summaryrefslogtreecommitdiff
path: root/2-point.tex
diff options
context:
space:
mode:
Diffstat (limited to '2-point.tex')
-rw-r--r--2-point.tex77
1 files changed, 55 insertions, 22 deletions
diff --git a/2-point.tex b/2-point.tex
index c5e404e..d4bff09 100644
--- a/2-point.tex
+++ b/2-point.tex
@@ -77,6 +77,9 @@ The gradient and Hessian at a stationary point are then
\end{align}
where $\partial=\frac\partial{\partial\mathbf s}$ will always denote the derivative with respect to $\mathbf s$.
+
+\section{Complexity}
+
We introduce the Kac--Rice \cite{Kac_1943_On, Rice_1944_Mathematical} measure
\begin{equation}
d\nu_H(\mathbf s,\omega)
@@ -89,12 +92,9 @@ measure conditioned on the energy density $E$ and stability $\mu$,
\begin{equation}
d\nu_H(\mathbf s,\omega\mid E,\mu)
=d\nu_H(\mathbf s,\omega)\,
- \delta\big(H(\mathbf s)-NE\big)\,
+ \delta\big(NE-H(\mathbf s)\big)\,
\delta\big(N\mu-\operatorname{Tr}\operatorname{Hess}H(\mathbf s,\omega)\big)
\end{equation}
-
-\section{Complexity}
-
We want the typical number of stationary points with energy density
$E_1$ and stability $\mu_1$ that lie a fixed overlap $q$ from a reference
stationary point of energy density $E_0$ and stability $\mu_0$.
@@ -169,7 +169,7 @@ resulting from the average of the Hessians, the remaining part of the integrand
has the form
\begin{equation}
e^{
- -Nm\hat\beta_0E_0-Nn\hat\beta_1E_1
+ Nm\hat\beta_0E_0+Nn\hat\beta_1E_1
-\sum_a^m\left[(\pmb\sigma_a\cdot\hat{\pmb\sigma}_a)\mu_0
-\frac12\hat\mu_0(N-\pmb\sigma_a\cdot\pmb\sigma_a)
\right]
@@ -184,11 +184,11 @@ where we have introduced the linear operator
\begin{equation}
\mathcal O(\mathbf t)
=\sum_a^m\delta(\mathbf t-\pmb\sigma_a)\left(
- i\hat{\pmb\sigma}_a\cdot\partial_{\mathbf t}+\hat\beta_0
+ i\hat{\pmb\sigma}_a\cdot\partial_{\mathbf t}-\hat\beta_0
\right)
+
\sum_a^n\delta(\mathbf t-\mathbf s_a)\left(
- i\hat{\mathbf s}_a\cdot\partial_{\mathbf t}+\hat\beta_1
+ i\hat{\mathbf s}_a\cdot\partial_{\mathbf t}-\hat\beta_1
\right)
\end{equation}
We have written the $H$-dependant terms in this strange form for the ease of taking the average over $H$: since it is Gaussian-correlated, it follows that
@@ -242,10 +242,10 @@ where
\begin{equation}
\begin{aligned}
&\mathcal S_0(\mathcal Q_{00})
- =-\hat\beta_0E_0-r^{00}_\mathrm d\mu_0-\frac12\hat\mu_0(1-c^{00}_\mathrm d)+\mathcal D(\mu_0)\\
+ =\hat\beta_0E_0-r^{00}_\mathrm d\mu_0-\frac12\hat\mu_0(1-c^{00}_\mathrm d)+\mathcal D(\mu_0)\\
&\quad+\frac1m\bigg\{
\frac12\sum_{ab}^m\left[
- \hat\beta_1^2f(C^{00}_{ab})-(2\hat\beta_1R^{00}_{ab}+D^{00}_{ab})f'(C^{00}_{ab})+(R_{ab}^{00})^2f''(C_{ab}^{00})
+ \hat\beta_1^2f(C^{00}_{ab})+(2\hat\beta_1R^{00}_{ab}-D^{00}_{ab})f'(C^{00}_{ab})+(R_{ab}^{00})^2f''(C_{ab}^{00})
\right]+\frac12\log\det\begin{bmatrix}C^{00}&R^{00}\\R^{00}&D^{00}\end{bmatrix}
\bigg\}
\end{aligned}
@@ -254,14 +254,14 @@ is the action for the ordinary, one-point complexity, and remainder is given by
\begin{equation}
\begin{aligned}
&\mathcal S(\mathcal Q_{00},\mathcal Q_{11},\mathcal Q_{01})
- =-\hat\beta_1E_1-r^{11}_\mathrm d\mu_1-\frac12\hat\mu_1(1-c^{11}_\mathrm d)+\mathcal D(\mu_1) \\
+ =\hat\beta_1E_1-r^{11}_\mathrm d\mu_1-\frac12\hat\mu_1(1-c^{11}_\mathrm d)+\mathcal D(\mu_1) \\
&\quad+\frac1n\sum_b^n\left\{-\frac12\hat\mu_{12}(q-C^{01}_{1b})+\sum_a^m\left[
- \hat\beta_0\hat\beta_1f(C^{01}_{ab})-(\hat\beta_0R^{01}_{ab}+\hat\beta_1R^{10}_{ab}+D^{01}_{ab})f'(C^{01}_{ab})+R^{01}_{ab}R^{10}_{ab}f''(C^{01}_{ab})
+ \hat\beta_0\hat\beta_1f(C^{01}_{ab})+(\hat\beta_0R^{01}_{ab}+\hat\beta_1R^{10}_{ab}-D^{01}_{ab})f'(C^{01}_{ab})+R^{01}_{ab}R^{10}_{ab}f''(C^{01}_{ab})
\right]\right\}
\\
&\quad+\frac1n\bigg\{
\frac12\sum_{ab}^n\left[
- \hat\beta_1^2f(C^{11}_{ab})-(2\hat\beta_1R^{11}_{ab}+D^{11}_{ab})f'(C^{11}_{ab})+(R^{11}_{ab})^2f''(C^{11}_{ab})
+ \hat\beta_1^2f(C^{11}_{ab})+(2\hat\beta_1R^{11}_{ab}-D^{11}_{ab})f'(C^{11}_{ab})+(R^{11}_{ab})^2f''(C^{11}_{ab})
\right]\\
&\quad+\frac12\log\det\left(
\begin{bmatrix}
@@ -380,7 +380,7 @@ For these models, the saddle point parameters for the reference stationary
point are well known, and take the values.
