summaryrefslogtreecommitdiff
path: root/2-point.tex
diff options
context:
space:
mode:
Diffstat (limited to '2-point.tex')
-rw-r--r--2-point.tex35
1 files changed, 20 insertions, 15 deletions
diff --git a/2-point.tex b/2-point.tex
index bf1a5ca..efc7a71 100644
--- a/2-point.tex
+++ b/2-point.tex
@@ -670,28 +670,33 @@ Because the matrices $C^{00}$, $R^{00}$, and $D^{00}$ are diagonal in this case,
\tilde r_\mathrm d^{00}=r^{00}_\mathrm df'(1) &&
\tilde d_\mathrm d^{00}=d^{00}_\mathrm df'(1)
\end{align}
-
-
+Once these expressions are inserted into the complexity, the limits of $n$ and
+$m$ to zero can be taken, and the parameters from $D^{01}$ and $D^{11}$ can be
+extremized explicitly. The resulting expression for the complexity, which must
+still be extremized over the parameters $\hat\beta_1$, $r^{01}$,
+$r^{11}_\mathrm d$, $r^{11}_0$, and $q^{11}_0$, is
\begin{equation}
\begin{aligned}
- &\Sigma_{12}=\mathcal D(\mu_1)-\frac12+\hat\beta_1E_1-r^{11}_\mathrm d\mu_1
- +\hat\beta_1\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
- +\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r^{01}+\hat\beta_1r^{10}+r^{00}_\mathrm d r^{01})f'(q)
- \\
- &+\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}(r^{10}-qr^{00}_\mathrm d)f'(q)+
- \frac12\Bigg\{
+ &\Sigma_{12}(E_0,\mu_0,E_1,\mu_1,q)
+ =\mathop{\mathrm{extremum}}_{\hat\beta_1,r^{11}_\mathrm d,r^{11}_0,r^{01},q^{11}_0}\Bigg\{
+ \mathcal D(\mu_1)-\frac12+\hat\beta_1E_1-r^{11}_\mathrm d\mu_1
+ +\hat\beta_1\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)\\
+ &\qquad+\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r^{01}+\hat\beta_1r^{10}+r^{00}_\mathrm d r^{01})f'(q)
+ +\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}(r^{10}-qr^{00}_\mathrm d)f'(q)\\
+ &+\frac12\Bigg[
\hat\beta_1^2\big(f(1)-f(q^{11}_{0})\big)
+(r^{11}_\mathrm d)^2f''(1)+2r^{01}r^{10}f''(q)-(r^{11}_0)^2f''(q^{11}_0)
+ +\frac{(r^{10}-qr^{00}_\mathrm d)^2}{1-q^{11}_0}f'(1)
\\
- &+\left(
- (r^{01})^2-\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\left(2qr^{01}-\frac{(1-q^2)r^{11}_0-(q^{11}_0-q^2)r^{11}_\mathrm d}{1-q^{11}_0}\right)
+ &\qquad+\frac{1-q^2}{1-q^{11}_0}+\left(
+ (r^{01})^2-\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}
+ \left(2qr^{01}-\frac{(1-q^2)r^{11}_0-(q^{11}_0-q^2)r^{11}_\mathrm d}{1-q^{11}_0}\right)
\right)\big(f'(1)-f'(q_{22}^{(0)})\big) \\
- &+\frac{1-q^2}{1-q^{11}_0}+\frac{(r^{10}-qr^{00}_\mathrm d)^2}{1-q^{11}_0}f'(1)
+ &\qquad
-\frac1{f'(1)}\frac{f'(1)^2-f'(q)^2}{f'(1)-f'(q^{11}_0)}
+\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
- \\
- &+\log\left(\frac{1-q_{11}^0}{f'(1)-f'(q_{11}^0)}\right)
- \Bigg\}
+ +\log\left(\frac{1-q_{11}^0}{f'(1)-f'(q_{11}^0)}\right)
+ \Bigg]\Bigg\}
\end{aligned}
\end{equation}
@@ -713,7 +718,7 @@ expanding in powers of $\Delta q=1-q$. For the complexity, the result is
\Sigma_{12}=\frac{f'''(1)}{8f''(1)^2}(\mu_\mathrm m^2-\mu_0^2)\left(\sqrt{2+\frac{2f''(1)(f''(1)-f'(1))}{f'''(1)f'(1)}}-1\right)(1-q)
+O\big((1-q)^2\big)
\end{equation}
-The popular of stationary points that are most common at each energy have the relation
+The population of stationary points that are most common at each energy have the relation
\begin{equation}
E_\mathrm{dom}(\mu_0)=-\frac{f'(1)^2+f(1)\big(f''(1)-f'(1)\big)}{2f''(1)f'(1)}\mu_0
\end{equation}