;
+ Real dC = -z * C2.back() + integrateDelay(C, C2.size() - 1, Δτ, τ₀) - 2 / Γ₀ * pow(y, 2) * (integrate(C2) - pow(τ₀ / Δτ, 2) * integratePast(C, C2.size()-1));
+ C2.push_back(C2.back() + Δτ * dC);
+ }
+
+ Real error = 0;
+
+ for (unsigned i = 0; i < std::min(C.size(), C2.size()); i++) {
+ error += pow(C[i] - C2[i], 2);
+ }
+
+ std::cerr << "Iteration " << it << ": " << sqrt(error / C.size()) << std::endl;
+
+ C = C2;
+ }
+
+ τ = 0;
+ for (Real Ci : C) {
+ std::cout << τ << " " << Ci << std::endl;
+ τ += Δτ;
+ }
+
std::cerr << - 2 * y / Γ₀ * energy(C, Δτ, τ₀) << std::endl;
return 0;