\begin{align}
\hat\beta_0
- &=\frac{(\epsilon_0+\mu_0)f'(1)+\epsilon_0f''(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}\\
+ &=-\frac{(\epsilon_0+\mu_0)f'(1)+\epsilon_0f''(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}\\
r_\mathrm d^{00}
&=\frac{\mu_0f(1)+\epsilon_0f'(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2} \\
d_\mathrm d^{00}
@@ -390,23 +390,56 @@ point are well known, and take the values.
\right)^2
\end{align}
+$(r^{00}_\mathrm d)^2+d^{00}_\mathrm d=1/f'(1)$
+
Because the matrices $C^{00}$, $R^{00}$, and $D^{00}$ are diagonal in this case, the diagonals of the inverse block matrix from above are simple expressions:
\begin{align}
- \tilde c_\mathrm d^{00}=\frac1{(r^{00}_\mathrm d)^2+d^{00}_\mathrm d} &&
- \tilde r_\mathrm d^{00}=\frac{r^{00}_\mathrm d}{(r^{00}_\mathrm d)^2+d^{00}_\mathrm d} &&
- \tilde d_\mathrm d^{00}=\frac{d^{00}_\mathrm d}{(r^{00}_\mathrm d)^2+d^{00}_\mathrm d}
+ \tilde c_\mathrm d^{00}=f'(1) &&
+ \tilde r_\mathrm d^{00}=r^{00}_\mathrm df'(1) &&
+ \tilde d_\mathrm d^{00}=d^{00}_\mathrm df'(1)
\end{align}
\begin{equation}
- \hat\beta_2E_2-r_{22}^{(0)}\mu_2\frac12\left\{
- \hat\beta_2^2\big(f(1)-f(q_{22}^{(0)})\big)
- +\left(
- r_{12}^2+2\hat\beta_2r_{22}-\frac{2q_{12}r_{12}(r_{22}-r_{22}^{(0)})}{1-q_{22}^{(0)}}
- \right)\big(f'(1)-f'(q_{22}^{(0)})\big)
- \right\}
+ \begin{aligned}
+ &\Sigma_{12}=\mathcal D(\mu_1)-\frac12+\hat\beta_1E_1-r^{11}_\mathrm d\mu_1
+ +\hat\beta_1\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
+ +\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r^{01}+\hat\beta_1r^{10}+r^{00}_\mathrm d r^{01})f'(q)
+ \\
+ &+\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}(r^{10}-qr^{00}_\mathrm d)f'(q)+
+ \frac12\Bigg\{
+ \hat\beta_1^2\big(f(1)-f(q^{11}_{0})\big)
+ +(r^{11}_\mathrm d)^2f''(1)+2r^{01}r^{10}f''(q)-(r^{11}_0)^2f''(q^{11}_0)
+ \\
+ &+\left(
+ (r^{01})^2-\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\left(2qr^{01}-\frac{(1-q^2)r^{11}_0-(q^{11}_0-q^2)r^{11}_\mathrm d}{1-q^{11}_0}\right)
+ \right)\big(f'(1)-f'(q_{22}^{(0)})\big) \\
+ &+\frac{1-q^2}{1-q^{11}_0}+\frac{(r^{10}-qr^{00}_\mathrm d)^2}{1-q^{11}_0}f'(1)
+ -\frac1{f'(1)}\frac{f'(1)^2-f'(q)^2}{f'(1)-f'(q^{11}_0)}
+ +\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
+ \\
+ &+\log\left(\frac{1-q_{11}^0}{f'(1)-f'(q_{11}^0)}\right)
+ \Bigg\}
+ \end{aligned}
\end{equation}
+\subsection{Most common neighbors with given overlap}
+
+\begin{align}
+ \hat\beta_1=0 &&
+ \mu_1=2r^{11}_\mathrm df''(1)
+\end{align}
+
+\begin{equation}
+ \Sigma_{12}=\frac{f'''(1)}{8f''(1)^2}(4f''(1)-\mu_0^2)\left(\sqrt{2+\frac{2f''(1)(f''(1)-f'(1))}{f'''(1)f'(1)}}-1\right)(1-q)
+ +O\big((1-q)^2\big)
+\end{equation}
+\begin{equation}
+ E_0^*=-\frac{f'(1)^2+f(1)\big(f''(1)-f'(1)\big)}{2f''(1)f'(1)}\mu_0
+\end{equation}
+\begin{equation}
+ \mu_1=\mu_0-\frac{f'(1)(f'''(1)+f''(1))-f''(1)^2}{f(1)(f'(1)+f''(1))-f'(1)^2}(E_0-E_0^*)(1-q)+O\big((1-q)^2\big)
+\end{equation}
\section{Isolated eigenvalue}