summaryrefslogtreecommitdiff
path: root/log-fourier_integrator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r--log-fourier_integrator.cpp39
1 files changed, 20 insertions, 19 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
index 7b24a55..9db21f0 100644
--- a/log-fourier_integrator.cpp
+++ b/log-fourier_integrator.cpp
@@ -13,7 +13,7 @@ int main(int argc, char* argv[]) {
unsigned log2n = 8;
Real Δτ = 0.1;
Real k = -0.01;
- Real shift = 0.5;
+ Real logShift = 0;
/* Iteration parameters */
Real ε = 1e-15;
@@ -54,12 +54,12 @@ int main(int argc, char* argv[]) {
case 'k':
k = atof(optarg);
break;
+ case 'h':
+ logShift = atof(optarg);
+ break;
case 'D':
Δτ = atof(optarg);
break;
- case 'h':
- shift = atof(optarg);
- break;
case 'e':
ε = atof(optarg);
break;
@@ -85,13 +85,14 @@ int main(int argc, char* argv[]) {
unsigned N = pow(2, log2n);
- LogarithmicFourierTransform fft(N, k, Δτ, pad, shift);
-
Real Γ₀ = 1;
- Real μₜ₋₁ = Γ₀;
- if (τ₀ > 0) {
- μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀);
- }
+ Real μ₀ = τ₀ > 0 ? (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀) : Γ₀;
+
+ LogarithmicFourierTransform fft(N, k, Δτ, pad, μ₀ * pow(10, logShift));
+
+ std::cerr << "Starting, μ₀ = " << μ₀ << ", range " << fft.t(0) << " " << fft.t(N-1) << std::endl;
+
+ Real μₜ₋₁ = μ₀;
std::vector<Real> Cₜ₋₁(N);
std::vector<Real> Rₜ₋₁(N);
@@ -103,20 +104,20 @@ int main(int argc, char* argv[]) {
for (unsigned n = 0; n < N; n++) {
if (τ₀ > 0) {
if (τ₀ == 2) {
- Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2);
+ Cₜ₋₁[n] = Γ₀ * std::exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2);
} else {
- Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2));
+ Cₜ₋₁[n] = Γ₀ * (std::exp(-μ₀ * fft.t(n)) - μ₀ * τ₀ * std::exp(-fft.t(n) / τ₀)) / (μ₀ - pow(μ₀, 3) * pow(τ₀, 2));
}
} else {
- Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁;
+ Cₜ₋₁[n] = Γ₀ * std::exp(-μ₀ * fft.t(n)) / μ₀;
}
- Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n));
+ Rₜ₋₁[n] = std::exp(-μ₀ * fft.t(n));
- Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
- Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n));
+ Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ₀, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
+ Ȓₜ₋₁[n] = (Real)1.0 / (μ₀ + II * fft.ν(n));
}
} else {
- logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, shift);
+ logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, logShift);
μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀);
}
@@ -139,7 +140,7 @@ int main(int argc, char* argv[]) {
std::vector<Complex> Ȓₜ₊₁(N);
for (unsigned n = 0; n < N; n++) {
Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n));
- Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n));
+ Ĉₜ₊₁[n] = ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real();
}
std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
@@ -190,7 +191,7 @@ int main(int argc, char* argv[]) {
std::cerr << "\x1b[2K" << "\r";
std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl;
- logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, shift);
+ logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, logShift);
β += Δβ;
Cₜ₋₁ = Cₜ;