diff options
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r-- | log-fourier_integrator.cpp | 39 |
1 files changed, 20 insertions, 19 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index 7b24a55..9db21f0 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -13,7 +13,7 @@ int main(int argc, char* argv[]) { unsigned log2n = 8; Real Δτ = 0.1; Real k = -0.01; - Real shift = 0.5; + Real logShift = 0; /* Iteration parameters */ Real ε = 1e-15; @@ -54,12 +54,12 @@ int main(int argc, char* argv[]) { case 'k': k = atof(optarg); break; + case 'h': + logShift = atof(optarg); + break; case 'D': Δτ = atof(optarg); break; - case 'h': - shift = atof(optarg); - break; case 'e': ε = atof(optarg); break; @@ -85,13 +85,14 @@ int main(int argc, char* argv[]) { unsigned N = pow(2, log2n); - LogarithmicFourierTransform fft(N, k, Δτ, pad, shift); - Real Γ₀ = 1; - Real μₜ₋₁ = Γ₀; - if (τ₀ > 0) { - μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); - } + Real μ₀ = τ₀ > 0 ? (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀) : Γ₀; + + LogarithmicFourierTransform fft(N, k, Δτ, pad, μ₀ * pow(10, logShift)); + + std::cerr << "Starting, μ₀ = " << μ₀ << ", range " << fft.t(0) << " " << fft.t(N-1) << std::endl; + + Real μₜ₋₁ = μ₀; std::vector<Real> Cₜ₋₁(N); std::vector<Real> Rₜ₋₁(N); @@ -103,20 +104,20 @@ int main(int argc, char* argv[]) { for (unsigned n = 0; n < N; n++) { if (τ₀ > 0) { if (τ₀ == 2) { - Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); + Cₜ₋₁[n] = Γ₀ * std::exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); } else { - Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); + Cₜ₋₁[n] = Γ₀ * (std::exp(-μ₀ * fft.t(n)) - μ₀ * τ₀ * std::exp(-fft.t(n) / τ₀)) / (μ₀ - pow(μ₀, 3) * pow(τ₀, 2)); } } else { - Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁; + Cₜ₋₁[n] = Γ₀ * std::exp(-μ₀ * fft.t(n)) / μ₀; } - Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); + Rₜ₋₁[n] = std::exp(-μ₀ * fft.t(n)); - Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); - Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n)); + Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ₀, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); + Ȓₜ₋₁[n] = (Real)1.0 / (μ₀ + II * fft.ν(n)); } } else { - logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, shift); + logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, logShift); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } @@ -139,7 +140,7 @@ int main(int argc, char* argv[]) { std::vector<Complex> Ȓₜ₊₁(N); for (unsigned n = 0; n < N; n++) { Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n)); - Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n)); + Ĉₜ₊₁[n] = ((2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real(); } std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); @@ -190,7 +191,7 @@ int main(int argc, char* argv[]) { std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; - logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, shift); + logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, logShift); β += Δβ; Cₜ₋₁ = Cₜ; |